JPH03143280A - Method and apparatus for generating power by solar energy - Google Patents

Method and apparatus for generating power by solar energy

Info

Publication number
JPH03143280A
JPH03143280A JP1278481A JP27848189A JPH03143280A JP H03143280 A JPH03143280 A JP H03143280A JP 1278481 A JP1278481 A JP 1278481A JP 27848189 A JP27848189 A JP 27848189A JP H03143280 A JPH03143280 A JP H03143280A
Authority
JP
Japan
Prior art keywords
wavelength
sunlight
light
solar
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1278481A
Other languages
Japanese (ja)
Other versions
JP2609163B2 (en
Inventor
Jinichiro Hasegawa
長谷川 仁一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Quartz Products Co Ltd
Original Assignee
Shin Etsu Quartz Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Quartz Products Co Ltd filed Critical Shin Etsu Quartz Products Co Ltd
Priority to JP1278481A priority Critical patent/JP2609163B2/en
Publication of JPH03143280A publication Critical patent/JPH03143280A/en
Application granted granted Critical
Publication of JP2609163B2 publication Critical patent/JP2609163B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To reduce a manufacturing cost and to improve photoelectric conversion efficiency by employing wavelength converting means for aligning solar light wavelengths in a shorter specific wavelength zone than that of the band gap of the semiconductor material of a solar cell for receiving a solar light. CONSTITUTION:A condensing mirror 1 for condensing a solar light, a wavelength converter 2 for wavelength-converting the condensed solar light, an enlarging mirror 3 for enlarging the wavelength-converted solar light by a predetermined condensing magnification, and an n<+>pp<+> type Si solar cell 4 are provided. For example, after solar light of 1kW/m<2> is condensed to an intensity of approx. 4400kW/m<2> by the mirror 1, it is directed to the converter 2, the condensed light is converted to a wavelength of 650-850nm at an approx. 100% of conversion efficiency by the converter 2. The light is enlarged to a luminous flux of about 40Sun by the mirror 3, directed to the cell 4 to obtain photovoltaic power of high photoelectric conversion efficiency.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、集光された太陽光を利用して先覚変換効率の
向上を図った太陽光発電方法とその装置に関する。
DETAILED DESCRIPTION OF THE INVENTION "Industrial Application Field" The present invention relates to a solar power generation method and an apparatus thereof that utilize concentrated sunlight to improve proactive conversion efficiency.

「従来の技術] 従来より、石油若しくは原子力等の代替エネルギーとし
て太陽光発電が注目されている。
"Conventional Technology" Solar power generation has been attracting attention as an alternative energy source to oil, nuclear power, etc.

確かに地球表面が受取る太陽エネルギーは現在世界の消
費エネルギー総量の2万倍以上と実質的に無尽蔵であり
、又該太陽エネルギーを利用した太陽光発電は単に太陽
電池表面に太陽光を受光するのみで光起電力を得る事が
出来るために、石油や原子力のように環境汚染の心配も
なく極めてクリーンであり而もメインテナンスや寿命の
面からも他の発電装置に比較して極めて大なる優位性を
有するにもかかわらず、尚離島や砂漠の極めて限定され
た地域にしか設置されていない。
It is true that the solar energy received by the earth's surface is currently more than 20,000 times the total amount of energy consumed in the world, and is virtually inexhaustible, and solar power generation using this solar energy simply involves receiving sunlight on the surface of solar cells. Because photovoltaic power can be obtained from electricity, it is extremely clean without worrying about environmental pollution like oil or nuclear power, and it has an extremely large advantage over other power generation devices in terms of maintenance and lifespan. Despite this, it is only installed in extremely limited areas such as remote islands and deserts.

その最大の理由が光電変換効率が依然として低く、設置
コストに見合うだけの光発電量を得る事が出来ない事に
あった。
The main reason for this is that the photoelectric conversion efficiency remains low, making it impossible to obtain enough photovoltaic power to justify the installation cost.

「発明が解決しようとする技術的課題」かかる欠点を解
消する為に、従来より種々の対策が取られている。
``Technical Problems to be Solved by the Invention'' In order to eliminate such drawbacks, various measures have been taken in the past.

A、その第1が太陽電池自体の光電変換効率の向上にあ
る。
A. The first is to improve the photoelectric conversion efficiency of the solar cells themselves.

確かに近年Si太陽電池自体の構造技術や表面構造の改
良により実用段階で14〜15%の変換効率が得られ、
尚、該変換効率の向上を図る為に改良を重ねているが、
例え全ての技術的問題が解決したとしてもSi太陽電池
の理論効率が20%前後であるのでそれ以上に向上させ
る事は不可能である。
It is true that in recent years, improvements in the structural technology and surface structure of Si solar cells themselves have enabled conversion efficiency of 14 to 15% to be achieved in practical use.
Although improvements have been made to improve the conversion efficiency,
Even if all the technical problems were solved, the theoretical efficiency of Si solar cells is around 20%, so it is impossible to improve it further.

二のようにSi太陽電池の理論効率に上限があるのは、
主として太陽光の波長別エネルギー分布とSiのバンド
ギャップとの関係及び光収集効率に起因する。
As shown in point 2, there is an upper limit to the theoretical efficiency of Si solar cells.
This is mainly due to the relationship between the wavelength-specific energy distribution of sunlight and the band gap of Si, and the light collection efficiency.

即ち地表に到達する太陽光線は0.3μm〜数μm前後
までの幅広いエネルギーをもつにもかかわらず、Si太
陽電池のバンドギャップは1.1eV(波長換算112
7nm)である為に1127nm以上の長波長の太陽光
は透過損となって利用できず、又前記1127nm以下
の短波長の太陽光においては光子の保有するエネルギー
hνのなかでSiのバンドギャップEgのみが利用され
(hシーEg)は損失に帰してしまう。
In other words, although the sunlight that reaches the earth's surface has a wide range of energy from 0.3 μm to around several μm, the band gap of Si solar cells is 1.1 eV (112
7nm), so sunlight with a long wavelength of 1127nm or more becomes a transmission loss and cannot be used, and in the sunlight with a short wavelength of 1127nm or less, the Si band gap Eg is (hC Eg) results in a loss.

更に前記Si太陽電池のスペクトル感度が第3図に示す
分布曲線を有するために、通常のSi太陽電池にあって
は波長が900〜1l100n及び500r+m以下の
波長域の太陽光の収集効率が大幅に低下し、又前記収集
効率を向上させる為に内部電界を付加した太陽電池にお
いては収集効率が確かに向上するが、やはり太陽電池の
変換効率は依然として低い。
Furthermore, since the spectral sensitivity of the Si solar cell has the distribution curve shown in Fig. 3, the collection efficiency of sunlight in the wavelength range of 900 to 1l100n and 500r+m or less is significantly increased in a normal Si solar cell. Although the collection efficiency is certainly improved in a solar cell in which an internal electric field is added to improve the collection efficiency, the conversion efficiency of the solar cell is still low.

かかる欠点を解消する為に、Si太陽電池を用いずにヒ
化ガリウム(GaA1)As/Ga、As太陽電池も提
案されており、かかる太陽電池においてはバンドギャッ
プが1.4〜1.5eVである為に前記光電変換効率が
20%前後に向上するが、かかる太陽電池は大量に得る
のが困難であり且つ製造コストも大である為に汎用的に
用いるのが困難である。
In order to eliminate such drawbacks, gallium arsenide (GaA1) As/Ga, As solar cells have been proposed without using Si solar cells, and such solar cells have a band gap of 1.4 to 1.5 eV. This improves the photoelectric conversion efficiency to around 20%, but such solar cells are difficult to obtain in large quantities and have high manufacturing costs, making it difficult to use them for general purposes.

B、又前記光電変換効率を高める為に、太陽光の波長選
択技術が提案されている。
B. In order to increase the photoelectric conversion efficiency, a sunlight wavelength selection technique has been proposed.

例えば特開昭63−6881号には、蛍光型集光板を用
いて太陽光を波長選別した後、該選別した夫々の波長帯
に、対応するバンドギャップを有する異なる種類の太陽
電池を配置受光させる事により、光電変換効率を高める
よう構成している。
For example, Japanese Patent Application Laid-Open No. 63-6881 discloses that after wavelength-selecting sunlight using a fluorescent condensing plate, different types of solar cells with corresponding band gaps are arranged to receive light in each of the selected wavelength bands. It is configured to increase photoelectric conversion efficiency.

しかしながらかかる従来技術においても対応するバンド
ギャップ以上の波長を有する太陽光については尚透過損
として利用出来ず、装置構成が煩雑且つ高価になるため
に設置コストに見合う光発電量を得るのが困難になる。
However, even with such conventional technology, sunlight having a wavelength greater than the corresponding band gap cannot be used as a transmission loss, and the device configuration is complicated and expensive, making it difficult to obtain a photovoltaic power generation amount commensurate with the installation cost. Become.

C2さて太陽電池の光電変換効率は前記バンドギャップ
や光収集効率のみに限定されるものではな 5− く、開放電圧がバンドギャップより小さい為に起因する
(電圧因子)エネルギー損失が存在する。
C2 Now, the photoelectric conversion efficiency of a solar cell is not limited only to the band gap and light collection efficiency, but there is an energy loss (voltage factor) caused by the open circuit voltage being smaller than the band gap.

そこで従来より、太陽光を集光させた後太陽電池に入射
させる技術が開発されている。
Therefore, conventionally, a technology has been developed in which sunlight is focused and then made to enter a solar cell.

例えばn+p型(100cm)のSi太陽電池を用いた
場合、集光比がI Sunの場合太陽受光量に対する電
気出力の割合は16%(27°C)前後であるのに対し
、集光比を40Sunに上げると前記比率が18〜19
%(27℃)に向上するが、前記集光した太陽光は波長
が1127nm以上の赤外線域にあり光電変換に利用し
得ない熱線も併せて含んでおり、これが直接太陽電池に
入射すると、太陽電池自体が無用に昇温してしまい、こ
れにより光電変換効率が大幅に低下してしまう場合があ
る。
For example, when using an n+p type (100cm) Si solar cell, the ratio of electrical output to the amount of sunlight received is around 16% (27°C) when the concentration ratio is I Sun; When increasing to 40Sun, the ratio becomes 18-19
% (27℃), but the concentrated sunlight has a wavelength of 1127 nm or more in the infrared region and also contains heat rays that cannot be used for photoelectric conversion. The temperature of the battery itself increases unnecessarily, which may significantly reduce photoelectric conversion efficiency.

本発明はかかる従来技術の欠点に鑑み、短波長〜長波長
まで幅広い光エネルギーを効果的に利用可能に構威し、
これにより光電変換効率を大幅に高めた太陽光発電方法
及びその装置を提供する事を目的とする。
In view of the drawbacks of the prior art, the present invention is designed to effectively utilize a wide range of light energy from short wavelengths to long wavelengths,
The purpose of the present invention is to provide a solar power generation method and a device for the same that greatly improves photoelectric conversion efficiency.

本発明の他の目的とする所は、バンドギャップ 6− の異なる複数種類の太陽電池を用いる事なく、単−稲類
、より具体的には汎用性が高く又品質が安定しており且
つ製造コストの低廉なSi太陽電池を用いた場合にも光
電変換効率を大幅に高める事が可能な太陽光発電方法 及びその装置を提供する事にある。
Another object of the present invention is to provide solar cells with high versatility, stable quality, and production without using multiple types of solar cells with different band gaps. An object of the present invention is to provide a photovoltaic power generation method and a device thereof, which can greatly increase photoelectric conversion efficiency even when using low-cost Si solar cells.

又本発明の他の目的は設置コストに見合う光起電力を得
る事の出来る太陽光発電方法及びその装置を提供する事
を目的とする。
Another object of the present invention is to provide a photovoltaic power generation method and apparatus capable of obtaining photovoltaic power commensurate with the installation cost.

「課題を解決する為の技術手段」 先ず本発明に至った経過を順を追って説明する。"Technical means to solve problems" First, the progress that led to the present invention will be explained in order.

前記従来技術の項で説明したように太陽電池の光電変換
効率の向上を阻害している主な理由が、バンドギャップ
(禁制帯幅)と光収集効率に起因することは前述した通
りである。
As described above in the prior art section, the main reason for inhibiting the improvement of the photoelectric conversion efficiency of solar cells is the band gap (forbidden band width) and light collection efficiency, as described above.

そこで前記0.3μm〜数μm前後までの幅広いエネル
ギーをもつ太陽光について波長変換を行い、該太陽光の
波長を例えばSiのバンドギャップに相当する1127
nmより小さくて且つ出来る限りこれに近い特定波長で
あって、更に第3図に示す感度分布曲線において最も収
集効率の高い領域例えば650〜950nmの特定波長
域に揃えることが光電変換効率を大幅に向上させる上で
極めて重要な事となる。
Therefore, wavelength conversion is performed on sunlight having a wide range of energy from 0.3 μm to around several μm, and the wavelength of the sunlight is changed to 1127 nm, which corresponds to the band gap of Si.
The photoelectric conversion efficiency can be greatly increased by aligning the specific wavelength smaller than nm and as close as possible to the specific wavelength range where the collection efficiency is highest in the sensitivity distribution curve shown in Fig. 3, for example, 650 to 950 nm. This is extremely important for improving.

そこで本発明は、太陽光を受光する太陽電池の半導体材
料のバンドギャップより短い特定波長域に太陽光波長を
揃える波長変換手段を用いることを第1の特徴とする。
Therefore, the first feature of the present invention is to use a wavelength conversion means that aligns the wavelength of sunlight to a specific wavelength range shorter than the bandgap of the semiconductor material of the solar cell that receives sunlight.

しかしながら、前記特定波長域に波長を揃える過程でエ
ネルギー損失が生じれば結果として前記波長変換を行う
意味が滅失してしまう。
However, if energy loss occurs during the process of aligning the wavelengths to the specific wavelength range, the meaning of the wavelength conversion will be lost.

そこで本発明の第2の特徴とする所は高温雰囲気下で黒
体輻射を利用してより好ましくは内壁面が黒体化された
密閉真空空間内で前記波長変換を行うことにある。
Therefore, the second feature of the present invention is that the wavelength conversion is performed in a high-temperature atmosphere using black body radiation, preferably in a closed vacuum space whose inner wall surface is a black body.

即ち前記波長変換は色素レーザ等を用いて行う事も可能
であるが、高効率で波長変換を可能ならしめるのは、後
記実施例に示すように例えば太陽光の中の特定波長域以
外の光をフィルタ部材に吸収させ、この吸収されたエネ
ルギーを繰り返し輻射エネルギーに変換しながら波長変
換を行う事の出来る黒体輻射を利用するのが最も好まし
い。
That is, the wavelength conversion can be performed using a dye laser or the like, but what makes wavelength conversion possible with high efficiency is the use of light outside a specific wavelength range in sunlight, for example, as shown in the examples below. It is most preferable to utilize black body radiation, which can be absorbed by a filter member and then repeatedly convert the absorbed energy into radiant energy to perform wavelength conversion.

しかしながら周知のように黒体輻射はPLANKの公式
に示されるような波長別輻射エネルギー密度の温度依存
性を有し、低温の輻射体からの輻射光は長波長側にあり
且つそのエネルギー密度も低いので、Si太陽電池に対
して好適な波長域である650〜950nmの輻射を効
果的に取得するのには、輻射体の温度を少なくとも10
00’ K以上に設定する必要がある。
However, as is well known, black body radiation has a temperature dependence of radiant energy density by wavelength as shown in the PLANK formula, and radiant light from a low-temperature radiator is on the long wavelength side and has a low energy density. Therefore, in order to effectively obtain radiation in the wavelength range of 650 to 950 nm, which is suitable for Si solar cells, the temperature of the radiator must be at least 10 nm.
It is necessary to set it to 00'K or higher.

そこで本発明は、第4図に示すように前記雰囲気温度を
少なくとも1000’ K以上に設定し、且つ輻射体を
酸化から保護するために真空雰囲気に収納する事により
前記作用を円滑に営むことが出来る技術を請求項2にて
開示している。
Therefore, in the present invention, as shown in FIG. 4, the above-mentioned action can be carried out smoothly by setting the ambient temperature to at least 1000' K or more and storing the radiator in a vacuum atmosphere to protect it from oxidation. A possible technique is disclosed in claim 2.

さて前記波長変換は太陽光を集光する事なく波長変換す
る事も可能であるが、このように構成すると該変換手段
自体が大型化し且つエネルギー効率も低下するので、実
用的でない。
Although it is possible to perform wavelength conversion without condensing sunlight, such a configuration would increase the size of the conversion means itself and reduce energy efficiency, so it is not practical.

又前記したように太陽電池の光電変換効率は前 9− 記バンドギャップ因子や光収集効率のみに限定されるも
のではなく、電圧因子にも起因する。
Furthermore, as described above, the photoelectric conversion efficiency of a solar cell is not limited only to the above-mentioned band gap factor and light collection efficiency, but also depends on the voltage factor.

そこで第3の特徴とする所は太陽光集光手段を用いて電
圧因子に基づく光電変換効率の低減を防ぐとともに、該
集光手段の下流側に前記波長変換手段を配置する事によ
り変換手段の省設置面積化とエネルギー効率の向上及び
小型化更には該波長変換後の太陽光が集光状態にあるた
めに、これをそのまま若しくは所定集光倍率に拡大した
後、太陽電池側に入射させる事により電圧因子による光
電変換効率の低減も防止した点にある。
Therefore, the third feature is that a solar light condensing means is used to prevent a reduction in photoelectric conversion efficiency due to voltage factors, and the wavelength conversion means is arranged downstream of the light concentrating means. In addition, since the sunlight after wavelength conversion is in a condensed state, it can be made to enter the solar cell side either as it is or after being expanded to a predetermined condensing magnification. This also prevents reduction in photoelectric conversion efficiency due to voltage factors.

さて前記波長変換手段に入射させる太陽光は高度に集光
すればするほど、該変換手段の省設置面積化とエネルギ
ー効率の向上及び小型化を達成できるのみならず、該太
陽光自体の保有する熱エネルギーを利用して前記変換手
段内の雰囲気温度を少なくとも1000’ K以上に維
持する事が容易となり、好ましい。
Now, the more highly the sunlight that is incident on the wavelength conversion means is concentrated, the more the conversion means can save space, improve energy efficiency, and be smaller in size. This is preferable because it becomes easy to maintain the ambient temperature within the conversion means at least 1000'K or higher using thermal energy.

しかしながら太陽電池に入射される太陽光は前記電圧因
子による光電変換効率の低減を除去し得 10− る程度の集光度で足りるために、このような高度に集光
した太陽光をそのまま太陽電池に入射させてもその昇温
等により却って光電変換効率が低下するのみならず、単
位面積当りの光起電力が飽和し、却って太陽電池の破損
等が生じやすい。
However, the sunlight incident on the solar cell can eliminate the reduction in photoelectric conversion efficiency due to the voltage factor. Even if it is made incident, the photoelectric conversion efficiency will not only decrease due to the temperature increase, but also the photovoltaic force per unit area will become saturated, and the solar cell will be more likely to be damaged.

そこで請求項3に記載した本発明の第4の特徴は、前記
変換手段に入射させる太陽光の集光倍率と、太陽電池に
入射させる波長変換後の太陽光の集光倍率を異ならした
点にある。
Therefore, a fourth feature of the present invention as set forth in claim 3 is that the concentration magnification of sunlight incident on the conversion means is different from the concentration magnification of sunlight after wavelength conversion incident on the solar cell. be.

尚請求項4及び5に記載した発明は、前記発明をより効
果的に具体化させる為の太陽光発電装置を提供するもの
であり、 その特徴とする所は集光させた太陽光の波長を前記特定
波長域に揃える波長変換手段を用いるも、該変換手段の
入射側に太陽光を高度に、特に1000Sun以上に集
光させる集光手段を、又その出射側に、波長変換手段よ
りの出射光を直接太陽電池に入射させる事なく、該出射
光を略10〜100Sunの所定集光倍率に拡散した後
太陽電池に入射させる拡散手段を設けた点にある。
The inventions described in claims 4 and 5 provide a solar power generation device for more effectively embodying the above invention, and the feature thereof is that the wavelength of concentrated sunlight is Although the wavelength conversion means for adjusting the wavelength to the specific wavelength range is used, a concentrating means for concentrating sunlight to a high degree, particularly 1000 Sun or more, is provided on the input side of the conversion means, and a light condensing means for concentrating sunlight to a high degree, particularly 1000 Sun or more, is also provided on the output side of the conversion means. The present invention is characterized in that a diffusion means is provided for diffusing the emitted light to a predetermined condensing magnification of about 10 to 100 Sun and then making it enter the solar cell without making the emitted light directly enter the solar cell.

「効果」 かかる発明によれば短波長から長波長まで幅広い光エネ
ルギーを効果的に利用し、該太陽光をエネルギー変換効
率を略100%に維持した状態で太陽電池に最も利用し
やすい波長域に波長変換させる為に、いわゆるバンドギ
ャップや光収集効率に起因する光電変換効率の低減を防
ぐ事が出来る。
"Effect" According to this invention, a wide range of light energy from short wavelengths to long wavelengths can be effectively used, and the sunlight can be converted into a wavelength range that is most easily used by solar cells while maintaining an energy conversion efficiency of approximately 100%. Since the wavelength is converted, it is possible to prevent a reduction in photoelectric conversion efficiency caused by the so-called band gap and light collection efficiency.

又前記波長変換は集光された太陽光について行われる為
に波長変換器の小型化、波長変換効率の高効率化が達成
されるとともに、該波長変換後の太陽光も集光状態にあ
るために、これをそのまま若しくは所定集光倍率に拡大
した後、太陽電池側に入射させる事により電圧因子によ
る光電変換効率の低減も防ぐ事が出来る。
In addition, since the wavelength conversion is performed on concentrated sunlight, the wavelength converter can be made smaller and the wavelength conversion efficiency can be increased, and since the sunlight after wavelength conversion is also in a condensed state. Furthermore, by directing this light as it is or after expanding it to a predetermined light concentration magnification and making it incident on the solar cell side, it is possible to prevent a reduction in photoelectric conversion efficiency due to voltage factors.

尚前記波長変換後の太陽光には熱線となるべき赤外域の
太陽光を含まないために、該太陽光を受光した太陽電池
は無用に昇温する事なくそのまま常温状態で光電変換が
可能となり、変換効率も向上する。
Furthermore, since the sunlight after wavelength conversion does not include sunlight in the infrared region that should become heat rays, the solar cells that receive the sunlight can perform photoelectric conversion at room temperature without unnecessary temperature rise. , conversion efficiency is also improved.

更に本発明は、前記変換手段に入射させる太陽光を高度
に集光させ、一方太陽電池には、前記高度に集光された
波長変換後の太陽光を拡散させて所定集光倍率に低減さ
せて入射するようにした為に、前記変換手段の省設置面
積化とエネルギー効率の向上及び小型化を達成できるの
みならず、該太陽光自体の保有する熱エネルギーを利用
して前記変換手段内の雰囲気温度を少なくとも1000
’ K以上に維持する事が容易となり、一方太陽電池側
においては、太陽電池の破損等が生じることなく、最も
好適に且つ高度な変換効率で太陽光の発電を行う事が可
能となる。
Further, in the present invention, the sunlight incident on the conversion means is highly concentrated, and the solar cell is configured to diffuse the highly concentrated sunlight after wavelength conversion to reduce it to a predetermined concentration magnification. This makes it possible to not only reduce the installation area of the conversion means, improve energy efficiency, and downsize the conversion means, but also to make use of the thermal energy possessed by the sunlight itself. The ambient temperature is at least 1000℃
' K or higher can be easily maintained, and on the solar cell side, it becomes possible to generate sunlight with the most suitable and high conversion efficiency without causing damage to the solar cell.

この結果光電変換効率を大幅に高めた太陽光発電装置を
提供する事が可能となるのみならず、バンドギャップの
異なる複数種類の太陽電池を用いる事な(、単一種類、
より具体的には汎用性の高く又品質が安定しており且つ
製造コストの低廉なSi太陽電池を用いた場合にも高変
換効率面も設置コストに見合う光起電力を得る事の出来
る太陽光発電装置を提供する事が可能となる。
As a result, it is not only possible to provide a solar power generation device with greatly increased photoelectric conversion efficiency, but also to use multiple types of solar cells with different band gaps (, single type,
More specifically, even when using Si solar cells, which are highly versatile, stable in quality, and inexpensive to manufacture, solar cells can obtain photovoltaic power that is commensurate with the installation cost in terms of high conversion efficiency. It becomes possible to provide power generation equipment.

等の種々の著効を有す。It has various effects such as

 13− 「実施例」 以下、図面に基づいて本発明の実施例を例示的に詳しく
説明する。但しこの実施例に記載されている構成部品の
寸法、材質、形状、その相対配置などは特に特定的な記
載がない限りは、この発明の範囲をそれのみに限定する
趣旨ではなく単なる説明例に過ぎない。
13- "Example" Hereinafter, an example of the present invention will be described in detail based on the drawings. However, unless otherwise specified, the dimensions, materials, shapes, and relative positions of the components described in this example are not intended to limit the scope of this invention, but are merely illustrative examples. Not too much.

先ず本実施例を設計するに必要な理論構成についてpn
型太陽電池に基づいて説明する。
First, let's talk about the theoretical configuration necessary to design this example.
The explanation will be based on type solar cells.

pn型太陽電池については第3図に示すように内部電界
を付加する事により収集効率が向上する事は公知である
As for pn type solar cells, it is known that the collection efficiency can be improved by adding an internal electric field as shown in FIG.

そしてこの場合における収集効率が最も高くなる波長域
は650〜950nmである。
In this case, the wavelength range in which the collection efficiency is highest is 650 to 950 nm.

従ってエネルギー変換効率100%において前記波長域
に揃えた場合のSi太陽電池の光電変換効率を計算して
みると、 Q=f−φ860−950  −−1)Q:光電変換効
率、f;電圧因子による出力効率φ850−950 :
波長域650〜950nmにおける基礎効 14 − そして前記φ650−960は下記2)式及び下記第1
表より0.670の数値が得られ、又fについては、下
記3)式より0.343の数値が得られるためにQは2
3%となる。
Therefore, when calculating the photoelectric conversion efficiency of a Si solar cell when the energy conversion efficiency is 100% and the wavelength range is aligned with the above, it is as follows: Q=f-φ860-950 --1) Q: photoelectric conversion efficiency, f: voltage factor Output efficiency by φ850-950:
Basic effect in the wavelength range 650-950 nm 14 - And the above φ650-960 is calculated by the following formula 2) and the following 1st
A value of 0.670 is obtained from the table, and for f, a value of 0.343 is obtained from equation 3) below, so Q is 2.
It will be 3%.

φ850−9508 P:Si太陽電池自体の電気出力(142W/nOEg
:バンドギ+’yブ(1,1eV、1.7624−”J
、 1,127nm)η:収集効率、λ:波長 Nλ:
波長域、dλにある光子束(個/n(see) しかしながら23%という光電変換効率は現行の太陽電
池自体の変換効率よりは数段高いが、尚満足すべき数値
ではない。
φ850-9508 P: Electrical output of Si solar cell itself (142W/nOEg
:Bandgi+'ybu(1,1eV, 1.7624-"J
, 1,127 nm) η: collection efficiency, λ: wavelength Nλ:
Photon flux (number/n (see) in the wavelength region dλ) However, although the photoelectric conversion efficiency of 23% is several steps higher than the conversion efficiency of the current solar cell itself, it is still not a satisfactory value.

そこで前記第1式より電圧因子により出力効率を高めれ
ば前記効率が一層向上する事が理解出来る。
Therefore, it can be understood from the first equation that if the output efficiency is increased by the voltage factor, the efficiency will be further improved.

その対策の一つが集光化と温度の問題である。One of the countermeasures is the issue of light concentration and temperature.

即ち、n”PP”型のSi太陽電池の場合常温下(27
℃)において、40  Sunにおける電圧因子による
出力効率が0.516程度に上昇し、従って光電変換効
率Qが34%程度に上昇し、一応濶足した数値が得られ
る。
That is, in the case of an n"PP" type Si solar cell, the temperature at room temperature (27
℃), the output efficiency due to the voltage factor at 40 Sun increases to about 0.516, and therefore the photoelectric conversion efficiency Q increases to about 34%, which is a somewhat satisfactory value.

第1図はかかる理論構成に基づいて創作された太陽光発
電装置の概略を示す全体ブロック図である。
FIG. 1 is an overall block diagram schematically showing a solar power generation device created based on such a theoretical configuration.

その構成を簡単に説明するに、1は太陽光を集光させる
集光鏡、2は該集光した太陽光を波長変換する波長変換
器、3は該波長変換後の太陽光を所定集光倍率に拡大す
る拡大鏡、4はn”PP”型のSi太陽電池で、例えば
]、KW/rr!の太陽光を集光鏡1で略440OK、
W/rd前後に高度に集光させた後波長変換器2に入射
させ、そして該波長変換器2で、前記集光太陽光をエネ
ルギー変換効率を略100%に維持した状態で650〜
950nmの波長域に波長変換させる。
To briefly explain its configuration, 1 is a condenser mirror that condenses sunlight, 2 is a wavelength converter that converts the wavelength of the concentrated sunlight, and 3 is a wavelength converter that condenses the sunlight after wavelength conversion. A magnifying glass that magnifies the magnification, 4 is an n"PP" type Si solar cell, for example], KW/rr! About 440 OK sunlight with condensing mirror 1,
After highly condensing the light around W/rd, it enters the wavelength converter 2, and in the wavelength converter 2, the concentrated sunlight is heated at 650~650% while maintaining the energy conversion efficiency of approximately 100%.
The wavelength is converted to a wavelength range of 950 nm.

そして波長変換後の太陽光を拡大鏡3で40Sun程度
の光束に拡大させた後、太陽電池4に入射させる事によ
り前記した光電変換効率の光起電力を得る事が出来る。
Then, by enlarging the wavelength-converted sunlight to a luminous flux of about 40 Sun using a magnifying glass 3, and making it incident on the solar cell 4, it is possible to obtain a photovoltaic force with the above-mentioned photoelectric conversion efficiency.

第2図は前記装置に用いられる波長変換器2である。FIG. 2 shows a wavelength converter 2 used in the device.

11は内壁面を灰色断熱材により構成した断熱箱で、内
部空間を真空状態に維持するとともに、その周壁内にヒ
ータ15を埋設し、該内部空間が略1400’ Kに維
持可能に構成している。
Reference numeral 11 denotes a heat insulating box whose inner wall surface is made of gray heat insulating material, and the inner space is maintained in a vacuum state, and a heater 15 is embedded in the surrounding wall, so that the inner space can be maintained at approximately 1400'K. There is.

尚、前記断熱箱11内は黒体輻射により熱線が熱放射さ
れているために、高度に集光化された太陽光の入射量と
断熱箱の内部空間容積との関係を適宜調整する事により
1400°に前後に昇温且つその温度維持が可能であり
、従って前記ヒータエ5は温度調整用に利用してもよい
In addition, since heat rays are radiated inside the insulation box 11 by black body radiation, by appropriately adjusting the relationship between the amount of highly concentrated sunlight incident and the internal space volume of the insulation box. It is possible to raise the temperature around 1400° and maintain that temperature, so the heater 5 may be used for temperature adjustment.

12及び13は前記断熱箱11の両端壁の中心軸上に固
定された、太陽光入射用と出射用の窓部で、高純度の石
英ガラスで形成されている。
Reference numerals 12 and 13 denote windows for sunlight input and output, which are fixed on the center axis of both end walls of the heat insulating box 11, and are made of high-purity quartz glass.

14は650nmより長波長の太陽光を透過させる光フ
イルタ部材で、吸収した光を再輻射可能なよう 17− に内部に輻射能のよいグラファイト等の微粒子14aを
散在させている。
Reference numeral 14 denotes an optical filter member that transmits sunlight having a wavelength longer than 650 nm, and fine particles 14a such as graphite having good radiation ability are interspersed inside 17- so that absorbed light can be re-radiated.

16は950nmより長波の光を反射させる選択的波長
反射板で、例えばn型ドーパントを高濃度にドープした
グラファイトで形成されている。
Reference numeral 16 denotes a selective wavelength reflection plate that reflects light with wavelengths longer than 950 nm, and is made of, for example, graphite doped with an n-type dopant at a high concentration.

かかる実施例によれば、入射窓部I2より断熱箱11内
に導入された太陽光は、光フイルタ部材14と反射部材
16により650nm以下の波長光と950nm以上の
波長光をカットした後、650〜950nmの波長域の
光を出射窓部13より拡大鏡3側に出射する。
According to this embodiment, the sunlight introduced into the heat insulating box 11 through the entrance window I2 is filtered by the optical filter member 14 and the reflection member 16 to cut out the wavelength light of 650 nm or less and the wavelength light of 950 nm or more. Light in the wavelength range of ~950 nm is emitted from the exit window 13 to the magnifying glass 3 side.

一方前記光フィルタ部材14と反射部材16によりカッ
トされた光は、フィルタ14中に分散内蔵しているグラ
ファイト微粒子団14aに吸収された後、当該微粒子団
14aから射出される輻射光になり、その中の650〜
950nmの波長域の光を出射窓部13より拡大鏡3側
に出射する。
On the other hand, the light cut by the optical filter member 14 and the reflection member 16 is absorbed by the graphite particle group 14a dispersed within the filter 14, and then becomes radiant light emitted from the particle group 14a. Medium 650~
Light in a wavelength range of 950 nm is emitted from the emitting window section 13 to the magnifying glass 3 side.

この際前記断熱箱11内は、1400’ Kに維持され
本 ているために第5図に示すように約650nm以上の波
長を有する輻射エネルギーを得る事が出来、これにより
前記太陽光は熱−輻射−熱の変換を繰り 18 − 返しつつ650〜950nmの波長域の光を出射窓部I
3より拡大鏡3側に出射し、以下これを無限回数繰り返
す事により前記集光太陽光をエネルギー変換効率を略1
00%に維持した状態で650〜950nmの波長域に
波長変換させる事が出来る。
At this time, since the inside of the insulation box 11 is maintained at 1400'K, it is possible to obtain radiant energy having a wavelength of about 650 nm or more as shown in FIG. 18 - While repeating radiation-heat conversion, light in the wavelength range of 650 to 950 nm is emitted from the emission window I.
3 to the magnifying glass 3 side, and by repeating this process an infinite number of times, the energy conversion efficiency of the concentrated sunlight is approximately 1.
It is possible to convert the wavelength to a wavelength range of 650 to 950 nm while maintaining the wavelength at 00%.

従ってかかる実施例によれば前記した本発明の効果を円
滑に達成し得る。
Therefore, according to this embodiment, the effects of the present invention described above can be smoothly achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例に係る太陽光発電装置の概略を
示す全体ブロック図である。第2図は前記装置に用いら
れる波長変換器である。 第3図はSi太陽電池の収集効率を示す感度分布図、第
4図は黒体輻射の温度依存性を示す分光特性図である。 第 図 (650〜9509k)
FIG. 1 is an overall block diagram schematically showing a solar power generation device according to an embodiment of the present invention. FIG. 2 shows a wavelength converter used in the device. FIG. 3 is a sensitivity distribution diagram showing the collection efficiency of a Si solar cell, and FIG. 4 is a spectral characteristic diagram showing the temperature dependence of blackbody radiation. Figure (650-9509k)

Claims (1)

【特許請求の範囲】 1)太陽光集光手段と、該太陽光集光手段の下流側に配
置され、該太陽光を受光する太陽電池のバンドギャップ
より短い特定波長域に波長を揃える波長変換手段を備え
るとともに、該波長変換を黒体輻射を利用しつつ高温雰
囲気下で行う事を特徴とする太陽光発電方法 2)前記高温雰囲気を真空空間で且つ少なくとも100
0゜K以上に設定した事を特徴とする請求項1記載の太
陽光発電方法 3)前記変換手段に入射させる太陽光の集光倍率と、太
陽電池に入射させる波長変換後の太陽光の集光倍率を異
ならしめた事を特徴とする請求項1記載の太陽光発電方
法 4)太陽光を高度に集光させる集光手段と、該集光され
た太陽光の波長を、太陽電池のバンドギャップより短い
特定波長域に揃える波長変換手段と、該波長変換手段よ
り出力された太陽光を所定集光倍率に拡散した後太陽電
池に入射させる拡散手段とからなる太陽光発電装置 5)前記集光手段が少なくとも太陽光を1000Sun
以上に集光する手段であり、又前記拡散手段が、波長変
換手段より出力された太陽光を略10〜100Sunに
拡散する手段である請求項4)記載の太陽光発電装置
[Claims] 1) A solar light condensing means, and a wavelength conversion that aligns the wavelength to a specific wavelength range shorter than the bandgap of a solar cell that receives the sunlight, which is arranged downstream of the sunlight concentrating means. 2) A solar power generation method characterized in that the wavelength conversion is performed in a high temperature atmosphere while utilizing black body radiation. 2) The high temperature atmosphere is in a vacuum space and at least 100%
3) The solar power generation method according to claim 1, wherein the solar power generation method is set to 0°K or more. 3) The concentration magnification of sunlight incident on the conversion means and the concentration of sunlight after wavelength conversion incident on the solar cell. 4) A solar power generation method according to claim 1, characterized in that the light magnification is made different. 4) A concentrating means for concentrating sunlight to a high degree; 5) A solar power generation device comprising a wavelength conversion means for adjusting the wavelength to a specific wavelength range shorter than the gap, and a diffusion means for diffusing the sunlight outputted from the wavelength conversion means to a predetermined concentration magnification and then making it enter the solar cell. The light means receives at least 1000 Sun of sunlight.
4) The solar power generation device according to claim 4), wherein the means for concentrating the sunlight to approximately 10 to 100 Sun, and the diffusing means is means for diffusing the sunlight outputted from the wavelength converting means to about 10 to 100 Sun.
JP1278481A 1989-10-27 1989-10-27 Photovoltaic power generation method and device Expired - Fee Related JP2609163B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1278481A JP2609163B2 (en) 1989-10-27 1989-10-27 Photovoltaic power generation method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1278481A JP2609163B2 (en) 1989-10-27 1989-10-27 Photovoltaic power generation method and device

Publications (2)

Publication Number Publication Date
JPH03143280A true JPH03143280A (en) 1991-06-18
JP2609163B2 JP2609163B2 (en) 1997-05-14

Family

ID=17597933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1278481A Expired - Fee Related JP2609163B2 (en) 1989-10-27 1989-10-27 Photovoltaic power generation method and device

Country Status (1)

Country Link
JP (1) JP2609163B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6267888A (en) * 1985-09-20 1987-03-27 Saamobonitsuku:Kk Thermoelectric power generation device
JPS63160521A (en) * 1986-12-23 1988-07-04 松下電工株式会社 House for growing plant

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6267888A (en) * 1985-09-20 1987-03-27 Saamobonitsuku:Kk Thermoelectric power generation device
JPS63160521A (en) * 1986-12-23 1988-07-04 松下電工株式会社 House for growing plant

Also Published As

Publication number Publication date
JP2609163B2 (en) 1997-05-14

Similar Documents

Publication Publication Date Title
JP4511052B2 (en) Radiation concentrator for photovoltaic device
Wittwer et al. Fluorescent planar concentrators
GB2299448A (en) Thermovoltaic in-situ mirror cell
JPS63503256A (en) Thermophotovoltaic energy conversion device
US9691920B2 (en) Metamaterial enhanced thermophotovoltaic converter
Yang et al. Study of catalytic combustion and its effect on microthermophotovoltaic power generators
US8283553B1 (en) Photon enhanced thermoelectric power generation
Dhoble et al. Energy Materials: Fundamentals to Applications
Andreev et al. Solar thermophotovoltaic system with high temperature tungsten emitter
Wang et al. Highly efficient and stable tandem luminescent solar concentrators based on carbon dots and CuInSe 2− x S x/ZnS quantum dots
JP6395872B2 (en) Photovoltaic devices that generate power using nonlinear multiphoton absorption of incoherent radiation
Andreev et al. Solar thermophotovoltaic converters: efficiency potentialities
JPH03143280A (en) Method and apparatus for generating power by solar energy
Xu et al. Black silicon as absorber for photo-thermal-electric devices
Martín et al. Development of GaSb photoreceiver arrays for solar thermophotovoltaic systems
Juárez-Luna et al. 45-nm CdS QDs photoluminescent filter for photovoltaic conversionefficiency recovery
Andreev et al. Solar thermophotovoltaic converter with Fresnel lens and GaSb cells
JPS5862455A (en) Solar energy collector
Fraas et al. Electricity from concentrated solar IR in solar lighting applications
JP2001127325A (en) Method and apparatus of increasing cell energy, and high energy cell
JPH0523554U (en) Power generator using sunlight
Chubb et al. High efficiency thermal to electric energy conversion using selective emitters and spectrally tuned solar cells
Iles et al. Design and fabrication of thermophotovoltaic cells
Xiao et al. Enhancing the efficiency of thermophotovoltaics with photon recycling
Heinzel et al. Efficiency and power density potential of thermophotovoltaic systems using low bandgap photovoltaic cells

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees