JPH04225166A - Semiconductor electrostatic servo type force sensor and actuator using it, and acceleration sensor - Google Patents

Semiconductor electrostatic servo type force sensor and actuator using it, and acceleration sensor

Info

Publication number
JPH04225166A
JPH04225166A JP2407578A JP40757890A JPH04225166A JP H04225166 A JPH04225166 A JP H04225166A JP 2407578 A JP2407578 A JP 2407578A JP 40757890 A JP40757890 A JP 40757890A JP H04225166 A JPH04225166 A JP H04225166A
Authority
JP
Japan
Prior art keywords
movable electrode
electrode
cantilever
electrostatic
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2407578A
Other languages
Japanese (ja)
Other versions
JP2581324B2 (en
Inventor
Shigeki Tsuchiya
茂樹 土谷
Kiyomitsu Suzuki
清光 鈴木
Masayuki Miki
三木 政之
Masahiro Matsumoto
昌大 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2407578A priority Critical patent/JP2581324B2/en
Publication of JPH04225166A publication Critical patent/JPH04225166A/en
Application granted granted Critical
Publication of JP2581324B2 publication Critical patent/JP2581324B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0822Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass
    • G01P2015/0825Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass
    • G01P2015/0828Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass the mass being of the paddle type being suspended at one of its longitudinal ends

Abstract

PURPOSE:To enable a posture of a movable electrode to be controlled stably and obtain a stable output characteristic by specifying so that the dimensions, shape, etc., of the movable electrode and a cantilever satisfy certain conditions. CONSTITUTION:A cantilever 2 is deformed when a servo system does not operate and fixed electrodes 3 and 4 can be displaced up and down. A difference C=C1-C2 between electrostatic capacities C1 and C2 between the electrodes 3 and 4 and a movable electrode 1 is measured by a C detection circuit 5, thus enabling a position of the electrodes 3 and 4 for the electrode 1 to be detected. Also, a pulse width modulation circuit 7 controls a duty ratio D of a pulse voltage which is applied to the electrodes 3 and 4 so that C=0 can be obtained and an inverter 8 applies an inverted pulse voltage of the pulse voltage to be applied to the electrode 3 to the electrode 4. Then, shape, dimensions, and application voltage of the electrodes 1, 3, and 4 and the lever 2 are set so that a posture where a sum of a change in electrostatic energy and change in elastic energy due to deformation of the lever 2 always becomes positive for an arbitrary fine change of the posture of the electrode 1.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は半導体静電サーボ式加速
度センサにおける最適な構造及び駆動方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optimal structure and driving method for a semiconductor electrostatic servo acceleration sensor.

【0002】0002

【従来の技術】半導体静電サーボ式加速度センサは基本
的にはカンチレバーの先端に設けた一定の質量を有する
可動電極とその電極面に対向してある大きさの空隙を隔
てて形成された固定電極からなり、加速度によって可動
電極に働く慣性力と釣り合うよう可動電極−固定電極間
に電圧を印加して可動電極に静電気力を加え、加速度に
よらず可動電極の姿勢が常に一定になるよう制御してい
る。
[Prior Art] A semiconductor electrostatic servo acceleration sensor basically consists of a movable electrode with a certain mass provided at the tip of a cantilever, and a fixed electrode formed opposite to the electrode surface with a gap of a certain size in between. Consisting of electrodes, a voltage is applied between the movable electrode and the fixed electrode to balance the inertial force exerted on the movable electrode due to acceleration, and electrostatic force is applied to the movable electrode, thereby controlling the posture of the movable electrode to remain constant regardless of acceleration. are doing.

【0003】0003

【発明が解決しようとする課題】このようなセンサが安
定に動作するためには可動電極の姿勢が常に一定の位置
に安定に制御されなければならない。従来技術ではこの
点について必ずしも十分検討がなされているとは言えな
かった。
SUMMARY OF THE INVENTION In order for such a sensor to operate stably, the attitude of the movable electrode must always be stably controlled to a constant position. In the prior art, it cannot be said that sufficient consideration has been given to this point.

【0004】本発明の目的は、可動電極の姿勢を安定に
制御でき、安定な出力特性が得られるような半導体静電
サーボ式加速度センサの検出部及び駆動方法を提供する
ことにある。
An object of the present invention is to provide a detection section and a driving method for a semiconductor electrostatic servo acceleration sensor that can stably control the posture of a movable electrode and provide stable output characteristics.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
には、可動電極及びこれを支えるカンチレバーの寸法、
形状、可動電極−固定電極間の相互の位置関係、さらに
可動電極の姿勢を制御するための電圧波形に可動電極が
安定状態を保てるような条件を課す必要がある。
[Means for solving the problem] In order to achieve the above object, the dimensions of the movable electrode and the cantilever supporting it,
It is necessary to impose conditions such that the movable electrode can maintain a stable state on the shape, the mutual positional relationship between the movable electrode and the fixed electrode, and the voltage waveform for controlling the posture of the movable electrode.

【0006】[0006]

【作用】静電サーボ式加速度センサの動作状態において
可動電極に働く外力は、加速度による慣性力、固定電極
との間の静電気力及びカンチレバーの復元力である。可
動電極が安定な姿勢を維持できるためにはこれらの力が
互いにうまく釣り合っている必要がある。慣性力は可動
電極の質量、静電気力は可動電極と固定電極の形状及び
両者の位置関係、そして印加電圧の波形によって決まり
、カンチレバーの復元力はその形状によって決まる。
[Operation] In the operating state of the electrostatic servo acceleration sensor, the external forces acting on the movable electrode are the inertial force due to acceleration, the electrostatic force between it and the fixed electrode, and the restoring force of the cantilever. In order for the movable electrode to maintain a stable posture, these forces must be well balanced with each other. The inertial force is determined by the mass of the movable electrode, the electrostatic force is determined by the shape of the movable electrode and the fixed electrode, the positional relationship between them, and the waveform of the applied voltage, and the restoring force of the cantilever is determined by the shape.

【0007】[0007]

【実施例】以下、本発明の実施例を図1から図5にもと
づいて説明する。
Embodiments Hereinafter, embodiments of the present invention will be explained based on FIGS. 1 to 5.

【0008】図1は静電サーボ式加速度センサの一種で
あるパルス幅変調(PWM)方式の加速度センサにおけ
る検出部の基本構成及び信号処理回路のブロック図を示
す。検出部はカンチレバー2の先端に形成した可動電極
1と上下の固定電極3及び4から構成され、シリコン半
導体やガラスなどの基板の微細加工によって形成される
。サーボ系が動作しない状態ではカンチレバーが変形し
、可動電極は上下に変位できる。
FIG. 1 shows a basic configuration of a detection section and a block diagram of a signal processing circuit in a pulse width modulation (PWM) type acceleration sensor, which is a type of electrostatic servo type acceleration sensor. The detection section is composed of a movable electrode 1 formed at the tip of a cantilever 2 and upper and lower fixed electrodes 3 and 4, and is formed by microfabrication of a substrate such as a silicon semiconductor or glass. When the servo system is not operating, the cantilever deforms and the movable electrode can move up and down.

【0009】5はΔC検出回路で可動電極と上下の固定
電極間の静電容量C1,C2の差ΔC=C1−C2を測
定し、固定電極に対する可動電極の位置を検知する。6
は増幅器、7はパルス幅変調回路でΔC=0、すなわち
可動電極と上側固定電極および可動電極と下側固定電極
間の静電容量が等しくなるよう固定電極に印加するパル
ス電圧のデューティ比Dを制御する。9はインバータで
下側の固定電極4に上側固定電極3に印加するパルス電
圧とは反転したパルス電圧を印加する。9はローパスフ
ィルタで、パルス電圧を直流化し出力する。
5 is a ΔC detection circuit which measures the difference ΔC=C1-C2 between the capacitances C1 and C2 between the movable electrode and the upper and lower fixed electrodes, and detects the position of the movable electrode with respect to the fixed electrode. 6
is an amplifier, 7 is a pulse width modulation circuit, and the duty ratio D of the pulse voltage applied to the fixed electrode is set so that ΔC=0, that is, the capacitance between the movable electrode and the upper fixed electrode and between the movable electrode and the lower fixed electrode are equal. Control. Reference numeral 9 denotes an inverter which applies a pulse voltage that is inverted from the pulse voltage applied to the upper fixed electrode 3 to the lower fixed electrode 4. 9 is a low-pass filter that converts the pulse voltage into DC and outputs it.

【0010】今、ある点Oに関して点対称な平板状の可
動電極及びこれと空隙をへだててその上下に互いに平行
な一対の固定電極を考える。図2はこのような検出部を
横から見た図である。空隙の大きさは電極の幅、長さに
比べて十分小さく、また固定電極の面積は可動電極のそ
れより大きいものとする。前述のようにサーボ系の動作
時には系はΔC=0はとなるよう制御される。しかしな
がら、ΔC=0という条件を課しても、固定電極に対す
る可動電極の姿勢は一意的には定まらず、O点を通り固
定電極面と平行な任意の軸の回りにおける回転の自由度
が残されている。すなわち、この軸の回りに可動電極が
回転しても常にΔC=0という条件は満足される。
Now, consider a flat plate-shaped movable electrode that is symmetrical with respect to a certain point O, and a pair of fixed electrodes that are parallel to each other above and below the movable electrode, separated from the movable electrode by a gap. FIG. 2 is a side view of such a detection section. The size of the gap is sufficiently smaller than the width and length of the electrode, and the area of the fixed electrode is larger than that of the movable electrode. As mentioned above, when the servo system is in operation, the system is controlled so that ΔC=0. However, even if the condition ΔC=0 is imposed, the posture of the movable electrode with respect to the fixed electrode is not uniquely determined, and there remains a degree of freedom for rotation around any axis that passes through point O and is parallel to the fixed electrode surface. has been done. That is, even if the movable electrode rotates around this axis, the condition that ΔC=0 is always satisfied.

【0011】今、可動電極がこのような軸の周りに回転
した場合を考える。例えば可動電極の固定電極との対向
面が長方形であると仮定すると、図2の破線で示すよう
に可動電極の両端がΔd(Δd《d)だけ回転した場合
可動電極と上下いずれかの固定電極間との間の静電容量
C(d,Δd)は次式のようになる。
Now, consider the case where the movable electrode rotates around such an axis. For example, assuming that the surface of the movable electrode facing the fixed electrode is rectangular, if both ends of the movable electrode are rotated by Δd (Δd《d) as shown by the broken line in Figure 2, the movable electrode and either the upper or lower fixed electrode The electrostatic capacitance C (d, Δd) between the two is expressed by the following equation.

【0012】0012

【数1】[Math 1]

【0013】S:電極の対向面積 l:対向面の長さ θ:回転角度 εr:電極間の媒質の比誘電率 ε0:真空の誘電率 可動電極と上下の固定電極間に振幅Vの互いに反転した
パルス電圧を印加した時、可動電極−固定電極系の静電
エネルギーUeは、
S: Opposing area of the electrodes l: Length of the opposing surfaces θ: Rotation angle εr: Relative dielectric constant of the medium between the electrodes ε0: Permittivity of vacuum The amplitudes V between the movable electrode and the upper and lower fixed electrodes are mutually inverted. When a pulse voltage of

【0014】[0014]

【数2】[Math 2]

【0015】となる。一方、可動電極はカンチレバーに
よって束縛されているため可動電極が回転することによ
ってカンチレバーが変形し、これに弾性エネルギーが蓄
積される。図2に示した軸の周りで可動電極が回転した
時のカンチレバーのばね定数kθ を次式によって定義
する。
[0015] On the other hand, since the movable electrode is constrained by the cantilever, the rotation of the movable electrode causes the cantilever to deform, and elastic energy is stored therein. The spring constant kθ of the cantilever when the movable electrode rotates around the axis shown in FIG. 2 is defined by the following equation.

【0016】[0016]

【数3】[Math 3]

【0017】T:カンチレバーが回転に対して元の状態
に復元しようとするトルクこの時、カンチレバーの弾性
エネルギーUcは次式で表される。
T: Torque at which the cantilever attempts to restore its original state against rotation.At this time, the elastic energy Uc of the cantilever is expressed by the following equation.

【0018】従って、系全体のエネルギーUはTherefore, the energy U of the entire system is

【001
9】
001
9]

【数4】[Math 4]

【0020】[0020]

【数5】[Math 5]

【0021】と表される。ここで、It is expressed as follows. here,

【0022】[0022]

【数6】[Math 6]

【0023】である。[0023]

【0024】系はエネルギーUが極小となるような回転
角θをとろうとする。数4において、エネルギーUのθ
依存性はθ2 の係数Qの符号によってその形状が全く
異なる。すなわち、Q>0のときには図3の左側のグラ
フに示すようにUはθ=0で極小となり、系はθ=0す
なわち可動電極と固定電極が平行な状態を占ようとする
。 この状態は安定であり、センサに外乱、例えば振動や衝
撃などが加わっても可動電極は常に一定の姿勢に制御さ
れる。
The system attempts to take a rotation angle θ such that the energy U becomes minimum. In Equation 4, θ of energy U
The shape of the dependence is completely different depending on the sign of the coefficient Q of θ2. That is, when Q>0, as shown in the graph on the left side of FIG. 3, U becomes a minimum at θ=0, and the system attempts to occupy a state where θ=0, that is, the movable electrode and the fixed electrode are parallel. This state is stable, and the movable electrode is always controlled to a constant posture even if disturbances such as vibrations or shocks are applied to the sensor.

【0025】一方、Q≦0のときには図3の右側のグラ
フのようにθ=0は準安定状態であり、系はわずかの外
乱でθ=0の状態から外れて不安定状態となり、θの値
がどんどん大きくなる。すなわち、可動電極は軸の周り
に回転したまま復帰することはない。従って、上述のP
WM静電サーボ式加速度センサが安定に動作するために
は、Q>0となるよう検出部の形状および印加電圧の波
形を設計する必要がある。すなわち、数6から回転のば
ね定数kθ 、両電極の対向面積S、可動電極−固定電
極間の空隙の大きさd及びパルス電圧の振幅Vが次の関
係式を満足しなければならない。
On the other hand, when Q≦0, θ=0 is in a metastable state as shown in the graph on the right side of FIG. The value becomes larger and larger. That is, the movable electrode remains rotated around the axis and does not return to its original position. Therefore, the above P
In order for the WM electrostatic servo acceleration sensor to operate stably, it is necessary to design the shape of the detection section and the waveform of the applied voltage so that Q>0. That is, from Equation 6, the rotational spring constant kθ, the opposing area S of both electrodes, the size d of the gap between the movable electrode and the fixed electrode, and the amplitude V of the pulse voltage must satisfy the following relational expression.

【0026】[0026]

【数7】[Math 7]

【0027】ところで、可動電極の回転に関してのばね
定数kθはどのような回転軸を選ぶかによってその大き
さが異なる。
By the way, the spring constant kθ with respect to the rotation of the movable electrode differs depending on the rotation axis selected.

【0028】例えば図4の1本ビームタイプでは、軸A
−A´の回りでの可動電極の回転によるカンチレバーの
変形モードは「たわみ」であり、軸B−B´の回りでの
回転による変形モードは「ねじれ」である。また、軸C
−C´についてのそれは「たわみ」と「ねじれ」が混合
したものとなる。これらの軸についての回転のばね定数
kθ はそれぞれ異なる。また、図5の2本ビームタイ
プでは、軸A−A´の回りにおける回転については「た
わみ」が伴い、軸B−B´については「たわみ」と「ね
じれ」の両方が伴う。
For example, in the single beam type shown in FIG.
The mode of deformation of the cantilever due to rotation of the movable electrode about -A' is "deflection", and the mode of deformation due to rotation about axis B-B' is "twisting". Also, axis C
-C' is a mixture of "deflection" and "twisting". The spring constants kθ of rotation about these axes are different. Further, in the two-beam type shown in FIG. 5, the rotation around the axis AA' is accompanied by "deflection", and the rotation about the axis B-B' is accompanied by both "deflection" and "twisting".

【0029】可動電極と固定電極とが平行な状態すなわ
ちθ=0の状態が安定であるためにはO点を通り固定電
極と平行な任意の軸のまわりでの回転に対し、図3の左
側のグラフのようなポテンシャル図になるよう可動電極
、固定電極及びカンチレバーの形状、寸法及び印加電圧
を決定しなければならない。
In order for the state where the movable electrode and the fixed electrode are parallel, that is, the state where θ=0, to be stable, the left side in FIG. The shapes, dimensions, and applied voltages of the movable electrode, fixed electrode, and cantilever must be determined so that the potential diagram looks like the graph shown below.

【0030】本実施例によれば出力特性の直線性が良好
なPWM静電サーボ式加速度センサにおける可動電極の
姿勢を安定に制御できるため、加速度を安定に精度良く
、かつ高感度に測定できる効果がある。
According to this embodiment, since the posture of the movable electrode in a PWM electrostatic servo type acceleration sensor with good linearity of output characteristics can be stably controlled, acceleration can be stably measured with high precision and high sensitivity. There is.

【0031】ところで、静電サーボ式加速度センサでは
可動電極に働く慣性力と可動電極−固定電極間の静電気
力とを釣り合わせているため、加速度測定範囲を拡大す
なわち測定可能な最大加速度αmax を大きくするた
めには可動電極に作用させる静電気力を大きくしなけれ
ばならない。そこで両電極間に印加する電圧Vを増大さ
せる必要がある。
By the way, in the electrostatic servo type acceleration sensor, since the inertial force acting on the movable electrode and the electrostatic force between the movable electrode and the fixed electrode are balanced, the acceleration measurement range can be expanded, that is, the maximum measurable acceleration αmax can be increased. In order to do this, it is necessary to increase the electrostatic force that acts on the movable electrode. Therefore, it is necessary to increase the voltage V applied between both electrodes.

【0032】一方、数7よりOn the other hand, from number 7

【0033】[0033]

【数8】[Math. 8]

【0034】とすると、V<Vthの時には可動電極と
固定電極が平行な状態は安定状態、V≧Vthの時には
準安定状態となる。従って、可動電極を安定に制御する
ためには電圧VをVthより小さくしなければならず、
Vthがαmaxを決定することになる。さらにαma
xを大きくするためにはVthを上昇させる必要がある
。そのために、数8により回転のばね定数kθの大きな
センサ構造を設計しなければならない。前述のように、
kθはどのような回転軸を選ぶかによってその大きさが
異なる。実際には、可動電極の安定性は種々の回転軸に
ついてのkθ のうち最小のものによって決定されるた
め、αmaxを大きくするためにはkθの最小値の大き
な検出部構造としなければならない。例えば、図4の1
本ビームタイプおよび図5の2本ビームタイプでは、軸
B−B´についてのkθ がそれぞれの場合について最
小であり、かつビームの全幅(2本ビームの場合は各ビ
ーム幅の和)が等しい場合、1本ビームのそれより2本
ビームのそれの方が大きい。従って、2本ビームタイプ
のほうが加速度測定範囲が大きいことになる。ただし、
可動電極面に垂直方向の変位に対するばね定数kが大き
すぎるとセンサ特性に種々の悪影響を与えるため、kを
余り増加させない方法で回転のばね定数kθ を大きく
しなければならない。そこで、例えば図6および図7に
示すようにカンチレバーの長さをできるだけ長く、でき
れば可動電極の径の50%以上にし、かつ可動電極を周
囲から支えれば可動電極面に垂直方向の変位についての
ばね定数kをあまり大きくすることなしに回転のばね定
数kθ の最小値を大きくでき、センサ特性を損なうこ
となく加速度測定範囲を拡大することができる。
[0034] Then, when V<Vth, the movable electrode and the fixed electrode are parallel to each other in a stable state, and when V≧Vth, the state is in a quasi-stable state. Therefore, in order to stably control the movable electrode, the voltage V must be lower than Vth,
Vth will determine αmax. Furthermore αma
In order to increase x, it is necessary to increase Vth. For this purpose, it is necessary to design a sensor structure with a large rotational spring constant kθ according to Equation 8. As aforementioned,
The magnitude of kθ varies depending on the rotation axis selected. In reality, the stability of the movable electrode is determined by the minimum value of kθ for various rotational axes, so in order to increase αmax, the detector structure must have a large minimum value of kθ. For example, 1 in Figure 4
For this beam type and the two-beam type shown in Fig. 5, if kθ about axis B-B' is minimum in each case, and the total width of the beam (in the case of two beams, the sum of each beam width) is equal. , that of two beams is larger than that of one beam. Therefore, the two-beam type has a larger acceleration measurement range. however,
If the spring constant k for displacement in the direction perpendicular to the movable electrode surface is too large, it will have various adverse effects on the sensor characteristics, so the spring constant kθ for rotation must be increased by a method that does not increase k too much. Therefore, as shown in FIGS. 6 and 7, for example, if the length of the cantilever is made as long as possible, preferably at least 50% of the diameter of the movable electrode, and the movable electrode is supported from the surroundings, the spring for displacement in the direction perpendicular to the surface of the movable electrode can be prevented. The minimum value of the rotational spring constant kθ can be increased without increasing the constant k too much, and the acceleration measurement range can be expanded without impairing sensor characteristics.

【0035】なお、一般的な形状の可動電極、固定電極
及びカンチレバーを有する静電サーボ式の加速度センサ
に対しては、可動電極の姿勢を安定に制御でき、安定な
出力特性が得られるためには、可動電極のある姿勢から
の任意の微小な姿勢の変化に対し、静電エネルギーの変
化とカンチレバーの変形による弾性エネルギーの変化の
和が常に正となるような姿勢が存在するよう可動電極、
固定電極及びカンチレバーの形状,寸法,印加電圧を定
める必要がある。
[0035] For an electrostatic servo type acceleration sensor that has a movable electrode, a fixed electrode, and a cantilever in a general shape, the attitude of the movable electrode can be stably controlled and stable output characteristics can be obtained. The movable electrode is arranged so that for any minute change in the posture of the movable electrode, there is a posture in which the sum of the change in electrostatic energy and the change in elastic energy due to the deformation of the cantilever is always positive.
It is necessary to determine the shape, dimensions, and applied voltage of the fixed electrode and cantilever.

【0036】本発明は特にパルス幅変調方式に限るわけ
ではなく、他の方式の静電サーボ式加速度センサについ
ても適用可能である。その際、印加電圧波形に応じて可
動電極−固定電極間の静電エネルギーを計算しなければ
ならない。
The present invention is not particularly limited to the pulse width modulation method, but can also be applied to electrostatic servo type acceleration sensors of other methods. At that time, the electrostatic energy between the movable electrode and the fixed electrode must be calculated according to the applied voltage waveform.

【0037】また、本発明は加速度による慣性力だけで
なく可動電極に働く他の外力を測定するセンサにも適用
可能である。例えば、可動電極を構成する平板の一部を
磁性体で構成すれば磁界から受ける磁力を測定すること
ができ、磁気センサとすることができる。
Furthermore, the present invention can be applied to a sensor that measures not only inertial force due to acceleration but also other external forces acting on the movable electrode. For example, if a part of the flat plate constituting the movable electrode is made of a magnetic material, the magnetic force received from the magnetic field can be measured, and the movable electrode can be used as a magnetic sensor.

【0038】さらに、可動電極を構成する平板の一部に
他の部品を形成すれば、両電極間に印加する電圧によっ
て部品の位置を制御する静電サーボ式のアクチュエータ
とすることができ、本発明はこのようなアクチュエータ
にも適用可能である。
Furthermore, if other parts are formed on a part of the flat plate constituting the movable electrode, an electrostatic servo type actuator can be created in which the position of the part is controlled by the voltage applied between both electrodes. The invention is also applicable to such actuators.

【0039】[0039]

【発明の効果】本発明によれば、可動電極の姿勢を常に
一定の位置に安定に制御できるため、加速度や可動電極
に作用する他の外力を安定に測定できるという効果があ
る。さらに、静電位置決め用のアクチュエータとして安
定な位置制御が可能であるという効果がある。
According to the present invention, since the posture of the movable electrode can be stably controlled to always be in a constant position, there is an effect that acceleration and other external forces acting on the movable electrode can be stably measured. Furthermore, there is an effect that stable position control is possible as an actuator for electrostatic positioning.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】パルス幅変調静電サーボ式加速度センサの基本
構成図である。
FIG. 1 is a basic configuration diagram of a pulse width modulation electrostatic servo type acceleration sensor.

【図2】可動電極の姿勢の変化を説明するための図であ
る。
FIG. 2 is a diagram for explaining changes in the posture of a movable electrode.

【図3】可動電極の姿勢の変化に対する可動電極−固定
電極−カンチレバー系におけるエネルギーの変化を示す
図である。
FIG. 3 is a diagram showing changes in energy in the movable electrode-fixed electrode-cantilever system with respect to changes in the posture of the movable electrode.

【図4】カンチレバーが一本の場合における可動電極の
回転軸の説明のための可動電極−カンチレバー部の平面
図である。
FIG. 4 is a plan view of the movable electrode-cantilever portion for explaining the rotation axis of the movable electrode when there is only one cantilever.

【図5】カンチレバーが二本の場合における可動電極の
回転軸の説明のための可動電極−カンチレバー部の平面
図である。
FIG. 5 is a plan view of the movable electrode-cantilever portion for explaining the rotation axis of the movable electrode when there are two cantilevers.

【図6】4本のカンチレバーで支えられた可動電極を示
す図(その1)である。
FIG. 6 is a diagram (part 1) showing a movable electrode supported by four cantilevers.

【図7】4本のカンチレバーで支えられた可動電極を示
す図(その2)である。
FIG. 7 is a diagram (part 2) showing a movable electrode supported by four cantilevers.

【符号の説明】[Explanation of symbols]

1…可動電極、2…カンチレバー、3…固定電極、4…
固定電極、5…ΔC検出回路、6…増幅器、7…パルス
幅変調回路、8…インバータ、9…ローパスフィルタ。
1... Movable electrode, 2... Cantilever, 3... Fixed electrode, 4...
Fixed electrode, 5... ΔC detection circuit, 6... amplifier, 7... pulse width modulation circuit, 8... inverter, 9... low pass filter.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】一定の質量を有し、全体または表面の少な
くとも一部が導体で形成された可動電極、およびこれを
支える一本または複数本のカンチレバー、前記可動電極
面に対向し、空隙を隔てて配置した少なくとも一つの固
定電極から成り、可動電極−固定電極間に電圧を印加し
、可動電極に働く静電気力と加速度による慣性力及び前
記カンチレバーの変形による復元力が釣合い、加速度に
依らず可動電極−固定電極間の相互の位置関係が常に一
定になるよう静電気力を制御し、その制御量より加速度
を求めるセンサにおいて、可動電極の姿勢の任意の微小
な変化に対し、それに伴う可動電極−固定電極間の静電
エネルギーの変化とカンチレバーの弾性エネルギーの変
化の和が常に正となるような姿勢が存在するよう可動電
極、固定電極およびカンチレバーの形状や寸法、両電極
間の空隙の大きさ及び印加電圧を設定することを特徴と
する半導体静電サーボ式加速度センサ。
Claim 1: A movable electrode having a constant mass and whose entire surface or at least a portion of the surface is made of a conductor, one or more cantilevers supporting the movable electrode, which faces the movable electrode surface and has a gap formed therein. It consists of at least one fixed electrode placed apart from each other, and a voltage is applied between the movable electrode and the fixed electrode, so that the electrostatic force acting on the movable electrode, the inertial force due to acceleration, and the restoring force due to the deformation of the cantilever are balanced, independent of acceleration. In a sensor that controls electrostatic force so that the mutual positional relationship between a movable electrode and a fixed electrode is always constant, and calculates acceleration from the controlled amount, the movable electrode - The shape and dimensions of the movable electrode, fixed electrode, and cantilever, and the size of the gap between the two electrodes so that the sum of the change in electrostatic energy between the fixed electrodes and the change in the elastic energy of the cantilever is always positive. 1. A semiconductor electrostatic servo acceleration sensor, which is characterized by setting the speed and applied voltage.
【請求項2】一定の質量を有し、全体または表面の少な
くとも一部が導体で形成された可動電極及びこれを支え
る一本または複数本のカンチレバー、前記可動電極面に
対向し、空隙を隔てて配置した少なくとも一つの固定電
極から成り、可動電極−固定電極間に電圧を印加し、可
動電極に働く静電気力と外力及び前記カンチレバーの変
形による復元力が釣合い、外力に依らず可動電極−固定
電極間の相互の位置関係が常に一定になるよう静電気力
を制御し、その制御量より外力を求めるセンサにおいて
、可動電極の姿勢の任意の微小な変化に対し、それに伴
う可動電極−固定電極間の静電エネルギーの変化とカン
チレバーの弾性エネルギーの変化の和が常に正となるよ
うな姿勢が存在するよう可動電極、固定電極およびカン
チレバーの形状や寸法、両電極間の空隙の大きさ及び印
加電圧を設定することを特徴とする半導体静電サーボ式
力センサ。
2. A movable electrode having a constant mass and whose entire surface or at least a portion of the surface is made of a conductor, and one or more cantilevers supporting the movable electrode, which face the movable electrode surface and are separated by a gap. A voltage is applied between the movable electrode and the fixed electrode, and the electrostatic force acting on the movable electrode and the external force and the restoring force due to the deformation of the cantilever are balanced, and the movable electrode is fixed without depending on the external force. In a sensor that controls the electrostatic force so that the mutual positional relationship between the electrodes is always constant, and determines the external force from the controlled amount, the change between the movable electrode and the fixed electrode due to any minute change in the posture of the movable electrode. The shapes and dimensions of the movable electrode, fixed electrode, and cantilever, the size of the gap between the two electrodes, and the applied voltage are adjusted so that the sum of the change in the electrostatic energy of the cantilever and the change in the elastic energy of the cantilever is always positive. A semiconductor electrostatic servo type force sensor characterized by the following settings.
【請求項3】一定の質量を有し、全体または表面の少な
くとも一部が導体で形成された可動電極及びこれを支え
る一本または複数本のカンチレバー、前記可動電極面に
対向し、空隙を隔てて配置した少なくとも一つの固定電
極から成り、可動電極−固定電極間に電圧を印加し、可
動電極に働く静電気力と何らかの外力及び前記カンチレ
バーの変形による復元力が釣合い、加速度に依らず可動
電極−固定電極間の相互の位置関係が常に一定になるよ
う静電気力を制御し、その印加電圧により可動電極の位
置を制御するアクチュエータにおいて、可動電極の姿勢
の任意の微小な変化に対し、それに伴う可動電極−固定
電極間の静電エネルギーの変化とカンチレバーの弾性エ
ネルギーの変化の和が常に正となるような姿勢が存在す
るよう可動電極、固定電極およびカンチレバーの形状や
寸法、両電極間の空隙の大きさ及び印加電圧を設定する
ことを特徴とする半導体静電サーボ式アクチュエータ。
3. A movable electrode having a constant mass and having at least a portion of its surface made of a conductor, and one or more cantilevers supporting the movable electrode, which face the movable electrode surface and are separated by a gap. A voltage is applied between the movable electrode and the fixed electrode, and the electrostatic force acting on the movable electrode is balanced by some external force and the restoring force due to the deformation of the cantilever, so that the movable electrode is independent of acceleration. In an actuator that controls electrostatic force so that the mutual positional relationship between fixed electrodes is always constant, and controls the position of a movable electrode by the applied voltage, the movement corresponding to any minute change in the posture of the movable electrode is controlled. The shapes and dimensions of the movable electrode, fixed electrode, and cantilever, and the gap between the two electrodes are carefully selected so that the sum of the change in electrostatic energy between the electrode and the fixed electrode and the change in the elastic energy of the cantilever is always positive. A semiconductor electrostatic servo actuator characterized by setting the size and applied voltage.
【請求項4】特許請求の範囲第1項において、静電サー
ボ式加速度センサとしてパルス幅変調方式を用いたこと
を特徴とする半導体静電サーボ式加速度センサ。
4. A semiconductor electrostatic servo type acceleration sensor according to claim 1, characterized in that a pulse width modulation method is used as the electrostatic servo type acceleration sensor.
【請求項5】特許請求の範囲第2項において、静電サー
ボ式力センサとしてパルス幅変調方式を用いたことを特
徴とする半導体静電サーボ式力センサ。
5. The semiconductor electrostatic servo force sensor according to claim 2, characterized in that the electrostatic servo force sensor uses a pulse width modulation method.
【請求項6】特許請求の範囲第3項において、静電サー
ボ式アクチュエータとしてパルス幅変調方式を用いたこ
とを特徴とする半導体静電サーボ式アクチュエータ。
6. The semiconductor electrostatic servo actuator according to claim 3, characterized in that a pulse width modulation method is used as the electrostatic servo actuator.
【請求項7】特許請求の範囲第1項および第4項におい
て、可動電極は平板状であり、カンチレバーによって板
面に平行に四方から支えられ、かつカンチレバーの長さ
は可動電極の径の50%以上であることを特徴とする半
導体静電サーボ式加速度センサ。
7. In claims 1 and 4, the movable electrode has a flat plate shape and is supported from all sides by cantilevers parallel to the plate surface, and the length of the cantilever is 50% of the diameter of the movable electrode. % or more.
【請求項8】特許請求の範囲第2項および第5項におい
て、可動電極は平板状であり、カンチレバーによって板
面に平行に四方から支えられ、かつカンチレバーの長さ
は可動電極の径の50%以上であることを特徴とする半
導体静電サーボ式力センサ。
8. In claims 2 and 5, the movable electrode has a flat plate shape and is supported from all sides by cantilevers parallel to the plate surface, and the length of the cantilever is 50% of the diameter of the movable electrode. % or more.
【請求項9】特許請求の範囲第3項および第6項におい
て、可動電極は平板状であり、カンチレバーによって板
面に平行に四方から支えられ、かつカンチレバーの長さ
は可動電極の径の50%以上であることを特徴とする半
導体静電サーボ式アクチュエータ。
9. In claims 3 and 6, the movable electrode has a flat plate shape and is supported by cantilevers from all sides parallel to the plate surface, and the length of the cantilever is 50% of the diameter of the movable electrode. % or more.
JP2407578A 1990-12-27 1990-12-27 Acceleration sensor Expired - Fee Related JP2581324B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2407578A JP2581324B2 (en) 1990-12-27 1990-12-27 Acceleration sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2407578A JP2581324B2 (en) 1990-12-27 1990-12-27 Acceleration sensor

Publications (2)

Publication Number Publication Date
JPH04225166A true JPH04225166A (en) 1992-08-14
JP2581324B2 JP2581324B2 (en) 1997-02-12

Family

ID=18517148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2407578A Expired - Fee Related JP2581324B2 (en) 1990-12-27 1990-12-27 Acceleration sensor

Country Status (1)

Country Link
JP (1) JP2581324B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5490421A (en) * 1992-03-25 1996-02-13 Fuji Electric Co., Ltd. Semi-conductor acceleration sensor having thin beam supported weight
US5665915A (en) * 1992-03-25 1997-09-09 Fuji Electric Co., Ltd. Semiconductor capacitive acceleration sensor
KR100668336B1 (en) * 2005-04-07 2007-01-12 삼성전자주식회사 Electrostatic actuating apparatus and method
WO2008156018A1 (en) * 2007-06-18 2008-12-24 Alps Electric Co., Ltd. Capacitance type acceleration sensor
WO2021001889A1 (en) * 2019-07-01 2021-01-07 Nec Corporation Traffic prediction apparatus, system, method, and non-transitory computer readable medium

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01253657A (en) * 1988-04-01 1989-10-09 Hitachi Ltd Acceleration sensor
JPH02271262A (en) * 1989-02-28 1990-11-06 United Technol Corp <Utc> Capacitive accelerometer with mass for detecting intermediate surface

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01253657A (en) * 1988-04-01 1989-10-09 Hitachi Ltd Acceleration sensor
JPH02271262A (en) * 1989-02-28 1990-11-06 United Technol Corp <Utc> Capacitive accelerometer with mass for detecting intermediate surface

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5490421A (en) * 1992-03-25 1996-02-13 Fuji Electric Co., Ltd. Semi-conductor acceleration sensor having thin beam supported weight
US5665915A (en) * 1992-03-25 1997-09-09 Fuji Electric Co., Ltd. Semiconductor capacitive acceleration sensor
KR100668336B1 (en) * 2005-04-07 2007-01-12 삼성전자주식회사 Electrostatic actuating apparatus and method
WO2008156018A1 (en) * 2007-06-18 2008-12-24 Alps Electric Co., Ltd. Capacitance type acceleration sensor
WO2021001889A1 (en) * 2019-07-01 2021-01-07 Nec Corporation Traffic prediction apparatus, system, method, and non-transitory computer readable medium

Also Published As

Publication number Publication date
JP2581324B2 (en) 1997-02-12

Similar Documents

Publication Publication Date Title
US5249465A (en) Accelerometer utilizing an annular mass
US4711128A (en) Micromachined accelerometer with electrostatic return
US5095750A (en) Accelerometer with pulse width modulation
US5006487A (en) Method of making an electrostatic silicon accelerometer
US6496348B2 (en) Method to force-balance capacitive transducers
US5115291A (en) Electrostatic silicon accelerometer
JP3369316B2 (en) Capacitive transducer and method of controlling transducer element profile
US6868726B2 (en) Position sensing with improved linearity
US6776042B2 (en) Micro-machined accelerometer
US6257062B1 (en) Angular Accelerometer
KR100513346B1 (en) A capacitance accelerometer having a compensation elctrode
US8322216B2 (en) Micromachined accelerometer with monolithic electrodes and method of making the same
JP2868406B2 (en) Force detection system including magnetically mounted rocking element
US6530275B1 (en) Feedback circuit for micromachined accelerometer
CA2467503A1 (en) Accelerometer
US5377545A (en) Servo accelerometer with tunnel current sensor and complementary electrostatic drive
WO2002022494A2 (en) Thin film mems sensors employing electrical sensing and force feedback
JPH04225166A (en) Semiconductor electrostatic servo type force sensor and actuator using it, and acceleration sensor
US10753744B2 (en) MEMS out of plane actuator
EP3816636A1 (en) Methods for closed loop operation of capacitive accelerometers
US4803883A (en) Accelerometer
US5361635A (en) Multiple servo loop accelerometer with tunnel current sensors
EP3376162A1 (en) Mems out of plane actuator
JPH0623781B2 (en) Acceleration detection method and device
Li et al. Open–loop operating mode of micromachined capacitive accelerometer

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees