JP2523517B2 - Superconducting light guide detector - Google Patents

Superconducting light guide detector

Info

Publication number
JP2523517B2
JP2523517B2 JP61173641A JP17364186A JP2523517B2 JP 2523517 B2 JP2523517 B2 JP 2523517B2 JP 61173641 A JP61173641 A JP 61173641A JP 17364186 A JP17364186 A JP 17364186A JP 2523517 B2 JP2523517 B2 JP 2523517B2
Authority
JP
Japan
Prior art keywords
superconducting
light guide
light
semiconductor layer
detection element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61173641A
Other languages
Japanese (ja)
Other versions
JPS6331180A (en
Inventor
信也 小南
壽一 西野
潮 川辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61173641A priority Critical patent/JP2523517B2/en
Publication of JPS6331180A publication Critical patent/JPS6331180A/en
Priority to US07/246,926 priority patent/US4843446A/en
Application granted granted Critical
Publication of JP2523517B2 publication Critical patent/JP2523517B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Light Receiving Elements (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は超電導光検出素子に係り、特に検出感度が高
く、集積化に適した超電導光検出素子に関する。
TECHNICAL FIELD The present invention relates to a superconducting light guide detection element, and more particularly to a superconducting light guide detection element having high detection sensitivity and suitable for integration.

〔従来の技術〕[Conventional technology]

超電導体を用いた弱結合素子に光を入射させて光を検
出する素子については、フィジカル・レビー,ビー,第
18巻,(1978年)第6035頁から第6040ページ(Phys.Re
v.B,Vol.18,(1978)pp.6035〜6040)において論じられ
ている。
For an element that detects light by making light incident on a weakly coupled element using a superconductor, see Physical Levy, B.
Volume 18, (1978) pp. 6035 to 6040 (Phys.Re
vB, Vol. 18, (1978) pp. 6035-6040).

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

上記、従来技術では、バリア材料にCdS等を用い、超
電導電極の材料として鉛やインジウムを用いたものが知
られていたが、入射光は素子とその周辺を含む大面積に
照射され、従ってCdS中のキャリアの光による励磁も超
電導電極に直下に限定されていたわけではなかった。従
ってこの場合には超電導電極の光の透過性に関しては特
に知られておらず、該電極の膜厚についても特に限定さ
れていなかった。
In the above-mentioned conventional technology, CdS or the like is used as the barrier material, and one using lead or indium as the material of the superconducting conductive electrode is known, but the incident light is irradiated to a large area including the element and its periphery, and thus CdS is used. The excitation of the inside carrier by light was not limited to just under the superconducting electrode. Therefore, in this case, the light transmissivity of the superconducting electrode is not particularly known, and the film thickness of the electrode is not particularly limited.

つまり上記従来技術は、超電導薄膜の光透過性に関し
て全く関心が払われておらず、従って光検出素子として
光検出感度が充分とは言えなかった。従って光検出器の
面積が大きくなり、かつ光の吸収による不要な発熱のた
めに素子の高集積化には不向きであった。
In other words, the above-mentioned prior art has not paid any attention to the light transmissivity of the superconducting thin film, and therefore it cannot be said that the photodetection sensitivity is sufficient as the photodetection element. Therefore, the area of the photodetector becomes large, and unnecessary heat generation due to absorption of light makes it unsuitable for high integration of the device.

第1の発明の目的は光透過性と、液体ヘリウム温度に
おける超電導性を共に有する超電導薄膜を使用し、これ
と半導体とを組合せて光検出デバイスとして高速のスイ
ッチング動作を実現する超電導光検出素子の作製を可能
することにある。
An object of the first invention is to use a superconducting thin film having both light transmissivity and superconductivity at a liquid helium temperature, and combining this with a semiconductor to realize a superconducting light guide detecting element which realizes a high-speed switching operation as a photodetecting device. It is possible to make.

また、上記従来技術は半導体中に入射した光をできる
限り効率よく利用するという点について配慮がされてお
らず、非常に微弱な光を用いた場合に半導体中において
電子と正孔が充分に励起されず、従って超電導近接効果
による超電導電流が流れず、充分な感度が得られなかっ
た。
In addition, the above-mentioned conventional technology does not take into consideration that the light incident on the semiconductor is used as efficiently as possible, and when extremely weak light is used, electrons and holes are sufficiently excited in the semiconductor. Therefore, the superconducting current due to the superconducting proximity effect did not flow, and sufficient sensitivity could not be obtained.

第2の発明の目的は、光を吸収して励起される半導体
層の下に設けた層により、上記半導体層を透過した光を
反射させて吸収効率を上げ、ひいては微弱な光によって
も素子のスイッチングを実現することができる超電導光
検出素子の構造を提供することにある。
A second object of the present invention is to improve absorption efficiency by reflecting light transmitted through the semiconductor layer by a layer provided below the semiconductor layer that is excited by absorbing light, and, by extension, weaken the light of the device. It is to provide a structure of a superconducting light guide detection element capable of realizing switching.

〔問題点を解決するための手段〕[Means for solving problems]

上記の第1の発明の目的は、超電導薄膜の膜厚を光の
透過率と超電導転移温度の双方の膜厚依存性を考慮して
決定することにより、達成される。光により励起された
半導体内のキャリアによる超電導特性の変化が効率良く
起こるためには、光は超電導体を透過して半導体に入射
することが望ましい。該超電導体の膜厚が薄くなると光
の透過率は大きくなるが、超電導転移温度が下がる。一
方、液体ヘリウム中で素子が動作するように超電導性を
保つためには、転移温度が4.2K以上となるような膜厚を
選ぶ必要がある。従って超電導光検出素子に用いる超電
導薄膜の厚さは、少なくとも光を入射させる部分におい
て、上記2つの要件を満足する様に選ぶことにより、検
出感度が高く、かつ高集積化に適した、超電導光検出素
子を実現することができる。
The above-mentioned first object is achieved by determining the film thickness of the superconducting thin film in consideration of the film thickness dependence of both the light transmittance and the superconducting transition temperature. In order for the carriers in the semiconductor excited by light to efficiently change the superconducting characteristics, it is desirable that light passes through the superconductor and enters the semiconductor. As the film thickness of the superconductor decreases, the light transmittance increases, but the superconducting transition temperature decreases. On the other hand, in order to maintain superconductivity so that the device operates in liquid helium, it is necessary to select a film thickness such that the transition temperature is 4.2K or higher. Therefore, by selecting the thickness of the superconducting thin film used for the superconducting light guide detecting element so as to satisfy the above two requirements at least in the part where light is incident, the superconducting light guide having high detection sensitivity and suitable for high integration can be obtained. A detection element can be realized.

上記の第2の発明の目的は、超電導光検出素子におい
て、光を吸収して励起される半導体層の下に、上記半導
体が大きい吸収率をもつような波長の光を効率よく反射
する様な層を設け、かつこの反射層の存在が素子の動作
の障害にならないようにすることによって達成される。
The second object of the present invention is, in a superconducting light guide detection element, to efficiently reflect light having a wavelength such that the semiconductor has a large absorptivity under a semiconductor layer that is excited by absorbing light. This is accomplished by providing a layer and the presence of this reflective layer does not interfere with the operation of the device.

〔作 用〕[Work]

第1の発明では光の透過率10%以上、超電導転移温度
4.2K以上となる様な超電導電極の厚さ、すなわち第3図
及び第4図に示したるごとく、Nb単体では〜28nm、NbN
では5〜35nmの薄膜を製造することにより、光透過性
と、液体ヘリウム中での超電導性を共にする超電導電極
を得ることが可能になる。
In the first invention, light transmittance is 10% or more, superconducting transition temperature
The thickness of the superconducting electrode is 4.2K or more, that is, as shown in FIGS. 3 and 4, Nb alone is ~ 28 nm, NbN
Then, by producing a thin film having a thickness of 5 to 35 nm, it becomes possible to obtain a superconducting conductive electrode having both light transmissivity and superconductivity in liquid helium.

上記の薄膜より構成された2つの電極を第1図に示し
たるごとく平坦な半導体上に対向させて配置し、上記の
薄膜を透過し、しかも半導体の原子を励起して電子・正
孔対を発生させるのに充分な波長と強度を有する光を入
射させれば、半導体中のキャリアー濃度が増加する。前
もって制御電極に電圧を印加しておくことによって光入
射前のキャリアー濃度を適当に調整しておけば、超電導
近接効果によって超電導電流が流れる。従って2つの電
極の間の超電導電流を光によって制御し、スイッチング
を実現することができる。さらに、超電導電極の膜厚、
半導体の種類やその不純物濃度を変化させることによ
り、上記の光検出素子の感度を、光の波長や強度に関し
て種々に変えることが可能である。あるいはまた、制御
電極に印加する電圧を変化させることによっても、感度
を変えることが可能である。
As shown in FIG. 1, two electrodes composed of the above-mentioned thin film are arranged so as to face each other on a flat semiconductor, penetrate the above-mentioned thin film, and further excite atoms of the semiconductor to form electron-hole pairs. When the light having a wavelength and intensity sufficient to generate the light is made incident, the carrier concentration in the semiconductor is increased. If a carrier concentration before light incidence is appropriately adjusted by applying a voltage to the control electrode in advance, the superconducting current flows due to the superconducting proximity effect. Therefore, the superconducting current between the two electrodes can be controlled by light to realize switching. Furthermore, the film thickness of the superconducting electrode,
By changing the type of semiconductor and the impurity concentration thereof, it is possible to change the sensitivity of the photodetection element in various ways with respect to the wavelength and intensity of light. Alternatively, the sensitivity can be changed by changing the voltage applied to the control electrode.

上記の光検出素子を用いることにより、光電子回路に
超電導素子を応用してその高速化を図ることが可能にな
った。
By using the above photodetection element, it has become possible to apply a superconducting element to an optoelectronic circuit and increase the speed thereof.

第2の発明では、二種類の媒質の界面において、第1
の媒質から第2の媒質に入射する光の臨界角をi0とし、
第1の媒質と第2の媒質の屈折率をそれぞれn1,n2、第
2の媒質の吸光係数をkとすれば、垂直入射の場合の反
射率Rは、 と表わされる。上式においてRが第1の媒質の電子や正
孔が励起されるような波長の光についてR≧0.5となる
ようなn1,n2,kを有し、かつ第1の媒質の透過率が50%
以上となるような第1の媒質と第2の媒質の組合せと第
1の媒質の膜厚を選び、第6図に示したるごとく、平坦
な半導体層605上に超電導体よりなる2つの電極602を対
向させて配置し、かかる半導体層605の裏側に第1の媒
質たる絶縁膜603を介して第2の媒質たる光反射膜604の
層を設け、上記の様な波長を有する光を入射させれば、
入射した光の一部が第1の媒質と第2の媒質の界面で反
射されて半導体中のキャリアー濃度を非常に有効に増加
させることができ、超電導光検出素子の感度改善を図る
ことができる。
In the second invention, at the interface between the two kinds of media, the first
Let i 0 be the critical angle of the light that enters the second medium from the medium
If the refractive indices of the first medium and the second medium are n 1 and n 2 , respectively, and the extinction coefficient of the second medium is k, the reflectance R in the case of vertical incidence is Is represented. In the above equation, R has n 1 , n 2 and k such that R ≧ 0.5 for light having a wavelength at which electrons and holes in the first medium are excited, and the transmittance of the first medium Is 50%
By selecting the combination of the first medium and the second medium and the film thickness of the first medium as described above, as shown in FIG. 6, two electrodes 602 made of a superconductor are formed on a flat semiconductor layer 605. Are arranged so as to face each other, a layer of a light reflection film 604 as a second medium is provided on the back side of the semiconductor layer 605 via an insulating film 603 as a first medium, and light having a wavelength as described above is made incident. If
A part of the incident light is reflected at the interface between the first medium and the second medium, the carrier concentration in the semiconductor can be increased very effectively, and the sensitivity of the superconducting light guide detection element can be improved. .

この場合、光反射層の存在が2つの超電導電極間の超
電導的な結合を防げないことが必要である。例えば半導
体層の反射膜側の不純物濃度が極低温において光反射膜
側の部分の半導体が縮退するほど高い場合には、該半導
体層と該光反射膜の間に絶縁膜を設けることが望まし
い。これは光反射膜中の電子や正孔が拡散によって半導
体中に入り、該半導体層中に近接効果によって生じてい
る超電導電子対の寿命を短くするように作用するため、
素子が安定に動作しなくなるからである。
In this case, it is necessary that the presence of the light reflecting layer cannot prevent the superconducting coupling between the two superconducting electrodes. For example, when the impurity concentration on the reflection film side of the semiconductor layer is so high that the semiconductor on the light reflection film side degenerates at an extremely low temperature, it is desirable to provide an insulating film between the semiconductor layer and the light reflection film. This is because the electrons and holes in the light-reflecting film enter the semiconductor by diffusion, and act to shorten the life of the superconducting pair produced in the semiconductor layer by the proximity effect.
This is because the element will not operate stably.

従って絶縁膜を用いない場合には該半導体の該反射膜
層側における不純物濃度を小さくして、ショットキ障壁
を通してのキャリアのトンネルを充分に小さくしておく
必要がある。以上は該光反射膜に金属を用いた場合であ
るが、これに第2の半導体を用いてp−n接合が半導体
と第2の半導体である光反射膜との間に形成される場合
においても同様のことが言える。
Therefore, when an insulating film is not used, it is necessary to reduce the impurity concentration on the reflective film layer side of the semiconductor to sufficiently reduce the tunnel of carriers through the Schottky barrier. The above is the case where a metal is used for the light reflecting film, but in the case where a pn junction is formed between the semiconductor and the light reflecting film which is the second semiconductor by using a second semiconductor for this. Is the same.

〔実施例〕〔Example〕

以下、第1および第2の発明の実施例を詳細に説明す
る。
Examples of the first and second inventions will be described in detail below.

[実施例1] 第1図は第1の発明の実施例における、超電導光検出
素子の一部を示す断面図である。(100)方位の2イン
チSiによる半導体基板1にホウ素を4×1025m-3の濃度
で拡散し、裏面から垂直方向のみの異方性エッチングを
行なってSiの厚さを70nmとした。次に熱酸化によって厚
さ40nmのSiO2ゲート絶縁膜3を形成した。その上に厚さ
0.7μmのAl薄膜を抵抗加熱蒸着法により形成し、Arス
パッタエッチング法により加工して制御電極4とした。
表面には、厚さ15nmのNb薄膜をDCマグネトロンスパッタ
法により形成した。その場合の基板温度は25℃に保っ
た。これを電子線レジストを用した電子線描画と反応性
イオンエッチングによって加工し、間隔が0.2μmの光
透過性超電導電極2とした。以上によって本発明の超電
導光検出素子を作製することができた。該素子を液体ヘ
リウム温度に冷却し、第5図に示したるごとく、GaAlxA
s1-x発光ダイオードを光源501として回折格子502によっ
て分光した波長650nmの光をレンズ503及び光ファイバー
504を通して該素子505に入射させることにより、超電導
光検出素子として動作した。
[Embodiment 1] FIG. 1 is a sectional view showing a part of a superconducting light guide detection element in an embodiment of the first invention. Boron was diffused at a concentration of 4 × 10 25 m −3 into a semiconductor substrate 1 made of 2-inch Si having a (100) orientation, and anisotropic etching was performed only in the vertical direction from the back surface to a Si thickness of 70 nm. Next, the SiO 2 gate insulating film 3 having a thickness of 40 nm was formed by thermal oxidation. Thickness on it
A 0.7 μm Al thin film was formed by a resistance heating vapor deposition method and processed by an Ar sputter etching method to form a control electrode 4.
A 15 nm thick Nb thin film was formed on the surface by the DC magnetron sputtering method. In that case, the substrate temperature was kept at 25 ° C. This was processed by electron beam drawing using an electron beam resist and reactive ion etching to obtain a light transmissive superconducting electrode 2 having a spacing of 0.2 μm. As described above, the superconducting light guide detection element of the present invention could be manufactured. The device was cooled to the temperature of liquid helium and GaAl x A was added as shown in FIG.
s 1-x The light source 501 is a light emitting diode, and the light having a wavelength of 650 nm is dispersed by the diffraction grating 502. The lens 503 and the optical fiber.
By making it enter the element 505 through 504, it operated as a superconducting light guide detecting element.

この実施例においては超電導電極の材料にNbを用いた
が、Nbに替えてNbNを用いた場合にも同様の効果を得る
ことができた。
Although Nb was used as the material of the superconducting electrode in this example, similar effects could be obtained when NbN was used instead of Nb.

また、本実施例では半導体基板1としてSiを用いた
が、これに替えて、Ge,InAs,InSb,GaAs,GaAsxAs1-x,InP
等を、さらに、光源501としてGaAlxAs1-x発光ダイオー
ドを用いたが、これに替えて、他の発光ダイオード,半
導体レーザ,固体レーザ,ガスレーザ,白色光等を用い
てもよい。
Although Si is used as the semiconductor substrate 1 in the present embodiment, Ge, InAs, InSb, GaAs, GaAs x As 1-x , InP may be used instead.
Further, although a GaAl x As 1-x light emitting diode is used as the light source 501, other light emitting diodes, semiconductor lasers, solid-state lasers, gas lasers, white light, or the like may be used instead.

[実施例2] 次に、第2図に本発明の第2の実施例による超電導光
検出素子の一部の断面図を示す。(100)方位の2イン
チSiによる半導体基板11にホウ素を1×1024m-3の濃度
で拡散し、その表面にDCマグネトロンスパッタ法によっ
て厚さ50nmのNb薄膜を形成した。これをCF4ガスを用い
た反応性イオンエッチングによって加工し、間隔0.2μ
mの超電導電極12とした。その酸化学的気相成長法によ
り厚さ100nmのSiO2膜を形成し、同じく反応性イオンエ
ッチングによって加工し光透過性ゲート絶縁膜13とし
た。最後に15nmのNb薄膜をDCマグネトロンスパッタ法に
より形成し、リフトオフ法によって加工して光透過性超
電導制御電極14とした。以上によって本発明の超電導光
検出素子を作成することができた。該素子を液体ヘリウ
ム温度に冷却し、第5図に示したるごとく、第1の実施
例と同じく波長650nmの光を該素子5に入射させること
により、超電導光検出素子として動作した。
[Embodiment 2] Next, FIG. 2 shows a partial sectional view of a superconducting light guide detection element according to a second embodiment of the present invention. Boron was diffused at a concentration of 1 × 10 24 m −3 into a semiconductor substrate 11 made of 2-inch Si having a (100) orientation, and a 50 nm-thick Nb thin film was formed on the surface by DC magnetron sputtering. This was processed by reactive ion etching using CF 4 gas, and the interval was 0.2μ.
m superconducting electrode 12 was used. A 100 nm-thick SiO 2 film was formed by the oxidative vapor phase epitaxy method, and similarly processed by reactive ion etching to obtain a light-transmissive gate insulating film 13. Finally, a 15 nm Nb thin film was formed by the DC magnetron sputtering method and processed by the lift-off method to form the light transmissive superconducting control electrode 14. By the above, the superconducting light guide detection element of the present invention could be prepared. The device was cooled to the temperature of liquid helium, and as shown in FIG. 5, light having a wavelength of 650 nm was made to enter the device 5 as in the first embodiment, thereby operating as a superconducting light guide detection device.

この実施例においては超電導電極の材料にNbを用いた
が、Nbに替えてNbNを用いた場合にも同様の効果を得る
ことができた。
Although Nb was used as the material of the superconducting electrode in this example, similar effects could be obtained when NbN was used instead of Nb.

また、本実施例では半導体基板としてSiを用いたが、
これに替えて、Ge,InAs,InSb,GaAs,GaAlxAs1-x,InP等
を、さらに、光源としてGaAlxAs1-x発光ダイオードを用
いたが、これに替えて、他の発光ダイオード,半導体レ
ーザ,固体レーザ,ガスレーザ,白色光等を用いてもよ
い。
In addition, although Si is used as the semiconductor substrate in this embodiment,
Instead of this, Ge, InAs, InSb, GaAs, GaAl x As 1-x , InP, etc. were used as the light source, and GaAl x As 1-x light emitting diode was used as the light source. , A semiconductor laser, a solid-state laser, a gas laser, white light or the like may be used.

[実施例] 以下、第2の発明を実施例を参照して詳細に説明す
る。第6図は実施例3による超電導光検出素子の一部を
示す断面図である。表面を集酸化したSi半導体基板601
上に厚さ50nmのAlより成る薄膜をスパッタリング法によ
り形成し、Arスパッタェッチング法により加工して光反
射膜604とした。続いて化学的気相成長法によりSiO2
り成る厚さ30nmのSiO2よりなる絶縁膜603を形成し、続
いてスパッタリング法により厚さ300nmのInSb薄膜より
成る半導体層605を形成する。半導体層605には不純物と
してSiを5×1022m-3の濃度でスパッタリング時に添加
する。最後に厚さ15nmのNb薄膜をDCマグネトロンスパッ
タ法により形成し、これを電子線レジストを用いた電子
線描画と反応性イオンエッチングによって加工し、対向
部分の間隔が200nmの超電導電極602とした。以上によっ
て本実施例の超電導光検出素子を実現することができ
た。この素子を液体ヘリウム温度に冷却し、第7図に示
したるごとく、ホトダイオードよりなる光線701から出
た光をレンズ702で集光した後、回折格子703を用いて分
光して650nmの光を光ファイバ704を用いて本素子705に
入射させたところ、光検出素子とて動作した。
[Embodiment] Hereinafter, the second invention will be described in detail with reference to an embodiment. FIG. 6 is a sectional view showing a part of the superconducting light guide detection element according to the third embodiment. Si semiconductor substrate 601 whose surface is collected and oxidized
A thin film of Al having a thickness of 50 nm was formed on the top by a sputtering method and processed by an Ar sputter etching method to form a light reflection film 604. Then, an insulating film 603 made of SiO 2 and having a thickness of 30 nm and made of SiO 2 is formed by a chemical vapor deposition method, and subsequently, a semiconductor layer 605 made of an InSb thin film and having a thickness of 300 nm is formed by a sputtering method. Si is added to the semiconductor layer 605 as an impurity at a concentration of 5 × 10 22 m −3 during sputtering. Finally, a 15-nm-thick Nb thin film was formed by the DC magnetron sputtering method, and this was processed by electron beam drawing using a electron beam resist and reactive ion etching to form a superconducting electrode 602 having a facing portion interval of 200 nm. As described above, the superconducting light guide detection element of this embodiment can be realized. After cooling this element to the liquid helium temperature, as shown in FIG. 7, after the light emitted from the light beam 701 composed of the photodiode is condensed by the lens 702, it is dispersed using the diffraction grating 703 to emit the light of 650 nm. When light was made incident on this element 705 using the fiber 704, it operated as a photodetection element.

この実施例においては超電導電極の材料にNb、絶縁膜
の材料にSiO2、反射膜の材料にAlを用いたが、これに替
えて、超電導材料にNbN,Pb合金,MoN,Nb3Si,Nb3Al等、絶
縁膜の材料にSiO,Si3N4等、反射膜の材料としてCu,Ag等
を用いてもよい。
In this example, Nb was used as the material of the superconducting electrode, SiO 2 was used as the material of the insulating film, and Al was used as the material of the reflective film.Instead, NbN, Pb alloy, MoN, Nb 3 Si, was used as the superconducting material. nb 3 Al or the like, SiO the material of the insulating film, Si 3 N 4 or the like, Cu as the material of the reflective film, may be used Ag or the like.

[実施例4] 第8図は本実施例による超電導光検出素子の一部を示
す断面図である。(100)方位の2インチSiの半導体基
板801にホウ素を5×1026m-3の濃度で拡散し、裏面から
垂直方向のみの異方性エッチングを行なってSiの厚さを
70nmとした。次に熱酸化によって厚さ20nmのSiO2よりな
る絶縁膜803を形成した。その上に厚さ700nmのAl薄膜を
抵抗加熱蒸着法により形成し、Arスパッタエッチング法
により加工して光反射性制御電極804とした。表面に
は、厚さ15nmのNb薄膜をDCマグネトロンスパッタ法によ
り形成した。これを電子線レジストを用いた電子線描画
と反応性イオンエッチングによって加工し、対向部分の
間隔が200nmの超電導電極802とした。以上によって本実
施例による超電導光検出素子を実現することができた。
この素子を液体ヘリウム温度に冷却し、第7図に示した
るごとく、ホトダイオード701から出た光をレンズ702で
集光した後、回折格子703を用いて分光して650nmの光を
光ファイバー704を用いて該素子705に入射させたとこ
ろ、光検出素子として動作した。
[Embodiment 4] FIG. 8 is a sectional view showing a part of a superconducting light guide detection element according to this embodiment. Boron is diffused at a concentration of 5 × 10 26 m −3 into a 2-inch Si semiconductor substrate 801 having a (100) orientation, and anisotropic etching is performed from the back surface only in the vertical direction to reduce the Si thickness.
It was set to 70 nm. Next, an insulating film 803 made of SiO 2 and having a thickness of 20 nm was formed by thermal oxidation. A 700 nm-thick Al thin film was formed thereon by a resistance heating vapor deposition method and processed by an Ar sputter etching method to form a light reflective control electrode 804. A 15 nm thick Nb thin film was formed on the surface by the DC magnetron sputtering method. This was processed by electron beam writing using an electron beam resist and reactive ion etching to obtain a superconducting electroconductive electrode 802 having an interval between facing portions of 200 nm. As described above, the superconducting light guide detection element according to the present embodiment can be realized.
After cooling this element to the liquid helium temperature, as shown in FIG. 7, the light emitted from the photodiode 701 is condensed by the lens 702, and then dispersed using the diffraction grating 703 to emit 650 nm light using the optical fiber 704. When it was incident on the element 705, it operated as a photodetection element.

この実施例においては超電導電極の材料にNb、半導体
の材料にSi、絶縁膜の材料にSiO2、光反射性制御電極の
材料にAlを用いたが、これらに替えて、超電導材料にNb
N,Pb合金,MoN,Nb3Si,Nb3Al等、半導体の材料にInAs,In
P,InSb,GaAs,GaP,CdS等、絶縁膜の材料にSiO,Si3N4等、
反射膜の材料としてCu,Ag等を用いてもよい。
In this embodiment, Nb is used as the material of the superconducting conductive electrode, Si is used as the material of the semiconductor, SiO 2 is used as the material of the insulating film, and Al is used as the material of the light reflective control electrode, but instead of these, Nb is used as the superconducting material.
InAs, In for semiconductor materials such as N, Pb alloy, MoN, Nb 3 Si, Nb 3 Al
P, InSb, GaAs, GaP, CdS, etc., SiO, Si 3 N 4 etc. as the material of the insulating film,
Cu, Ag or the like may be used as the material of the reflective film.

〔発明の効果〕〔The invention's effect〕

以上説明したように、第1の発明によれば、Nb単体及
びNbN等からなる光透過性超電導薄膜を用いることによ
り、高速のスイッチング動作を実現する超電導光検出素
子を作製することができた。
As described above, according to the first aspect of the invention, the superconducting light guide detecting element that realizes the high-speed switching operation can be manufactured by using the light-transmitting superconducting thin film made of Nb alone or NbN.

また、第2の発明によれば、半導体層に入射した光を
その下に設けた鏡面層によって反射させて光の半導体に
よる吸収を効率的に行なわせることにより超電導電流を
流すのに必要なキャリアー濃度が容易に得られるように
なるので、超電導光検出素子の感度改善方法を提供する
ことができる。
According to the second aspect of the invention, the light incident on the semiconductor layer is reflected by the mirror surface layer provided under the semiconductor layer so that the light is efficiently absorbed by the semiconductor, whereby carriers necessary for flowing a superconducting current can be obtained. Since the concentration can be easily obtained, it is possible to provide a method for improving the sensitivity of the superconducting light guide detection element.

【図面の簡単な説明】[Brief description of drawings]

第1図,第2図,第6図および第8図は本発明のそれぞ
れ異なる実施例による超電導光検出素子の一部を示す断
面図、第3図は超電導Nb薄膜の厚さと、その超電導転移
温度及び光透過率の関係を示す図、第4図は超電導NbN
薄膜の厚さと、その超電導転移温度及び光透過率の関係
を示す図、第5図,第7図はスイッチング動作確認のた
めのそれぞれ異なる装置概観図である。 1……半導体基板、2……光透過性超電導電極、3……
ゲート絶縁膜、4……制御電極、11……半導体基板、12
……超電導電極、13……光透過性ゲート絶縁膜、14……
光透過性超電導制御装置、501……光源、502……回折格
子、503……レンズ、504……光ファイバー、505……素
子、601,801……半導体基板、602,802……超電導電極、
603,803……絶縁膜、604,……制御電極、605……反射
膜、606……半導体層、701……光源、702……レンズ、7
03……回折格子、704……光ファイバー、705……光検出
素子、804……光反射性制御電極。
1, 2, 6, and 8 are sectional views showing a part of a superconducting light guide detection element according to different embodiments of the present invention, and FIG. 3 is a thickness of a superconducting Nb thin film and its superconducting transition. Figure 4 shows the relationship between temperature and light transmittance. Figure 4 shows superconducting NbN.
FIG. 5 is a view showing the relationship between the thickness of the thin film and its superconducting transition temperature and light transmittance, and FIGS. 5 and 7 are schematic views of different devices for confirming the switching operation. 1 ... Semiconductor substrate, 2 ... Light transmissive superconducting electrode, 3 ...
Gate insulating film, 4 ... Control electrode, 11 ... Semiconductor substrate, 12
...... Superconducting electrode, 13 …… Light-transmissive gate insulating film, 14 ……
Light-transmissive superconducting controller, 501 ... Light source, 502 ... Diffraction grating, 503 ... Lens, 504 ... Optical fiber, 505 ... Element, 601,801 ... Semiconductor substrate, 602,802 ... Superconducting electrode,
603, 803 ... Insulating film, 604, ... Control electrode, 605 ... Reflective film, 606 ... Semiconductor layer, 701 ... Light source, 702 ... Lens, 7
03 ... Diffraction grating, 704 ... Optical fiber, 705 ... Photodetector, 804 ... Light reflective control electrode.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭61−35574(JP,A) 特開 昭58−141582(JP,A) 特開 昭62−199070(JP,A) ─────────────────────────────────────────────────── ─── Continuation of front page (56) References JP-A-61-35574 (JP, A) JP-A-58-141582 (JP, A) JP-A-62-199070 (JP, A)

Claims (9)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】半導体層と、少なくとも該半導体層の光の
入射する側の表面に設けられた2つの超電導体より成る
電極から成り、上記超電導体より成る2つの電極の厚さ
は該電極における光の透過率が10%以上且つ該電極が4.
2K以上で超電導遷移するように設定され、上記半導体層
に入射する光により上記2つの超電導電極間に生じる電
流の変化として光の検出を行うことを特徴とする超電導
光検出素子。
1. A semiconductor layer and at least an electrode composed of two superconductors provided on the surface of the semiconductor layer on the light incident side. The thickness of the two electrodes composed of the superconductor is equal to that of the electrodes. Light transmittance is 10% or more and the electrode is 4.
A superconducting light guide detection element, which is set so as to make a superconducting transition at 2 K or more, and detects light as a change in a current generated between the two superconducting electrodes by the light incident on the semiconductor layer.
【請求項2】特許請求の範囲第1項記載の超電導光検出
素子において、上記電極を構成する超電導体は、Nb、Nb
Nより選ばれたる少なくとも一つの材料であることを特
徴とする超電導光検出素子。
2. The superconducting light guide detection element according to claim 1, wherein the superconductor forming the electrode is Nb, Nb.
A superconducting light guide detection element, characterized in that it is at least one material selected from N.
【請求項3】特許請求の範囲第2項記載の超電導光検出
素子において、上記Nbからなる超電導電極の膜厚は28nm
以下に選ばれ、上記NbNからなる超電導電極の膜厚は5
〜35nmの範囲に選ばれたることを特徴とする超電導光検
出素子。
3. The superconducting light guide detecting element according to claim 2, wherein the superconducting conductive electrode made of Nb has a film thickness of 28 nm.
The thickness of the NbN superconducting electrode selected below is 5
A superconducting light guide detection element characterized by being selected in the range of up to 35 nm.
【請求項4】特許請求の範囲第1項記載の超電導光検出
素子において、少なくとも上記2つの超電導電極間に電
圧を印加する制御電極が絶縁膜を介して上記半導体層に
設けられていることを特徴とする超電導光検出素子。
4. The superconducting light guide detecting element according to claim 1, wherein at least a control electrode for applying a voltage between the two superconducting conductive electrodes is provided in the semiconductor layer via an insulating film. Characteristic superconducting light guide detection element.
【請求項5】特許請求の範囲第4項記載の超電導光検出
素子において、上記制御電極を構成する材料は超電導体
であって、かつ該制御電極は上記半導体層に入射する光
を透過させる厚さを有することを特徴とする超導電光検
出素子。
5. The superconducting light guide detection element according to claim 4, wherein the material forming the control electrode is a superconductor, and the control electrode has a thickness for transmitting light incident on the semiconductor layer. A superconducting photodetector characterized by having a thickness.
【請求項6】特許請求の範囲第5項記載の超電導光検出
素子において、上記制御電極の材料は、Nb単体もしくは
NbNより選ばれ、かつその厚さはNbにあっては28nm以
下、NbNにあっては5〜35nmの範囲に選ばれたることを
特徴とする超電導光検出素子。
6. The superconducting light guide detection element according to claim 5, wherein the control electrode is made of Nb alone or
A superconducting light guide detection element characterized by being selected from NbN and having a thickness of 28 nm or less for Nb and 5 to 35 nm for NbN.
【請求項7】半導体層と、少なくとも該半導体層の光の
入射する側の表面に設けられた2つの超電導体より成る
電極と、該半導体層の該超電導電極が設けられた面の裏
側に絶縁膜を介して設けられた反対膜から成り、上記超
電導体より成る2つの電極は上記半導体層に入射する光
を透過させる厚さを有し、上記反射膜は上記半導体層に
入射した光を反射するように形成され、上記半導体層に
入射する光により上記2つの超電導電極間に生じる電流
の変化として光の検出を行うことを特徴とする超電導光
検出素子。
7. A semiconductor layer, at least an electrode composed of two superconductors provided on the surface of the semiconductor layer on the light incident side, and insulation on the back side of the surface of the semiconductor layer provided with the superconducting conductive electrode. The two electrodes made of the opposite film provided via the film have a thickness that allows the light incident on the semiconductor layer to pass therethrough, and the reflective film reflects the light incident on the semiconductor layer. A superconducting light guide detection element, which is formed as described above and detects light as a change in a current generated between the two superconducting electrodes by the light incident on the semiconductor layer.
【請求項8】特許請求の範囲第7項に記載の超電導光検
出素子において、上記反射膜は金属もしくは上記半導体
層を構成する材料よりも上記入射光の波長における光学
的屈折率が大きな値を有する第2の半導体材料を用いた
ことを特徴とする超電導光検出素子。
8. The superconducting light guide detection element according to claim 7, wherein the reflective film has a larger optical refractive index at the wavelength of the incident light than a metal or a material forming the semiconductor layer. A superconducting light guide detection element characterized by using the second semiconductor material having.
【請求項9】特許請求の範囲第7項または第8項に記載
の超電導光検出素子において、上記半導体層中の不純物
濃度は不均一であり、少なくとも該半導体層の上記反射
膜側における不純物濃度は、極低温においてその部分の
キャリアが凍結する程度に小さく選ばれたることを特徴
とする超電導光検出素子。
9. The superconducting light guide detection element according to claim 7 or 8, wherein the impurity concentration in the semiconductor layer is non-uniform, and the impurity concentration in at least the reflective film side of the semiconductor layer. Is a superconducting light guide detection element characterized by being selected so small that carriers in that portion freeze at extremely low temperatures.
JP61173641A 1986-02-27 1986-07-25 Superconducting light guide detector Expired - Lifetime JP2523517B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP61173641A JP2523517B2 (en) 1986-07-25 1986-07-25 Superconducting light guide detector
US07/246,926 US4843446A (en) 1986-02-27 1988-09-19 Superconducting photodetector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61173641A JP2523517B2 (en) 1986-07-25 1986-07-25 Superconducting light guide detector

Publications (2)

Publication Number Publication Date
JPS6331180A JPS6331180A (en) 1988-02-09
JP2523517B2 true JP2523517B2 (en) 1996-08-14

Family

ID=15964375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61173641A Expired - Lifetime JP2523517B2 (en) 1986-02-27 1986-07-25 Superconducting light guide detector

Country Status (1)

Country Link
JP (1) JP2523517B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10847706B2 (en) 2015-09-01 2020-11-24 Massachusetts Institute Of Technology Systems and methods for hybrid superconducting medium comprising first and second layers with different superconductor to induce a proximity effect between thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4906930A (en) * 1987-02-27 1990-03-06 Hitachi, Ltd. Magnetometer using a Josephson device and superconducting phototransistor
US5121173A (en) * 1989-07-10 1992-06-09 Santa Barbara Research Center Proximity effect very long wavlength infrared (VLWIR) radiation detector

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6030114B2 (en) * 1982-02-18 1985-07-15 理化学研究所 Josephson junction photodetector
JPS6135574A (en) * 1984-07-27 1986-02-20 Hitachi Ltd Superconductive phototransistor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10847706B2 (en) 2015-09-01 2020-11-24 Massachusetts Institute Of Technology Systems and methods for hybrid superconducting medium comprising first and second layers with different superconductor to induce a proximity effect between thereof

Also Published As

Publication number Publication date
JPS6331180A (en) 1988-02-09

Similar Documents

Publication Publication Date Title
US4843446A (en) Superconducting photodetector
Ceccarelli et al. Recent advances and future perspectives of single‐photon avalanche diodes for quantum photonics applications
JP4336765B2 (en) Photodiode and manufacturing method thereof
US5455421A (en) Infrared detector using a resonant optical cavity for enhanced absorption
EP1909080B1 (en) Ultrasensitive optical detector having a high temporal resolution and using a grating.
US20080197285A1 (en) Ultrasensitive Optical Detector Having a Large Temporal Resolution and Using a Waveguide, and Methods For Producing Said Detector
US4358676A (en) High speed edge illumination photodetector
US5780916A (en) Asymmetric contacted metal-semiconductor-metal photodetectors
EP1875179A2 (en) Ultra-sensitive optical detector with high time resolution, using a surface plasmon
JPS6289391A (en) Manufacture of integrated laser photodetector
JP2000164841A (en) Infrared detector device and process for forming the same
CN111947794B (en) Preparation method of superconducting nanowire single photon detector
Gao et al. In0. 53Ga0. 47As metal‐semiconductor‐metal photodiodes with transparent cadmium tin oxide Schottky contacts
JP2008071908A (en) Superconductive photodetector
JPH10326906A (en) Photodetection element and image-pickup element
JPH10190021A (en) Infrared detector having non-cooled type quantum well structure
JP2523517B2 (en) Superconducting light guide detector
EP1221721B1 (en) Semiconductor photo detecting device and its manufacturing method
KR101099105B1 (en) Reduced dark current photodetector
Li et al. Monolithic integration of a SiGe/Si modulator and multiple quantum well photodetector for 1.55 μm operation
JPH07118548B2 (en) III-V group compound semiconductor PIN photo diode
JP2540511B2 (en) Superconducting phototransistor
JPH04342174A (en) Semiconductor photoelectric receiving element
Yakimov et al. Ge/Si photodiodes and phototransistors with embedded arrays of germanium quantum dots for fiber-optic communication lines
JPH09135049A (en) Integration of surface-luminescence-laser with photodiode for monitoring its power output