JP2527012B2 - Micro movement stage - Google Patents

Micro movement stage

Info

Publication number
JP2527012B2
JP2527012B2 JP63252014A JP25201488A JP2527012B2 JP 2527012 B2 JP2527012 B2 JP 2527012B2 JP 63252014 A JP63252014 A JP 63252014A JP 25201488 A JP25201488 A JP 25201488A JP 2527012 B2 JP2527012 B2 JP 2527012B2
Authority
JP
Japan
Prior art keywords
stage
electrode
recess
electrodes
elastic spring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63252014A
Other languages
Japanese (ja)
Other versions
JPH02101972A (en
Inventor
正典 末松
修司 山住
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP63252014A priority Critical patent/JP2527012B2/en
Publication of JPH02101972A publication Critical patent/JPH02101972A/en
Application granted granted Critical
Publication of JP2527012B2 publication Critical patent/JP2527012B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Machine Tool Units (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体製造装置や顕微鏡などのnmオーダの最
終段微少量位置決め装置として用いられる微少量移動ス
テージ装置に関するものである。
The present invention relates to a minute moving stage device used as a final stage minute amount positioning device on the order of nm in a semiconductor manufacturing apparatus, a microscope, or the like.

〔従来技術とその問題点〕[Prior art and its problems]

従来の半導体製造装置や顕微鏡などのnmオーダの微少
量位置決め装置に用いられる微少量移動ステージ装置に
おいてステージを移動させるためのアクチュエータとし
て積層形圧電素子を用いたものがあるが、圧電素子の積
層方向と直角方向に力が加わると変形する欠点があっ
た。
There is an actuator that uses a laminated piezoelectric element as an actuator for moving the stage in a minute movement stage device used for a minute amount positioning device of the nm order such as a conventional semiconductor manufacturing device or a microscope. There was a defect that it deformed when a force was applied in the direction perpendicular to.

それを低減するため、第7図に示すように平行ばね18
をカップリングとして用いる例もあるが、Y方向に移動
した際、平行ばね18がX方向に僅かに変位する、いわゆ
る干渉を受ける点は変わらない。
In order to reduce it, as shown in FIG.
Although there is an example of using as a coupling, there is no change in the point of receiving so-called interference, that is, the parallel spring 18 is slightly displaced in the X direction when it is moved in the Y direction.

また、磁気浮上装置の如く、電磁力を利用して非接触
で力を加える方法も考えられるが、大電流を流すため発
熱による熱変形、熱ひずみを生ずる欠点があると共に、
電磁石が大きく、装置が小形化できない欠点であった。
A method of applying a non-contact force using electromagnetic force like a magnetic levitation device is also conceivable, but it has the drawback of causing thermal deformation and thermal strain due to heat generation because a large current is passed.
The electromagnet is large and the device cannot be downsized.

また、バイメタルをロッドに当接し、味噌擂り運動を
させるものが特開昭60−180481号公報に開示されている
が、バイメタルの摺動摩耗粉が発生するおそれがある。
Further, Japanese Patent Application Laid-Open No. 60-180481 discloses a device in which a bimetal is brought into contact with a rod to perform a masticatory movement, but sliding wear powder of the bimetal may occur.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

本発明は上記した従来装置のようにアクチュエータに
よる干渉や熱ひずみの影響がなく、高精度な小形軽量の
微少量移動ステージ装置を提供することを課題とするも
のである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a highly precise, compact and lightweight micro-small-amount moving stage device which is free from the influence of interference and thermal strain due to an actuator unlike the above-mentioned conventional device.

〔課題を解決するための手段〕[Means for solving the problem]

本発明は上記の課題を解決するためになされたもの
で、セラミック等の絶縁材よりなる多角形の各辺に金属
箔等の電極を設けたステージと、この多角形ステージ
と相似形のわずかに大きい孔を有するベースと、前記ス
テージの電極に対向させてベース孔の辺に設けた対極
部に絶縁強誘電体膜を被覆したAl箔等の導電性金属箔と
絶縁性強誘電体材を積層した電極と、前記電極と
電極の静電吸引力に対向する力を発する弾性ばねとで移
動ステージ装置を構成し、電気電極に印加する電圧を
制御することにより、ステージの位置決めを行うように
したものである。
The present invention has been made to solve the above problems, and a stage in which electrodes such as metal foil are provided on each side of a polygon made of an insulating material such as ceramic, and a slightly similar shape to this polygon stage. A base having a large hole, and a conductive metal foil such as an Al foil having an insulating ferroelectric film coated on the counter electrode provided on the side of the base hole facing the electrode of the stage and an insulating ferroelectric material are laminated. The movable stage device is composed of the electrode and the elastic spring that generates a force that opposes the electrostatic attraction force of the electrode and the electrode, and the stage is positioned by controlling the voltage applied to the electric electrode. It is a thing.

〔作用〕[Action]

電極に印加される制御電圧によって発生する静電吸
引力と弾性ばねの反撥力をバランスさせてステージの位
置決めが行なわれる。
The stage is positioned by balancing the electrostatic attraction force generated by the control voltage applied to the electrodes and the repulsive force of the elastic spring.

〔実施例〕〔Example〕

第1図は本発明の一実施例の上面から見た模式図、第
2図はその電極部の拡大図、第3図は横断面図である。
FIG. 1 is a schematic view of an embodiment of the present invention seen from above, FIG. 2 is an enlarged view of an electrode portion thereof, and FIG. 3 is a transverse sectional view.

図において、1はセラミック等熱膨張の小さい絶縁材
よりなる四辺形のステージで、四隅を弾性ばね2で吊
り、底面をフラットボール軸受や静圧平面軸受等の平面
軸受13によって支承されている。
In the figure, reference numeral 1 denotes a quadrilateral stage made of an insulating material having a small thermal expansion such as ceramics, which has four corners suspended by elastic springs 2 and a bottom surface supported by a flat bearing 13 such as a flat ball bearing or a static pressure flat bearing.

このステージ1の移動は、4辺に設けたAl箔等の導電
性金属箔と、ポリカーボネート等の強誘電体を積層した
コンデンサ電極と同様な電極3〜6を設け、且つこれ
と対向して四角孔の各辺にAl箔等の導電性金属箔により
なる電極7〜10を設け、各電極間の電位差による静電
吸引力で行うように構成されている。
The stage 1 is moved by providing conductive metal foils such as Al foils provided on four sides and electrodes 3 to 6 similar to capacitor electrodes in which ferroelectrics such as polycarbonate are laminated, and facing the squares. Electrodes 7 to 10 made of a conductive metal foil such as Al foil are provided on each side of the hole, and the electrostatic attraction force is generated by the potential difference between the electrodes.

なお、電極3〜6は角孔を有するベース11の内面四
辺に設けてあり、ベース11は中央部にフラットボール軸
受13を固定する座を設けてあり、ベッド14を介しグラン
ドに固定されている。
The electrodes 3 to 6 are provided on the four sides of the inner surface of the base 11 having a square hole, and the base 11 is provided with a seat for fixing the flat ball bearing 13 at the center thereof and is fixed to the ground via the bed 14. .

いま、第2図に示すように、弾性ばね2による剛性を
K,吸引力F=0のときの電極間(例えば電極4と電
極8)の距離をX0,そこからの移動量をXとすると ばねによる力FB=K・X ……(1) 静電吸引力FC=C0・V2/(X0−X) ……(2) C0:定数 V:電位差 である。したがって、両者の力が釣り合うところXで停
止するためには電位差Vは を電極4に与えるようにすればよい。
Now, as shown in FIG.
K, the inter-electrode (e.g., the electrodes 4 and 8) the distance X 0, where the movement amount from the When X force of the spring F B = K · X ...... ( 1) when the suction force F = 0 static Electric attraction force F C = C 0 · V 2 / (X 0 −X) 2 (2) C 0 : constant V: potential difference. Therefore, in order to stop at X where the forces of both are balanced, the potential difference V is May be applied to the electrode 4.

こゝで、次式により静電吸引力FCと剛性率KCを試算す
ると次の通りである。
Here, when the electrostatic attraction force F C and the rigidity K C are calculated by the following equations, they are as follows.

但し、εは空気の誘電率、Wは電極の横幅、Lは電
極の縦幅、δはギャップこゝで と置けば と表わされる。したがって、剛性率Kcは 試算例として上記ε・W,L,δの値が次のような値 ε=8.85×10-12F/m W=30mm L=15mm δ=10μm で印加電圧300Vおよび3000Vとすると、吸引力FC,および
剛性KCは下の表のようになる。
Where ε 0 is the permittivity of air, W is the lateral width of the electrode, L is the vertical width of the electrode, and δ is the gap width. If you put Is represented. Therefore, the rigidity Kc is As an example of trial calculation, if the above values of ε 0 · W, L, δ are the following values ε 0 = 8.85 × 10 -12 F / m W = 30mm L = 15mm δ = 10μm and the applied voltage is 300V and 3000V, suction The force F C and stiffness K C are shown in the table below.

したがって微少な変位が必要な吸引力と剛性が得られ
ることが分かる。
Therefore, it can be seen that the suction force and the rigidity that require a slight displacement can be obtained.

本例で、たとえばX方向で正の方向か負の方向に動か
すかを判別して+電極6と電極10間あるいは電極4
と電極8間に電圧を加えれば、どちら側にも動くこと
が可能である。Y方向も同様にして行なわれる。
In this example, for example, it is determined whether to move in the positive direction or the negative direction in the X direction, and between the + electrode 6 and the electrode 10 or the electrode 4
If a voltage is applied between the electrode and the electrode 8, it can move to either side. The same applies to the Y direction.

電極まわりには、電極同志の接触による電極破損を避
けるために電極3〜6の表面にPZT〔Pb(Zr,Ti)03
の如き絶縁性の強誘体膜12がコーティングされている。
なお移動量Xをセンサで測定して各電極に制御電圧を
かければ、安定した移動量を保持できることはいうまで
もない。
Around the electrodes, PZT [P b (Z r , T i ) 0 3 ] on the surface of electrodes 3 to 6 to avoid electrode damage due to contact between the electrodes.
Is coated with an insulative strong attractant film 12.
Needless to say, a stable movement amount can be maintained by measuring the movement amount X with a sensor and applying a control voltage to each electrode.

第4図は他の実施例を示し、ステージ1の底部にステ
ージ外辺と相似形の凹部15を設け、この凹部15内にバッ
ド14中央部に凹部15と相似形の柱状ポスト16を設け、凹
部15内辺とポスト16の外辺間にバネ2を配置し、前記実
施例のようにステージ1とベース11間の空隙内に弾性ば
ね2を設けないようにしたものである。
FIG. 4 shows another embodiment, in which a bottom portion of the stage 1 is provided with a recess 15 having a shape similar to the outer periphery of the stage, and a recess 15 is provided with a columnar post 16 having a shape similar to the recess 15 at the center of the pad 14. The spring 2 is arranged between the inner side of the recess 15 and the outer side of the post 16 so that the elastic spring 2 is not provided in the space between the stage 1 and the base 11 as in the above-described embodiment.

第5図はその他の実施例を示し、ステージ1とベース
11の形状を三角とし電極数を少なくしたものである。
FIG. 5 shows another embodiment, where stage 1 and base
The shape of 11 is triangular and the number of electrodes is reduced.

第6図は更に他の実施例を示し、ステージの移動を回
転方向にもできるようにするため、X,Yのどちらかの軸
(例ではY軸)に並列に電極4−8,4′−8′,6−10,
6′−10を配置したものである。4−8と6′−10′に
電圧を印加することにより回転が得られる。
FIG. 6 shows still another embodiment in which electrodes 4-8, 4'are arranged in parallel to either X or Y axis (Y axis in the example) so that the stage can be moved also in the rotational direction. -8 ', 6-10,
6'-10 is arranged. Rotation is obtained by applying a voltage to 4-8 and 6'-10 '.

〔発明の効果〕〔The invention's effect〕

以上のように、本発明では非接触で力を加えるため、
他の軸の影響を受けることがない。
As described above, in the present invention, the force is applied in a non-contact manner,
It is not affected by other axes.

また電界を印加して静電吸引力による変位を得るアク
チュエータであるから、電磁石のように発熱のため機構
部への熱ひずみによる悪影響が生じるということがない
ため、高制度化が可能である。また電極を配置するだけ
でよいから機構が小形化・軽量化できるという効果があ
る。
Further, since the actuator is an actuator that obtains a displacement due to an electrostatic attraction force by applying an electric field, it does not have a bad influence due to thermal strain on the mechanism portion due to heat generation unlike an electromagnet, and thus high accuracy can be achieved. Further, since it is sufficient to dispose the electrodes, there is an effect that the mechanism can be made compact and lightweight.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例の上面からみた模式図、第2
図はその電極部の拡大側面図、第3図は同横断側面図、
第4図は他の実施例を示す横断面図、第5図はその他の
実施例の構成を示す平面図、第6図はその他の実施例を
示す上面からみた模式図、第7図は従来例の拡大断面図
である。 1……ステージ 2……弾性ばね 3〜6……固定側電極 4′,6′……固定側電極 7〜10……可動側電極 10′,12′……可動側電極 11……ベース 12……絶縁性強誘電体 13……平面軸受 14……ヘッド 15……凹部 16……ポスト 17……圧電素子 18……平行ばね 19……球
FIG. 1 is a schematic view of an embodiment of the present invention viewed from the top, FIG.
The figure shows an enlarged side view of the electrode part.
FIG. 4 is a cross-sectional view showing another embodiment, FIG. 5 is a plan view showing the construction of another embodiment, FIG. 6 is a schematic view of the other embodiment seen from above, and FIG. It is an expanded sectional view of an example. 1 ...... Stage 2 ...... Elastic spring 3 to 6 ...... Fixed side electrode 4 ', 6' ...... Fixed side electrode 7 to 10 ...... Movable side electrode 10 ', 12' ...... Movable side electrode 11 ...... Base 12 Insulating ferroelectrics 13 Flat bearing 14 Head 15 Recess 16 Post 17 Piezoelectric element 18 Parallel spring 19 Ball

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】絶縁材よりなる多角形の各辺中央部に電
極を設けたステージと、このステージを平面支承する平
面軸受と、前記ステージを内装する多角形のステージよ
りわずかに大きい相似形の孔を設け、前記電極と対向
する各辺に、金属箔と強絶縁誘電体材を積層した電極
を設けたベースと、前記電極と電極の静電吸引力に
対向する弾性ばねとを備え、前記電極に印加する電圧
を制御することを特徴とする微少量移動ステージ装置
1. A stage in which an electrode is provided at a central portion of each side of a polygon made of an insulating material, a plane bearing for supporting the stage in a plane, and a similar shape slightly larger than the polygonal stage in which the stage is housed. A hole is provided, and each side facing the electrode is provided with a base provided with an electrode in which a metal foil and a strong insulating dielectric material are laminated, and an elastic spring facing the electrostatic attraction force of the electrode and the electrode, Micro-small-amount moving stage device characterized by controlling voltage applied to electrodes
【請求項2】ステージとベースのなす空隙内に弾性ばね
を配した請求項1記載の微少量移動ステージ装置
2. A fine moving stage apparatus according to claim 1, wherein an elastic spring is arranged in a space formed by the stage and the base.
【請求項3】ステージ中央底部に凹部を設け、この凹部
内に相似形のポストを内装し、凹部とポスト間に弾性ば
ねを配した請求項1記載の微少量移動ステージ装置。
3. A fine moving stage apparatus according to claim 1, wherein a recess is provided at the bottom of the center of the stage, a post of similar shape is provided in the recess, and an elastic spring is arranged between the recess and the post.
JP63252014A 1988-10-07 1988-10-07 Micro movement stage Expired - Lifetime JP2527012B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63252014A JP2527012B2 (en) 1988-10-07 1988-10-07 Micro movement stage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63252014A JP2527012B2 (en) 1988-10-07 1988-10-07 Micro movement stage

Publications (2)

Publication Number Publication Date
JPH02101972A JPH02101972A (en) 1990-04-13
JP2527012B2 true JP2527012B2 (en) 1996-08-21

Family

ID=17231375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63252014A Expired - Lifetime JP2527012B2 (en) 1988-10-07 1988-10-07 Micro movement stage

Country Status (1)

Country Link
JP (1) JP2527012B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6507138B1 (en) * 1999-06-24 2003-01-14 Sandia Corporation Very compact, high-stability electrostatic actuator featuring contact-free self-limiting displacement
US7525205B2 (en) 2006-07-28 2009-04-28 Sanyo Electric Co., Ltd. Electric power generator
JP4908364B2 (en) * 2007-09-26 2012-04-04 株式会社東芝 Probe array type storage device
JP7287374B2 (en) * 2020-10-12 2023-06-06 トヨタ自動車株式会社 actuator

Also Published As

Publication number Publication date
JPH02101972A (en) 1990-04-13

Similar Documents

Publication Publication Date Title
Jeon et al. Electrostatic suspension of dielectrics
EP0368579B1 (en) Probe unit, driving method thereof, and scanning device for detecting tunnel current having said probe unit
JP3792798B2 (en) Micromover
JP4230706B2 (en) MEMS device having non-linear restoring spring
EP0741420A2 (en) Multi-axis rotation device
KR20060042979A (en) Positioning device for microscopic motion
EP0868648B1 (en) Integrated silicon profilometer and afm head
JP2527012B2 (en) Micro movement stage
JP3351180B2 (en) Variable capacitance capacitor
JP2004001209A (en) Micro-electro-mechanical system and method for transferring movable electrode using electrostatic force
JP3174740B2 (en) Non-tilted plate actuator used for micro-positioning device
SE451899B (en) FLEXIBLE BODY FOR A SENSOR TO ATTACH A POWER SENSOR TO AN ASSEMBLY BASE
JPH0981924A (en) Thin film magnetic head slider and electrostatic acutuator
CN107907992A (en) The fast steering mirror actuation mechanism and start method of direct stress electromagnetic drive
JP4615670B2 (en) Method and apparatus for controlling chucking force in electrostatic chuck
US5361635A (en) Multiple servo loop accelerometer with tunnel current sensors
JP2012178379A (en) Variable capacitance element
JP5685890B2 (en) Power generation device and electronic device
Kato et al. Electrostatic suspension using variable capacitors
WO2004095595A1 (en) Actuator
JPH11248742A (en) Accelerometer
JPH03169278A (en) Electrostatic actuator
JPH04225166A (en) Semiconductor electrostatic servo type force sensor and actuator using it, and acceleration sensor
Horsley et al. Design and feedback control of electrostatic actuators for magnetic disk drives
JP3021460B2 (en) Electrostatic actuator