JP2609163B2 - Photovoltaic power generation method and device - Google Patents

Photovoltaic power generation method and device

Info

Publication number
JP2609163B2
JP2609163B2 JP1278481A JP27848189A JP2609163B2 JP 2609163 B2 JP2609163 B2 JP 2609163B2 JP 1278481 A JP1278481 A JP 1278481A JP 27848189 A JP27848189 A JP 27848189A JP 2609163 B2 JP2609163 B2 JP 2609163B2
Authority
JP
Japan
Prior art keywords
wavelength
sunlight
solar
solar cell
solar light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1278481A
Other languages
Japanese (ja)
Other versions
JPH03143280A (en
Inventor
仁一郎 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Quartz Products Co Ltd
Original Assignee
Shin Etsu Quartz Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Quartz Products Co Ltd filed Critical Shin Etsu Quartz Products Co Ltd
Priority to JP1278481A priority Critical patent/JP2609163B2/en
Publication of JPH03143280A publication Critical patent/JPH03143280A/en
Application granted granted Critical
Publication of JP2609163B2 publication Critical patent/JP2609163B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、集光された太陽光を利用して光電変換効率
の向上を図った太陽光発電方法とその装置に関する。
Description: TECHNICAL FIELD The present invention relates to a photovoltaic power generation method and a photovoltaic power generation method that improve photoelectric conversion efficiency by using collected sunlight.

「従来の技術」 従来より、石油若しくは原子力等の代替エネルギーと
して太陽光発電が注目されている。
[Prior Art] Conventionally, solar power generation has attracted attention as an alternative energy such as oil or nuclear power.

確かに地球表面が受取る太陽エネルギーは現在世界の
消費エネルギー総量の2万倍以上と実質的に無尽蔵であ
り、又該太陽エネルギーを利用した太陽光発電は単に太
陽電池表面に太陽光を受光するのみで光起電力を得る事
が出来るために、石油が原子力のように環境汚染の心配
もなく極めてクリーンであり而もメインテナンスや寿命
の面からも他の発電装置に比較して極めて大なる優位性
を有するにもかかわらず、尚離島や砂漠の極めて限定さ
れた地域にしか設置されていない。
Certainly, the solar energy received by the earth's surface is virtually inexhaustible, currently over 20,000 times the total amount of energy consumed in the world, and solar power generation using this solar energy simply receives sunlight on the solar cell surface. Oil is very clean without the risk of environmental pollution like nuclear power, and has an extremely large advantage compared to other power generators in terms of maintenance and life. Despite the fact, it is still installed only in very limited areas of remote islands and deserts.

その最大の理由が光電変換効率が依然として低く、設
置コストに見合うだけの光発電量を得る事が出来ない事
にあった。
The biggest reason was that the photoelectric conversion efficiency was still low, and it was not possible to obtain a sufficient amount of photovoltaic power for the installation cost.

「発明が解決しようとする技術的課題」 かかる欠点を解消する為に、従来より種々の対策が取
られている。
"Technical problems to be solved by the invention" Various measures have been taken in the past to solve such a drawback.

A,その第1が太陽電池自体の光電変換効率の向上にあ
る。
A, The first is to improve the photoelectric conversion efficiency of the solar cell itself.

確かに近年Si太陽電池自体の構造技術や表面構造の改
良により実用段階で14〜15%の変換効率が得られ、尚、
該変換効率の向上を図る為に改良を重ねているが、例え
全ての技術的問題が解決したとしてもSi太陽電池の理論
効率が20%前後であるのでそれ以上に向上させる事は不
可能である。
Certainly, in recent years, 14-15% conversion efficiency has been obtained in practical use by improving the structural technology and surface structure of Si solar cells themselves.
Improvements have been made to improve the conversion efficiency, but even if all the technical problems were solved, the theoretical efficiency of the Si solar cell was around 20%, so it was impossible to further improve it. is there.

このようにSi太陽電池の理論効率に上限があるのは、
主として太陽光の波長別エネルギー分布とSiのバンドギ
ャップとの関係及び光集光効率に起因する。
There is an upper limit to the theoretical efficiency of a Si solar cell,
This is mainly due to the relationship between the energy distribution by wavelength of sunlight and the band gap of Si, and the light collection efficiency.

即ち地表に到達する太陽光線は0.3μm〜数μm前後
までの幅広いエネルギーをもつにもかかわらず、Si太陽
電池のバンドギャップは1.1eV(波長換算1127nm)であ
る為に1127nm以上の長波長の太陽光は透過損となって利
用できず、又前記1127nm以下の短波長の太陽光において
は光子の保有するエネルギーhνのなかでSiのバンドギ
ャップEgのみが利用され(hν−Eg)は損失に帰してし
まう。更に前記Si太陽電池のスペクトル感度が第3図に
示す分布曲線を有するために、通常のSi太陽電池にあっ
ては波長が900〜1100nm及び500nm以下の波長域の太陽光
の収集効率が大幅に低下し、又前記収集効率を向上させ
る為に内部電界を付加した太陽電池においては収集効率
が確かに向上するが、やはり太陽電池の変換効率は依然
として低い。
That is, despite the fact that sunlight reaching the surface of the earth has a wide energy range of 0.3 μm to several μm, the band gap of the Si solar cell is 1.1 eV (wavelength conversion: 1127 nm), so that the long-wavelength The light cannot be used as a transmission loss, and in the short-wavelength sunlight of 1127 nm or less, only the bandgap Eg of Si is used in the energy hν held by the photon (hν−Eg). Would. Furthermore, since the spectral sensitivity of the Si solar cell has a distribution curve shown in FIG. 3, the collection efficiency of sunlight in a wavelength range of 900 to 1100 nm and 500 nm or less in a normal Si solar cell is significantly increased. Although the collection efficiency is certainly improved in the solar cell to which the internal electric field is added to improve the collection efficiency, the conversion efficiency of the solar cell is still low.

かかる欠点を解消する為に、Si太陽電池を用いずにヒ
化ガリウム(GaAl)As/GaAs太陽電池も提案されてお
り、かかる太陽電池においてはバンドギャップが1.4〜
1.5eVである為に前記光電変換効率が20%前後に向上す
るが、かかる太陽電池は大量に得るのが困難であり且つ
製造コストも大である為に汎用的に用いるのが困難であ
る。
In order to solve such a drawback, a gallium arsenide (GaAl) As / GaAs solar cell without using a Si solar cell has also been proposed.
Although the photoelectric conversion efficiency is improved to about 20% because of 1.5 eV, it is difficult to obtain such a solar cell in large quantities and its production cost is large, so that it is difficult to use it for general purposes.

B,又前記光電変換効率を高める為に、太陽光の波長選択
技術が提案されている。
B. In order to enhance the photoelectric conversion efficiency, a wavelength selection technique for sunlight has been proposed.

例えば特開昭63−6881号には、蛍光型集光板を用いて
太陽光を波長選別した後、該選別した夫々の波長帯に、
対応するバンドギャップを有する異なる種類の太陽電池
を配置受光させる事により、光電変換効率を高めるよう
に構成している。
For example, Japanese Patent Application Laid-Open No. 63-6881 discloses that after sunlight is wavelength-selected using a fluorescent light-collecting plate, the wavelength is selected in each of the selected wavelength bands.
By arranging and receiving different types of solar cells having corresponding band gaps, the photoelectric conversion efficiency is increased.

しかしながらかかる従来技術においても対応するバン
ドギャップ以上の波長を有する太陽光については尚透過
損として利用出来ず、装置構成が煩雑且つ高価になるた
めに設置コストに見合う光発電量を得るのが困難にな
る。
However, even in such a conventional technique, sunlight having a wavelength equal to or larger than the corresponding band gap cannot be used as a transmission loss, and the device configuration is complicated and expensive. Become.

C,さて太陽電池の光電変換効率は前記バンドギャップや
光収集効率のみに限定されるものではなく、開放電圧が
バンドギャップより小さい為に起因する(電圧因子)エ
ネルギー損失が存在する。
C. By the way, the photoelectric conversion efficiency of the solar cell is not limited only to the band gap and the light collection efficiency, but there is an energy loss (voltage factor) due to the open voltage being smaller than the band gap.

そこで従来より、太陽光を集光させた後太陽電池に入
射させる技術が開発されている。
Therefore, a technique has been conventionally developed in which sunlight is condensed and then incident on a solar cell.

例えばn+p型(10Ωcm)のSi太陽電池を用いた場合、
集光比が1Sunの場合太陽受光量に対する電気出力の割合
は16%(27℃)前後であるのに対し、集光比を40Sunに
上げると前記比率が18〜19%(27℃)に向上するが、前
記集光した太陽光は波長が1127nm以上の赤外線域にあり
光電変換に利用し得ない熱線も併せて含んでおり、これ
が直接太陽電池に入射すると、太陽電池自体が無用に昇
温してしまい、これにより光電変換効率が大幅に低下し
てしまう場合がある。
For example, when using an n + p type (10Ωcm) Si solar cell,
When the light-collecting ratio is 1 Sun, the ratio of the electrical output to the amount of solar light received is around 16% (27 ° C), whereas when the light-collecting ratio is increased to 40Sun, the ratio improves to 18-19% (27 ° C) However, the condensed sunlight also includes heat rays that are in the infrared region having a wavelength of 1127 nm or more and cannot be used for photoelectric conversion, and when this directly enters the solar cell, the solar cell itself heats up unnecessarily. As a result, the photoelectric conversion efficiency may be significantly reduced.

本発明はかかる従来技術の欠点に鑑み、短波長〜長波
長まで幅広い光エネルギーを効果的に利用可能に構成
し、これにより光電変換効率を大幅に高めた太陽光発電
方法及びその装置を提供する事を目的とする。
In view of the drawbacks of the related art, the present invention provides a photovoltaic power generation method and a photovoltaic power generation method that is configured to effectively use a wide range of light energy from short wavelength to long wavelength, thereby greatly improving photoelectric conversion efficiency. For the purpose.

本発明の他の目的とする所は、バンドギャップの異な
る複数種類の太陽電池を用いる事なく、単一種類、より
具体的には汎用性が高く又品質が安定しており且つ製造
コストの低廉なSi太陽電池を用いた場合にも光電変換効
率を大幅に高める事が可能な太陽光発電方法 及びその装置を提供する事にある。
Another object of the present invention is to use a single type, more specifically, high versatility, stable quality and low production cost without using a plurality of types of solar cells having different band gaps. It is an object of the present invention to provide a photovoltaic power generation method and a photovoltaic power generation method capable of greatly increasing the photoelectric conversion efficiency even when a simple Si solar cell is used.

又本発明の他の目的は設置コストに見合う光起電力を
得る事の出来る太陽光発電方法及びその装置を提供する
事を目的とする。
Another object of the present invention is to provide a photovoltaic power generation method and a photovoltaic power generation method capable of obtaining a photovoltaic power commensurate with the installation cost.

「課題を解決する為の技術手段」 先ず本発明に至った経過を順を追って説明する。"Technical Means for Solving the Problem" First, the process leading to the present invention will be described step by step.

前記従来技術の項で説明したように太陽電池の光電変
換効率の向上を阻害している主な理由が、バンドギャッ
プ(禁制帯幅)と光収集効率に起因することは前述した
通りである。
As described in the section of the related art, the main reason that the improvement in the photoelectric conversion efficiency of the solar cell is hindered by the band gap (forbidden band width) and the light collection efficiency is as described above.

そこで前記0.3μm〜数μm前後までの幅広いエネル
ギーをもつ太陽光について波長変換を行い、該太陽光の
波長を例えばSiのバンドギャップに相当する1127nmより
小さくて且つ出来る限りこれに近い特定波長であって、
更に第3図に示す感度分布曲線において最も収集効率の
高い領域、例えば不純物濃度が均一な接合の場合(i)
600〜800nm、内蔵電界が存在する場合(ii)は400〜100
0nm、好ましくは650〜950nmの特定波長域に揃えること
が光電変換効率を大幅に向上させる上で極めて重要な事
となる。
Therefore, wavelength conversion is performed on sunlight having a wide energy range from about 0.3 μm to about several μm, and the wavelength of the sunlight is, for example, a specific wavelength smaller than 1127 nm corresponding to the band gap of Si and as close as possible to this. hand,
Further, a region having the highest collection efficiency in the sensitivity distribution curve shown in FIG. 3, for example, in the case of a junction having a uniform impurity concentration (i)
600 to 800 nm, 400 to 100 when built-in electric field exists (ii)
It is extremely important to make the specific wavelength range of 0 nm, preferably 650 to 950 nm, in order to greatly improve the photoelectric conversion efficiency.

そこで本発明は、太陽光を受光する太陽電池の半導体
材料のバンドギャップより短い特定波長域に太陽光波長
を揃える波長変換手段を用いることを第1の特徴とす
る。
Therefore, the first feature of the present invention is to use wavelength conversion means for adjusting the wavelength of sunlight to a specific wavelength region shorter than the band gap of a semiconductor material of a solar cell that receives sunlight.

しかしながら、前記特定波長域に波長を揃える過程で
エネルギー損失が生じれば結果として前記波長変換を行
う意味が滅失してしまう。
However, if an energy loss occurs in the process of aligning the wavelength to the specific wavelength range, the effect of performing the wavelength conversion is lost as a result.

そこで本発明の第2の特徴とする所は、高温雰囲気下
で黒体輻射を利用してより好ましくは内壁面が黒体化さ
れた密閉真空空間内で前記波長変換を行うことにある。
Therefore, a second feature of the present invention resides in that the wavelength conversion is performed using a blackbody radiation in a high-temperature atmosphere, and more preferably in a closed vacuum space where the inner wall surface is blackened.

即ち前記波長変換は色素レーザ等を用いて行う事も可
能であるが、高効率で波長変換を可能ならしめるのは、
後記実施例に示すように例えば太陽光の中の特定波長域
以外の光をフィルタ部材に吸収させ、この吸収されたエ
ネルギーを繰り返し輻射エネルギーに変換しながら波長
変換を行う事の出来る黒体輻射を利用するのが最も好ま
しい。
That is, the wavelength conversion can be performed by using a dye laser or the like, but it is possible to perform wavelength conversion with high efficiency.
As shown in the examples below, for example, light other than a specific wavelength range in sunlight is absorbed by a filter member, and black body radiation capable of performing wavelength conversion while repeatedly converting the absorbed energy into radiant energy. Most preferably, it is used.

即ちより具体的に説明すると請求項5記載の発明のよ
うに太陽光集光手段と、該太陽光集光手段の下流側に配
置され、該太陽光を受光する太陽電池のバンドギャップ
より短い特定波長域に波長を揃える波長変換手段を備
え、 該波長変換手段が、特定波長域より短波長の光を吸収
するフィルタ部材と、特定波長域より長波長の光を反射
する反射部材とによる波長選択機能を持ち、かつ前記フ
ィルタ部材と反射部材とにより吸収反射されたエネルギ
ーを設定温度における黒体輻射として再輻射し、繰り返
し波長選別するものであるのがよい。
More specifically, as described in claim 5, a solar light concentrating means, and a specification shorter than the band gap of a solar cell disposed downstream of the solar light condensing means and receiving the sunlight. Wavelength conversion means for aligning the wavelength in the wavelength range, the wavelength conversion means comprising a filter member that absorbs light having a wavelength shorter than the specific wavelength range and a reflection member that reflects light having a wavelength longer than the specific wavelength range. It is preferable that the filter has a function and re-radiates the energy absorbed and reflected by the filter member and the reflection member as black body radiation at a set temperature, thereby repeatedly selecting the wavelength.

しかしながら周知のように黒体輻射はPLANCKの公式に
示されるような波長別輻射エネルギー密度の温度依存性
を有し、低温の輻射体からの輻射光は長波長側にあり且
つそのエネルギー密度も低いので、Si太陽電池に対して
好適な波長域である例えば前記650〜950nmの輻射を効果
的に取得するのには、輻射体の温度を少なくとも1000゜
K以上に設定する必要がある。
However, as is well known, blackbody radiation has a temperature dependence of radiation energy density at each wavelength as shown in the PLANCK formula, and radiation from a low-temperature radiator is on the long wavelength side and its energy density is low. Therefore, in order to effectively obtain radiation having a wavelength range suitable for the Si solar cell, for example, 650 to 950 nm, the temperature of the radiator must be at least 1000 ° C.
Must be set to K or more.

そこで本発明は、第4図に示すように前記雰囲気温度
を少なくとも1000゜K以上に設定し、且つ輻射体を酸化
から保護するために真空雰囲気に収納する事により前記
作用を円滑に営むことが出来る技術を請求項にて開示
している。
Therefore, according to the present invention, as shown in FIG. 4, the above-mentioned operation can be performed smoothly by setting the ambient temperature to at least 1000 ° K or more and storing the radiator in a vacuum atmosphere to protect the radiator from oxidation. A possible technique is disclosed in claim 1 .

さて前記波長変換は太陽光を集光する事なく波長変換
する事も可能であるが、このように構成すると該変換手
段自体が大型化し且つエネルギー効率も低下するので、
実用的でない。
By the way, the wavelength conversion can also convert the wavelength without condensing sunlight, but such a configuration increases the size of the conversion unit itself and lowers energy efficiency.
Not practical.

又前記したように太陽電池の光電変換効率は前記バン
ドギャップ因子や光収集効率のみに限定されるものでは
なく、電圧因子にも起因する。
Further, as described above, the photoelectric conversion efficiency of the solar cell is not limited to only the band gap factor and the light collection efficiency, but also depends on the voltage factor.

そこで第3の特徴とする所は太陽光集光手段を用いて
電圧因子に基づく光電変換効率の低減を防ぐとともに、
該集光手段の下流側に前記波長変換手段を配置する事に
より変換手段の省設置面積化とエネルギー効率の向上及
び小型化更には該波長変換後の太陽光が集光状態にある
ために、これをそのまま若しくは所定集光倍率に拡大し
た後、太陽電池側に入射させる事により電圧因子による
光電変換効率の低減も防止した点にある。
Therefore, the third feature is to use a sunlight condensing means to prevent a decrease in photoelectric conversion efficiency based on a voltage factor,
By arranging the wavelength conversion means on the downstream side of the light collection means, the installation area of the conversion means is reduced, the energy efficiency is improved and the size is reduced, and further, the sunlight after the wavelength conversion is in a light collection state. The point is that this is incident on the solar cell side as it is or after being enlarged to a predetermined light-condensing magnification, thereby preventing a reduction in photoelectric conversion efficiency due to a voltage factor.

さて前記波長変換手段に入射させる太陽光は高度に集
光すればするほど、該変換手段の省設置面積化とエネル
ギー効率の向上及び小型化を達成できるのみならず、該
太陽光自体の保有する熱エネルギーを利用して前記変換
手段内の雰囲気温度を少なくとも1000゜K以上に維持す
る事が容易となり、好ましい。
Now, the more highly the sunlight that is incident on the wavelength conversion means is condensed, the more it is possible not only to achieve a reduction in the installation area and an improvement in energy efficiency and miniaturization of the conversion means, but also to possess the sunlight itself. It is preferable because it is easy to maintain the atmosphere temperature in the conversion means at least 1000 ° K or more by utilizing thermal energy.

しかしながら太陽電池に入射される太陽光は前記電圧
因子による光電変換効率の低減を除去し得る程度の集光
度で足りるために、このような高度に集光した太陽光を
そのまま太陽電池に入射させてもその昇温等により却っ
て光電変換効率が低下するのみならず、単位面積当りの
光起電力が飽和し、却って太陽電池の破損等が生じやす
い。
However, since the sunlight incident on the solar cell needs only a light concentration sufficient to eliminate the reduction in the photoelectric conversion efficiency due to the voltage factor, such highly concentrated sunlight is directly incident on the solar cell. In addition, not only does the photoelectric conversion efficiency decrease due to the temperature rise or the like, but also the photovoltaic power per unit area is saturated, and the solar cell is more likely to be damaged.

そこで請求項に記載した本発明の第4の特徴は、前
記変換手段に入射させる太陽光の集光倍率と、太陽電池
に入射させる波長変換後の太陽光の集光倍率を異ならし
た点にある。
Therefore, a fourth feature of the present invention described in claim 2 is that the light-collecting magnification of sunlight incident on the converting means and the light-condensing magnification of wavelength-converted sunlight incident on the solar cell are different. is there.

尚請求項3及び4に記載した発明は、前記発明をより
効果的に具体化させる為の太陽光発電装置を提供するも
のであり、 その特徴とする所は、集光させた太陽光の波長を前記
特定波長域に揃える波長変換手段を用いるも、 該変換手段の入射側に太陽光を高度に、特に1000Sun
以上に集光させる集光手段を、 又その出射側に、波長変換手段よりの出射光を直接太
陽電池に入射させる事なく、該出射光を略10〜100Sunの
所定集光倍率に拡散した後太陽電池に入射させる拡散手
段を設けた点にある。
The inventions described in claims 3 and 4 provide a solar power generation device for more effectively embodying the invention, and the feature of the invention is the wavelength of collected sunlight. The wavelength conversion means for adjusting the wavelength to the specific wavelength range is also used.
After the light condensing means for condensing the light, and diffusing the light emitted from the wavelength conversion means to a predetermined light condensing magnification of approximately 10 to 100 Sun without directly making the light emitted from the wavelength conversion means directly incident on the solar cell, The point is that diffusion means for making the light incident on the solar cell is provided.

「効果」 かかる発明によれば短波長から長波長まで幅広い光エ
ネルギーを効果的に利用し、該太陽光をエネルギー変換
効率を略100%に維持した状態で太陽電池に最も利用し
やすい波長域に波長変換させる為に、いわゆるバンドギ
ャップや光収集効率に起因する光電変換効率の低減を防
ぐ事が出来る。
[Effect] According to the invention, a wide range of light energy from a short wavelength to a long wavelength is effectively used, and the sunlight is converted into a wavelength region most easily used for a solar cell while maintaining the energy conversion efficiency at approximately 100%. In order to perform wavelength conversion, it is possible to prevent a decrease in photoelectric conversion efficiency due to a so-called band gap or light collection efficiency.

又前記波長変換は集光された太陽光について行われる
為に波長変換器の小型化、波長変換効率の高効率化が達
成されるとともに、該波長変換後の太陽光も集光状態に
あるために、これをそのまま若しくは所定集光倍率に拡
大した後、太陽電池側に入射させる事により電圧因子に
よる光電変換効率の低減も防ぐ事が出来る。
In addition, since the wavelength conversion is performed on the collected sunlight, downsizing of the wavelength converter, high efficiency of the wavelength conversion efficiency is achieved, and the sunlight after the wavelength conversion is also in the light collection state. In addition, by injecting the light into the solar cell side as it is or after expanding it to a predetermined light-collecting magnification, it is possible to prevent a decrease in photoelectric conversion efficiency due to a voltage factor.

尚前記波長変換後の太陽光には熱線となるべき赤外線
の太陽光を含まないために、該太陽光を受光した太陽電
池は無用に昇温する事なくそのまま常温状態で光電変換
が可能となり、変換効率も向上する。
In addition, since the sunlight after the wavelength conversion does not include infrared sunlight that should be a heat ray, the solar cell that has received the sunlight can perform photoelectric conversion at room temperature as it is without needlessly raising the temperature, Conversion efficiency also improves.

更に本発明は、前記変換手段に入射させる太陽光を高
度に集光させ、一方太陽電池には、前記高度に集光され
た波長変換後の太陽光を拡散させて所定集光倍率に低減
させて入射するようにした為に、前記変換手段の正設置
面積化とエネルギー効率の向上及び小型化を達成できる
のみならず、該太陽光自体の保有する熱エネルギーを利
用して前記変換手段内の雰囲気温度を少なくとも1000゜
K以上に維持する事が容易となり、一方太陽電池側にお
いては、太陽電池の破損等が生じることなく、最も好適
に且つ高度な変換効率で太陽光の発電を行う事が可能と
なる。
Further, the present invention highly concentrates the sunlight incident on the conversion means, while diffusing the highly focused wavelength-converted sunlight into the solar cell and reducing the sunlight to a predetermined concentration. Not only can achieve a positive installation area of the conversion means, improve energy efficiency and reduce the size of the conversion means, but also use the thermal energy held by the sunlight itself to allow the conversion means to be installed in the conversion means. Ambient temperature at least 1000 ゜
It becomes easy to maintain the temperature at K or more, and on the other hand, on the solar cell side, it is possible to generate solar light with the most suitable and high conversion efficiency without causing damage to the solar cell.

この結果光電変換効率を大幅に高めた太陽光発電装置
を提供する事が可能となるのみならず、バンドギャップ
の異なる複数種類の太陽電池を用いる事なく、単一種
類、より具体的には汎用性の高く又品質が安定しており
且つ製造コストの低廉なSi太陽電池を用いた場合にも高
変換効率而も設置コストに見合う光起電力を得る事の出
来る太陽光発電装置を提供する事が可能となる。
As a result, it is possible not only to provide a photovoltaic power generation device with greatly improved photoelectric conversion efficiency, but also to use a single type, more specifically a general-purpose type, without using a plurality of types of solar cells having different band gaps. To provide a photovoltaic power generation device that can obtain photovoltaic power that is commensurate with the installation cost even when using a Si solar cell that is highly efficient, has stable quality, and is inexpensive to manufacture. Becomes possible.

等の種々の著効を有す。And so on.

「実施例」 以下、図面に基づいて本発明の実施例を例示的に詳し
く説明する。但しこの実施例に記載されている構成部品
の寸法、材質、形状、その相対配置などは特に特定的な
記載がない限りは、この発明の範囲をそれのみに限定す
る趣旨ではなく単なる説明例に過ぎない。
"Example" Hereinafter, an example of the present invention will be illustratively described in detail with reference to the drawings. However, unless otherwise specified, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention, but are merely illustrative examples. Not just.

先ず本実施例を設計するに必要な理論構成についてpn
型太陽電池に基づいて説明する。
First, the theoretical configuration required to design this embodiment
A description will be given based on a solar cell.

pn型太陽電池については第3図に示すように内部電界
を付加する事により収集効率が向上する事は公知であ
る。
It is known that the collection efficiency of a pn solar cell is improved by adding an internal electric field as shown in FIG.

そしてこの場合における収集効率が最も高くなる波長
域は400〜1000nm好ましくは650〜950nmである。
The wavelength range in which the collection efficiency is highest in this case is 400 to 1000 nm, preferably 650 to 950 nm.

従ってエネルギー変換効率100%において前記波長域
に揃えた場合のSi太陽電池の光電変換効率を計算してみ
ると、 Q=f・φ650-950 ……1) Q:光電変換効率、f:電圧因子による出力効率 φ650-950:波長域650〜950nmにおける基礎効率 そして前記φ650-950は下記2)式及び下記第1表よ
り0.670の数値が得られ、又fについては、下記3)式
より0.343の数値が得られるためにQは23%となる。
Therefore, when calculating the photoelectric conversion efficiency of the Si solar cell in the case where the energy conversion efficiency is set to the above-mentioned wavelength region at the energy conversion efficiency of 100%, Q = f · φ650-950 1) Q: photoelectric conversion efficiency, f: voltage output by factor efficiency φ 650-950: basic efficiency and the phi 650-950 in the wavelength band 650~950nm is below 2) and the following numbers in table 1 than 0.670 is obtained, the addition f is below 3) Since a value of 0.343 is obtained, Q is 23%.

P:Si太陽電池自体の電気出力(142W/m2) Eg:バンドギャップ(1.1eV,1.7624-19J,1,127nm) η:収集効率、λ:波長 Nλ:波長域、dλにある光
子束(個/m2sec) しかしながら23%という光電変換効率は現行の太陽電
池自体の変換効率よりは数段高いが、尚満足すべき数値
ではない。
P: Electric power of the Si solar cell itself (142 W / m 2 ) Eg: Band gap (1.1 eV, 1.7624 -19 J, 1,127 nm) η: Collection efficiency, λ: wavelength Nλ: wavelength range, photon flux in dλ ( pieces / m 2 sec), however 23% photoelectric conversion efficiency because the number stages higher than the conversion efficiency of the current solar cell itself still not numeric satisfactory.

そこで前記第1式より電圧因子により出力効率を高め
れば前記効率が一層向上する事が理解出来る。
Therefore, it can be understood from the first equation that if the output efficiency is increased by the voltage factor, the efficiency is further improved.

その対策の一つが集光化と温度の問題である。 One of the measures is the problem of light concentration and temperature.

即ち、n+PP+型のSi太陽電池の場合常温下(27℃)に
おいて、40Sunにおける電圧因子による出力効率が0.516
程度に上昇し、従って光電変換効率Qが34%程度に上昇
し、一応満足した数値が得られる。
That is, in the case of the n + PP + type Si solar cell, at room temperature (27 ° C.), the output efficiency due to the voltage factor at 40 Sun is 0.516.
The photoelectric conversion efficiency Q increases to about 34%, and a satisfactory numerical value is obtained.

第1図はかかる理論構成に基づいて創作された太陽光
発電装置の概略を示す全体ブロック図である。
FIG. 1 is an overall block diagram schematically showing a photovoltaic power generation device created based on such a theoretical configuration.

その構成を簡単に説明するに、1は太陽光を集光させ
る集光鏡、2は該集光した太陽光を波長変換する波長変
換器、3は該波長変換後の太陽光を所定集光倍率に拡大
する拡大鏡、4はn+PP+型のSi太陽電池で、例えば1KW/m
2の太陽光を集光鏡1で略4400KW/m2に高度に集光させた
後波長変換器2に入射させ、そして該波長変換器2で、
前記集光太陽光をエネルギー変換効率を略100%に維持
した状態で650〜950nmの波長域に波長変換させる。
To briefly explain the configuration, 1 is a condensing mirror for condensing sunlight, 2 is a wavelength converter for converting the wavelength of the condensed sunlight, and 3 is a predetermined condenser for the sunlight after the wavelength conversion. Magnifying glass magnifying to magnification, 4 is an n + PP + type Si solar cell, for example, 1KW / m
The second sunlight condensing mirror 1 is incident on the wavelength converter 2 after highly focused substantially 4400KW / m 2, and in the wavelength converter 2,
The collected sunlight is wavelength-converted to a wavelength range of 650 to 950 nm while maintaining the energy conversion efficiency at approximately 100%.

そして波長変換後の太陽光を拡大鏡3で40Sun程度の
光束に拡大させた後、太陽電池4に入射させる事により
前記した光電変換効率の光起電力を得る事が出来る。
After the sunlight after the wavelength conversion is expanded into a light flux of about 40 Sun by the magnifying mirror 3 and then incident on the solar cell 4, the photovoltaic power of the above-described photoelectric conversion efficiency can be obtained.

第2図は前記装置に用いられる波長変換器2である。 FIG. 2 shows a wavelength converter 2 used in the device.

11は内壁面を灰色断熱材により構成した断熱箱で、内
部空間を真空状態に維持するとともに、その周壁内にヒ
ータ15を埋設し、該内部空間が略1400゜Kに維持可能に
構成している。
Numeral 11 is a heat insulating box having an inner wall made of a gray heat insulating material.The inner space is maintained in a vacuum state, and a heater 15 is buried in the peripheral wall so that the inner space can be maintained at about 1400 ° K. I have.

尚、前記断熱箱11内は黒体輻射により熱線が熱放射さ
れているために、高度に集光化された太陽光の入射量と
断熱箱の内部空間容積との関係を適宜調整する事により
1400゜K前後に昇温且つその温度維持が可能であり、従
って前記ヒータ15は温度調整用に利用してもよい。
In addition, since heat rays are radiated from the inside of the heat insulation box 11 by black body radiation, by appropriately adjusting the relationship between the incident amount of highly concentrated sunlight and the internal space volume of the heat insulation box.
The temperature can be raised to and maintained at about 1400 ° K. Therefore, the heater 15 may be used for temperature adjustment.

12及び13は前記断熱箱11の両端壁の中心軸上に固定さ
れた、太陽光入射用と出射用の窓部で、高純度の石英ガ
ラスで形成されている。
Reference numerals 12 and 13 denote windows for incident and outgoing sunlight, fixed on the central axes of both end walls of the heat insulating box 11, and are made of high-purity quartz glass.

14は650nmより長波長の太陽光を透過させる光フィル
タ部材で、吸収した光を再輻射可能なように内部に輻射
能のよいグラファイト等の微粒子14aを散在させてい
る。
Reference numeral 14 denotes an optical filter member for transmitting sunlight having a wavelength longer than 650 nm, and fine particles 14a such as graphite having good radiating ability are scattered therein so that the absorbed light can be re-emitted.

16は950nmより長波の光を反射させる選択的波長反射
板で、例えばn型ドーパントを高濃度にドープしたグラ
ファイトで形成されている。
Reference numeral 16 denotes a selective wavelength reflector that reflects light having a wavelength longer than 950 nm, and is made of, for example, graphite doped with an n-type dopant at a high concentration.

かかる実施例によれば、入射窓部12より断熱箱11内に
導入された太陽光は、光フィルタ部材14と反射部材16に
より650nm以下の波長光と950nm以上の波長光をカットし
た後、650〜950nmの波長域の光を出射窓部13より拡大鏡
3側に出射する。
According to this embodiment, the sunlight introduced into the heat insulation box 11 from the entrance window 12 cuts light having a wavelength of 650 nm or less and light having a wavelength of 950 nm or more by the optical filter member 14 and the reflection member 16, Light in the wavelength range of 950950 nm is emitted from the emission window 13 toward the magnifying mirror 3.

一方前記光フィルタ部材14と反射部材16によりカット
された光は、フィルタ14中に分散内蔵しているグラファ
イト微粒子団14aに吸収された後、当該微粒子団14aから
射出される輻射光になり、その中の650〜950nmの波長域
の光を出射窓部13より拡大鏡3側に出射する。
On the other hand, the light cut by the optical filter member 14 and the reflecting member 16 is absorbed by the graphite particles 14a dispersed and incorporated in the filter 14, and then becomes radiation emitted from the particles 14a. The light in the wavelength range of 650 to 950 nm is emitted from the emission window 13 toward the magnifying glass 3.

この際前記断熱箱11内は、1400゜Kに維持されている
ために第4図に示すように約650nm以上の波長を有する
輻射エネルギーを得る事が出来、これにより前記太陽光
は熱−輻射−熱の変換を繰り 返しつつ650〜950nmの波長域の光を出射窓部13より拡大
鏡3側に出射し、以下これを無限回数繰り返す事により
前記集光太陽光をエネルギー変換効率を略100%に維持
した状態で650〜950nmの波長域に波長変換させる事が出
来る。
At this time, since the inside of the heat insulating box 11 is maintained at 1400 ° K, radiant energy having a wavelength of about 650 nm or more can be obtained as shown in FIG. -Heat conversion While returning, the light in the wavelength range of 650 to 950 nm is emitted from the emission window 13 to the magnifying mirror 3 side, and this operation is repeated an infinite number of times to maintain the energy conversion efficiency of the collected sunlight at approximately 100%. The wavelength can be converted to a wavelength range of 650 to 950 nm.

従ってかかる実施例によれば前記した本発明の効果を
円滑に達成し得る。
Therefore, according to this embodiment, the effects of the present invention described above can be smoothly achieved.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の実施例に係る太陽光発電装置の概略を
示す全体ブロック図である。第2図は前記装置に用いら
れる波長変換器である。 第3図はSi太陽電池の収集効率を示す感度分布図、第4
図は黒体輻射の温度依存性を示す分光特性図である。
FIG. 1 is an overall block diagram schematically showing a photovoltaic power generator according to an embodiment of the present invention. FIG. 2 shows a wavelength converter used in the device. FIG. 3 is a sensitivity distribution diagram showing the collection efficiency of Si solar cells, and FIG.
The figure is a spectral characteristic diagram showing the temperature dependence of blackbody radiation.

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】太陽光集光手段と、該太陽光集光手段の下
流側に配置され、該太陽光を受光する太陽電池のバンド
ギャップより短い特定波長域に波長を揃える波長変換手
段を備え、該波長変換を黒体輻射を利用しつつ高温雰囲
気下で行うとともに、前記高温雰囲気を真空空間で且つ
少なくとも1000゜K以上に設定した事を特徴とする太陽
光発電方法
1. A solar light collecting means, comprising: a solar light collecting means; and a wavelength converting means arranged downstream of the solar light collecting means for adjusting a wavelength to a specific wavelength region shorter than a band gap of a solar cell that receives the solar light. A photovoltaic power generation method, wherein the wavelength conversion is performed in a high-temperature atmosphere using blackbody radiation, and the high-temperature atmosphere is set in a vacuum space and at least 1000 ° K or more.
【請求項2】太陽光集光手段と、該太陽光集光手段の下
流側に配置され、該太陽光を受光する太陽電池のバンド
ギャップより短い特定波長域に波長を揃える波長変換手
段を備えるとともに、前記変換手段に入射させる太陽光
の集光倍率と、太陽電池に入射させる波長変換後の太陽
光の集光倍率を異ならしめ、前記波長変換を黒体輻射を
利用しつつ高温雰囲気下で行う事を特徴とする太陽光発
電方法
2. A solar light collecting means, comprising: a solar light collecting means; and a wavelength converting means arranged downstream of the solar light collecting means for adjusting a wavelength to a specific wavelength region shorter than a band gap of a solar cell receiving the sunlight. Along with the condensing magnification of the sunlight to be incident on the conversion means and the condensing magnification of the sunlight after the wavelength conversion to be incident on the solar cell, the wavelength conversion is performed under a high-temperature atmosphere using blackbody radiation. Solar power generation method characterized by doing
【請求項3】太陽光を高度に集光させる集光手段と、該
集光された太陽光の波長を、太陽電池のバンドギャップ
より短い特定波長域に揃える波長変換手段と、該波長変
換手段より出力された太陽光を所定集光倍率に拡散した
後太陽電池に入射させる拡散手段とからなる太陽光発電
装置
3. A condensing means for highly condensing sunlight, a wavelength converting means for adjusting the wavelength of the condensed sunlight to a specific wavelength region shorter than a band gap of a solar cell, and the wavelength converting means. And a diffusing unit for diffusing the output solar light to a predetermined light-condensing magnification and then incident the solar light on a solar cell.
【請求項4】前記集光手段が少なくとも太陽光を1000Su
n以上に集光する手段であり、又前記拡散手段が、波長
変換手段より出力された太陽光を略10〜100Sunに拡散す
る手段である請求項3)記載の太陽光発電装置
4. The condensing means according to claim 1, wherein said light condenses at least 1000Su
4. The photovoltaic power generator according to claim 3, wherein the photovoltaic power generation device is a device for converging light to n or more, and wherein the diffusion device is a device for diffusing sunlight output from the wavelength conversion device to approximately 10 to 100 Sun.
【請求項5】太陽光集光手段と、該太陽光集光手段の下
流側に配置され、該太陽光を受光する太陽電池のバンド
ギャップより短い特定波長域に波長を揃える波長変換手
段を備え、 該波長変換手段が、特定波長域より短波長の光を吸収す
るフィルタ部材と、特定波長域より長波長の反射する反
射部材とによる波長選択機能を持ち、かつ前記フィルタ
部材と反射部材とにより吸収反射されたエネルギーを設
定温度における黒体輻射として再輻射し、繰り返し波長
選別するものである事を特徴とする太陽光発電方法
5. A solar light collecting means, comprising: a solar light collecting means; and a wavelength converting means disposed downstream of the solar light collecting means and for adjusting a wavelength to a specific wavelength region shorter than a band gap of a solar cell for receiving the solar light. The wavelength converting means has a wavelength selecting function of a filter member that absorbs light having a wavelength shorter than a specific wavelength region and a reflecting member that reflects light having a longer wavelength than the specific wavelength region, and the filter member and the reflecting member Photovoltaic power generation method characterized by re-radiating the absorbed and reflected energy as black body radiation at a set temperature and repeatedly selecting wavelengths
JP1278481A 1989-10-27 1989-10-27 Photovoltaic power generation method and device Expired - Fee Related JP2609163B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1278481A JP2609163B2 (en) 1989-10-27 1989-10-27 Photovoltaic power generation method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1278481A JP2609163B2 (en) 1989-10-27 1989-10-27 Photovoltaic power generation method and device

Publications (2)

Publication Number Publication Date
JPH03143280A JPH03143280A (en) 1991-06-18
JP2609163B2 true JP2609163B2 (en) 1997-05-14

Family

ID=17597933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1278481A Expired - Fee Related JP2609163B2 (en) 1989-10-27 1989-10-27 Photovoltaic power generation method and device

Country Status (1)

Country Link
JP (1) JP2609163B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6267888A (en) * 1985-09-20 1987-03-27 Saamobonitsuku:Kk Thermoelectric power generation device
JPS63160521A (en) * 1986-12-23 1988-07-04 松下電工株式会社 House for growing plant

Also Published As

Publication number Publication date
JPH03143280A (en) 1991-06-18

Similar Documents

Publication Publication Date Title
Burger et al. Present efficiencies and future opportunities in thermophotovoltaics
US4234352A (en) Thermophotovoltaic converter and cell for use therein
Wedlock Thermo-photo-voltaic energy conversion
Zenker et al. Efficiency and power density potential of combustion-driven thermophotovoltaic systems using GaSb photovoltaic cells
US5626687A (en) Thermophotovoltaic in-situ mirror cell
US6743974B2 (en) Silicon solar cell with germanium backside solar cell
US20020011590A1 (en) Photovoltaic conversion device for thermophotovoltaic power generation apparatus
WO2003079457A1 (en) Luminescence conversion and application to photovoltaic energy conversion
Charache et al. Infrared materials for thermophotovoltaic applications
US8283553B1 (en) Photon enhanced thermoelectric power generation
Kazim et al. Efficiency enhancement of a thermophotovoltaic system integrated with a back surface reflector
JPS6230714B2 (en)
US4160678A (en) Heterojunction solar cell
JP2609163B2 (en) Photovoltaic power generation method and device
Fatemi et al. High-performance, lattice-mismatched InGaAs/InP monolithic interconnected modules (MIMs)
JPS6111475B2 (en)
Morgan et al. Radioisotope thermophotovoltaic power system utilizing the GaSb IR photovoltaic cell
JPH08204214A (en) Solar cell
Andreev et al. Solar thermophotovoltaic converter with Fresnel lens and GaSb cells
Martín et al. Development of GaSb photoreceiver arrays for solar thermophotovoltaic systems
JPH08250755A (en) Solar cell
Fraas et al. Electricity from concentrated solar IR in solar lighting applications
Heinzel et al. Efficiency and power density potential of thermophotovoltaic systems using low bandgap photovoltaic cells
Iles et al. Design and fabrication of thermophotovoltaic cells
JPS5862455A (en) Solar energy collector

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees