JP2526601B2 - Superconducting magnetometer - Google Patents

Superconducting magnetometer

Info

Publication number
JP2526601B2
JP2526601B2 JP62229087A JP22908787A JP2526601B2 JP 2526601 B2 JP2526601 B2 JP 2526601B2 JP 62229087 A JP62229087 A JP 62229087A JP 22908787 A JP22908787 A JP 22908787A JP 2526601 B2 JP2526601 B2 JP 2526601B2
Authority
JP
Japan
Prior art keywords
superconducting
pickup coil
current
magnetometer
terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62229087A
Other languages
Japanese (ja)
Other versions
JPS6472086A (en
Inventor
康晴 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP62229087A priority Critical patent/JP2526601B2/en
Publication of JPS6472086A publication Critical patent/JPS6472086A/en
Application granted granted Critical
Publication of JP2526601B2 publication Critical patent/JP2526601B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 この発明は、超伝導材の臨界電流を利用して、微弱磁
界を測定する超伝導磁力計に関する。
TECHNICAL FIELD The present invention relates to a superconducting magnetometer for measuring a weak magnetic field by utilizing a critical current of a superconducting material.

(ロ) 従来の技術 従来、超伝導現象を利用した磁力計としては、RF-SQU
IDやDC-SQUIDがある。これらは、いずれも超伝導リング
内に、ジョセフソン・ジャンクション(J・J)を備え
るものである。ジョセフソン・ジャンクション素子の一
例を第4図に示している。同図において、絶縁体基板
(例:SiO2)11上に、超伝導体薄膜(例:Nb)12が形成
され、この超伝導体薄膜12で、超伝導リング13が構成さ
れ、また、ジョセフソン・ジャンクション14が形成され
ている。
(B) Conventional technology RF-SQU is a conventional magnetometer using superconductivity.
There are ID and DC-SQUID. All of these have a Josephson junction (JJ) in the superconducting ring. An example of a Josephson junction element is shown in FIG. In the figure, a superconducting thin film (eg Nb) 12 is formed on an insulating substrate (eg SiO 2 ) 11, and the superconducting thin film 12 constitutes a superconducting ring 13. Song Junction 14 is formed.

(ハ) 発明が解決しようとする問題点 上記従来の超伝導磁力計では、ジョセフソン・ジャン
クションの臨界電流値を数μA程度にする必要があり、
製造上困難な点が多く、また製造工数が多くなるという
問題があった。
(C) Problems to be Solved by the Invention In the conventional superconducting magnetometer described above, it is necessary to set the critical current value of the Josephson junction to about several μA,
There are many problems in manufacturing, and the number of manufacturing processes is large.

この発明は、上記問題点に着目し、磁気センサ部の構
造を簡単にし、製造を容易になし得る超伝導磁力計を提
供することを目的としている。
The present invention focuses on the above problems and aims to provide a superconducting magnetometer which can simplify the structure of the magnetic sensor part and can be easily manufactured.

(ニ) 問題点を解決するための手段及び作用 この発明の超伝導磁力計は、励振端子、出力端子及び
ピックアップコイル接続端子を有し、小さな臨界電流値
を持つ超伝導材と、前記励振端子に接続され、前記臨界
電流値以上で励振する励振源と、前記ピックアップコイ
ル接続端子に両端が接続され、前記超伝導材とで超伝導
ループを構成するピックアップコイルとから構成されて
いる。
(D) Means and Actions for Solving Problems The superconducting magnetometer of the present invention has a superconducting material having an exciting terminal, an output terminal and a pickup coil connecting terminal, and a small critical current value, and the exciting terminal. And a pickup coil which is connected to the pickup coil and is excited at the critical current value or more, and a pickup coil whose both ends are connected to the pickup coil connecting terminal and which forms a superconducting loop with the superconducting material.

この超伝導磁力計では、常態において、超伝導材は、
励振源によって過励振されており、超伝導材に出力電圧
が導出される。ここで、ピックアップコイルに磁界が入
ると、超伝導ループに誘導電流が流れ、励振源からの電
流に重畳される。そのため、これが超伝導材の出力の変
化となり、磁界が検出される。この超伝導磁力計では、
超伝導材の構造が簡単なので、製造が容易となる。
In this superconducting magnetometer, normally, the superconducting material is
It is over-excited by the excitation source, and the output voltage is derived to the superconducting material. Here, when a magnetic field enters the pickup coil, an induced current flows in the superconducting loop and is superimposed on the current from the excitation source. Therefore, this becomes a change in the output of the superconducting material, and the magnetic field is detected. In this superconducting magnetometer,
Since the superconducting material has a simple structure, it is easy to manufacture.

(ホ) 実施例 以下、実施例により、この発明をさらに詳細に説明す
る。
(E) Examples Hereinafter, the present invention will be described in more detail with reference to Examples.

第1図は、この発明の一実施例を示す超伝導磁力計の
回路接続図である。同図において、薄膜状の例えばニオ
ブ等の超伝導体2が特徴的に設けられ、この超伝導体2
は帯状の薄膜であり、ピックアップ接続端子2a、2aを、
さらに励振端子と出力端子が兼用される2b、2bを備えて
いる。そして、超伝導体2のピックアップコイル接続端
子2a、2aには、超伝導接続線4、5により、ピックアッ
プコイル1が接続されている。又、超伝導体2の励振端
子2b、2bには、基本周波電流発生回路3が接続され、所
定の周波数の交流励振電流isが入力される。一方、この
接続端子2b、2bは交流アンプ6に接続され、超伝導体2
に流れる電流が超伝導体の超伝導状態あるいは常態によ
って変化する抵抗に応じた出力を取り出して、交流AMP6
で増幅し、同期整流回路7で周期整流して出力電圧eを
導出するように構成されている。この第1図の超伝導磁
力計の回路部を等価的に示したものが第2図であり、励
振源である入力信号源a0sinωtの交流電流により、超
伝導体に電流isが流れ、通常、この電流は、第3図の実
線で示すように臨界電流icよりも大なる励振電流が流れ
るように構成されている。Lはピックアップコイルのイ
ンダクタンスであり、このLに周囲磁界の磁束φが鎖交
すると、電流ixが流れる。このように今、超伝導体2の
入力電流と出力電圧の関係を示すと、第3図に示すよう
に臨界電流icまでの入力に対しては、出力は、つまり超
伝導状態にあるため、出力Vはゼロであるが、それ以後
は過励振状態となるので、超伝導体2が常態、常導体、
つまり、ある抵抗値をもつので、所定の抵抗値におい
て、電圧が出力される。この実施例超伝導磁力計では、
基本周波電流発生回路3より入力される電流isの振幅が
過励振状態、つまり臨界電流よりも大なるようにしてい
るので、出力電圧は、つまり、交流AMP6より出力される
電圧は、第3図の右部に示すように、所定の電流値が流
れる。つまり、実線で示したような出力電圧が得られ
る。これに対し、今ピックアップコイル1に磁界による
磁束φxが入力されると、これにより誘導電流ixが流
れ、このixによって、つまりixが交流電流isに重畳され
た形になり、入力電流は、第3図の下部の破線で示すよ
うになり、従って、出力電圧も右部の破線で示すように
なり、出力電圧が変化する。この変化分を出力として導
出することにより微小磁界の強さを知ることができる。
FIG. 1 is a circuit connection diagram of a superconducting magnetometer showing an embodiment of the present invention. In the figure, a thin-film superconductor 2 such as niobium is characteristically provided.
Is a strip-shaped thin film, the pickup connection terminals 2a, 2a,
Furthermore, it is provided with 2b and 2b which are used as both the excitation terminal and the output terminal. The pickup coil 1 is connected to the pickup coil connecting terminals 2a, 2a of the superconductor 2 by superconducting connecting wires 4, 5. Further, the fundamental frequency current generating circuit 3 is connected to the excitation terminals 2b, 2b of the superconductor 2, and the alternating excitation current is of a predetermined frequency is input. On the other hand, the connection terminals 2b, 2b are connected to the AC amplifier 6 and the superconductor 2
The current that flows in the superconductor changes output depending on the superconducting state or normal state of the superconductor.
The output voltage e is amplified by the synchronous rectifier circuit 7 and periodically rectified by the synchronous rectifier circuit 7. The equivalent circuit diagram of the superconducting magnetometer of FIG. 1 is shown in FIG. 2. The current is flows in the superconductor by the alternating current of the input signal source a 0 sin ωt, which is the excitation source, Normally, this current is configured so that an exciting current larger than the critical current ic flows as shown by the solid line in FIG. L is the inductance of the pickup coil, and when the magnetic flux φ of the surrounding magnetic field is linked to this L, the current ix flows. Thus, now showing the relationship between the input current and the output voltage of the superconductor 2, as shown in FIG. 3, for the input up to the critical current ic, the output is in the superconducting state. The output V is zero, but since it is in the overexcitation state after that, the superconductor 2 is in the normal state, the normal conductor,
That is, since it has a certain resistance value, a voltage is output at a predetermined resistance value. In this example superconducting magnetometer,
Since the amplitude of the current is input from the fundamental frequency current generation circuit 3 is set to be in the overexcitation state, that is, larger than the critical current, the output voltage, that is, the voltage output from the AC AMP6 is shown in FIG. As shown in the right part of FIG. That is, the output voltage shown by the solid line is obtained. On the other hand, when the magnetic flux φx due to the magnetic field is now input to the pickup coil 1, an induced current ix flows due to this, and this ix, that is, ix is superimposed on the alternating current is, and the input current is As shown by the broken line in the lower part of FIG. 3, the output voltage also changes as shown by the broken line in the right part, and the output voltage changes. By deriving this change as an output, the strength of the minute magnetic field can be known.

(ヘ) 発明の効果 この発明によれば、センサとして板状の超伝導薄膜を
用い、しかもこの超伝導薄膜とピックアップコイル間で
超伝導ループを形成するものであるから、センサ部の構
造が従来のスキッド磁力計ののような超伝導リングの交
点にジョセフソン・ジャンクションを設けるといった複
雑な構造でないので、製造が簡単であり、容易に作成可
能である。又、センサ自身で超伝導ループを形成しない
ため、センサ部の面積が小さくなり、多数個のセンサの
配列が可能であるといった利点がある。
(F) Effect of the Invention According to the present invention, a plate-shaped superconducting thin film is used as a sensor, and a superconducting loop is formed between the superconducting thin film and the pickup coil. Since it is not a complicated structure such as the Josephson junction provided at the intersection of the superconducting rings like the skid magnetometer of, the manufacturing is simple and can be easily made. Further, since the sensor itself does not form a superconducting loop, there is an advantage that the area of the sensor portion is reduced and a large number of sensors can be arranged.

【図面の簡単な説明】[Brief description of drawings]

第1図は、この発明の一実施例を示す超伝導磁力計の回
路図、第2図は、同超伝導磁力計の等価回路図、第3図
は、同超伝導磁力計の動作を説明するための入出力電流
及び電圧の波形特性図、第4図は、従来使用されている
ジョセフソン・ジャンクション素子の一例を示す斜視図
である。 1:ピックアップコイル、2:超伝導体、3:基本周波電流発
生回路、4・5:超伝導接続線、6:交流AMP、7:同期整流
回路。
FIG. 1 is a circuit diagram of a superconducting magnetometer showing an embodiment of the present invention, FIG. 2 is an equivalent circuit diagram of the superconducting magnetometer, and FIG. 3 shows an operation of the superconducting magnetometer. FIG. 4 is a perspective view showing an example of a conventionally used Josephson junction element, which is a waveform characteristic diagram of input / output current and voltage. 1: Pickup coil, 2: Superconductor, 3: Fundamental frequency current generation circuit, 4,5: Superconducting connection line, 6: AC AMP, 7: Synchronous rectification circuit.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】励振端子、出力端子及びピックアップコイ
ル接続端子を有し、小さな臨界電流値を持つ超伝導材
と、前記励振端子に接続され、前記臨界電流値以上で励
振する励振源と、前記ピックアップコイル接続端子に両
端が接続され、前記超伝導材とで超伝導ループを構成す
るピックアップコイルを備えたことを特徴とする超伝導
磁力計。
1. A superconducting material having an excitation terminal, an output terminal and a pickup coil connection terminal, having a small critical current value, an excitation source connected to the excitation terminal and exciting at a value of the critical current value or more, A superconducting magnetometer, comprising: a pickup coil having both ends connected to a pickup coil connecting terminal, the pickup coil forming a superconducting loop with the superconducting material.
JP62229087A 1987-09-11 1987-09-11 Superconducting magnetometer Expired - Lifetime JP2526601B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62229087A JP2526601B2 (en) 1987-09-11 1987-09-11 Superconducting magnetometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62229087A JP2526601B2 (en) 1987-09-11 1987-09-11 Superconducting magnetometer

Publications (2)

Publication Number Publication Date
JPS6472086A JPS6472086A (en) 1989-03-16
JP2526601B2 true JP2526601B2 (en) 1996-08-21

Family

ID=16886548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62229087A Expired - Lifetime JP2526601B2 (en) 1987-09-11 1987-09-11 Superconducting magnetometer

Country Status (1)

Country Link
JP (1) JP2526601B2 (en)

Also Published As

Publication number Publication date
JPS6472086A (en) 1989-03-16

Similar Documents

Publication Publication Date Title
US5053834A (en) High symmetry dc SQUID system
US6404192B1 (en) Integrated planar fluxgate sensor
US4692703A (en) Magnetic field sensor having a Hall effect device with overlapping flux concentrators
US6271655B1 (en) Planar coil device, method and system for sensing changing currents in a planar conductor path
JP2526601B2 (en) Superconducting magnetometer
JPH10232259A (en) Current leakage sensor
US5483156A (en) Magnetic field alternation detecting apparatus
JPS599425Y2 (en) Tape end detection circuit
JPH08233927A (en) Thin film flux gate magnetic sensor and manufacture thereof
JP3351122B2 (en) Manufacturing method of magnetic sensor
JP2000091653A (en) Superconducting quantum interference element
JPH045525A (en) Noncontact type displacement detector
JPH0641185Y2 (en) Squid magnetometer pickup coil
JPH0535340Y2 (en)
KR100235993B1 (en) A magnetometer using squid
JP2832547B2 (en) High sensitivity magnetometer
JP2516205B2 (en) Current detector
JPH0743441A (en) Superconducting magnetic sensor
JPH044555B2 (en)
JPH06324130A (en) Squid sensor device
JPH05297093A (en) Magnetic sensor
JPH01142476A (en) Highly sensitive magnetic sensor
JP2943293B2 (en) DC-SQUID magnetometer
JPH06140679A (en) Dc-squid
JPH06289109A (en) Dc-squid fluxmeter