JP2520913B2 - Calcium silicate compact and method for producing the same - Google Patents

Calcium silicate compact and method for producing the same

Info

Publication number
JP2520913B2
JP2520913B2 JP62194826A JP19482687A JP2520913B2 JP 2520913 B2 JP2520913 B2 JP 2520913B2 JP 62194826 A JP62194826 A JP 62194826A JP 19482687 A JP19482687 A JP 19482687A JP 2520913 B2 JP2520913 B2 JP 2520913B2
Authority
JP
Japan
Prior art keywords
calcium silicate
fiber content
weight
parts
slurry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62194826A
Other languages
Japanese (ja)
Other versions
JPS6438227A (en
Inventor
丈夫 澤登
満 粟田
勇二 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP62194826A priority Critical patent/JP2520913B2/en
Publication of JPS6438227A publication Critical patent/JPS6438227A/en
Application granted granted Critical
Publication of JP2520913B2 publication Critical patent/JP2520913B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Producing Shaped Articles From Materials (AREA)

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、軽量にして優れた曲げ強度を有し且つ、不
然性、耐熱性、耐水性に優れ、合成木材などの建築材料
に好適なケイ酸カルシウム成形体及びその製造方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial field of application> The present invention is lightweight, has excellent bending strength, is excellent in inferiority, heat resistance, and water resistance, and is suitable for building materials such as synthetic wood. The present invention relates to a calcium silicate compact and a method for producing the same.

〈従来の技術〉 従来の合成木材は、ポリスチレン、ポリエチレン、ポ
リプロピレン、ポリウレタン等の合成樹脂を主原料とし
たものであるため、高温に加熱すると容易に変形し、発
煙、あるいは燃焼に至るなどの難点を有している。
<Prior art> Since conventional synthetic wood is mainly made of synthetic resins such as polystyrene, polyethylene, polypropylene, and polyurethane, it easily deforms when heated to high temperatures, causing smoke or burning. have.

このような欠点を改善するため、従来から様々な工夫
や提案がなされている。例えば合成樹脂に、炭酸カルシ
ウム、石膏等の無機質充てん剤を添加する際、その添加
割合を増加する方法、合成樹脂にケイ酸カルシウム水和
物を充てんする方法、ケイ酸カルシウムを主原料とし、
これに補強繊維を添加分散し、加圧脱水成形したのち、
乾燥する方法、上記ケイ酸カルシウム成形板に樹脂を含
浸させる方法、あるいはケイ酸カルシウムを主原料とし
カルボキシル基を含有するスチレン−ブタジエン共重合
体ラテックス、カチオン型高分子凝集剤及び補強繊維を
添加分散し成形・乾燥する方法(特開昭60-246251号公
報)等が知られている。
In order to improve such a defect, various ideas and proposals have been conventionally made. For example, synthetic resin, calcium carbonate, when adding an inorganic filler such as gypsum, a method of increasing the addition ratio, a method of filling the synthetic resin with calcium silicate hydrate, calcium silicate as the main raw material,
Reinforcing fibers are added and dispersed in this, and after pressure dehydration molding,
A method of drying, a method of impregnating the calcium silicate molded plate with a resin, or a method of adding and dispersing a styrene-butadiene copolymer latex containing calcium silicate as a main raw material and containing a carboxyl group, a cationic polymer flocculant and a reinforcing fiber. A method of forming and drying (Japanese Patent Laid-Open No. 60-246251) is known.

〈発明が解決しようとする問題点〉 しかしながら、合成樹脂に対して炭酸カリウムあるい
はケイ酸カルシウム水和物等の無機質充填剤を添加する
方法では、得られる成形物の嵩比重が大きくなり、更に
は天然材料並の嵩比重にしようとすれば成形物の強度が
著しく低下するという欠点を有しており、またケイ酸カ
ルシウムに補強繊維を添加分散し加圧脱水成形する方法
では、ケイ酸カルシウムの微細な多孔質構造に起因して
吸水性が大きく、天然木材並の加工性が得られず、更に
ケイ酸カルシウム成形板に樹脂を含浸させる方法では加
工性は改良されるものの多量の樹脂を必要とし耐熱性が
著しく低下する等の欠点を有していた。
<Problems to be Solved by the Invention> However, in the method of adding an inorganic filler such as potassium carbonate or calcium silicate hydrate to the synthetic resin, the bulk specific gravity of the obtained molded article becomes large, and further, If the bulk specific gravity of natural materials is attempted, the strength of the molded product will be significantly reduced, and in the method of adding and dispersing reinforcing fibers in calcium silicate and performing pressure dehydration molding, calcium silicate Due to its fine porous structure, it absorbs a large amount of water and does not have the same processability as natural wood. Furthermore, the process of impregnating a calcium silicate molded plate with a resin improves the processability but requires a large amount of resin. However, it has a drawback that the heat resistance is significantly reduced.

一方、特開昭60-246251号公報で開示された成形物で
はこれらの欠点が改善されているものの、成形物の曲げ
強度が天然木材のそれと比較して著しく低くその用途が
極めて限定されるという不都合を有していた。
On the other hand, although the molded article disclosed in JP-A-60-246251 has improved these drawbacks, the flexural strength of the molded article is significantly lower than that of natural wood and its use is extremely limited. Had inconvenience.

〈問題点を解決するための手段〉 本発明者らは、かかる問題点に鑑み、鋭意検討を重ね
た結果、補強短繊維を含有するマトリックス層が多段に
積層してなるケイ酸カルシウム成形体であって、繊維含
有量の異なる原料スラリーの各々の界面を維持しなが
ら、多段に積層し、一体成形することによって、これら
問題点が解決されることを見い出し、本発明に到達し
た。
<Means for Solving Problems> The inventors of the present invention have made extensive studies in view of the above problems, and as a result, in a calcium silicate compact formed by stacking matrix layers containing reinforcing short fibers in multiple stages. Therefore, they have found that these problems can be solved by stacking in multiple stages and integrally molding while maintaining the interfaces of the raw material slurries having different fiber contents, and arrived at the present invention.

すなわち、本発明の目的は、軽量にして、優れた曲げ
強度を有し、且つ、不然性、耐熱性及び耐水性に優れた
ケイ酸カルシウム成形体及びその製造方法を提供するこ
とにあり、この目的は、補強短繊維とケイ酸カルシウム
水和物とを含有したマトリックス層が多段に積層してな
る多層構造を有するケイ酸カルシウム成形体であって、
繊維含有量が高いマトリックス層と、繊維含有量が低い
マトリックス層が交互に積層され一体成形されてなり、
繊維含有量が高いマトリックス層の繊維含有量はケイ酸
カルシウム水和物の固形分100重量部に対して3〜20重
量部であり、繊維含有量が低いマトリックス層の繊維含
有量はケイ酸カルシウム水和物の固形分100重量部に対
して1〜10重量部であり、且つ、繊維含有量の高いマト
リックス層の繊維含有量が、繊維含有量の低いマトリッ
クス層の繊維含有量の2倍以上であることを特徴とする
ケイ酸カルシウム成形体及びその製造方法。により容易
に達成される。
That is, an object of the present invention is to provide a calcium silicate compact and a method for producing the same, which is lightweight, has excellent flexural strength, and is excellent in inferiority, heat resistance and water resistance. The purpose is a calcium silicate compact having a multilayer structure in which a matrix layer containing reinforcing short fibers and calcium silicate hydrate is laminated in multiple stages,
A matrix layer having a high fiber content and a matrix layer having a low fiber content are alternately laminated and integrally molded,
The fiber content of the matrix layer having a high fiber content is 3 to 20 parts by weight based on 100 parts by weight of the solid content of calcium silicate hydrate, and the fiber content of the matrix layer having a low fiber content is calcium silicate. 1 to 10 parts by weight based on 100 parts by weight of the solid content of the hydrate, and the fiber content of the matrix layer having a high fiber content is at least twice the fiber content of the matrix layer having a low fiber content. And a method for producing the same. More easily achieved.

以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.

本発明に用いるケイ酸カルシウム水和物は、石灰質原
料例えば、生石灰とケイ酸質原料例えば珪石とは、水熱
合成反応させることにより得られる。通常、ゾノトライ
ト、トバモライトと呼ばれる結晶質のものから、CSH
I、CSH II、さらに非晶質のものまで広範囲に使用しう
る。
The calcium silicate hydrate used in the present invention is obtained by hydrothermally synthesizing a calcareous raw material such as quicklime and a siliceous raw material such as silica stone. Usually, from crystalline substances called xonotlite and tobermorite, CSH
I, CSH II, and even amorphous ones can be used in a wide range.

その製法としては、石灰質原料とケイ酸質原料とをCa
OとSiO2のモル比がほぼ等しくなるように調整した水性
スラリーを加圧下、160℃以上に昇温して反応させる方
法が採用される。本発明においては、このスラリーをそ
のまま用いることもできるが、乾燥して粉末にしたもの
に水を添加して用いることもできる。該スラリー中のケ
イ酸カルシウム水和物の固形分濃度は特に制限はない
が、10%以下が好ましく、特に生産性を考慮すると3〜
8%が好ましい。
As its manufacturing method, calcareous raw material and siliceous raw material are Ca
A method is employed in which an aqueous slurry adjusted so that the molar ratio of O and SiO 2 is almost equal is heated to 160 ° C. or more under pressure and reacted. In the present invention, this slurry can be used as it is, but can also be used by adding water to a powder obtained by drying. The solid content concentration of the calcium silicate hydrate in the slurry is not particularly limited, but is preferably 10% or less.
8% is preferable.

次に本発明に用いる補強繊維は、有機質、無機質の如
何なる繊維を用いてもよい。例えば、有機質繊維として
は、ナイロン、ポリエステルビニロン、レーラン、アラ
ミド等が用いられ、無機質繊維としては、スチール、ガ
ラス繊維、炭素繊維、SiC繊維、アルミナ繊維等が用い
られるが、この内、引張強度150kg/mm2以上、ヤング率5
ton/mm2以上有するものが好ましい。
Next, the reinforcing fiber used in the present invention may be any organic or inorganic fiber. For example, as the organic fiber, nylon, polyester vinylon, lelan, aramid, etc. are used, and as the inorganic fiber, steel, glass fiber, carbon fiber, SiC fiber, alumina fiber, etc. are used, of which tensile strength 150 kg / mm 2 or more, Young's modulus 5
Those having a ton / mm 2 or more are preferable.

補強繊維の形態としては、短繊維状が好ましく、その
繊維長は1〜50mm、好ましくは、5〜30mmの短繊維を用
いるのがよい。
The form of the reinforcing fiber is preferably a short fiber, and the fiber length thereof is 1 to 50 mm, preferably 5 to 30 mm.

本発明においては、補強短繊維の含有量の異なるスラ
リーを用いるが、このスラリー数は、2〜4で、好まし
くは2種のスラリーを用いるのがよい。例えば、1種は
補強繊維の含有量が高いスラリーで、他は含有量が低い
スラリーを用いる。この際、補強繊維の添加量は、含有
量の高いスラリーとする場合、ケイ酸カルシウム固型分
100重量部に対し3〜20重量部、一方、含有量の低いス
ラリーとする場合は、1〜10重量部添加して用いること
ができる。各スラリーの繊維含有比は、含有量の低いス
ラリーを基準とすると、その2倍以上繊維を含有してい
ることが好ましい。
In the present invention, slurries having different contents of reinforcing short fibers are used, and the number of slurries is 2 to 4, preferably two kinds of slurries. For example, one type uses a slurry having a high content of reinforcing fibers, and the other type uses a slurry having a low content. At this time, the amount of the reinforcing fiber added is such that when the content of the slurry is high, the calcium silicate solid content is increased.
3 to 20 parts by weight with respect to 100 parts by weight, on the other hand, in the case of a slurry having a low content, 1 to 10 parts by weight can be added and used. The fiber content ratio of each slurry is preferably twice or more the fiber content based on the slurry having a low content.

これらのスラリーを多段に積層し、一体成形して本発
明のケイ酸カルシウム成形体を得るが、該成形体に対す
る補強短繊維の総含有量は、通常、30重量%以下であ
り、水性、成形性を考慮すると10重量%以下が好まし
い。
These slurries are laminated in multiple stages and integrally molded to obtain the calcium silicate molded body of the present invention, but the total content of the reinforcing short fibers to the molded body is usually 30% by weight or less, aqueous, molded Considering the properties, it is preferably 10% by weight or less.

さらに、ケイ酸カルシウムのスラリーに補強短繊維を
添加する際、カルボキシル化SBRラテックスを添加して
もよい。該ラテックスを添加することにより、成形体の
曲げ強度及び靱性さらに加工性を向上させることができ
る。ラテックスの添加量としては、ケイ酸カルシウム水
和物の乾燥固型分100重量部に対し、固形分換算で2〜2
5重量部添加するのが好ましい。この添加量を増加する
と得られる成形体の強度が向上する一方、不燃性の低
下、カサ比重の増加、及びコストの上昇等の問題が生ず
る。
Furthermore, carboxylated SBR latex may be added when the reinforcing short fibers are added to the calcium silicate slurry. By adding the latex, it is possible to improve the bending strength and toughness of the molded product and further the processability. The amount of latex added is 2 to 2 in terms of solid content based on 100 parts by weight of dry solid content of calcium silicate hydrate.
It is preferable to add 5 parts by weight. While increasing the amount of addition improves the strength of the obtained molded product, it causes problems such as a decrease in incombustibility, an increase in bulk specific gravity, and an increase in cost.

また、該ラテックスを添加する際、ラテックス粒子と
ケイ酸カルシウムの結晶粒子の定着を促進させるため、
高分子凝集剤を用いてもよいし、ラテックス中の乳化剤
に起因する発泡を防止するため、発泡防止剤を添加して
もよい。
Further, when the latex is added, in order to promote the fixing of the latex particles and the crystal particles of calcium silicate,
A polymer flocculant may be used, or an antifoaming agent may be added to prevent foaming due to the emulsifier in the latex.

さらに、ラテックスを添加する際、補強繊維との定着
を促進するためカップリング剤を用いてもよい。
Further, when adding the latex, a coupling agent may be used in order to promote fixation with the reinforcing fiber.

これらの添加剤はごく少量添加するだけでよく、通
常、ラテックスの固型分100重量部に対して、0.1〜1重
量部用いる。
These additives may be added in a very small amount, and are usually used in an amount of 0.1 to 1 part by weight based on 100 parts by weight of the solid content of the latex.

このようにして得られたスラリーを加圧過等の方法
により、脱水成形をおこなうが、この際、スラリーを成
形機の金型中に供給したのち、該スラリー上部に、その
界面を乱さないように、他の繊維含有量が異なるスラリ
ーを供給し、このまま加圧、脱水をおこない、一体成形
することが好ましい。該成形法を用いることにより、2
層以上の多層構造を有する成形体が得られるが、成形体
の物性及び生産性の面から3層構造であることが好まし
い。
The slurry thus obtained is subjected to dehydration molding by a method such as pressurization. At this time, after the slurry is fed into the mold of the molding machine, the interface is not disturbed on the upper part of the slurry. Further, it is preferable to supply other slurries having different fiber contents, pressurize and dehydrate as they are, and integrally mold them. By using the molding method, 2
A molded product having a multi-layered structure of more than one layer can be obtained, but a three-layered structure is preferable from the viewpoint of physical properties and productivity of the molded product.

さらに好ましくは、繊維含有量の低いケイ酸カルシウ
ムのマトリックス層の両面に繊維含有量の高いマトリッ
クス層が積層されるように、一体成形することがよい。
More preferably, they are integrally molded so that a matrix layer having a high fiber content is laminated on both surfaces of a matrix layer of calcium silicate having a low fiber content.

成形後の乾燥温度は、通常、100〜180℃、好ましく
は、105〜150℃であり、乾燥時間は通常、5〜15時間で
ある。乾燥温度が低すぎたり乾燥時間が短かすぎると水
分が残存することによって、曲げ強度の低下及び成形物
の収縮率が増大する。一方、乾燥温度が高すぎたり、乾
燥時間が長すぎると成形物が硬くなり、成形物の靱性が
損なわれる。
The drying temperature after molding is usually 100 to 180 ° C, preferably 105 to 150 ° C, and the drying time is usually 5 to 15 hours. If the drying temperature is too low or the drying time is too short, water remains, which lowers the bending strength and increases the shrinkage rate of the molded product. On the other hand, if the drying temperature is too high or the drying time is too long, the molded product becomes hard and the toughness of the molded product is impaired.

〈実施例〉 以下実施例及び比較例により本発明をさらに詳細に説
明する。
<Examples> The present invention will be described in more detail with reference to Examples and Comparative Examples.

(実施例1) 生石灰(CaO:96.2%)49.6重量部に温水を加え、消和
し、消石灰スラリーとし、このスラリーに珪石(SiO29
6.4%)50.4重量部を添加し総水量が固形分に対し27.5
重量倍となるように水を加え、このスラリーを15kg/cm2
の水蒸気圧下で4時間反応を行い、ゾノトライトのケイ
酸カルシウム水和物を得た。
(Example 1) Quicklime (CaO: 96.2%) 49.6 warm water was added to the parts by weight hydrated consumption, and slaked lime slurry, silica in the slurry (SiO 2 9
6.4%) 50.4 parts by weight are added, and the total amount of water is 27.5 based on the solid content.
Water was added to make the weight twice, and this slurry was added at 15 kg / cm 2
The reaction was carried out under water vapor pressure for 4 hours to obtain zonotolite calcium silicate hydrate.

このケイ酸カルシウム水和物の乾燥固形物100重量部
に対し、補強短繊維として炭素繊維(引張強度310kg/mm
2、ヤング率23ton/mm2)を表−1に示す割合で添加、混
合して、これをスラリーAとした。同様に表−1に示す
スラリーBを作成した。
For 100 parts by weight of the dry solid of this calcium silicate hydrate, carbon fiber (tensile strength 310 kg / mm) was used as reinforcing short fiber.
2 , Young's modulus of 23 ton / mm 2 ) was added and mixed at a ratio shown in Table 1 to obtain slurry A. Similarly, a slurry B shown in Table-1 was prepared.

これらのスラリーをA、B、Aの順で、各々のスラリ
ー上部の界面を乱さないように成形機の金型内に供給し
このまま加圧、脱水して、一体成形したのち、120℃で1
0時間乾燥した。
These slurries are supplied in order of A, B, A into the mold of the molding machine so as not to disturb the interface of the upper part of each slurry, pressurize and dehydrate as they are, and integrally mold, then at 1
It was dried for 0 hours.

得られた成形体の曲げ試験結果を表−2に示す。尚、
曲げ試験は中央一線載荷3点曲げ試験法を用い試験体寸
法は、長さ30cm、幅5cm、厚さ3cm、曲げスパン22cmでお
こなった。
The bending test results of the obtained molded body are shown in Table-2. still,
The bending test was carried out by using the central one-line loaded three-point bending test method, and the dimensions of the test piece were 30 cm in length, 5 cm in width, 3 cm in thickness, and 22 cm in bending span.

(実施例2) 実施例1と同じ炭素繊維を用い、ケイ酸カルシウムの
スラリーに添加する際、カルボキシル化SBRラテックス
(“NiPol"2570×5:日本ゼオン製)をケイ酸カルシウム
の固型分100重量部に対し、固型分換算で7重量部添加
し表−1に示すスラリーC、Dとした。成形機金型への
供給順をC、D、Cとした以外は、実施例1と同様にし
て得られた成形体の試験結果を表−2に示す。
(Example 2) Using the same carbon fiber as in Example 1, a carboxylated SBR latex (“NiPol” 2570 × 5: manufactured by Zeon Corporation) was added to a calcium silicate slurry to obtain a calcium silicate solid content of 100. 7 parts by weight in terms of solid content was added to parts by weight to obtain slurries C and D shown in Table 1. Table 2 shows the test results of the molded product obtained in the same manner as in Example 1 except that the order of supply to the molding machine mold was C, D, and C.

(実施例3) 表−1に示すスラリーE、Fを用いE、F、Eの順で
成形機金型に供給した以外は、実施例1と同様にして得
られた成形体の試験結果を表−2に示す。
(Example 3) Test results of a molded body obtained in the same manner as in Example 1 except that slurry E and F shown in Table 1 were used and E, F, and E were supplied in this order to a molding machine die. It shows in Table-2.

(実施例4) 表−1に示すスラリーG、Hを用いG、H、Gの順で
成形機金型に供給した以外は実施例1と同様にして得ら
れた成形体の試験結果を表−2に示す。
(Example 4) A table showing the test results of a molded body obtained in the same manner as in Example 1 except that the slurries G and H shown in Table 1 were used and G, H, and G were supplied in this order to the molding machine mold. -2.

(実施例5) 実施例1と同じスラリーA、Bを用い、A、B、A、
B、Aの順で成形機金型に供給し、5層化した以外は、
実施例1と同様にして得られた成形体の試験結果を表−
2に示す。
Example 5 Using the same slurries A and B as in Example 1, A, B, A,
B and A are supplied in this order to the molding machine die, and five layers are formed,
Table 1 shows the test results of the molded body obtained in the same manner as in Example 1.
It is shown in FIG.

(比較例1) 表−1に示すスラリーIを用い、そのまま成形機金型
に供給した以外は実施例1と同様にして得られた成形体
の試験結果を表−2に示す。
(Comparative Example 1) Table 2 shows the test results of a molded body obtained in the same manner as in Example 1 except that the slurry I shown in Table 1 was used and supplied to the molding machine die as it was.

(比較例2) 表−1に示すスラリーJを用いた以外は、比較例1と
同様にして得られた成形体の試験結果を表−2に示す。
(Comparative Example 2) Table-2 shows the test results of the molded product obtained in the same manner as in Comparative Example 1 except that the slurry J shown in Table-1 was used.

(比較例3) 表−1に示すスラリーA、Bを、各々別個に成形機金
型に供給し加圧、脱水して嵩比重が約0.1の成形体をA2
枚、B1枚作成した。
(Comparative Example 3) The slurries A and B shown in Table 1 were separately supplied to a mold of a molding machine, pressurized and dehydrated to obtain a molded body having a bulk specific gravity of about 0.1 A2.
I made one sheet, B1 sheet.

これらの成形体をA、B、Aの順で積層し、再び成形
機にて、加圧、脱水して、実施例1で得た成形体と略、
同じ嵩比重の成形体を得た。
These molded bodies were laminated in the order of A, B, A, and again pressurized and dehydrated by a molding machine to obtain the molded body obtained in Example 1,
A molded product having the same bulk specific gravity was obtained.

以下、実施例1と同様にして得られた成形体の試験結
果を表−2に示す。
Hereinafter, the test results of the molded body obtained in the same manner as in Example 1 are shown in Table-2.

〈発明の効果〉 本発明によれば、不燃性、耐熱性及び耐水性に優れる
本来の利点を損なわずに、従来にない優れた曲げ強度を
有するケイ酸カルシウム成形体を得ることが可能であ
り、また全体の繊維含有量を変えずに、自由に物性の調
節が可能であるという利点を有することから、様々な用
途に対応でき、生産性向上にも効果がある。
<Effects of the Invention> According to the present invention, it is possible to obtain a calcium silicate molded product having an unprecedentedly excellent bending strength without impairing the original advantages of excellent incombustibility, heat resistance and water resistance. Also, since it has the advantage that the physical properties can be adjusted freely without changing the total fiber content, it can be used in various applications and is effective in improving productivity.

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】補強短繊維とケイ酸カルシウム水和物とを
含有したマトリックス層が多段に積層してなる多層構造
を有するケイ酸カルシウム成形体であって、繊維含有量
が高いマトリックス層と、繊維含有量が低いマトリック
ス層が交互に積層され一体成形されてなり、繊維含有量
が高いマトリックス層の繊維含有量はケイ酸カルシウム
水和物の固形分100重量部に対して3〜20重量部であ
り、繊維含有量が低いマトリックス層の繊維含有量はケ
イ酸カルシウム水和物の固形分100重量部に対して1〜1
0重量部であり、且つ、繊維含有量の高いマトリックス
層の繊維含有量が、繊維含有量の低いマトリックス層の
繊維含有量の2倍以上であることを特徴とするケイ酸カ
ルシウム成形体。
1. A calcium silicate compact having a multi-layer structure in which matrix layers containing reinforcing short fibers and calcium silicate hydrate are laminated in multiple stages, and a matrix layer having a high fiber content, A matrix layer having a low fiber content is alternately laminated and integrally molded, and the fiber content of the matrix layer having a high fiber content is 3 to 20 parts by weight based on 100 parts by weight of the solid content of calcium silicate hydrate. The fiber content of the matrix layer having a low fiber content is 1 to 1 with respect to 100 parts by weight of the solid content of calcium silicate hydrate.
A calcium silicate compact, which is 0 parts by weight and has a fiber content of a matrix layer having a high fiber content that is at least twice the fiber content of a matrix layer having a low fiber content.
【請求項2】該多段に積層してなる多層構造の表面層
が、繊維含有量が高いマトリックス層であることを特徴
とする特許請求の範囲第1項記載のケイ酸カルシウム成
形体。
2. The calcium silicate compact according to claim 1, wherein the surface layer having a multi-layer structure formed by stacking in multiple stages is a matrix layer having a high fiber content.
【請求項3】繊維含有量が高いマトリックス層と繊維含
有量が低いマトリックス層が積層され一体成形された多
層構造を有するケイ酸カルシウム成形体の製造方法であ
って、補強短繊維とケイ酸カルシウム水和物とを含有す
る、ケイ酸カルシウム水和物の固形分100重量部に対す
る繊維含有量が3〜20重量部である繊維含有量が高いス
ラリーと、ケイ酸カルシウム水和物の固形分100重量部
に対する繊維含有量が1〜10重量部である繊維含有量が
低いスラリー(且つ、繊維含有量の高いスラリーの繊維
含有量が繊維含有量の低いスラリーの繊維含有量の2倍
以上である)とを金型中に多段に積層し、且つ、そのス
ラリー界面を実質的に維持しながら加圧、脱水し、一体
成形した後、乾燥することを特徴とするケイ酸カルシウ
ム成形体の製造方法。
3. A method for producing a calcium silicate compact having a multi-layer structure in which a matrix layer having a high fiber content and a matrix layer having a low fiber content are laminated and integrally molded, the reinforcing short fiber and the calcium silicate. A slurry containing a hydrate and having a high fiber content of 3 to 20 parts by weight with respect to 100 parts by weight of the solid content of calcium silicate hydrate, and a solid content of calcium silicate hydrate of 100 The fiber content is 1 to 10 parts by weight with respect to parts by weight. The slurry having a low fiber content (and the fiber content of the slurry having a high fiber content is twice or more the fiber content of the slurry having a low fiber content. ) Are laminated in multiple stages in a mold, and while pressurizing and dehydrating while substantially maintaining the slurry interface, integrally molding, and then drying, a method for producing a calcium silicate compact. .
【請求項4】該原料スラリーがカルボキシル化SBRラテ
ックスを含有している特許請求の範囲第3項記載のケイ
酸カルシウム成形体の製造方法。
4. The method for producing a calcium silicate compact according to claim 3, wherein the raw material slurry contains a carboxylated SBR latex.
JP62194826A 1987-08-04 1987-08-04 Calcium silicate compact and method for producing the same Expired - Lifetime JP2520913B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62194826A JP2520913B2 (en) 1987-08-04 1987-08-04 Calcium silicate compact and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62194826A JP2520913B2 (en) 1987-08-04 1987-08-04 Calcium silicate compact and method for producing the same

Publications (2)

Publication Number Publication Date
JPS6438227A JPS6438227A (en) 1989-02-08
JP2520913B2 true JP2520913B2 (en) 1996-07-31

Family

ID=16330900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62194826A Expired - Lifetime JP2520913B2 (en) 1987-08-04 1987-08-04 Calcium silicate compact and method for producing the same

Country Status (1)

Country Link
JP (1) JP2520913B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2000805C (en) * 1988-10-17 1994-01-18 Kiyoshi Sudani Carbon/metal composite
US7670520B2 (en) * 2003-09-18 2010-03-02 United States Gypsum Company Multi-layer process for producing high strength fiber-reinforced structural cementitious panels with enhanced fiber content

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5432A (en) * 1977-06-02 1979-01-05 Kubota Ltd Method of making fiberrreinforced calcium silicate plate
JPS60246251A (en) * 1985-04-22 1985-12-05 ジェイエスアール株式会社 Calcium silicate moldings

Also Published As

Publication number Publication date
JPS6438227A (en) 1989-02-08

Similar Documents

Publication Publication Date Title
CA1094718A (en) High density asbestos-free tobermorite theraml insulation containing wollastonite
US6139620A (en) Calcium silicate board and method of manufacturing same
KR100905402B1 (en) Inorganic plate and its production
US4111712A (en) High density asbestos-free tobermorite thermal insulation containing wollastonite
JP2520913B2 (en) Calcium silicate compact and method for producing the same
JP5162067B2 (en) Calcium silicate hydrate slurry
JP5162068B2 (en) Inorganic bearing material and method for producing the same
JP7133946B2 (en) Calcium silicate board and manufacturing method thereof
US4895890A (en) Calcium silicate shaped product
JP2554534B2 (en) Calcium silicate molded plate and method for manufacturing the same
JPS6349405A (en) Manufacture of calcium silicate molded form
JPH0818397B2 (en) Calcium silicate compact and method for producing the same
JPH0112670B2 (en)
JP4886196B2 (en) Manufacturing method of lightweight inorganic board
JP2006231711A (en) Lightweight inorganic panel and its manufacturing method
JP4886198B2 (en) Lightweight inorganic board
JPH01264948A (en) Calcium silicate molded form
JPH02125062A (en) Light floor panel
EP1338579B1 (en) Method of manufacturing a calcium silicate board
JP5714923B2 (en) INORGANIC PLATE AND METHOD FOR PRODUCING INORGANIC PLATE
JPS63100049A (en) Calcium silicate formed product
JPS598530B2 (en) Manufacturing method of inorganic lightweight board
JPH10159316A (en) Tatami
JPH0832600B2 (en) Calcium silicate molding
JP2004123399A (en) Inorganic panel and its manufacturing process