JP2524835Y2 - Radial bearing device - Google Patents

Radial bearing device

Info

Publication number
JP2524835Y2
JP2524835Y2 JP178691U JP178691U JP2524835Y2 JP 2524835 Y2 JP2524835 Y2 JP 2524835Y2 JP 178691 U JP178691 U JP 178691U JP 178691 U JP178691 U JP 178691U JP 2524835 Y2 JP2524835 Y2 JP 2524835Y2
Authority
JP
Japan
Prior art keywords
bearing
present
rings
radial bearing
radial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP178691U
Other languages
Japanese (ja)
Other versions
JPH0499416U (en
Inventor
聰 秦
貴志 大滝
幸夫 的場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP178691U priority Critical patent/JP2524835Y2/en
Publication of JPH0499416U publication Critical patent/JPH0499416U/ja
Application granted granted Critical
Publication of JP2524835Y2 publication Critical patent/JP2524835Y2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Magnetic Bearings And Hydrostatic Bearings (AREA)
  • Sliding-Contact Bearings (AREA)
  • Support Of The Bearing (AREA)
  • Vibration Prevention Devices (AREA)

Description

【考案の詳細な説明】[Detailed description of the invention]

【0001】[0001]

【産業上の利用分野】本考案は、コンプレッサ、タービ
ン、真空ポンプ等の高速回転体を支持する玉軸受、気体
軸受、流体軸受等のラジアル軸受装置の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to improvements in radial bearing devices such as ball bearings, gas bearings, and fluid bearings for supporting high-speed rotating bodies such as compressors, turbines, and vacuum pumps.

【0002】[0002]

【従来の技術】図6に従来の軸受装置の1例を示す。軸
受の例として、静圧型と動圧型を組み合わせた複合型気
体軸受が図6に示されている。回転軸1は気体軸受2で
回転自在に支持される。気体軸受2には、複数の溝3
a,3bが設けてあり、回転軸1が、高速回転すること
で動圧が発生し回転軸1を支持する。また、複数の給気
口4を気体軸受2に配置し、圧縮気体を給気口6から給
気することで静圧が発生し同様に回転軸1を支持する。
2. Description of the Related Art FIG. 6 shows an example of a conventional bearing device. As an example of the bearing, FIG. 6 shows a composite gas bearing combining a static pressure type and a dynamic pressure type. The rotating shaft 1 is rotatably supported by a gas bearing 2. The gas bearing 2 has a plurality of grooves 3
a and 3b are provided, and when the rotating shaft 1 rotates at a high speed, a dynamic pressure is generated to support the rotating shaft 1. In addition, a plurality of air supply ports 4 are arranged in the gas bearing 2, and a compressed gas is supplied from the air supply port 6 to generate a static pressure, thereby similarly supporting the rotary shaft 1.

【0003】気体軸受2の外周部と軸受のハウジング7
の半径方向隙間にはOリング5a,5b,5c,5dを
複数個配置されている。前記Oリングは、通常、ニトリ
ルゴム等の有機物弾性材からなり、回転軸1から気体軸
受2に伝達される振動を減衰させる役割を有する。ま
た、Nは回転軸1の回転方向、Aは静圧の給気方向を示
す。
[0003] Outer peripheral portion of gas bearing 2 and bearing housing 7
A plurality of O-rings 5a, 5b, 5c, 5d are arranged in the radial gap. The O-ring is generally made of an organic elastic material such as nitrile rubber, and has a role of attenuating vibration transmitted from the rotating shaft 1 to the gas bearing 2. N indicates the rotation direction of the rotary shaft 1, and A indicates the static pressure air supply direction.

【0004】[0004]

【考案が解決しようとする課題】前記の従来の静圧型と
動圧型を組み合わせた複合型気体軸受の場合、静圧給気
は、低回転数域でのみ補助的に行い、通常の運転時(高
速回転時)には、静圧給気を止め、動圧効果のみにより
回転軸を支持する。
In the case of the above-mentioned composite type gas bearing combining the conventional static pressure type and the dynamic pressure type, static pressure air supply is performed only in a low rotational speed range, and during normal operation ( During high-speed rotation), the static pressure air supply is stopped, and the rotating shaft is supported only by the dynamic pressure effect.

【0005】この場合、動圧効果による軸受負荷能力
は、回転軸1と気体軸受2と隙間の3乗に比例して増大
するが、中回転数域において、回転軸を組み込み可能な
隙間では、軸受負荷能力は不十分である。そのため、回
転軸1を支持できる軸受負荷能力が生じるまで回転軸1
が半径方向にドリフトした状態で周方向に回転移動し、
一定固有振動数の不安定振動、即ち、ホワールが発生し
てしまう。
In this case, the bearing load capacity due to the dynamic pressure effect increases in proportion to the cube of the gap between the rotating shaft 1 and the gas bearing 2. The bearing load capacity is insufficient. Therefore, until the bearing load capacity capable of supporting the rotating shaft 1 is generated, the rotating shaft 1
Rotates in the circumferential direction while drifting in the radial direction,
Unstable vibration with a constant natural frequency, that is, whirl occurs.

【0006】また、高速回転数域においては回転軸1と
気体軸受2との隙間での気体の周方向速度が大きく、そ
の速度に対応した気体の粘性による周方向力が回転軸1
に作用し、回転軸1を振れ廻し、同様なホワールが発生
してしまう。
In the high speed range, the circumferential speed of the gas in the gap between the rotating shaft 1 and the gas bearing 2 is large, and the circumferential force due to the viscosity of the gas corresponding to the speed is large.
, Causing the rotating shaft 1 to oscillate, and a similar whirl occurs.

【0007】この不安定振動、即ち、ホワールは、軸受
の剛性を小さくし、減衰効果を大きくすることで制振さ
せることが可能である。
This unstable vibration, that is, whirl, can be suppressed by reducing the rigidity of the bearing and increasing the damping effect.

【0008】しかし、前記の従来の複合型気体軸受のよ
うに有機物弾性材からなるOリングのみを用いる場合、
剛性と減衰効果は比例関係にあり、同時に、剛性を小さ
くし、減衰効果を大きくすることはできない。また、剛
性を小さくしすぎると、軸受組み込み時に、同軸度、直
角度等の必要精度を保つことができなくなる。
However, when only the O-ring made of an organic elastic material is used as in the above-mentioned conventional composite gas bearing,
The stiffness and the damping effect are in a proportional relationship, and at the same time, the stiffness cannot be reduced and the damping effect cannot be increased. On the other hand, if the rigidity is too small, it is not possible to maintain the required accuracy such as coaxiality and squareness when the bearing is assembled.

【0009】本考案は、以上に鑑みて、剛性を低下させ
ることなく減衰効果を大きくしたラジアル軸受装置を提
供しようとするものである。
The present invention has been made in view of the above, and an object of the present invention is to provide a radial bearing device in which the damping effect is increased without reducing rigidity.

【0010】[0010]

【課題を解決するための手段】1 本考案のラジアル軸
受装置は、回転体を支持するラジアル軸受において、弾
性材からなる円筒状リングを軸方向に配置し、同リング
の一端を軸受の軸方向端面に取付け、他端を軸受ハウジ
ングに設けられた押えディスクに取付けた。 2 また本考案のラジアル軸受装置は、前記1の考案に
おいて、前記リングを周方向に複数に分割した。 3 また本考案のラジアル軸受装置は、前記1の考案に
おいて、前記リングを複数個ほぼ同心状に配置し、前記
リング間の隙間に粘性の高い流体を充填した。
A radial bearing device according to the present invention is a radial bearing for supporting a rotating body, in which a cylindrical ring made of an elastic material is arranged in an axial direction, and one end of the ring is connected to the axial direction of the bearing. It was attached to the end face, and the other end was attached to a holding disk provided in the bearing housing. 2 In the radial bearing device according to the present invention, the ring is divided into a plurality in the circumferential direction in the first invention. 3. In the radial bearing device of the present invention, in the first invention, a plurality of the rings are arranged substantially concentrically, and a gap between the rings is filled with a highly viscous fluid.

【0011】[0011]

【作用】前記1の本考案では、軸受の軸方向端面と軸受
ハウジングに設けられた押えディスクに両端が取付けら
れた弾性材からなる円筒状リングは、そのせん断変形を
利用しているため、圧縮変形に比べ材料力学的にも剛性
の増加は小さく、また、前記円筒状リングの軸方向長さ
を長くすることで弾性体内部減衰効果が大きくなる。さ
らに、同リングの材質として剛性が小さく、振動吸収性
の高いものを選定することにより、より制振効果を大き
くでき。これによって、前記の不安定振動、即ち、ホワ
ールの発生を防止することが可能となる。
According to the first aspect of the present invention, since the cylindrical ring made of an elastic material having both ends attached to the axial end surface of the bearing and the holding disk provided in the bearing housing utilizes its shear deformation, it is compressed. The increase in rigidity is small in material mechanics as compared with the deformation, and by increasing the axial length of the cylindrical ring, the internal damping effect of the elastic body is increased. Further, by selecting a material of the ring having low rigidity and high vibration absorption, the vibration damping effect can be further enhanced. This makes it possible to prevent the above-mentioned unstable vibration, that is, the generation of whirl.

【0012】前記2の本考案では、円筒状リングを周方
向に複数に分割することによって、ラジアル剛性が低下
し、かつ内部減衰効果を維持することができる。
In the second aspect of the present invention, by dividing the cylindrical ring into a plurality in the circumferential direction, the radial rigidity is reduced and the internal damping effect can be maintained.

【0013】前記3の本考案では、ほぼ同心状に配置し
た円筒状リング間の隙間に粘性の高い流体を充填したこ
とによって、同流体のスクイズ効果によって減衰作用が
増大して、前記の不安定振動の制振が効果的に行なわれ
る。
According to the third aspect of the present invention, the gap between the cylindrical rings arranged substantially concentrically is filled with a highly viscous fluid, so that the damping action is increased by the squeeze effect of the fluid, and the unstable state is increased. Vibration is effectively suppressed.

【0014】[0014]

【実施例】本考案の第1の実施例を、図1によって説明
する。本実施例は、図6に示す従来の装置において、以
下説明する円筒状リングを設けたものであり、同一の部
分は、図1において図6におけると同一の符号が付せら
れており、その説明を省略する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described with reference to FIG. In the present embodiment, a cylindrical ring described below is provided in the conventional device shown in FIG. 6, and the same portions are denoted by the same reference numerals in FIG. 1 as in FIG. Description is omitted.

【0015】円筒状リング18,19は、振動吸収性の
高いゴム(弾性材)でできており、その各々の両端は、
ラジアル気体軸受2の両端面に設けた溝及び軸受のハウ
ジング7に取付けられた押さえディスク110,111
に設けた溝に嵌め込まれ、適当な押さえ込み量で圧縮さ
れている。また、円筒状リングの18,19の肉厚を薄
くし、軸方向長さを適当な長さとなるよう設定されてい
る。
The cylindrical rings 18 and 19 are made of rubber (elastic material) having high vibration absorption, and both ends thereof are
Grooves provided on both end surfaces of the radial gas bearing 2 and holding disks 110 and 111 attached to the housing 7 of the bearing.
And compressed by an appropriate amount of pressing. Further, the thickness of the cylindrical rings 18 and 19 is reduced, and the axial length is set to an appropriate length.

【0016】本実施例では、ラジアル気体軸受2がラジ
アル方向に振動すると円筒状リング18,19はせん断
変形し、振動エネルギを吸収し減衰効果を発揮すること
ができる。この際、同円筒状リング18,19は、振動
吸収性の高いゴムの肉厚を薄くし軸方向長さを適当な長
さとしてせん断変形を利用しているために、剛性が小さ
く内部減衰効果を大きくすることができ、回転軸1の不
安定振動、即ちホワールを効果的に制振することができ
る。
In the present embodiment, when the radial gas bearing 2 vibrates in the radial direction, the cylindrical rings 18 and 19 undergo shear deformation, absorb vibration energy and exhibit a damping effect. At this time, the cylindrical rings 18 and 19 have a small rigidity because the thickness of the rubber having high vibration absorption is made thin and the axial length is made an appropriate length to utilize shear deformation. Can be increased, and unstable vibration of the rotating shaft 1, that is, whirl can be effectively damped.

【0017】本考案の第2の実施例を、図2によって説
明する。本実施例は、前記第1の実施例に高粘性流体を
併用したものに相当する。
A second embodiment of the present invention will be described with reference to FIG. This embodiment corresponds to a combination of the first embodiment and a high-viscosity fluid.

【0018】円筒状リング18,19の内側に、同心の
内側円筒状リング212,213を加え、複数個の円筒
状リングが設けられている。前記内側円筒状リング21
2,213は、軸受ハウジング7に取付けられた溝に嵌
め込まれ、適当な押さえ込み量で圧縮されている。
Inside the cylindrical rings 18 and 19, concentric inner cylindrical rings 212 and 213 are added, and a plurality of cylindrical rings are provided. The inner cylindrical ring 21
Reference numerals 2 and 213 are fitted into grooves mounted on the bearing housing 7 and are compressed with an appropriate pressing amount.

【0019】さらに、前記円筒状リング間及びOリング
5a,5d間に、高粘性流体214,215を充填し、
流体のスクイズ効果による減衰効果も付加し、より制振
効果を大きくしている。
Further, high viscosity fluids 214 and 215 are filled between the cylindrical rings and between the O-rings 5a and 5d.
The damping effect by the squeeze effect of the fluid is also added, and the damping effect is further increased.

【0020】本実施例では、ラジアル気体軸受2がラジ
アル方向に振動すると円筒状リング18,19及び内側
円筒状リング212,213がせん断変形し、振動エネ
ルギを吸収するとともに、高粘性流体214,215が
各円筒状リングのせん断変形とともに移動することで、
振動エネルギが高粘性流体に吸収され、また、円筒状リ
ング表面の高粘性流体の流れ変動によるスクイズ効果に
よる減衰効果も付加し、より大きな制振効果が生じる。
In this embodiment, when the radial gas bearing 2 vibrates in the radial direction, the cylindrical rings 18 and 19 and the inner cylindrical rings 212 and 213 undergo shear deformation to absorb vibration energy, and at the same time to absorb high-viscosity fluids 214 and 215. Moves along with the shear deformation of each cylindrical ring,
Vibration energy is absorbed by the high-viscosity fluid, and a damping effect by a squeeze effect due to the flow fluctuation of the high-viscosity fluid on the surface of the cylindrical ring is added.

【0021】本考案の第3の実施例を、図3によって説
明する。本実施例は、前記第1の実施例の円筒状リング
18,19を周方向に複数個分割し、より剛性の増加を
小さくしたものである。即ち、本実施例では、前記第1
の実施例の円筒状リング18,19に相当する気体軸受
2と押さえディスク110,111に取付けられた円筒
状リング38,39は、その同方向に複数に分割されて
いる。
A third embodiment of the present invention will be described with reference to FIG. In this embodiment, the cylindrical rings 18 and 19 of the first embodiment are divided into a plurality in the circumferential direction to further reduce the increase in rigidity. That is, in the present embodiment, the first
The gas bearing 2 corresponding to the cylindrical rings 18 and 19 of this embodiment and the cylindrical rings 38 and 39 attached to the holding disks 110 and 111 are divided into a plurality in the same direction.

【0022】回転軸及び軸受全体を考慮した回転安定性
を高めるには、軸受剛性を極力小さくし、減衰係数を大
きくする必要があり、円筒状リングで形成されるせん断
力を利用したダンパの剛性は極力小さくした方がよい。
そこで、本実施例では、円筒状リングの剛性のみを下
げ、減衰係数の低下はないようにするために円筒状リン
グ38,39を周方向に複数個分割している。前記第1
の実施例の円筒状リング18,19は一体構造体である
ため、周方向で力が発生し、ラジアル力が大きくなる
が、本実施例のように、円筒状リング38,39を分割
すれば、その周方向力はなくなり、ラジアル剛性を小さ
くすることができると共に、減衰係数を維持することが
できる。
In order to increase the rotational stability in consideration of the rotating shaft and the entire bearing, it is necessary to minimize the bearing rigidity and increase the damping coefficient. The rigidity of the damper utilizing the shear force formed by the cylindrical ring is required. Should be as small as possible.
Therefore, in the present embodiment, a plurality of cylindrical rings 38 and 39 are divided in the circumferential direction in order to reduce only the rigidity of the cylindrical ring and prevent the reduction of the damping coefficient. The first
Since the cylindrical rings 18 and 19 of this embodiment are an integral structure, a force is generated in the circumferential direction and the radial force increases. However, if the cylindrical rings 38 and 39 are divided as in this embodiment, The circumferential force is eliminated, so that the radial rigidity can be reduced and the damping coefficient can be maintained.

【0023】本考案の第4の実施例を、図4によって説
明する。本実施例では、前記第3の実施例の分割された
円筒状リング38,39に相当する気体軸受2と押さえ
ディスク110,111に取付けられた円筒状リング4
8,49の肉厚を厚くし、その減衰係数を大きくしたも
のである。
A fourth embodiment of the present invention will be described with reference to FIG. In this embodiment, the gas bearing 2 corresponding to the divided cylindrical rings 38 and 39 of the third embodiment and the cylindrical ring 4 attached to the holding discs 110 and 111 are used.
8, 49, and the damping coefficient thereof is increased.

【0024】図5に、本考案を実際に試験機に組み込
み、その制振効果を確認した例を示す。横軸に回転数、
縦軸にホワール振幅をとり、動圧効果のみで回転軸を支
持したまま、昇速した場合のホワール制振効果を円筒状
リングよりなるダンパの条件をパラメータに整理したも
のである。
FIG. 5 shows an example in which the present invention is actually incorporated into a testing machine and its vibration damping effect is confirmed. Rotation speed on the horizontal axis,
The whirl amplitude is plotted on the vertical axis, and the whirl vibration damping effect when the speed is increased while the rotating shaft is supported only by the dynamic pressure effect is arranged by using the condition of the damper composed of the cylindrical ring as a parameter.

【0025】シェアダンパの制振効果(振動減衰効果)
は、 制振効果=比例係数×(弾性材ゴム素材減衰能E)×
(円筒状リングの肉厚T)×(軸方向長さL)×(圧縮
変形量δ)×(分割個数N)で表わされる。
The damping effect of the shear damper (vibration damping effect)
Is: Damping effect = proportional coefficient x (elastic rubber material damping capacity E) x
(Thickness T of cylindrical ring) × (Length in axial direction L) × (Compression deformation amount δ) × (Number of divisions N).

【0026】本試験に用いた各例では、弾性材ゴム素材
減衰能を一定にし、円筒状リングの肉厚Tを3mm〜5
mm、軸方向長さLを5mm〜10mm、圧縮変形量δ
を0.5mm〜2.0mm、分割個数Nを0〜10の範
囲で変えている。これを条件1〜条件3のグラフに示
す。また、図5に示す最適条件では、円筒状リングの肉
厚Tを5mm、軸方向長さLを10mm、圧縮変形量δ
を1.0mm、分割個数Nを8とした。この場合には、
図5に示すように、ホワール振幅は0μmP-P となり、
完全にホワールを防止することができた。
In each of the examples used in this test, the damping capacity of the elastic rubber material was fixed, and the thickness T of the cylindrical ring was 3 mm to 5 mm.
mm, the axial length L is 5 mm to 10 mm, and the amount of compressive deformation δ
Is changed in the range of 0.5 mm to 2.0 mm, and the number of divisions N is changed in the range of 0 to 10. This is shown in the graphs of Condition 1 to Condition 3. Under the optimum conditions shown in FIG. 5, the thickness T of the cylindrical ring is 5 mm, the axial length L is 10 mm, and the amount of compressive deformation δ
Was set to 1.0 mm, and the number of divisions N was set to 8. In this case,
As shown in FIG. 5, the Whirl amplitude is 0 μm PP ,
Whirl was completely prevented.

【0027】[0027]

【考案の効果】以上説明したように、請求項1の本考案
は、軸受の軸方向端面と軸受ハウジングに設けられた押
さえディスクに両端が取付けられ軸方向に配置された円
筒状リングを用いたことによって、剛性を小さくし、振
動の減衰効果を増大させることができ、回転軸のホワー
ルの発生を防止することができる。
As described above, the present invention of claim 1 uses a cylindrical ring having both ends attached to an axial end face of a bearing and a holding disk provided in a bearing housing and arranged axially. Thus, the rigidity can be reduced, the vibration damping effect can be increased, and the occurrence of whirling of the rotating shaft can be prevented.

【0028】請求項2の本考案は、請求項1の本考案に
おいて、円筒状リングを周方向に複数に分割することに
よって、減衰効果を維持し、かつラジアル剛性を低下さ
せ、前記ホワールの発生の防止に更に効果がある。
According to a second aspect of the present invention, in accordance with the first aspect of the present invention, by dividing the cylindrical ring into a plurality of pieces in the circumferential direction, the damping effect is maintained, the radial rigidity is reduced, and the generation of the whirl is reduced. It is even more effective in preventing

【0029】請求項3の本考案は、請求項1の本考案に
おいて、ほぼ同心状に配置された複数の円筒状リングの
隙間に粘性の高い流体を充填することによって、流体の
スクイズ効果によって減衰効果が増大し、ホワールの制
振を更に効果的に行なうことができる。
According to a third aspect of the present invention, in the first aspect of the present invention, a gap between a plurality of cylindrical rings arranged substantially concentrically is filled with a highly viscous fluid, whereby the fluid is damped by the squeezing effect of the fluid. The effect is increased, and the whirl can be more effectively damped.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本考案の第1の実施例を示し、 (a) はその断
面図, (b) は図1(a)のI−I矢視断面図である。
FIGS. 1A and 1B show a first embodiment of the present invention, wherein FIG. 1A is a cross-sectional view thereof, and FIG. 1B is a cross-sectional view taken along line II of FIG. 1A.

【図2】本考案の第2の実施例を示し、(a)はその断
面図,(b)は図2(a)のII−II矢視断面図である。
2A and 2B show a second embodiment of the present invention, wherein FIG. 2A is a cross-sectional view thereof, and FIG. 2B is a cross-sectional view taken along the line II-II of FIG. 2A.

【図3】本考案の第3の実施例を示し、(a)はその断
面図,(b)は図3(a)のIII −III 矢視断面図であ
る。
3A and 3B show a third embodiment of the present invention, wherein FIG. 3A is a sectional view thereof, and FIG. 3B is a sectional view taken along the line III-III of FIG. 3A.

【図4】本考案の第4の実施例を示し、(a)はその断
面図,(b)は図4(a)のIV−IV矢視断面図である。
4A and 4B show a fourth embodiment of the present invention, wherein FIG. 4A is a sectional view thereof, and FIG. 4B is a sectional view taken along the line IV-IV of FIG. 4A.

【図5】本考案の軸受装置の試験結果を示すグラフであ
る。
FIG. 5 is a graph showing test results of the bearing device of the present invention.

【図6】従来の軸受装置の1例の断面図である。FIG. 6 is a sectional view of an example of a conventional bearing device.

【符号の説明】[Explanation of symbols]

1 回転軸 2 気体軸受 7 軸受のハウジング 18,19,38,39,48,49,212,213
円筒状リング 110,111 押さえディスク 214,215 高粘性流体
DESCRIPTION OF SYMBOLS 1 Rotating shaft 2 Gas bearing 7 Housing of bearing 18, 19, 38, 39, 48, 49, 212, 213
Cylindrical ring 110, 111 Holding disk 214, 215 High viscous fluid

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 F16F 15/02 8917−3J F16F 15/02 F 15/08 8917−3J 15/08 G ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code Agency reference number FI Technical display location F16F 15/02 8917-3J F16F 15/02 F 15/08 8917-3J 15/08 G

Claims (3)

(57)【実用新案登録請求の範囲】(57) [Scope of request for utility model registration] 【請求項1】 回転体を支持するラジアル軸受におい
て、弾性材からなる円筒状リングを軸方向に配置し、同
リングの一端を軸受の軸方向端面に取付け、他端を軸受
ハウジングに設けられた押さえディスクに取付けたこと
を特徴とするラジアル軸受装置。
In a radial bearing for supporting a rotating body, a cylindrical ring made of an elastic material is arranged in an axial direction, one end of the ring is attached to an axial end face of the bearing, and the other end is provided in a bearing housing. A radial bearing device mounted on a holding disc.
【請求項2】 前記リングを周方向に複数に分割したこ
とを特徴とする請求項1に記載のラジアル軸受装置。
2. The radial bearing device according to claim 1, wherein the ring is divided into a plurality in the circumferential direction.
【請求項3】 前記リングを複数個ほぼ同心状に配置
し、前記リング間の隙間に粘性の高い流体を充填したこ
とを特徴とする請求項1に記載のラジアル軸受装置。
3. The radial bearing device according to claim 1, wherein a plurality of the rings are arranged substantially concentrically, and a gap between the rings is filled with a highly viscous fluid.
JP178691U 1991-01-24 1991-01-24 Radial bearing device Expired - Fee Related JP2524835Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP178691U JP2524835Y2 (en) 1991-01-24 1991-01-24 Radial bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP178691U JP2524835Y2 (en) 1991-01-24 1991-01-24 Radial bearing device

Publications (2)

Publication Number Publication Date
JPH0499416U JPH0499416U (en) 1992-08-27
JP2524835Y2 true JP2524835Y2 (en) 1997-02-05

Family

ID=31729392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP178691U Expired - Fee Related JP2524835Y2 (en) 1991-01-24 1991-01-24 Radial bearing device

Country Status (1)

Country Link
JP (1) JP2524835Y2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2543159Y2 (en) * 1991-04-26 1997-08-06 光洋精工株式会社 Bearing device
JP6804231B2 (en) * 2016-08-04 2020-12-23 Ntn株式会社 Air turbine drive spindle

Also Published As

Publication number Publication date
JPH0499416U (en) 1992-08-27

Similar Documents

Publication Publication Date Title
US3467451A (en) Resiliently mounted bearing arrangements
US6558041B2 (en) Damper assembly for a rotating shaft and methods for dampening shaft vibrations
JPH0676806B2 (en) Support assembly for rotating shaft
JPS586089B2 (en) bearing assembly
KR100413060B1 (en) High load capacity smart foil journal bearing with semi-active dampers
JP3940444B2 (en) Gas bearing for high-speed rotating tool or spinning rotor
KR880000811B1 (en) Integral bearing system
US4934781A (en) Light deflecting system with rotating mirror
CN112513480B (en) Damping bearing and damping
JP2524835Y2 (en) Radial bearing device
CN100348877C (en) Fluid dynamic bearing device and motor including the device
JP3310826B2 (en) Dynamic pressure gas journal bearing
JP2975628B2 (en) Gas bearing structure
JPH07222393A (en) Axial vibration isolator using plate spring or laminated spring
JPH02223361A (en) Polygon scanner motor and its manufacture
JPH03163216A (en) Fluid bearing device
JPH09269005A (en) Damping bearing having damping function
JPH102329A (en) Bearing device
JPS6014989Y2 (en) gas bearing structure
JPH0716097Y2 (en) Bearing support structure for rotating machinery
JPH03272317A (en) Gas bearing structure
KR100467363B1 (en) Sliding Bearing using Leaf Springs
SU1733707A1 (en) Pump
JP2006266437A (en) Journal bearing
JPH09117094A (en) Inside diameter groove porous bearing mechanism and motor employing it

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960827

LAPS Cancellation because of no payment of annual fees