JPS6030114B2 - Josephson junction photodetector - Google Patents

Josephson junction photodetector

Info

Publication number
JPS6030114B2
JPS6030114B2 JP57024790A JP2479082A JPS6030114B2 JP S6030114 B2 JPS6030114 B2 JP S6030114B2 JP 57024790 A JP57024790 A JP 57024790A JP 2479082 A JP2479082 A JP 2479082A JP S6030114 B2 JPS6030114 B2 JP S6030114B2
Authority
JP
Japan
Prior art keywords
tunnel barrier
light
superconductor layer
josephson junction
superconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57024790A
Other languages
Japanese (ja)
Other versions
JPS58141582A (en
Inventor
努 山下
元 丸林
共平 作田
浩 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIKEN Institute of Physical and Chemical Research
Original Assignee
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIKEN Institute of Physical and Chemical Research filed Critical RIKEN Institute of Physical and Chemical Research
Priority to JP57024790A priority Critical patent/JPS6030114B2/en
Publication of JPS58141582A publication Critical patent/JPS58141582A/en
Publication of JPS6030114B2 publication Critical patent/JPS6030114B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/10Junction-based devices
    • H10N60/12Josephson-effect devices

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Description

【発明の詳細な説明】 本発明はジョセフソン接合から成る光検出素子に関し、
詳しくはトンネル型のジョセフソン接合から成る光検出
素子に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a photodetecting element comprising a Josephson junction,
More specifically, the present invention relates to a photodetecting element consisting of a tunnel-type Josephson junction.

近年、光通信技術やジョセフソンコンピュータ−技術の
進展に併し、、高感度・高速度応答の光検出素子の開発
が重要な技術開発課題となっている。
In recent years, with the progress of optical communication technology and Josephson computer technology, the development of photodetecting elements with high sensitivity and high speed response has become an important technological development issue.

従来の光検出素子としては、半導体のPN接合を用いた
ピンダイオードやアバランシエダイオード(ADP)な
どの半導体光検出素子があるが、最近、第1図に示す如
く、基板1に形成したPbの薄膜から成るマイクロブリ
ッジ型のジョセフソン接合素子2のブリッジ部2′に3
〜5ps(ピコ秒)の光パルスを照射し、該素子に一定
のバイアス電流を流すことによって生成される500p
s以下の半値幅を有する電圧パルスを観察した実験例が
報告されている(lEEETRANSACTIONS、
ONMAONETICS 、 VOL.MAC − 1
7、 NO.1、JANUARYI981)。
Conventional photodetecting elements include semiconductor photodetecting elements such as pin diodes and avalanche diodes (ADP) using semiconductor PN junctions, but recently, as shown in FIG. 3 at the bridge portion 2' of the microbridge-type Josephson junction element 2 made of a thin film.
500p generated by irradiating a ~5ps (picosecond) optical pulse and passing a constant bias current through the device.
Experimental examples have been reported in which voltage pulses with a half-width of less than s are observed (lEEETRANSACTIONS,
ONMAONETICS, VOL. MAC-1
7.No. 1, JANUARYI981).

本発明は前記したADPの半導体光検出素子の動作機構
から着想を得てなされたトンネル型のジョセフソン接合
から成る光検出素子を提供することを目的とする。
An object of the present invention is to provide a photodetecting element comprising a tunnel-type Josephson junction, which is inspired by the operating mechanism of the ADP semiconductor photodetecting element described above.

この目的は前記の特許請求の範囲に記載された本発明の
構成によって達成されるが、以下、添付図面を参照した
詳細な説明によって本発明の構成および効果が更に良く
理解されるであろう。
Although this object is achieved by the configuration of the present invention as described in the claims, the configuration and effects of the present invention will be better understood from the following detailed description with reference to the accompanying drawings.

先ず、第2図に従来のAPDの構造の一例を示す。P十
Pn+接合に入射光をP+側から照射し、電源Bによっ
て接合の逆電圧を印加すると、第3図のエネルギー構造
に示す如く、表面層P+と接合部Pにおいて、光のエネ
ルギーによって電子が充満帯Fより半導体Cに励起され
、これが接合部の露界によって加速されて“なだれ”現
像すなわちァバランシェ現像を起こし、1個の励起電子
当りN個のアバランシェ電子をつくり出す。このアバラ
ンシェのため励起された電子が多数の伝導電子を発生し
て、光による電子があたかもN倍に増幅されたようにな
り、この電子による電流を電源B、電流計A、電圧計V
から成る外部回路によって検出することにより感度よく
光の入射量を検出するものである。これに対し、本発明
は第4図に示す如く、ガラス、石英、サフアィャ、水晶
など光を透過する基板1上に、Nb、NbNなどの光を
透過し得る数100A程度の厚さの第1の超伝導体層3
、この超伝導体層の酸化膜又はSi02などの絶縁体薄
膜から成る薄いトンネル障壁4、およびPb、Pb0×
、Nbなどの光を透過しない1000△以上の厚さの第
2の超伝導体層5を順次形成し、そして第1と第2の超
伝導体層3,5間に電源Bに接続し、前記の基板側から
、例えばレンズ6をもつファイバーなどの光導波路7を
介して前記のトンネル障壁4に入射した光によってトン
ネル障壁を流れる電流又は電圧変化を電流計A、電圧計
Vによって検出するように構成したものである。
First, FIG. 2 shows an example of the structure of a conventional APD. When incident light is irradiated to the P+Pn+ junction from the P+ side and a reverse voltage is applied to the junction by the power source B, electrons are generated in the surface layer P+ and the junction P at the surface layer P+ and the junction P, as shown in the energy structure in Figure 3. The semiconductor C is excited from the filling zone F, and is accelerated by the exposed field at the junction to cause "avalanche" development, or avalanche development, producing N avalanche electrons for each excited electron. The excited electrons due to this avalanche generate a large number of conduction electrons, and the electrons caused by the light are amplified by N times.
The amount of incident light is detected with high sensitivity by detection by an external circuit consisting of. On the other hand, the present invention, as shown in FIG. superconductor layer 3
, a thin tunnel barrier 4 made of an oxide film of this superconductor layer or an insulator thin film such as Si02, and Pb, Pb0×
, Nb or the like, a second superconductor layer 5 having a thickness of 1000Δ or more that does not transmit light is sequentially formed, and a power source B is connected between the first and second superconductor layers 3 and 5, Current or voltage changes flowing through the tunnel barrier due to light incident on the tunnel barrier 4 from the substrate side through an optical waveguide 7 such as a fiber having a lens 6 are detected by an ammeter A and a voltmeter V. It is composed of

いま、NbNの第1の超伝導体層3の膜厚が薄く光を透
過するとして、TcNbN<TcPbとすると、第5図
に示す如く、NbN薄膜は光子hw(photon)を
吸収して、電子対はNbNのエネルギーギャップ△(N
bN)の100倍程の高さに励起される。
Now, assuming that the first superconductor layer 3 of NbN is thin and transmits light, and TcNbN<TcPb, the NbN thin film absorbs photons hw (photon) and generates electrons, as shown in FIG. The pair is NbN energy gap △(N
bN) is excited to a height approximately 100 times higher than that of

この励起電子は格子との非弾性散乱により↑sの間に△
(NbN)上端に達するが、この間、hw(phoMn
)>2△(NbN)のフオノンを発生して数ION固の
電子対をこわして準粒子を発生させ、丁度ADPのアバ
ラソシェ現像と同様な作用をする。その後、再結合時間
7Rで励起が終了するが、これらの時間はPb−Biで
4岬s程度である。光照射による1−V特性の変化は第
6図のようになる。即ち、光照射前は、負荷直線をLと
すると、A点にあった動作点ま光照射によって、B点に
移り、このときの電流変化量が出力電流となるから、出
力電流でLミ肌A、電圧変化量Vcは△Pb程度(〜2
のV)であるから、VcミのVが得られる。光感度は1
ぴV/W程度が得られる。また、光応答速度は励起電子
や超伝導体下端に達する緩和時情秤s程度であり、従来
の半導体光検出素子の応答速度10皿sに対して100
倍程度速い。第7図は第4図の斜視図であり、第1と第
2の帯状の超伝導体層3,5が交差して、この交差領域
にトンネル障壁4が形成されている場合を示す。
This excited electron is caused by inelastic scattering with the lattice, causing △ between ↑s
(NbN) reaches the upper limit, but during this time hw(phoMn
)>2Δ(NbN) is generated to destroy several ION solid electron pairs to generate quasi-particles, which acts just like the abalasoché development of ADP. Thereafter, the excitation ends at a recombination time of 7R, which is about 4 s for Pb-Bi. The change in 1-V characteristics due to light irradiation is shown in FIG. That is, before light irradiation, if the load straight line is L, the operating point that was at point A moves to point B by light irradiation, and the amount of current change at this time becomes the output current. A. The voltage change amount Vc is about △Pb (~2
Since V), V of Vcmi is obtained. Light sensitivity is 1
Approximately V/W can be obtained. In addition, the light response speed is about the relaxation time s for excited electrons and reaching the lower end of the superconductor, which is 100 s for the response speed of a conventional semiconductor photodetector element of 10 s.
About twice as fast. FIG. 7 is a perspective view of FIG. 4, showing a case where the first and second strip-shaped superconductor layers 3 and 5 intersect and a tunnel barrier 4 is formed in this intersecting region.

第8図は第1の超伝導体層3上に孔8のあいた絶縁体層
9を形成し、この孔部にトンネル障壁4を形成した場合
を示す。
FIG. 8 shows a case where an insulating layer 9 with holes 8 is formed on the first superconductor layer 3, and a tunnel barrier 4 is formed in the holes.

第9図は基板1がクラッド層として形成されたものであ
り、この基板のクラツド層1′を介して光を照射して、
トンネル障壁4に光を入射させる場合を示す。
In FIG. 9, the substrate 1 is formed as a cladding layer, and light is irradiated through the cladding layer 1' of this substrate.
A case is shown in which light is incident on the tunnel barrier 4.

このように基板をクラッド層として形成する場合は、光
検出素子と光入力手段との薄膜パターン回路で構成でき
る利点がある。
When the substrate is formed as a cladding layer in this way, there is an advantage that it can be constructed from a thin film pattern circuit of the photodetecting element and the light input means.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はマイクロブリッジ型のジョセフソン接合素子を
拡大して示す斜視図、第2図は従来のADP半導体光検
出素子の作用機構の説明図、第3図はADPのエネルギ
ー構造の説明図、第4図は本発明の光検出素子の構成の
一例を一部断面で拡大して示す正面図、第5図は本発明
の作用機構の説明図、第6図は光照射による本発明の光
検出素子の1−V特性の変化を示すグラフ、第7図は第
4図の斜視図、第8図と第9図は本発明の光検出素の実
施態様をそれぞれ一部断面で拡大して示す正面図。 図中の符号:1・・・・・・基板、3・・・・・・第1
の超伝導体層、4・・・・・・トンネル障壁、5・・・
・・・第2の超伝導体層、B……電源、A・・・・・・
電流計、V・・・・・・電圧計。 第1図 第2図 第3図 第4図 第5図 第6図 第7図 第8図 第9図
FIG. 1 is an enlarged perspective view of a microbridge type Josephson junction element, FIG. 2 is an explanatory diagram of the working mechanism of a conventional ADP semiconductor photodetector, and FIG. 3 is an explanatory diagram of the energy structure of ADP. FIG. 4 is an enlarged front view showing an example of the configuration of the photodetecting element of the present invention with a partial cross section, FIG. 5 is an explanatory diagram of the working mechanism of the present invention, and FIG. Graphs showing changes in the 1-V characteristics of the detection element, FIG. 7 is a perspective view of FIG. The front view shown. Codes in the diagram: 1... board, 3... first
superconductor layer, 4... tunnel barrier, 5...
...Second superconductor layer, B...Power supply, A...
Ammeter, V... Voltmeter. Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9

Claims (1)

【特許請求の範囲】 1 光を透過する基板、この基板上に形成した光を透過
し得る厚さの第1の超伝導体層、この超伝導体層上に形
成したトンネル障壁、このトンネル障壁上に形成した光
を透過しない厚さの第2の超伝導体層、および前記の第
1と第2の超伝導体層間に接続した電源を備え、前記の
基板側から前記のトンネル障壁に入射した光によつて該
トンネル障壁の電流又は電圧変化を検出することを特徴
とするジヨセフソン接合光検出素子。 2 前記の第1の超伝導体層の材質がNbNであり、前
記の第2の超伝導体層がPbであることを特徴とする特
許請求の範囲第1項に記載のジヨセフソン接合光検出素
子子。 3 前記のトンネル障壁が前記の第1の超伝導体層の酸
化膜であることを特徴とする特許請求の範囲第1または
第2項に記載のジヨセフソン接合光検出素子。
[Claims] 1. A substrate that transmits light, a first superconductor layer formed on this substrate and having a thickness that allows transmission of light, a tunnel barrier formed on this superconductor layer, and this tunnel barrier. a second superconductor layer formed above and having a thickness that does not transmit light; and a power source connected between the first and second superconductor layers, the light entering the tunnel barrier from the substrate side. 1. A Josephson junction photodetecting element, which detects a change in current or voltage of the tunnel barrier using light emitted from the tunnel barrier. 2. The Josephson junction photodetecting element according to claim 1, wherein the first superconductor layer is made of NbN, and the second superconductor layer is made of Pb. Child. 3. The Josephson junction photodetecting element according to claim 1 or 2, wherein the tunnel barrier is an oxide film of the first superconductor layer.
JP57024790A 1982-02-18 1982-02-18 Josephson junction photodetector Expired JPS6030114B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57024790A JPS6030114B2 (en) 1982-02-18 1982-02-18 Josephson junction photodetector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57024790A JPS6030114B2 (en) 1982-02-18 1982-02-18 Josephson junction photodetector

Publications (2)

Publication Number Publication Date
JPS58141582A JPS58141582A (en) 1983-08-22
JPS6030114B2 true JPS6030114B2 (en) 1985-07-15

Family

ID=12147976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57024790A Expired JPS6030114B2 (en) 1982-02-18 1982-02-18 Josephson junction photodetector

Country Status (1)

Country Link
JP (1) JPS6030114B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2523517B2 (en) * 1986-07-25 1996-08-14 株式会社日立製作所 Superconducting light guide detector
US4843446A (en) * 1986-02-27 1989-06-27 Hitachi, Ltd. Superconducting photodetector
KR910002311B1 (en) * 1987-02-27 1991-04-11 가부시기가이샤 히다찌세이사꾸쇼 A superconductor device
US5121173A (en) * 1989-07-10 1992-06-09 Santa Barbara Research Center Proximity effect very long wavlength infrared (VLWIR) radiation detector

Also Published As

Publication number Publication date
JPS58141582A (en) 1983-08-22

Similar Documents

Publication Publication Date Title
ES2256877T3 (en) OPTOELECTRONIC SEMICONDUCTOR DEVICE.
Gol’Tsman et al. Picosecond superconducting single-photon optical detector
JP2799036B2 (en) Radiation detection element and radiation detector
JPS6030114B2 (en) Josephson junction photodetector
US6613596B2 (en) Monolithically integrated photonic circuit
Zimmermann et al. Large-area lateral pin photodiode on SOI
JPS6260824B2 (en)
Pauchard et al. Dead space effect on the wavelength dependence of gain and noise in avalanche photodiodes
JPH04216682A (en) Photodetector
Ravezzi et al. A versatile photodiode SPICE model for optical microsystem simulation
JPS6135574A (en) Superconductive phototransistor
Wiczer et al. Transient effects of ionizing radiation in photodiodes
JPH05121777A (en) Photodetector
JPH0130092B2 (en)
Mitchell Optimizing photodetectors for radiation environments
Houston et al. Study of charge dynamics in high speed power devices using free carrier absorption measurements
RU194126U1 (en) WAVEGUIDE SUPERCONDUCTOR SINGLE-PHOTON DETECTOR WITH IMPROVED TOPOLOGY
JP3325881B2 (en) Organic photomultiplier device
Gaidis et al. A superconducting X-ray spectrometer with a tantalum absorber and lateral trapping
JPH06224459A (en) Photodetector
Aukerman et al. Radiation threshold levels for noise degradation of photodiodes
JPH0346983B2 (en)
Li et al. An Efficient Workflow of Modeling Single-Nanowire Based Single-Photon Avalanche Detectors
Wang et al. Ultrafast photoconductor radiation detectors
JPS63233575A (en) Semiconductor photodetector