WO2018003612A1 - Fiber-reinforced carbonated cement molded product and method for producing same - Google Patents
Fiber-reinforced carbonated cement molded product and method for producing same Download PDFInfo
- Publication number
- WO2018003612A1 WO2018003612A1 PCT/JP2017/022749 JP2017022749W WO2018003612A1 WO 2018003612 A1 WO2018003612 A1 WO 2018003612A1 JP 2017022749 W JP2017022749 W JP 2017022749W WO 2018003612 A1 WO2018003612 A1 WO 2018003612A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fiber
- cement
- reinforced
- reinforced carbonated
- molding
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B28—WORKING CEMENT, CLAY, OR STONE
- B28B—SHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
- B28B11/00—Apparatus or processes for treating or working the shaped or preshaped articles
- B28B11/24—Apparatus or processes for treating or working the shaped or preshaped articles for curing, setting or hardening
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B28—WORKING CEMENT, CLAY, OR STONE
- B28B—SHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
- B28B23/00—Arrangements specially adapted for the production of shaped articles with elements wholly or partly embedded in the moulding material; Production of reinforced objects
- B28B23/02—Arrangements specially adapted for the production of shaped articles with elements wholly or partly embedded in the moulding material; Production of reinforced objects wherein the elements are reinforcing members
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B14/00—Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
- C04B14/02—Granular materials, e.g. microballoons
- C04B14/26—Carbonates
- C04B14/28—Carbonates of calcium
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B14/00—Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
- C04B14/38—Fibrous materials; Whiskers
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B16/00—Use of organic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of organic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
- C04B16/02—Cellulosic materials
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B16/00—Use of organic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of organic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
- C04B16/04—Macromolecular compounds
- C04B16/06—Macromolecular compounds fibrous
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/02—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B40/00—Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
- C04B40/02—Selection of the hardening environment
Definitions
- the present invention relates to a fiber-reinforced carbonated cement molded article having a high bending strength and a small dimensional change rate, and a method for producing the same.
- Cement moldings are building materials that are widely used all over the world for various applications such as slate. Cement moldings are required to improve lightness while ensuring strength from the viewpoints of reduction in structure strength and earthquake resistance. For example, there is a technique in which reinforcing fibers are added to a cement molded product.
- the bending strength of the molded product is insufficient only with the pre-curing, and the molded product itself does not withstand volume expansion due to carbonation, and the specific gravity does not increase. In some cases, cracks are induced, resulting in a decrease in the bending strength of the molded product. Therefore, there is still room for improvement regarding the bending strength and the dimensional change rate of the molded product.
- an object of the present invention is to provide a fiber-reinforced carbonated cement molded article having a high bending strength and a small dimensional change rate, and a method for producing the same.
- the present inventor arrived at the present invention as a result of detailed studies on a fiber-reinforced carbonated cement molding and a method for producing the same.
- the inorganic needle-like product is a fiber-reinforced carbonated cement molded product having a length of 1 mm or less and an aspect ratio of 20 or more.
- [4] The fiber-reinforced carbonated cement molded article according to any one of [1] to [3], wherein the inorganic needles are made of calcium carbonate or potassium titanate.
- [5] The composition according to any one of [1] to [4], wherein 2 ⁇ 10 ⁇ 2 to 1000 ⁇ 10 ⁇ 2 of the inorganic needles are contained per 1 ⁇ m 2 of the fiber-reinforced carbonated cement molding. Fiber reinforced carbonated cement molding.
- [6] The fiber-reinforced carbonated cement molded article according to any one of [1] to [5], wherein the cement component contains 18% by mass or more of belite.
- a fiber-reinforced cement molded article containing a cement component, inorganic needles and fibers, The inorganic needle-like article is a fiber-reinforced cement molded article having a length of 1 mm or less and an aspect ratio of 20 or more.
- a method for producing the fiber-reinforced carbonated cement molding according to any one of the above. [10] The method according to [9], wherein the curing time in the pre-curing step is within 12 hours.
- the fiber-reinforced carbonated cement molding which is one embodiment of the present invention includes a cement component, inorganic needles and fibers.
- cement component examples of the cement component contained in the fiber-reinforced carbonated cement molding include various Portland cements such as ordinary cement, early-strength cement, and ultra-early-strength cement.
- the cement component may be various mixed cements obtained by blending blast furnace slag, fly ash or silica with these Portland cements, moderately heated cement, alumina cement, or the like.
- the cement alite: 3CaO ⁇ SiO 2 (composition formula C 3 S), belite: 2CaO ⁇ SiO 2 (composition formula C 2 S), aluminate: Al 2 O 3 (composition formula C 3 A)
- Ferrite Cement minerals such as 4CaO.Al 2 O 3 .Fe 2 O 3 (composition formula C 4 AF) are included.
- Belite is a kind of dicalcium silicate containing CaO and SiO 2 as main components, and there are ⁇ -type, ⁇ ′-type, ⁇ -type, and ⁇ -type, each having a different crystal structure and density. Of these, ⁇ -type, ⁇ ′-type and ⁇ -type react with water and exhibit hydraulic properties.
- the ⁇ -type does not exhibit hydraulic properties and has the property of reacting with carbon dioxide.
- Ordinary cements such as Portland cement basically contain almost no ⁇ -type belite ( ⁇ belite).
- the cement component is subjected to carbonation treatment after pre-curing, and therefore, commercially available belite cement or cement obtained by mixing belite cement with various cements may be used.
- ⁇ type ⁇ ′ type, ⁇ type, and ⁇ type, ⁇ type and ⁇ type are preferable.
- the cement component preferably has a belite content of 18% by mass or more, more preferably 20% by mass or more, and further preferably 22% by mass or more, preferably 60% by mass or less. More preferably, it has a belite content of 58% by mass or less. If the belite content of the cement component is greater than or equal to the above lower limit value, the fiber reinforced carbonated cement exhibits a high densification effect by belite, good dimensional stability and water resistance, and excellent paintability. A molded product can be obtained. Moreover, when the belite content of the cement component is not more than the above upper limit, the amount of the hydraulic component serving as a binder is sufficient, and a fiber-reinforced carbonated cement molded product having high bending strength can be obtained. .
- the reaction rate of belite is preferably 70% or more.
- belite also undergoes a hydration reaction, it produces a C—S—H gel similar to alite and is effective as a binder.
- the reaction rate is still low and the binder effect is insufficient.
- the reaction rate of 70% or higher of belite can be secured at an early stage, the bending strength is high, and the dimensional change rate is high. It is possible to supply a low product.
- the reaction rate of belite is more preferably 75% or more, and further preferably 80% or more.
- the content of the cement component in the fiber-reinforced carbonated cement molding is usually 50% by mass or more, preferably 60% by mass or more, more preferably 70% by mass or more, based on the total mass of the fiber-reinforced carbonated cement molding. More preferably 80% by weight or more, particularly preferably 85% by weight or more, particularly preferably 90% by weight or more, very preferably 92% by weight or more, preferably 99% by weight or less, more preferably 98% by weight or less. More preferably, it is 97 mass% or less.
- the fiber-reinforced carbonated cement molding can obtain a reinforcing effect by containing fibers.
- the fiber contained in the fiber-reinforced carbonated cement molding may be an inorganic fiber or an organic fiber.
- inorganic fibers include alkali-resistant glass fibers, steel fibers (steel fibers), stainless fibers, carbon fibers, ceramic fibers, and asbestos fibers.
- Organic fibers include recycled fibers such as rayon fibers (polynosic fibers, solvent-spun cellulose fibers, etc.); polyvinyl alcohol fibers (polyvinyl alcohol fibers, vinylon, etc.), polyolefin fibers (polyethylene fibers, polypropylene fibers, ethylene / propylene) Copolymer fibers, etc.), ultrahigh molecular weight polyethylene fibers, polyamide fibers (polyamide 6, polyamide 6,6, polyamide 6,10 etc.), aramid fibers (particularly para-aramid fibers), polyparaphenylene benzobisoxazole fibers (PBO) Fiber), polyester fiber (PET, PBT, etc.), acrylonitrile fiber, polyurethane fiber, acrylic fiber, polyphenylene sulfide fiber (PPS fiber), polyether ether ketone fiber (PEEK fiber), etc. Synthetic resin fibers. These alkali resistant fibers may be used alone or in combination of two or more.
- organic fibers are preferable from the viewpoint of improving the bending strength and reducing the weight of the fiber-reinforced carbonated cement molding.
- synthetic resin fibers alkali-resistant synthetic resin fibers are preferable from the viewpoint of chemical durability against cement alkali in the fiber-reinforced carbonated cement molding.
- Alkali-resistant synthetic resin fibers include polyvinyl alcohol fibers (polyvinyl alcohol fibers, vinylon, etc.), polyolefin fibers (from the viewpoint that the fiber-reinforced carbonated cement molding has high bending strength and can be manufactured at low cost.
- Polyethylene fibers, polypropylene fibers, ethylene / propylene copolymer fibers, etc.), acrylic fibers and aramid fibers are preferred, polyvinyl alcohol fibers, polyethylene fibers, polypropylene fibers, acrylic fibers and aramid fibers are more preferred, and polyvinyl alcohol fibers are further preferred. preferable.
- the said fiber can be manufactured by a conventionally well-known method.
- the polyvinyl alcohol fiber may be spun by a wet, dry-wet or dry method using a spinning stock solution in which a polyvinyl alcohol polymer is dissolved in a solvent.
- the aspect ratio of the fibers contained in the fiber-reinforced carbonated cement molding is preferably 30 or more, more preferably 50 or more, still more preferably 70 or more, particularly 90 or more, and particularly preferably 100 or more. Is preferably 1000 or less, more preferably 900 or less, still more preferably 800 or less, particularly preferably 700 or less, and particularly preferably 600 or less.
- the aspect ratio of the fiber is not less than the above lower limit value, the adhesive force of the fiber to the cement component is increased, and a high toughness imparting effect to the fiber-reinforced carbonated cement molded product is exhibited.
- the aspect ratio of the fiber is not more than the above upper limit value, the fibers are less likely to get entangled, and the fiber is not easily broken or damaged due to the fiber following the expansion and contraction of the molded body. It can be even higher.
- the fibers contained in the fiber-reinforced carbonated cement molding preferably have an average fiber diameter of 1 to 200 ⁇ m, and more preferably 2 to 100 ⁇ m. If the average fiber diameter is equal to or greater than the lower limit value, the fibers can be uniformly dispersed. If the average fiber diameter is equal to or smaller than the upper limit value, the number of fibers per unit volume in the fiber-reinforced carbonated cement molded product is increased, resulting in a high reinforcing effect. Is demonstrated.
- the fiber content in the fiber-reinforced carbonated cement molding is preferably 0.1% by mass or more, more preferably 0.3% by mass or more, and still more preferably, based on the total mass of the fiber-reinforced carbonated cement molding. 0.5% by mass or more, particularly preferably 0.7% by mass or more, particularly preferably 1% by mass or more, preferably 5% by mass or less, more preferably 4% by mass or less, still more preferably 3% by mass or less, Especially preferably, it is 2 mass% or less.
- the reinforcing effect of the fiber-reinforced carbonated cement molded product by the fibers can be further enhanced, and further, the fiber-reinforced carbonated cement molded product.
- the carbonation reaction rate can be increased, and the reinforcing effect of the fiber-reinforced carbonated cement molding can be further enhanced.
- the fiber content in the fiber-reinforced carbonated cement molding is not more than the above upper limit value, the fiber dispersibility in the fiber-reinforced carbonated cement molding is good. Can be reinforced.
- the polyvinyl alcohol fiber may be a composite fiber of a polyvinyl alcohol polymer and another polymer, or may be a sea-island fiber.
- the polyvinyl alcohol-based polymer is composed of vinyl alcohol, and may be a copolymer with other monomers other than vinyl alcohol as long as the effects of the present invention are not impaired, or may be modified.
- the ratio of the modified unit in the polyvinyl alcohol polymer is preferably 30 mol% or less, more preferably 10 mol% or less.
- the average degree of polymerization of the polyvinyl alcohol polymer determined by the viscosity method in an aqueous solution at 30 ° C. is preferably 1000 or more, more preferably 1500 or more, and the production cost, etc. From the above point, it is preferably 10,000 or less, more preferably 5000 or less, and still more preferably 3000 or less.
- the saponification degree of the polyvinyl alcohol polymer is preferably 99 mol% or more, more preferably 99.8 mol% or more. 100 mol% or less.
- Polyvinyl alcohol fiber can be produced, for example, by the following method.
- a polyvinyl alcohol-based polymer is dissolved in water at a concentration of 10 to 60% by mass, and wet spinning is performed in a coagulation bath containing sodium hydroxide and bow glass using the obtained prevention stock solution.
- a polyvinyl alcohol fiber can be obtained by performing roller stretching, neutralization, wet heat stretching, washing with water and drying. Stretching is usually performed at a stretching temperature of 200 to 250 ° C., preferably 220 to 240 ° C. The draw ratio is usually 5 times or more, preferably 6 times or more. Thereafter, the polyvinyl alcohol fiber is cut into a desired fiber length within the above range.
- the inorganic needle-like material contained in the fiber-reinforced carbonated cement molding has a length of 1 mm or less, preferably 0.8 mm or less, more preferably 0.6 mm or less, still more preferably 0.4 mm or less, particularly preferably 0.8 mm. Needle-like inorganic crystals of 2 mm or less, particularly preferably 0.1 mm or less, very preferably 0.05 mm or less, particularly 0.03 mm or less. Due to the needle-like shape of the inorganic crystals, the dispersibility of the inorganic crystals in the fiber-reinforced carbonated cement molding is better and the mechanical strength such as bending strength is less uneven than the shape of thin plate or scale.
- the fiber-reinforced carbonated cement molded article is rich in inorganic crystal filling properties, a fiber-reinforced carbonated cement molded article having high mechanical strength can be obtained.
- the length of the inorganic needles is equal to or less than the above upper limit value, the dispersibility of the inorganic needles in the fiber-reinforced carbonated cement molded article is good, so there is little unevenness in mechanical strength such as bending strength, Since the fiber-reinforced carbonated cement molded article is rich in inorganic needle-like filling, a fiber-reinforced carbonated cement molded article having high mechanical strength can be obtained.
- a fiber-reinforced carbonated cement molding having a high bending strength and a low dimensional change rate can be obtained by using an inorganic needle having the predetermined length and aspect ratio.
- the length of the inorganic needles is usually 0.002 mm or more.
- the length of the inorganic needles is the average of the lengths of the inorganic needles that are confirmed in the field of view by dividing a part of the fiber-reinforced carbonated cement molding and observing the fracture surface with an electron microscope. For example, at 10 arbitrary positions on the fracture surface of the fiber-reinforced carbonated cement molding, 60 ⁇ m ⁇ 90 ⁇ m cross-sectional enlarged images were obtained by an electron microscope, and the 10 cross-sectional enlarged images were obtained.
- the length of the inorganic needles can be calculated by arbitrarily selecting 50 from the inorganic needles observed inside and calculating the average value of the lengths as N number 50.
- the inorganic needles contained in the fiber-reinforced carbonated cement molding have an aspect ratio of 20 or more, preferably 25 or more, more preferably 30 or more, and even more preferably 33 or more.
- the aspect ratio of the inorganic needle-shaped material is not less than the above lower limit, the dimensional change rate of the fiber-reinforced carbonated cement molded product is small, cracks can be suppressed, and the mechanical strength of the fiber-reinforced carbonated cement molded product is further reduced. Can be improved.
- the aspect ratio of the inorganic needles is usually 1000 or less, especially 500 or less, especially 300 or less, more preferably 100 or less, for example 50 or less.
- the aspect ratio of the inorganic needles is a part of the fiber-reinforced carbonated cement molded product, and the inorganic needles of the fracture surface are observed with an electron microscope and confirmed in the field of view.
- the inorganic needles include calcium carbonate, titanium oxide, potassium titanate, basic magnesium sulfate, aluminum hydroxide, aluminum borate, calcium silicate, gypsum fiber, glass fiber, sepiolite, zonolite, wollastonite, Examples include kaolinite and kapiolite, and mixtures thereof.
- the inorganic needles are preferably made of calcium carbonate, potassium titanate or aluminum borate, more preferably calcium carbonate or potassium titanate, More preferably, it consists of calcium.
- the fiber-reinforced carbonated cement molded product preferably has 2 ⁇ 10 ⁇ 2 to 1000 ⁇ 10 ⁇ 2 inorganic needles per 1 ⁇ m 2 of fiber-reinforced carbonated cement molded product.
- the number per 1 ⁇ m 2 of the inorganic needles in the fiber-reinforced carbonated cement molded product is equal to or higher than the lower limit, the bending strength of the fiber-reinforced carbonated cement molded product can be further increased.
- the number per 1 ⁇ m 2 of the inorganic needle-like material in the fiber-reinforced carbonated cement molded product is equal to or less than the upper limit, moldability and dispersibility are good.
- the number per unit is divided into 10 ⁇ m ⁇ 10 ⁇ m sections in a 20 ⁇ m ⁇ 30 ⁇ m cross-sectional enlarged image obtained by dividing a part of the fiber reinforced carbonated cement molding and observing the fracture surface with an electron microscope.
- the standard deviation of the number of inorganic needles that can be confirmed in 10 arbitrarily selected 10 ⁇ m ⁇ 10 ⁇ m sections is preferably 15 or less, more preferably 14 This is less than this, more preferably 13 or less, and usually 3 or more.
- the standard deviation is less than or equal to the above upper limit, the dispersibility of inorganic needles in the fiber-reinforced carbonated cement molding is high, so there is little unevenness in mechanical strength such as bending strength, and fiber-reinforced carbonation with high mechanical strength. A cement molding can be obtained.
- the said standard deviation can measure the number of the inorganic needle-like objects which can be confirmed in a 10 micrometer x 10 micrometer division about 10 places, respectively, and can calculate it based on the measured value.
- the content of the inorganic needles in the fiber-reinforced carbonated cement molding depends on the type of inorganic needles and the amount and type of other components such as fibers, pulp and aggregates. Based on the total mass of the fiber-reinforced carbonated cement molding, preferably 0.1 to 10% by mass, more preferably 0.3 to 8% by mass, still more preferably 0.6 to 6% by mass, particularly preferably 0.8 to 4% by mass, particularly preferably 1 to 3% by mass.
- the content of the inorganic needle-like material in the fiber-reinforced carbonated cement molded product is equal to or higher than the lower limit, the bending strength of the fiber-reinforced carbonated cement molded product can be further increased.
- the content of the inorganic needles in the fiber-reinforced carbonated cement molding can be calculated from, for example, the amount of inorganic needles added, and when the inorganic needles are made of potassium titanate or the like. It can also be measured by quantifying elements such as titanium by elemental analysis or the like.
- the fiber-reinforced carbonated cement molding further includes pulp.
- the pulp may be natural pulp or synthetic pulp. Natural pulp includes unbleached and bleached pulp from conifers or hardwoods, specifically pulp obtained from straw, bamboo, cotton, hemp, ramie, ridge, honey or eucalyptus. . In addition, recovered waste paper obtained from newspapers, paper bags, cardboard boxes, and the like is also included. Examples of the synthetic pulp include polyolefin-based pulp and polyaramid-based pulp. The synthetic pulp may be anything as long as it is a fibrillar substance having a shape similar to these.
- the above pulp may be beaten.
- the CSF (Canadian Standard Freeness) representing the degree of beating is preferably 30 to 750 ml, more preferably 50 to 300 ml.
- CSF can be measured according to JIS P 8121 “Pulp Freeness Test Method”.
- the pulp can be beaten with a beater such as a refiner or beater.
- the content of the pulp is preferably 1 to 10% by mass, more preferably 2 to 6% by mass with respect to the fiber-reinforced carbonated cement molded product. .
- the content of the pulp in the fiber-reinforced carbonated cement molded product is equal to or higher than the lower limit, the trapping property of the particulate matter is improved.
- the pulp content in the fiber-reinforced carbonated cement molding is less than or equal to the above upper limit, the uniformity of dispersion becomes good, delamination is suppressed, and higher flame retardancy can be obtained.
- the fiber reinforced carbonated cement molding comprises pulp.
- the fiber-reinforced carbonated cement molded product contains pulp, the dispersibility of fibers in the fiber-reinforced carbonated cement molded product is improved, air permeability control is facilitated, and the reinforcing effect can be contributed.
- the production is facilitated in the case of producing a fiber-reinforced carbonated cement molding by a papermaking method.
- Papermaking means that a slurry-like curable composition in which a cement component or the like is suspended in an aqueous medium is filtered and molded into a mesh.
- the papermaking plate (papermaking body) refers to a molding plate (molded product) formed by the papermaking.
- the fiber reinforced carbonated cement molding may include aggregate.
- various aggregates can be used as necessary. Examples of the aggregate include fine aggregate, lightweight aggregate, and coarse aggregate. Aggregates may be used alone or in combination of two or more.
- the fine aggregate may be a fine aggregate having a particle size of 5 mm or less, such as sands having a particle size of 5 mm or less; silica stone, fly ash, blast furnace slag, volcanic ash-based shirasu, various sludges, rock minerals, etc. Fine aggregate obtained by pulverizing or granulating the inorganic material. These fine aggregates may be used alone or in combination of two or more. Examples of sands include sands such as river sand, mountain sand, sea sand, crushed sand, quartz sand, slag, glass sand, iron sand, ash sand, calcium carbonate, and artificial sand. These fine aggregates may be used alone or in combination of two or more.
- the coarse aggregate is an aggregate containing 85% by mass or more of particles having a particle size of 5 mm or more.
- the coarse aggregate may be composed of particles having a particle size of more than 5 mm.
- Examples of the coarse aggregate include various types of gravel, artificial aggregate (eg, blast furnace slag), recycled aggregate (eg, recycled aggregate of building waste), and the like. These coarse aggregates may be used alone or in combination of two or more.
- Lightweight aggregates include natural lightweight aggregates such as volcanic gravel, expanded slag and charcoal, and artificial lightweight aggregates such as foamed pearlite, foamed perlite, foamed black stone, vermiculite, shirasu balloons and fly ash microballoons. Can be mentioned. These lightweight aggregates may be used alone or in combination of two or more. Since the fiber-reinforced carbonated cement molded product can maintain mechanical strength even when it is thinned, it is possible to reduce the weight while reducing the amount of lightweight aggregate that is easily pulverized during the manufacturing process. Therefore, the proportion of the lightweight aggregate in the total aggregate can be reduced to preferably 10% by mass or less, more preferably 5% by mass or less.
- the fiber-reinforced carbonated cement molding may include a functional aggregate.
- functional aggregates include colored aggregates, hard aggregates, aggregates having elasticity, aggregates having a specific shape, and the like.
- layered silicates for example, , Mica, talc, kaolin
- alumina for example, silica and the like.
- the ratio of the functional aggregate to the aggregate can be appropriately set according to each type.
- the mass ratio of the aggregate to the functional aggregate is 99/1 to 70/30, preferably 98/2 to 75/25, more preferably 97/3 to 80/20.
- These functional aggregates may be used alone or in combination of two or more.
- the mass ratio of aggregate (S) to cement component (C) is preferably 1 / It may be 20 to 100/1, more preferably 1/10 to 50/1, still more preferably 1/6 to 3/1.
- the fiber reinforced carbonated cement molding comprises aggregate.
- the fiber-reinforced carbonated cement molding includes the aggregate, not only the reinforcing effect by the aggregate but also the coexistence of the aggregate and the fiber can increase the carbonation reaction rate and increase the mechanical strength.
- the above-mentioned fiber-reinforced carbonated cement molding may contain various admixtures as necessary.
- the admixture include AE agent, fluidizing agent, water reducing agent, high performance water reducing agent, AE water reducing agent, high performance AE water reducing agent, thickener, water retention agent, water repellent, swelling agent, curing accelerator, A carbonation accelerator, a setting retarder, etc. are mentioned.
- the admixture may be contained alone or in combination of two or more.
- the above-mentioned fiber-reinforced carbonated cement molding may also contain a water-soluble polymer substance as necessary.
- the water-soluble polymer substance include cellulose ethers such as methyl cellulose, hydroxymethyl cellulose, hydroxyethyl cellulose, carboxymethyl cellulose, and hydroxypropyl methyl cellulose, polyvinyl alcohol, polyacrylic acid, and lignin sulfonate.
- the water-soluble polymer substance may be used alone or in combination of two or more.
- the above-mentioned fiber reinforced carbonated cement molding may contain a hardening accelerator (a cement ingredient) as necessary.
- a hardening accelerator a cement ingredient
- the curing accelerator include calcium chloride, aluminum chloride, iron chloride, sodium chloride, magnesium chloride, alkali sulfate, alkali carbonate, sodium silicate, and calcium sulfate (such as gypsum).
- the fiber-reinforced carbonated cement molding may contain a carbonation accelerator as necessary.
- the carbonation accelerator include water-based polymer dispersions, thermoplastic emulsions such as polyacrylic acid esters, polyvinyl acetate, and ethylene-vinyl acetate copolymers, and synthetic rubber latexes such as styrene-butadiene rubber.
- the re-emulsifying powder resin include ethylene-vinyl acetate copolymer and vinyl acetate vinyl versatate (VAVeoVa).
- the fiber-reinforced carbonated cement molding may contain a chemical having a high affinity for carbon dioxide gas.
- drugs having high affinity include amine drugs such as monoethanolamine, diethanolamine, and triethanolamine, and gels on which they are immobilized, without particular limitation. In addition, you may use these individually or in combination of 2 or more types.
- the fiber-reinforced carbonated cement molding is carbonated.
- Carbonation means that Ca (OH) 2 generated by a hydration reaction of a cement component and belite, which is a cement component, react with carbon dioxide gas to generate CaCO 3 .
- the carbonation reaction rate of the fiber-reinforced carbonated cement molded product is preferably 30% or more, more preferably 40% or more, still more preferably 50% or more, particularly preferably 60% or more, and particularly preferably 70% or more. Is preferably 80% or more, and most preferably 90% or more.
- the fiber reinforced carbonated cement molding has a higher mechanical strength (bending strength, etc.) because the inside of the fiber reinforced carbonated cement molding becomes more dense.
- a carbonated cement molding can be obtained.
- the upper limit of the carbonation reaction rate of the fiber-reinforced carbonated cement molded product is not particularly limited, but is usually 99% or less, such as 98% or less, and particularly 95% or less.
- the carbonation reaction rate of the fiber-reinforced carbonated cement molding can be measured by the method described later.
- the fiber-reinforced carbonated cement molded article is excellent in mechanical strength and can be thinned.
- the thickness of the thinnest part in the fiber-reinforced carbonated cement molded article is preferably 8 to 100 mm, more preferably 10 mm. It is ⁇ 95 mm, more preferably 15 to 90 mm.
- the manufacturing method of the said fiber reinforced carbonated cement molding is not specifically limited.
- a fiber reinforced carbonated cement molding is obtained by a method including a pre-curing step for precuring a molded body to obtain a cured body, and a carbonation curing step for obtaining a fiber-reinforced carbonated cement molding by carbonizing and curing the cured body. Can be manufactured.
- the above-mentioned cement component, fiber and water, and if necessary, pulp, aggregate and / or various admixtures are mixed by mixing means such as a known or conventional mixer to obtain a slurry-like curable composition. be able to.
- a curable composition contains a pulp
- the mixing order is not particularly limited, but preferably, when the curable composition contains pulp, the pulp and water are mixed and the pulp is dispersed in water, and then other components such as cement components and admixtures are used. It is more preferable from the viewpoint of the dispersibility of each component to add and mix the inorganic needles together with the additives, and finally add the fibers.
- the inorganic needles themselves may be added to the above mixture, or a compound that is a raw material for the inorganic needles may be added to form the inorganic needles in situ in the mixture.
- the inorganic needle-like material may be formed in the fiber-reinforced carbonated cement molding after passing through the pre-curing step and the carbonation-curing step.
- the fiber dispersion method can be performed by various methods.
- a mixer or kneader having high stirring performance can be used.
- the mixer and kneader having high stirring performance include, for example, a vertical mixer, a screw mixer, a double-arm kneader, a pressure kneader, and an Eirich used in papermaking. Examples thereof include a mixer, a super mixer, a planetary mixer, a Banbury mixer, a continuous mixer, and a continuous kneader.
- the water contained in the hydraulic composition may have, for example, a water / cement component ratio (W / C) of 20 to 80% by mass, preferably 25 to 70% by mass, more preferably 30 to 60% by mass. %.
- a molded body can be obtained by molding the slurry-like curable composition prepared as described above.
- the curable composition is molded as follows. The above curable composition is fed into a plurality of bats of a wet papermaking machine, is made into a cake on the cylinder surface by the rotation of a mesh cylinder of internal negative pressure in the bat, is transported to a making roll, and is a single layer Or it is laminated
- the separated plate-like molded product in a wet state is pressure-molded with a press if necessary, then cured (pre-curing and carbonation curing), and then dried as necessary to form a desired hydraulic inorganic molding.
- a board is manufactured.
- the molding method of the hydraulic composition is not particularly limited, and a general fiber-reinforced concrete or cement molding method can also be used.
- the pre-curing step is preferably performed to such an extent that the entire molded body molded into a desired shape is cured. If the whole is not cured, not only the molded body may be damaged during handling to deplate or mold and move to the subsequent process, but also mass increase due to CaCO 3 generated by carbonation described later (that is, volume increase) ), The molded body is entangled and expands, so that the densification effect is hardly exhibited. Therefore, it is preferable to perform the pre-curing at least in a high-humidity atmosphere in which moisture in the molded body does not evaporate.
- Curing is due to the hydration reaction (condensation reaction) of the cement component, but if the moisture in the molded body evaporates, the hydration reaction of the cement component is inhibited, and curing may not proceed until the molded body can be handled. .
- the relative humidity is preferably 30 to 100%, more preferably 50 to 100%, still more preferably 65 to 100%, even more preferably 80 to 100%, particularly preferably 90 to 100%, particularly preferably 100%.
- a pre-curing process is performed in an atmosphere.
- the molded body is put into a container or bag that does not allow moisture to pass, a plastic plate or plastic film (polyethylene sheet, etc.), a method of sandwiching the molded body between metal plates, etc.
- Curing may be performed by a method that can prevent evaporation of moisture in the molded body.
- the curing temperature in the pre-curing process is not particularly limited, but is, for example, 30 to 120 ° C, preferably 50 to 110 ° C.
- an autoclave treatment may be performed.
- the maturity necessary for curing (curing temperature ° C. ⁇ curing time hr) is preferably 200 to 2000, more preferably 250 to 1500, and still more preferably 300 to 1000.
- the molded body can include the inorganic needles, the mechanical strength of the molded body can be increased, so that the cured body can be removed from the mold even if the curing time in the pre-curing process is short. It can be cured to any extent, and even if the curing time in the precuring process is short, the expansion of the cured body can be suppressed in the carbonation curing process, and the fiber reinforcement has high bending strength and low dimensional change rate. Since a carbonated cement molding can be obtained, it is industrially advantageous.
- the curing time in the pre-curing step depends on the curing temperature, but is preferably within 12 hours, more preferably within 10 hours, even more preferably within 8 hours, particularly preferably within 6 hours, especially Preferably it is within 5 hours.
- the curing time is usually 1 hour or longer, particularly 2 hours or longer, especially 3 hours or longer.
- the curing atmosphere gas in the pre-curing step is not particularly limited, and other than air, carbon dioxide, nitrogen, oxygen, water vapor, helium or argon having a concentration lower than the concentration in carbonation curing, or a mixed gas thereof is used in the present invention. Can be used in a range that does not impede the purpose.
- the hydraulic composition preferably contains pulp and / or aggregate.
- the air permeability of the cured product obtained in the pre-curing process can be increased.
- the increase in the air permeability facilitates the subsequent carbonation reaction.
- the air permeability of the cured body is, for example, increasing the content of pulp and / or aggregate in the hydraulic composition, partially using lightweight aggregate as the aggregate, adjusting the press pressure, etc. Can be adjusted.
- a fiber-reinforced cement molded article comprising the above cement component, inorganic needles and fibers, wherein the inorganic needles have a length of 1 mm or less and an aspect ratio.
- fiber reinforced cement moldings having a ⁇ 20.
- the fiber-reinforced cement molded product is not carbonized, that is, a cured product after the pre-curing step.
- the fiber-reinforced cement molding can achieve high bending strength and low dimensional change rate by undergoing carbonation.
- the carbonation reaction rate of the fiber-reinforced cement molded article is preferably 5% or less, more preferably 3% or less, still more preferably 1% or less, and usually 0% or more.
- the cured body obtained by the pre-curing step is preferably cured as a whole so that it can be taken out from the mold.
- a carbonation curing process is performed using this hardening body.
- Ca (OH) 2 [see the following formula (1)]
- the cured body shifts from highly alkaline to neutral side, it is possible to easily confirm the carbonation reaction rate by applying a phenolphthalein solution to the cut surface of the cured body and observing the coloration state. it can.
- the carbonation curing step is preferably performed in an atmosphere having a high carbon dioxide gas concentration.
- the carbonation curing step is preferably performed in a carbon dioxide gas atmosphere having a concentration of 5% or more, more preferably 8% or more, preferably 30% or less, more preferably 20% or less.
- carbon dioxide concentration is not less than the above lower limit, carbonation is further promoted, the mechanical strength of the fiber-reinforced carbonated cement molding is improved, and the selectivity of the paint is further expanded.
- the carbon dioxide concentration is less than or equal to the above upper limit, the danger due to excessive increase of the carbon dioxide concentration is reduced, and it is economically advantageous.
- the atmospheric gas in addition to carbon dioxide gas, a gas such as air, nitrogen, oxygen, water vapor, helium, or argon can be mixed and used within a range that does not impair the object of the present invention.
- Carbonation in a high-pressure vessel containing carbon dioxide gas is also effective from the viewpoint of improving productivity.
- the carbonation temperature is not particularly limited, but the higher the temperature, the faster the carbonation reaction. For example, 0 ° C. or higher, preferably 20 ° C. or higher, more preferably 30 ° C. or higher, and still more preferably 40 ° C. C. or higher, particularly preferably 50 ° C. or higher, particularly preferably 60 ° C. or higher.
- a carbonation curing process when using a polyvinyl alcohol-type fiber as a fiber, it is preferable to perform a carbonation curing process at the temperature of 120 degrees C or less from a heat-and-moisture-resistant viewpoint of the fiber.
- the time for the carbonation curing process varies depending on the time for the carbonation curing process and the concentration of carbon dioxide gas, but is usually 8 to 48 hours.
- the carbonation curing step is preferably performed at a constant humidity.
- the relative humidity in the carbonation curing process is preferably 30 to 95%, more preferably 35 to 90%, and still more preferably 40 to 85%.
- the relative humidity in the carbonation curing step is not less than the above lower limit value, the carbonation reaction and the hydration reaction of the cement component can be further promoted.
- the relative humidity in the carbonation curing process is not more than the above upper limit value, the generation of condensed water on the surface of the cured body is suppressed, and the carbon dioxide gas easily enters the inside of the cured body, and the surface of the cured body due to the condensed water. Since the erosion of the product is suppressed, the appearance of the product is improved.
- the hardened body obtained in the pre-curing process can be densified uniformly throughout the hardened body as the carbonation reaction proceeds not only to the surface of the hardened body but also to the inside by the carbonation curing.
- densification is more likely to proceed with carbon dioxide gas.
- the carbonized cured body has an increased specific gravity, a reduced water absorption, a reduced total pore volume, and a reduced dimensional change rate. It is understood that organization densification is occurring. The total pore volume can be grasped from the pore distribution measurement by mercury porosimetry.
- CaCO 3 crystal forms there are three types: calcite, aragonite, and vaterite. In any case, it is preferable in terms of densification, but aragonite and vaterite are particularly preferable.
- Aragonite is an acicular crystal having an aspect ratio of less than 20 mm, but can slightly contribute to the improvement of the bending strength of the fiber-reinforced carbonated cement molding.
- Vaterite has a lower specific gravity than calcite and aragonite. Therefore, when the same mass of CaCO 3 is present in the hardened cement body, the occupied volume becomes larger in the vaterite, which is more effective and preferable for densification.
- calcite is easily generated from Ca (OH) 2
- aragonite and vaterite are easily generated from belite and C—S—H gel.
- This is also one of the major features of the present invention in that aragonite and vaterite effective for densification are generated at an early stage.
- Such densification by carbonation is preferable in that it can be densified more efficiently than a method of mechanically increasing specific gravity and reducing voids by applying a press or the like before curing.
- the dimensional change rate is associated with expansion / contraction during water absorption / evaporation, and the rate of change can be suppressed by increasing the specific gravity.
- the specific gravity is increased by pressing.
- a fiber-reinforced carbonated cement molding having a lower dimensional change rate per specific gravity is obtained when densified by carbonation.
- the fiber-reinforced carbonated cement molded product according to one embodiment of the present invention is a carbonic acid having a high reaction rate by performing the carbonation curing process after the entire molded body is cured to the extent that it can be removed from the mold by the precuring process. Because of the advancement of densification, the hydration reaction of hydraulic components, which have a slower reaction rate than carbonation, is incomplete, and in a short time the bending strength is high and the dimensional change rate per specific gravity is high. It is possible to obtain a fiber-reinforced carbonated cement molding that is small, excellent in water permeability, and excellent in paintability.
- the cured body contains inorganic needles, whereby the mechanical strength of the cured body is increased, and expansion of the cured body to the outside due to CaCO 3 generated by carbonation. Can be suppressed. Therefore, most or all of the increased amount of CaCO 3 produced by carbonation contributes to further densification.
- the cured body contains inorganic needles, the densification effect by the carbonation curing can be enhanced.
- the adhesion between the cement component and the fibers inside the cured body is increased, and the mechanical strength such as the bending strength of the fiber-reinforced carbonated cement molding is further increased, The dimensional change rate can be lowered.
- the fiber-reinforced carbonated cement molding includes fibers and inorganic needles and is manufactured through carbonation curing, the dimensional change rate per specific gravity is very low, preferably 0.1%. In the following, it is more preferably 0.09% or less, further preferably 0.08% or less, particularly preferably 0.075% or less, and a fiber-reinforced carbonated cement molding having a low dimensional change rate can be obtained. In addition, the dimensional change rate per specific gravity of the fiber reinforced carbonated cement molding is usually 0% or more.
- the carbonation curing process can be carried out without any particular limitation.
- the carbonized curing process can be performed by putting the cured product obtained in the pre-curing process into a rack or the like and introducing it into a curing tank, followed by curing under predetermined conditions. it can.
- the contact of carbon dioxide gas with the cured body is suppressed and reaction spots are generated in the cured body, problems such as warping of the cured body may occur. Therefore, in order to eliminate reaction spots, spacers are used to circulate the gas in the curing tank, spray carbon dioxide uniformly from the top and bottom of the cured body, and prevent the cured bodies from overlapping each other when loading the cured bodies on the rack. It is particularly preferable to devise so that the carbon dioxide gas can be brought into uniform contact with the cured body, for example, by providing a hard disk or by placing the cured body vertically.
- the cured product obtained in the pre-curing step has a carbonation reaction rate of preferably 30% or more, more preferably 40% or more, further preferably 50% or more, particularly preferably 60% or more, especially Preferably it is carbonated to 70% or more, very preferably 80% or more, most preferably 90% or more.
- the carbonation reaction rate is equal to or higher than the lower limit, densification (densification) easily proceeds inside the fiber-reinforced carbonated cement molded article, and a fiber-reinforced carbonated cement molded article having high mechanical strength can be obtained. it can.
- the upper limit value of the carbonation reaction rate is not particularly limited, but is usually 99% or less, for example 98% or less, particularly 95% or less.
- the surface of the fiber-reinforced carbonated cement molded product after the carbonation curing process may be painted using a paint as necessary.
- the paint is not particularly limited, and is a phenol resin paint, synthetic resin blend paint, alkyd resin paint, phthalic acid resin paint, acrylic alkyd resin paint, amino alkyd resin paint, melamine baked resin paint, epoxy resin paint, modified Epoxy resin paint, tar epoxy resin paint, polyurethane resin paint, moisture-curing polyurethane resin paint, acrylic urethane resin paint, polyester urethane resin paint, alkyd modified silicone resin paint, acrylic silicone resin paint, silicone resin paint, chlorinated rubber resin paint, Examples thereof include vinyl acetate emulsion paint, acrylic resin paint, acrylic emulsion resin paint, NAD acrylic resin paint, vinyl chloride resin paint, fluororesin paint, and lacquer paint.
- the above-mentioned fiber-reinforced carbonated cement molded article has high density and is becoming neutralized. Therefore, it is not necessary to select an alkal
- the fiber-reinforced carbonated cement molding which is one embodiment of the present invention is useful as a building material.
- building materials include moldings such as slate, tiles, wall panels, ceiling materials, floor panels, roof materials, and partition walls, and secondary products.
- a method for using and using the above-mentioned fiber reinforced carbonated cement molding is also provided.
- the average fiber length was calculated according to JIS L 1015 “Testing method for chemical fiber staples (8.5.1)”, and the aspect ratio of the fiber was evaluated based on the ratio to the average fiber diameter.
- 100 fibers were taken out at random, the fiber diameter in the center part of the length direction of each fiber was measured with the optical microscope, and the average value was made into the average fiber diameter (mm).
- the length of the inorganic needles was determined by dividing a part of the fiber-reinforced carbonated cement molding and observing the fracture surface with a scanning electron microscope S-3400N (manufactured by Hitachi High-Technologies Corporation, Scanning Electron Microscope). It was calculated by taking the average length of inorganic needles confirmed in the visual field. Observation was performed at any 10 locations on the fractured surface of the fiber-reinforced carbonated cement molding, and after obtaining a 60 ⁇ m ⁇ 90 ⁇ m cross-sectional enlarged image with the above-mentioned scanning electron microscope, observations were made in these 10 cross-sectional enlarged images.
- 50 inorganic needles were arbitrarily selected, and the average values of the length and width (average length and average width) were calculated. This average length was taken as the length of the inorganic needles. Further, the aspect ratio was calculated by dividing the average length by the average width.
- test specimen was put in a dryer equipped with a stirrer, the temperature was kept at 60 ⁇ 3 ° C., taken out after 24 hours, put into a desiccator conditioned with silica gel, and room temperature (20 ⁇ 1. (5 ° C).
- a piece of glass is attached to the specimen, and the marked line is engraved so that the distance between the marked lines is about 140 mm.
- the length between the marked lines is measured by a comparator having an accuracy of 1/500 mm, It was.
- the length direction of the test body was raised horizontally and immersed in water at 20 ° C. ⁇ 1.5 ° C.
- the rate of change in length due to water absorption was determined by (length between marked lines during water absorption ⁇ length between marked lines during drying) / length during drying ⁇ 100. Further, the obtained rate of change in length was divided by the bulk specific gravity to determine the dimensional change rate (%) per specific gravity.
- cement component -Ordinary Portland cement: Belite content 18% by mass, made by Taiheiyo Cement
- the obtained hydraulic composition was molded to obtain a papermaking plate (size: 30 cm ⁇ 45 cm ⁇ 6 mm).
- the added amount of pulp, inorganic needles, ordinary Portland cement and fiber is a numerical value based on the ratio to the total solid content.
- the resulting papermaking sheet (molded body) was wrapped in a polyethylene sheet, and a precuring process was performed at 100% relative humidity and 50 ° C. for 6 hours to obtain a cured body.
- Example 2 The amount of inorganic needles added was changed to 3% by mass instead of 1% by mass, and ordinary Portland cement ( ⁇ belite content: 27% by mass) was changed to 92.5% by mass instead of 94.5% by mass.
- Table 2 shows the physical properties of the fiber-reinforced carbonated cement molding (2).
- Example 3 Fiber reinforced carbonated cement molding was carried out in the same manner as in Example 1 except that potassium titanate whiskers (length: 0.015 mm, aspect ratio: 33) were used as inorganic needles instead of acicular calcium carbonate. A product (3) was obtained. Table 2 shows the physical properties of the fiber-reinforced carbonated cement molding (3).
- Comparative Example 1 A fiber-reinforced carbonated cement molded article (4) was obtained in the same manner as in Example 1 except that the inorganic needles were not added and the carbonation curing process was not performed.
- Table 2 shows the physical properties of the fiber-reinforced carbonated cement molding (4).
- Comparative Example 2 A fiber-reinforced carbonated cement molded article (5) was obtained in the same manner as in Example 1 except that the inorganic needles were not added. Table 2 shows the physical properties of the fiber-reinforced carbonated cement molding (5).
- Comparative Example 3 Fiber reinforced carbonated cement in the same manner as in Example 1 except that particulate calcium carbonate (calcite, length: 0.007 mm, aspect ratio: 1) was used instead of acicular calcium carbonate as the inorganic substance. A molded product (6) was obtained. Table 2 shows the physical properties of the fiber-reinforced carbonated cement molding (6).
- Comparative Example 4 Fiber reinforced carbonated cement molding in the same manner as in Example 1 except that calcium carbonate (aragonite, length: 0.001 mm, aspect ratio: 10) was used instead of acicular calcium carbonate as the inorganic needle. A product (7) was obtained. Table 2 shows the physical properties of the fiber-reinforced carbonated cement molding (7).
- Comparative Example 5 A fiber-reinforced carbonated cement molded article (8) in the same manner as in Example 1 except that glass fibers (length: 3 mm, aspect ratio: 230) were used as inorganic needles instead of acicular calcium carbonate.
- Table 2 shows the physical properties of the fiber-reinforced carbonated cement molding (8).
- Comparative Example 6 A fiber-reinforced carbonated cement molding (9) was obtained in the same manner as in Example 1 except that no PVA fiber was added. Table 2 shows the physical properties of the fiber-reinforced carbonated cement molding (9).
- Comparative Example 7 A fiber-reinforced carbonated cement molding (10) was obtained in the same manner as in Example 1 except that the carbonation curing process was not performed.
- Table 2 shows the physical properties of the fiber-reinforced carbonated cement molding (10).
- the fiber-reinforced carbonated cement moldings (1) to (3) obtained in Examples 1 to 3 had a high bending strength and a low dimensional change rate. It can also be seen that the specific gravity is high and densification is achieved. On the other hand, in Comparative Example 1, the inorganic needle-like material was not used and the carbonation curing process was not performed, so that the dimensional change rate was high and the bending strength was low. Further, in Comparative Example 2 in which no inorganic needles are used, the specific gravity is low and the dimensional change rate is also lower than those of the fiber-reinforced carbonated cement molded products (1) to (3) obtained in Examples 1 to 3. Since it was higher, the degree of densification was lower and the bending strength was lower.
- the fiber-reinforced carbonated cement molding according to the present invention has both high bending strength and a small dimensional change rate, it is a building material, particularly slate, tile, wall panel, ceiling material, floor panel, roofing material, partition wall, etc. Can be suitably used.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Structural Engineering (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Civil Engineering (AREA)
- Mechanical Engineering (AREA)
- Toxicology (AREA)
- Health & Medical Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
Abstract
Provided is a fiber-reinforced carbonated cement molded product comprising a cement component, inorganic needles, and fibers, the inorganic needles each having a length of 1 mm or less and an aspect ratio of 20 or more.
Description
本発明は、高い曲げ強度と小さい寸法変化率とを兼ね備えた、繊維補強炭酸化セメント成形物およびその製造方法に関する。
The present invention relates to a fiber-reinforced carbonated cement molded article having a high bending strength and a small dimensional change rate, and a method for producing the same.
セメント成形物は、スレート等の様々な用途に世界中で広く利用されている建築材料である。セメント成形物は、構造体強度の低減および耐震性等の観点から、強度を担保しながらも、軽量性を向上させることが求められている。例えば、セメント成形物に補強繊維が添加させる技術がある。
Cement moldings are building materials that are widely used all over the world for various applications such as slate. Cement moldings are required to improve lightness while ensuring strength from the viewpoints of reduction in structure strength and earthquake resistance. For example, there is a technique in which reinforcing fibers are added to a cement molded product.
補強繊維を添加することにより、引張強度を補完することができるため、繊維補強セメント成形物は広い分野において使用されている。しかし、このような繊維補強セメント成形物は、一般的なコンクリートと異なり、薄くかつ比重も低いために、乾湿の寸法変化率が大きい傾向にあり、そのため拘束下でひび割れを生じたり、建付けが悪くなったりすることがある。このため、繊維補強セメント成形物を炭酸化させる技術が開発されている(特許文献1)。
Since the tensile strength can be complemented by adding reinforcing fibers, fiber reinforced cement molded products are used in a wide range of fields. However, unlike conventional concrete, such fiber reinforced cement moldings are thin and have a low specific gravity, so there is a tendency for the dimensional change rate of dry and wet to be large, so that cracking occurs under restraint, and installation is difficult. It may get worse. For this reason, the technique which carbonizes a fiber reinforced cement molding is developed (patent document 1).
このような繊維補強セメント成形物を炭酸化させた場合、嵩比重が高く、高い曲げ強度を有し、同時に寸法変化率の小さい繊維補強炭酸化セメント成形物を得ることができる。この繊維補強炭酸化セメント成形物が有する低い寸法変化率は、前養生後、含有する水酸化カルシウムおよびビーライトと炭酸ガスとを反応させることでそれらの体積が膨張し、そのため成形物が緻密化されることに起因する。
When such a fiber reinforced cement molded product is carbonated, it is possible to obtain a fiber reinforced carbonated cement molded product having a high bulk specific gravity, a high bending strength, and at the same time a small dimensional change rate. The low dimensional change rate of this fiber-reinforced carbonated cement molding is that after pre-curing, the calcium hydroxide and belite containing carbon dioxide react with carbon dioxide to expand their volume, and the molding becomes dense. Due to being.
しかし、例えば前養生の時間が短い場合等においては、前養生だけでは成形物の曲げ強度が不十分となり、炭酸化による体積膨張に耐えられず成形物自体も膨張し、比重が増加しないばかりか、クラックを誘発し、結果として成形物の曲げ強度を低下させることがある。したがって、成形物の曲げ強度および寸法変化率に関してまだ改善の余地がある。
However, for example, when the pre-curing time is short, the bending strength of the molded product is insufficient only with the pre-curing, and the molded product itself does not withstand volume expansion due to carbonation, and the specific gravity does not increase. In some cases, cracks are induced, resulting in a decrease in the bending strength of the molded product. Therefore, there is still room for improvement regarding the bending strength and the dimensional change rate of the molded product.
そこで本発明は、高い曲げ強度と小さい寸法変化率とを兼ね備えた、繊維補強炭酸化セメント成形物およびその製造方法を提供することを課題とする。
Therefore, an object of the present invention is to provide a fiber-reinforced carbonated cement molded article having a high bending strength and a small dimensional change rate, and a method for producing the same.
本発明者は、上記課題を解決するために、繊維補強炭酸化セメント成形物およびその製造方法について詳細に検討を重ねた結果、本発明に到達した。
In order to solve the above-mentioned problems, the present inventor arrived at the present invention as a result of detailed studies on a fiber-reinforced carbonated cement molding and a method for producing the same.
すなわち、本発明は、以下の好適な態様を包含する。
〔1〕セメント成分、無機針状物および繊維を含む繊維補強炭酸化セメント成形物であって、
該無機針状物は、長さが1mm以下であり、アスペクト比が20以上である、繊維補強炭酸化セメント成形物。
〔2〕炭酸化反応率が30%以上である、前記〔1〕に記載の繊維補強炭酸化セメント成形物。
〔3〕前記繊維はポリビニルアルコール系繊維である、前記〔1〕または〔2〕に記載の繊維補強炭酸化セメント成形物。
〔4〕前記無機針状物は炭酸カルシウムまたはチタン酸カリウムからなる、前記〔1〕~〔3〕のいずれかに記載の繊維補強炭酸化セメント成形物。
〔5〕前記繊維補強炭酸化セメント成形物1μm2当たり、前記無機針状物を2×10-2~1000×10-2本含有する、前記〔1〕~〔4〕のいずれかに記載の繊維補強炭酸化セメント成形物。
〔6〕前記セメント成分はビーライトを18質量%以上含有する、前記〔1〕~〔5〕のいずれかに記載の繊維補強炭酸化セメント成形物。
〔7〕パルプをさらに含む、前記〔1〕~〔6〕のいずれかに記載の繊維補強炭酸化セメント成形物。
〔8〕セメント成分、無機針状物および繊維を含む繊維補強セメント成形物であって、
該無機針状物は、長さが1mm以下であり、アスペクト比が20以上である、繊維補強セメント成形物。
〔9〕セメント成分、無機針状物、繊維、および水を混合して硬化性組成物を得る混合工程、
上記水硬性組成物を成型して成型体を得る成型工程、
該成型体を前養生して硬化体を得る前養生工程、および
該硬化体を炭酸化養生して繊維補強炭酸化セメント成形物を得る炭酸化養生工程
を含む、前記〔1〕~〔7〕のいずれかに記載の繊維補強炭酸化セメント成形物を製造する方法。
〔10〕前記前養生工程における養生時間は12時間以内である、前記〔9〕に記載の方法。 That is, the present invention includes the following preferred embodiments.
[1] A fiber-reinforced carbonated cement molding containing a cement component, inorganic needles and fibers,
The inorganic needle-like product is a fiber-reinforced carbonated cement molded product having a length of 1 mm or less and an aspect ratio of 20 or more.
[2] The fiber-reinforced carbonated cement molded article according to [1], wherein the carbonation reaction rate is 30% or more.
[3] The fiber-reinforced carbonated cement molding according to [1] or [2], wherein the fiber is a polyvinyl alcohol fiber.
[4] The fiber-reinforced carbonated cement molded article according to any one of [1] to [3], wherein the inorganic needles are made of calcium carbonate or potassium titanate.
[5] The composition according to any one of [1] to [4], wherein 2 × 10 −2 to 1000 × 10 −2 of the inorganic needles are contained per 1 μm 2 of the fiber-reinforced carbonated cement molding. Fiber reinforced carbonated cement molding.
[6] The fiber-reinforced carbonated cement molded article according to any one of [1] to [5], wherein the cement component contains 18% by mass or more of belite.
[7] The fiber-reinforced carbonated cement molded article according to any one of [1] to [6], further comprising pulp.
[8] A fiber-reinforced cement molded article containing a cement component, inorganic needles and fibers,
The inorganic needle-like article is a fiber-reinforced cement molded article having a length of 1 mm or less and an aspect ratio of 20 or more.
[9] A mixing step of obtaining a curable composition by mixing cement components, inorganic needles, fibers, and water,
A molding step for obtaining a molded body by molding the hydraulic composition;
[1] to [7], including a pre-curing step for pre-curing the molded body to obtain a cured body, and a carbonation-curing step for obtaining a fiber-reinforced carbonated cement molding by carbonizing and curing the cured body. A method for producing the fiber-reinforced carbonated cement molding according to any one of the above.
[10] The method according to [9], wherein the curing time in the pre-curing step is within 12 hours.
〔1〕セメント成分、無機針状物および繊維を含む繊維補強炭酸化セメント成形物であって、
該無機針状物は、長さが1mm以下であり、アスペクト比が20以上である、繊維補強炭酸化セメント成形物。
〔2〕炭酸化反応率が30%以上である、前記〔1〕に記載の繊維補強炭酸化セメント成形物。
〔3〕前記繊維はポリビニルアルコール系繊維である、前記〔1〕または〔2〕に記載の繊維補強炭酸化セメント成形物。
〔4〕前記無機針状物は炭酸カルシウムまたはチタン酸カリウムからなる、前記〔1〕~〔3〕のいずれかに記載の繊維補強炭酸化セメント成形物。
〔5〕前記繊維補強炭酸化セメント成形物1μm2当たり、前記無機針状物を2×10-2~1000×10-2本含有する、前記〔1〕~〔4〕のいずれかに記載の繊維補強炭酸化セメント成形物。
〔6〕前記セメント成分はビーライトを18質量%以上含有する、前記〔1〕~〔5〕のいずれかに記載の繊維補強炭酸化セメント成形物。
〔7〕パルプをさらに含む、前記〔1〕~〔6〕のいずれかに記載の繊維補強炭酸化セメント成形物。
〔8〕セメント成分、無機針状物および繊維を含む繊維補強セメント成形物であって、
該無機針状物は、長さが1mm以下であり、アスペクト比が20以上である、繊維補強セメント成形物。
〔9〕セメント成分、無機針状物、繊維、および水を混合して硬化性組成物を得る混合工程、
上記水硬性組成物を成型して成型体を得る成型工程、
該成型体を前養生して硬化体を得る前養生工程、および
該硬化体を炭酸化養生して繊維補強炭酸化セメント成形物を得る炭酸化養生工程
を含む、前記〔1〕~〔7〕のいずれかに記載の繊維補強炭酸化セメント成形物を製造する方法。
〔10〕前記前養生工程における養生時間は12時間以内である、前記〔9〕に記載の方法。 That is, the present invention includes the following preferred embodiments.
[1] A fiber-reinforced carbonated cement molding containing a cement component, inorganic needles and fibers,
The inorganic needle-like product is a fiber-reinforced carbonated cement molded product having a length of 1 mm or less and an aspect ratio of 20 or more.
[2] The fiber-reinforced carbonated cement molded article according to [1], wherein the carbonation reaction rate is 30% or more.
[3] The fiber-reinforced carbonated cement molding according to [1] or [2], wherein the fiber is a polyvinyl alcohol fiber.
[4] The fiber-reinforced carbonated cement molded article according to any one of [1] to [3], wherein the inorganic needles are made of calcium carbonate or potassium titanate.
[5] The composition according to any one of [1] to [4], wherein 2 × 10 −2 to 1000 × 10 −2 of the inorganic needles are contained per 1 μm 2 of the fiber-reinforced carbonated cement molding. Fiber reinforced carbonated cement molding.
[6] The fiber-reinforced carbonated cement molded article according to any one of [1] to [5], wherein the cement component contains 18% by mass or more of belite.
[7] The fiber-reinforced carbonated cement molded article according to any one of [1] to [6], further comprising pulp.
[8] A fiber-reinforced cement molded article containing a cement component, inorganic needles and fibers,
The inorganic needle-like article is a fiber-reinforced cement molded article having a length of 1 mm or less and an aspect ratio of 20 or more.
[9] A mixing step of obtaining a curable composition by mixing cement components, inorganic needles, fibers, and water,
A molding step for obtaining a molded body by molding the hydraulic composition;
[1] to [7], including a pre-curing step for pre-curing the molded body to obtain a cured body, and a carbonation-curing step for obtaining a fiber-reinforced carbonated cement molding by carbonizing and curing the cured body. A method for producing the fiber-reinforced carbonated cement molding according to any one of the above.
[10] The method according to [9], wherein the curing time in the pre-curing step is within 12 hours.
本発明によれば、高い曲げ強度と小さい寸法変化率とを兼ね備えた、繊維補強炭酸化セメント成形物およびその製造方法を提供することができる。
According to the present invention, it is possible to provide a fiber-reinforced carbonated cement molded article having a high bending strength and a small dimensional change rate, and a method for producing the same.
本発明の一実施態様である繊維補強炭酸化セメント成形物は、セメント成分、無機針状物および繊維を含むものである。
The fiber-reinforced carbonated cement molding which is one embodiment of the present invention includes a cement component, inorganic needles and fibers.
(セメント成分)
繊維補強炭酸化セメント成形物に含まれるセメント成分としては、例えば、普通セメント、早強セメント、および超早強セメント等の各種ポルトランドセメントが挙げられる。また、本発明の一実施態様においてセメント成分は、これらポルトランドセメントに、高炉スラグ、フライアッシュまたはシリカを配合した各種混合セメント、中庸熱セメント、またはアルミナセメント等であってもよい。 (Cement component)
Examples of the cement component contained in the fiber-reinforced carbonated cement molding include various Portland cements such as ordinary cement, early-strength cement, and ultra-early-strength cement. In one embodiment of the present invention, the cement component may be various mixed cements obtained by blending blast furnace slag, fly ash or silica with these Portland cements, moderately heated cement, alumina cement, or the like.
繊維補強炭酸化セメント成形物に含まれるセメント成分としては、例えば、普通セメント、早強セメント、および超早強セメント等の各種ポルトランドセメントが挙げられる。また、本発明の一実施態様においてセメント成分は、これらポルトランドセメントに、高炉スラグ、フライアッシュまたはシリカを配合した各種混合セメント、中庸熱セメント、またはアルミナセメント等であってもよい。 (Cement component)
Examples of the cement component contained in the fiber-reinforced carbonated cement molding include various Portland cements such as ordinary cement, early-strength cement, and ultra-early-strength cement. In one embodiment of the present invention, the cement component may be various mixed cements obtained by blending blast furnace slag, fly ash or silica with these Portland cements, moderately heated cement, alumina cement, or the like.
通常、セメントには、エーライト:3CaO・SiO2(組成式C3S)、ビーライト:2CaO・SiO2(組成式C2S)、アルミネート:Al2O3(組成式C3A)、フェライト:4CaO・Al2O3・Fe2O3(組成式C4AF)等のセメント鉱物が含まれている。ビーライトは、CaOとSiO2を主成分とするダイカルシウムシリケートの1種であり、α型、α’型、β型およびγ型が存在し、それぞれ結晶構造および密度が異なる。このうち、α型、α’型およびβ型は水と反応して水硬性を示す。ところがγ型は、水硬性を示さず、かつ二酸化炭素と反応するという特性を有する。ポルトランドセメントをはじめとする通常のセメントには、このγ型のビーライト(γビーライト)は基本的にほとんど含まれていない。本発明の一実施態様においてセメント成分は、前養生後、炭酸化処理がなされるので、市販のビーライトセメントや各種セメントにビーライトセメントを混合したセメントを用いてもよい。上記のα型、α’型、β型およびγ型の中でも、β型およびγ型が好ましい。
Usually, the cement, alite: 3CaO · SiO 2 (composition formula C 3 S), belite: 2CaO · SiO 2 (composition formula C 2 S), aluminate: Al 2 O 3 (composition formula C 3 A) Ferrite: Cement minerals such as 4CaO.Al 2 O 3 .Fe 2 O 3 (composition formula C 4 AF) are included. Belite is a kind of dicalcium silicate containing CaO and SiO 2 as main components, and there are α-type, α′-type, β-type, and γ-type, each having a different crystal structure and density. Of these, α-type, α′-type and β-type react with water and exhibit hydraulic properties. However, the γ-type does not exhibit hydraulic properties and has the property of reacting with carbon dioxide. Ordinary cements such as Portland cement basically contain almost no γ-type belite (γ belite). In one embodiment of the present invention, the cement component is subjected to carbonation treatment after pre-curing, and therefore, commercially available belite cement or cement obtained by mixing belite cement with various cements may be used. Of the α type, α ′ type, β type, and γ type, β type and γ type are preferable.
本発明の一実施態様において、セメント成分は、好ましくは18質量%以上、より好ましくは20質量%以上、さらに好ましくは22質量%以上のビーライト含有量を有し、好ましくは60質量%以下、より好ましくは58質量%以下のビーライト含有量を有する。セメント成分のビーライト含有量が上記下限値以上であると、ビーライトによって高い緻密化効果が発揮され、寸法安定性および耐透水性が良好であり、さらに塗装性に優れた繊維補強炭酸化セメント成形物を得ることができる。また、セメント成分のビーライト含有量が上記上限値以下であると、バインダーの役目を果たす水硬性成分の量が十分であり、高い曲げ強度を有する繊維補強炭酸化セメント成形物を得ることができる。
In one embodiment of the present invention, the cement component preferably has a belite content of 18% by mass or more, more preferably 20% by mass or more, and further preferably 22% by mass or more, preferably 60% by mass or less. More preferably, it has a belite content of 58% by mass or less. If the belite content of the cement component is greater than or equal to the above lower limit value, the fiber reinforced carbonated cement exhibits a high densification effect by belite, good dimensional stability and water resistance, and excellent paintability. A molded product can be obtained. Moreover, when the belite content of the cement component is not more than the above upper limit, the amount of the hydraulic component serving as a binder is sufficient, and a fiber-reinforced carbonated cement molded product having high bending strength can be obtained. .
また、ビーライトの反応率は70%以上であることが好ましい。ビーライトも水和反応が起こると、エーライトと同様にC-S-Hゲルを生成し、バインダーとして効果を発現するが、ビーライトはエーライトに比べ水和反応が遅いため、工場で製品化されるようなタイミングではその反応率はまだ低く、バインダー効果も不十分なものである。一方で本発明の一実施態様によれば、水和反応だけでなく炭酸化反応も同時に起こるため、ビーライトの反応率70%以上を早い段階で確保でき、曲げ強度が高くかつ寸法変化率の低い製品を供給することが可能となるのである。ビーライトの反応率は、より好ましくは75%以上、さらに好ましくは80%以上である。
Also, the reaction rate of belite is preferably 70% or more. When belite also undergoes a hydration reaction, it produces a C—S—H gel similar to alite and is effective as a binder. However, because belite has a slower hydration reaction than alite, At such timing, the reaction rate is still low and the binder effect is insufficient. On the other hand, according to one embodiment of the present invention, not only the hydration reaction but also the carbonation reaction occur at the same time. Therefore, a reaction rate of 70% or higher of belite can be secured at an early stage, the bending strength is high, and the dimensional change rate is high. It is possible to supply a low product. The reaction rate of belite is more preferably 75% or more, and further preferably 80% or more.
上記繊維補強炭酸化セメント成形物におけるセメント成分の含有量は、繊維補強炭酸化セメント成形物の全質量に基づいて、通常50質量%以上、好ましくは60質量%以上、より好ましくは70質量%以上、さらに好ましくは80質量%以上、特に好ましくは85質量%以上、とりわけ好ましくは90質量%以上、非常に好ましくは92質量%以上であり、好ましくは99質量%以下、より好ましくは98質量%以下、さらに好ましくは97質量%以下である。
The content of the cement component in the fiber-reinforced carbonated cement molding is usually 50% by mass or more, preferably 60% by mass or more, more preferably 70% by mass or more, based on the total mass of the fiber-reinforced carbonated cement molding. More preferably 80% by weight or more, particularly preferably 85% by weight or more, particularly preferably 90% by weight or more, very preferably 92% by weight or more, preferably 99% by weight or less, more preferably 98% by weight or less. More preferably, it is 97 mass% or less.
(繊維)
上記繊維補強炭酸化セメント成形物は、繊維を含有することにより補強効果を得ることができる。繊維補強炭酸化セメント成形物に含まれる繊維は、無機繊維であっても有機繊維であってもよい。無機繊維としては、例えば、耐アルカリ性ガラス繊維、鋼繊維(スチールファイバー)、ステンレスファイバー、炭素繊維、セラミック繊維およびアスベスト繊維等が挙げられる。有機繊維としては、レーヨン系繊維(ポリノジック繊維、溶剤紡糸セルロース繊維等)等の再生繊維;ならびにポリビニルアルコール系繊維(ポリビニルアルコール繊維、ビニロン等)、ポリオレフィン系繊維(ポリエチレン繊維、ポリプロピレン繊維、エチレン/プロピレン共重合体繊維等)、超高分子量ポリエチレン繊維、ポリアミド系繊維(ポリアミド6、ポリアミド6,6、ポリアミド6,10等)、アラミド繊維(特にパラアラミド繊維)、ポリパラフェニレンベンゾビスオキサゾール系繊維(PBO繊維)、ポリエステル系繊維(PET、PBT等)、アクリロニトリル系繊維、ポリウレタン系繊維、アクリル繊維、ポリフェニレンサルファイド繊維(PPS繊維)、およびポリエーテルエーテルケトン繊維(PEEK繊維)等の合成樹脂繊維が挙げられる。これらの耐アルカリ性繊維は、単独でまたは二種以上組み合わせて使用してもよい。 (fiber)
The fiber-reinforced carbonated cement molding can obtain a reinforcing effect by containing fibers. The fiber contained in the fiber-reinforced carbonated cement molding may be an inorganic fiber or an organic fiber. Examples of inorganic fibers include alkali-resistant glass fibers, steel fibers (steel fibers), stainless fibers, carbon fibers, ceramic fibers, and asbestos fibers. Organic fibers include recycled fibers such as rayon fibers (polynosic fibers, solvent-spun cellulose fibers, etc.); polyvinyl alcohol fibers (polyvinyl alcohol fibers, vinylon, etc.), polyolefin fibers (polyethylene fibers, polypropylene fibers, ethylene / propylene) Copolymer fibers, etc.), ultrahigh molecular weight polyethylene fibers, polyamide fibers (polyamide 6, polyamide 6,6, polyamide 6,10 etc.), aramid fibers (particularly para-aramid fibers), polyparaphenylene benzobisoxazole fibers (PBO) Fiber), polyester fiber (PET, PBT, etc.), acrylonitrile fiber, polyurethane fiber, acrylic fiber, polyphenylene sulfide fiber (PPS fiber), polyether ether ketone fiber (PEEK fiber), etc. Synthetic resin fibers. These alkali resistant fibers may be used alone or in combination of two or more.
上記繊維補強炭酸化セメント成形物は、繊維を含有することにより補強効果を得ることができる。繊維補強炭酸化セメント成形物に含まれる繊維は、無機繊維であっても有機繊維であってもよい。無機繊維としては、例えば、耐アルカリ性ガラス繊維、鋼繊維(スチールファイバー)、ステンレスファイバー、炭素繊維、セラミック繊維およびアスベスト繊維等が挙げられる。有機繊維としては、レーヨン系繊維(ポリノジック繊維、溶剤紡糸セルロース繊維等)等の再生繊維;ならびにポリビニルアルコール系繊維(ポリビニルアルコール繊維、ビニロン等)、ポリオレフィン系繊維(ポリエチレン繊維、ポリプロピレン繊維、エチレン/プロピレン共重合体繊維等)、超高分子量ポリエチレン繊維、ポリアミド系繊維(ポリアミド6、ポリアミド6,6、ポリアミド6,10等)、アラミド繊維(特にパラアラミド繊維)、ポリパラフェニレンベンゾビスオキサゾール系繊維(PBO繊維)、ポリエステル系繊維(PET、PBT等)、アクリロニトリル系繊維、ポリウレタン系繊維、アクリル繊維、ポリフェニレンサルファイド繊維(PPS繊維)、およびポリエーテルエーテルケトン繊維(PEEK繊維)等の合成樹脂繊維が挙げられる。これらの耐アルカリ性繊維は、単独でまたは二種以上組み合わせて使用してもよい。 (fiber)
The fiber-reinforced carbonated cement molding can obtain a reinforcing effect by containing fibers. The fiber contained in the fiber-reinforced carbonated cement molding may be an inorganic fiber or an organic fiber. Examples of inorganic fibers include alkali-resistant glass fibers, steel fibers (steel fibers), stainless fibers, carbon fibers, ceramic fibers, and asbestos fibers. Organic fibers include recycled fibers such as rayon fibers (polynosic fibers, solvent-spun cellulose fibers, etc.); polyvinyl alcohol fibers (polyvinyl alcohol fibers, vinylon, etc.), polyolefin fibers (polyethylene fibers, polypropylene fibers, ethylene / propylene) Copolymer fibers, etc.), ultrahigh molecular weight polyethylene fibers, polyamide fibers (polyamide 6, polyamide 6,6, polyamide 6,10 etc.), aramid fibers (particularly para-aramid fibers), polyparaphenylene benzobisoxazole fibers (PBO) Fiber), polyester fiber (PET, PBT, etc.), acrylonitrile fiber, polyurethane fiber, acrylic fiber, polyphenylene sulfide fiber (PPS fiber), polyether ether ketone fiber (PEEK fiber), etc. Synthetic resin fibers. These alkali resistant fibers may be used alone or in combination of two or more.
これらの中では、繊維補強炭酸化セメント成形物の曲げ強度の向上および軽量化の観点から、有機繊維、特に合成樹脂繊維が好ましい。合成樹脂繊維の中でも、繊維補強炭酸化セメント成形物中のセメントアルカリに対する化学的耐久性の観点から、耐アルカリ性の合成樹脂繊維であることが好ましい。耐アルカリ性の合成樹脂繊維としては、繊維補強炭酸化セメント成形物が高い曲げ強度を有しつつ、低コストで製造できる観点から、ポリビニルアルコール系繊維(ポリビニルアルコール繊維、ビニロン等)、ポリオレフィン系繊維(ポリエチレン繊維、ポリプロピレン繊維、エチレン/プロピレン共重合体繊維等)、アクリル繊維およびアラミド繊維が好ましく、ポリビニルアルコール系繊維、ポリエチレン繊維、ポリプロピレン繊維、アクリル繊維およびアラミド繊維がより好ましく、ポリビニルアルコール系繊維がさらに好ましい。上記繊維は、従来公知の方法によって製造することができる。なお、ポリビニルアルコール系繊維は、ポリビニルアルコール系重合体を溶剤に溶解した紡糸原液を用いて、湿式、乾湿式または乾式のいずれの方法によって紡糸されたものであってもよい。
Of these, organic fibers, particularly synthetic resin fibers, are preferable from the viewpoint of improving the bending strength and reducing the weight of the fiber-reinforced carbonated cement molding. Among the synthetic resin fibers, alkali-resistant synthetic resin fibers are preferable from the viewpoint of chemical durability against cement alkali in the fiber-reinforced carbonated cement molding. Alkali-resistant synthetic resin fibers include polyvinyl alcohol fibers (polyvinyl alcohol fibers, vinylon, etc.), polyolefin fibers (from the viewpoint that the fiber-reinforced carbonated cement molding has high bending strength and can be manufactured at low cost. Polyethylene fibers, polypropylene fibers, ethylene / propylene copolymer fibers, etc.), acrylic fibers and aramid fibers are preferred, polyvinyl alcohol fibers, polyethylene fibers, polypropylene fibers, acrylic fibers and aramid fibers are more preferred, and polyvinyl alcohol fibers are further preferred. preferable. The said fiber can be manufactured by a conventionally well-known method. The polyvinyl alcohol fiber may be spun by a wet, dry-wet or dry method using a spinning stock solution in which a polyvinyl alcohol polymer is dissolved in a solvent.
繊維補強炭酸化セメント成形物に含まれる繊維のアスペクト比は、好ましくは30以上、より好ましくは50以上、さらに好ましくは70以上、特に90以上、とりわけ好ましくは100以上であり、該繊維のアスペクト比は、好ましくは1000以下、より好ましくは900以下、さらに好ましくは800以下、特に好ましくは700以下、とりわけ好ましくは600以下である。繊維のアスペクト比が上記下限値以上であると、繊維のセメント成分への付着力が高くなり、繊維補強炭酸化セメント成形物への高い靭性付与効果が発揮される。繊維のアスペクト比が上記上限値以下であると、繊維同士が絡まり難く、また成型体の伸縮に対する繊維の追従による繊維の破断および損傷が生じ難いため、繊維補強炭酸化セメント成形物の機械強度をさらに高くすることができる。
The aspect ratio of the fibers contained in the fiber-reinforced carbonated cement molding is preferably 30 or more, more preferably 50 or more, still more preferably 70 or more, particularly 90 or more, and particularly preferably 100 or more. Is preferably 1000 or less, more preferably 900 or less, still more preferably 800 or less, particularly preferably 700 or less, and particularly preferably 600 or less. When the aspect ratio of the fiber is not less than the above lower limit value, the adhesive force of the fiber to the cement component is increased, and a high toughness imparting effect to the fiber-reinforced carbonated cement molded product is exhibited. When the aspect ratio of the fiber is not more than the above upper limit value, the fibers are less likely to get entangled, and the fiber is not easily broken or damaged due to the fiber following the expansion and contraction of the molded body. It can be even higher.
繊維補強炭酸化セメント成形物に含まれる繊維は、平均繊維径が1~200μmであることが好ましく、2~100μmであることがより好ましい。平均繊維径が上記下限値以上であると繊維の均一な分散が可能であり、上記上限値以下であると、繊維補強炭酸化セメント成形物における単位体積当たりの繊維本数が高くなり、高い補強効果が発揮される。
The fibers contained in the fiber-reinforced carbonated cement molding preferably have an average fiber diameter of 1 to 200 μm, and more preferably 2 to 100 μm. If the average fiber diameter is equal to or greater than the lower limit value, the fibers can be uniformly dispersed. If the average fiber diameter is equal to or smaller than the upper limit value, the number of fibers per unit volume in the fiber-reinforced carbonated cement molded product is increased, resulting in a high reinforcing effect. Is demonstrated.
繊維補強炭酸化セメント成形物における繊維の含有量は、繊維補強炭酸化セメント成形物の全質量に基づいて、好ましくは0.1質量%以上、より好ましくは0.3質量%以上、さらに好ましくは0.5質量%以上、特に好ましくは0.7質量%以上、とりわけ好ましくは1質量%以上であり、好ましくは5質量%以下、より好ましくは4質量%以下、さらに好ましくは3質量%以下、とりわけ好ましくは2質量%以下である。繊維補強炭酸化セメント成形物における繊維の含有量が上記下限値以上であると、繊維による繊維補強炭酸化セメント成形物の補強効果がさらに高くすることができ、さらに、繊維補強炭酸化セメント成形物の通気性が向上する結果、炭酸化反応率を高くすることができ、繊維補強炭酸化セメント成形物の補強効果をさらに高めることができる。繊維補強炭酸化セメント成形物における繊維の含有量が上記上限値以下であると、繊維補強炭酸化セメント成形物中の繊維の分散性が良好であるため、効果的に繊維補強炭酸化セメント成形物を補強することができる。
The fiber content in the fiber-reinforced carbonated cement molding is preferably 0.1% by mass or more, more preferably 0.3% by mass or more, and still more preferably, based on the total mass of the fiber-reinforced carbonated cement molding. 0.5% by mass or more, particularly preferably 0.7% by mass or more, particularly preferably 1% by mass or more, preferably 5% by mass or less, more preferably 4% by mass or less, still more preferably 3% by mass or less, Especially preferably, it is 2 mass% or less. When the fiber content in the fiber-reinforced carbonated cement molded product is equal to or higher than the lower limit, the reinforcing effect of the fiber-reinforced carbonated cement molded product by the fibers can be further enhanced, and further, the fiber-reinforced carbonated cement molded product. As a result, the carbonation reaction rate can be increased, and the reinforcing effect of the fiber-reinforced carbonated cement molding can be further enhanced. If the fiber content in the fiber-reinforced carbonated cement molding is not more than the above upper limit value, the fiber dispersibility in the fiber-reinforced carbonated cement molding is good. Can be reinforced.
繊維がポリビニルアルコール系繊維である場合、ポリビニルアルコール系繊維はポリビニルアルコール系ポリマーと他のポリマーとの複合繊維であってもよく、海島繊維であってもよい。ポリビニルアルコール系ポリマーは、ビニルアルコールから構成され、本発明の効果を損なわない範囲であればビニルアルコール以外の他のモノマーとの共重合体であってもよく、また変性されていてもよい。繊維の機械強度および耐アルカリ性等の観点から、ポリビニルアルコール系ポリマー中の変性ユニットの比率は好ましくは30モル%以下、より好ましくは10モル%以下である。また、繊維の機械強度および耐アルカリ性等の観点から、30℃の水溶液で粘度法により求めたポリビニルアルコール系ポリマーの平均重合度は、好ましくは1000以上、より好ましくは1500以上であり、製造コスト等の点から、好ましくは10000以下、より好ましくは5000以下、さらに好ましくは3000以下である。また、耐熱性、耐久性および寸法安定性(低寸法変化率)の観点から、ポリビニルアルコール系ポリマーのケン化度は好ましくは99モル%以上、より好ましくは99.8モル%以上であり、通常100モル%以下である。
When the fiber is a polyvinyl alcohol fiber, the polyvinyl alcohol fiber may be a composite fiber of a polyvinyl alcohol polymer and another polymer, or may be a sea-island fiber. The polyvinyl alcohol-based polymer is composed of vinyl alcohol, and may be a copolymer with other monomers other than vinyl alcohol as long as the effects of the present invention are not impaired, or may be modified. From the viewpoints of fiber mechanical strength and alkali resistance, the ratio of the modified unit in the polyvinyl alcohol polymer is preferably 30 mol% or less, more preferably 10 mol% or less. Further, from the viewpoints of fiber mechanical strength, alkali resistance, etc., the average degree of polymerization of the polyvinyl alcohol polymer determined by the viscosity method in an aqueous solution at 30 ° C. is preferably 1000 or more, more preferably 1500 or more, and the production cost, etc. From the above point, it is preferably 10,000 or less, more preferably 5000 or less, and still more preferably 3000 or less. Further, from the viewpoint of heat resistance, durability and dimensional stability (low dimensional change rate), the saponification degree of the polyvinyl alcohol polymer is preferably 99 mol% or more, more preferably 99.8 mol% or more. 100 mol% or less.
ポリビニルアルコール系繊維は、例えば、次の方法によって製造することができる。ポリビニルアルコール系ポリマーを10~60質量%の濃度で水に溶解させ、得られた防止原液を用いて、水酸化ナトリウムおよびボウ硝等を含む凝固浴中で湿式紡糸を行う。その後、ローラ延伸、中和、湿熱延伸、水洗および乾燥を行うことによってポリビニルアルコール系繊維を得ることができる。延伸は、通常200~250℃、好ましくは220~240℃の延伸温度下で行われる。延伸倍率は、通常5倍以上、好ましくは6倍以上である。その後、ポリビニルアルコール系繊維を、所望の上記の範囲の繊維長に切断する。
Polyvinyl alcohol fiber can be produced, for example, by the following method. A polyvinyl alcohol-based polymer is dissolved in water at a concentration of 10 to 60% by mass, and wet spinning is performed in a coagulation bath containing sodium hydroxide and bow glass using the obtained prevention stock solution. Then, a polyvinyl alcohol fiber can be obtained by performing roller stretching, neutralization, wet heat stretching, washing with water and drying. Stretching is usually performed at a stretching temperature of 200 to 250 ° C., preferably 220 to 240 ° C. The draw ratio is usually 5 times or more, preferably 6 times or more. Thereafter, the polyvinyl alcohol fiber is cut into a desired fiber length within the above range.
(無機針状物)
繊維補強炭酸化セメント成形物に含まれる無機針状物は、長さが1mm以下、好ましくは0.8mm以下、より好ましくは0.6mm以下、さらに好ましくは0.4mm以下、特に好ましくは0.2mm以下、とりわけ好ましくは0.1mm以下、非常に好ましくは0.05mm以下、特に0.03mm以下の針状の無機結晶である。該無機結晶が有する針状形状により、薄板形状または鱗片形状等の形状に比べて、繊維補強炭酸化セメント成形物中の無機結晶の分散性が良好となり、曲げ強度等の機械強度のムラが少なく、さらに、繊維補強炭酸化セメント成形物における無機結晶の充填性に富むため、機械強度の高い繊維補強炭酸化セメント成形物を得ることができる。無機針状物の長さが上記上限値以下であると、繊維補強炭酸化セメント成形物における無機針状物の分散性が良好であるため、曲げ強度等の機械強度のムラが少なく、さらに、繊維補強炭酸化セメント成形物における無機針状物の充填性に富むため、機械強度の高い繊維補強炭酸化セメント成形物を得ることができる。なお、一般に充填剤の長さが1mm以下であると、弾性率を向上させることはできるものの、機械強度への影響は低いことが知られている。本発明の一実施態様によれば、上記所定の長さおよびアスペクト比を有する無機針状物を用いることにより、高い曲げ強度および低い寸法変化率を有する繊維補強炭酸化セメント成形物を得ることができ、同時に無機針状物の長さが短いため、繊維補強炭酸化セメント成形物中の分散性が高く、機械強度のムラを低く抑制することができる。本発明の一実施態様において、無機針状物の長さは、通常0.002mm以上である。なお、無機針状物の長さは、繊維補強炭酸化セメント成形物の一部を割り、その破断面を電子顕微鏡にて観察し、視野中に確認される無機針状物の長さの平均をとることによって算出することができ、例えば繊維補強炭酸化セメント成形物の破断面の任意の10箇所にて、それぞれ電子顕微鏡による60μm×90μmの断面拡大画像を得、それら10枚の断面拡大画像中に観察される無機針状物から任意に50本を選び、N数50としてその長さの平均値を算出することで無機針状物の長さを算出することができる。 (Inorganic needles)
The inorganic needle-like material contained in the fiber-reinforced carbonated cement molding has a length of 1 mm or less, preferably 0.8 mm or less, more preferably 0.6 mm or less, still more preferably 0.4 mm or less, particularly preferably 0.8 mm. Needle-like inorganic crystals of 2 mm or less, particularly preferably 0.1 mm or less, very preferably 0.05 mm or less, particularly 0.03 mm or less. Due to the needle-like shape of the inorganic crystals, the dispersibility of the inorganic crystals in the fiber-reinforced carbonated cement molding is better and the mechanical strength such as bending strength is less uneven than the shape of thin plate or scale. Furthermore, since the fiber-reinforced carbonated cement molded article is rich in inorganic crystal filling properties, a fiber-reinforced carbonated cement molded article having high mechanical strength can be obtained. When the length of the inorganic needles is equal to or less than the above upper limit value, the dispersibility of the inorganic needles in the fiber-reinforced carbonated cement molded article is good, so there is little unevenness in mechanical strength such as bending strength, Since the fiber-reinforced carbonated cement molded article is rich in inorganic needle-like filling, a fiber-reinforced carbonated cement molded article having high mechanical strength can be obtained. In general, it is known that when the length of the filler is 1 mm or less, the elastic modulus can be improved, but the influence on the mechanical strength is low. According to one embodiment of the present invention, a fiber-reinforced carbonated cement molding having a high bending strength and a low dimensional change rate can be obtained by using an inorganic needle having the predetermined length and aspect ratio. At the same time, since the length of the inorganic needles is short, the dispersibility in the fiber-reinforced carbonated cement molding is high, and the unevenness of the mechanical strength can be suppressed to a low level. In one embodiment of the present invention, the length of the inorganic needle is usually 0.002 mm or more. The length of the inorganic needles is the average of the lengths of the inorganic needles that are confirmed in the field of view by dividing a part of the fiber-reinforced carbonated cement molding and observing the fracture surface with an electron microscope. For example, at 10 arbitrary positions on the fracture surface of the fiber-reinforced carbonated cement molding, 60 μm × 90 μm cross-sectional enlarged images were obtained by an electron microscope, and the 10 cross-sectional enlarged images were obtained. The length of the inorganic needles can be calculated by arbitrarily selecting 50 from the inorganic needles observed inside and calculating the average value of the lengths as N number 50.
繊維補強炭酸化セメント成形物に含まれる無機針状物は、長さが1mm以下、好ましくは0.8mm以下、より好ましくは0.6mm以下、さらに好ましくは0.4mm以下、特に好ましくは0.2mm以下、とりわけ好ましくは0.1mm以下、非常に好ましくは0.05mm以下、特に0.03mm以下の針状の無機結晶である。該無機結晶が有する針状形状により、薄板形状または鱗片形状等の形状に比べて、繊維補強炭酸化セメント成形物中の無機結晶の分散性が良好となり、曲げ強度等の機械強度のムラが少なく、さらに、繊維補強炭酸化セメント成形物における無機結晶の充填性に富むため、機械強度の高い繊維補強炭酸化セメント成形物を得ることができる。無機針状物の長さが上記上限値以下であると、繊維補強炭酸化セメント成形物における無機針状物の分散性が良好であるため、曲げ強度等の機械強度のムラが少なく、さらに、繊維補強炭酸化セメント成形物における無機針状物の充填性に富むため、機械強度の高い繊維補強炭酸化セメント成形物を得ることができる。なお、一般に充填剤の長さが1mm以下であると、弾性率を向上させることはできるものの、機械強度への影響は低いことが知られている。本発明の一実施態様によれば、上記所定の長さおよびアスペクト比を有する無機針状物を用いることにより、高い曲げ強度および低い寸法変化率を有する繊維補強炭酸化セメント成形物を得ることができ、同時に無機針状物の長さが短いため、繊維補強炭酸化セメント成形物中の分散性が高く、機械強度のムラを低く抑制することができる。本発明の一実施態様において、無機針状物の長さは、通常0.002mm以上である。なお、無機針状物の長さは、繊維補強炭酸化セメント成形物の一部を割り、その破断面を電子顕微鏡にて観察し、視野中に確認される無機針状物の長さの平均をとることによって算出することができ、例えば繊維補強炭酸化セメント成形物の破断面の任意の10箇所にて、それぞれ電子顕微鏡による60μm×90μmの断面拡大画像を得、それら10枚の断面拡大画像中に観察される無機針状物から任意に50本を選び、N数50としてその長さの平均値を算出することで無機針状物の長さを算出することができる。 (Inorganic needles)
The inorganic needle-like material contained in the fiber-reinforced carbonated cement molding has a length of 1 mm or less, preferably 0.8 mm or less, more preferably 0.6 mm or less, still more preferably 0.4 mm or less, particularly preferably 0.8 mm. Needle-like inorganic crystals of 2 mm or less, particularly preferably 0.1 mm or less, very preferably 0.05 mm or less, particularly 0.03 mm or less. Due to the needle-like shape of the inorganic crystals, the dispersibility of the inorganic crystals in the fiber-reinforced carbonated cement molding is better and the mechanical strength such as bending strength is less uneven than the shape of thin plate or scale. Furthermore, since the fiber-reinforced carbonated cement molded article is rich in inorganic crystal filling properties, a fiber-reinforced carbonated cement molded article having high mechanical strength can be obtained. When the length of the inorganic needles is equal to or less than the above upper limit value, the dispersibility of the inorganic needles in the fiber-reinforced carbonated cement molded article is good, so there is little unevenness in mechanical strength such as bending strength, Since the fiber-reinforced carbonated cement molded article is rich in inorganic needle-like filling, a fiber-reinforced carbonated cement molded article having high mechanical strength can be obtained. In general, it is known that when the length of the filler is 1 mm or less, the elastic modulus can be improved, but the influence on the mechanical strength is low. According to one embodiment of the present invention, a fiber-reinforced carbonated cement molding having a high bending strength and a low dimensional change rate can be obtained by using an inorganic needle having the predetermined length and aspect ratio. At the same time, since the length of the inorganic needles is short, the dispersibility in the fiber-reinforced carbonated cement molding is high, and the unevenness of the mechanical strength can be suppressed to a low level. In one embodiment of the present invention, the length of the inorganic needle is usually 0.002 mm or more. The length of the inorganic needles is the average of the lengths of the inorganic needles that are confirmed in the field of view by dividing a part of the fiber-reinforced carbonated cement molding and observing the fracture surface with an electron microscope. For example, at 10 arbitrary positions on the fracture surface of the fiber-reinforced carbonated cement molding, 60 μm × 90 μm cross-sectional enlarged images were obtained by an electron microscope, and the 10 cross-sectional enlarged images were obtained. The length of the inorganic needles can be calculated by arbitrarily selecting 50 from the inorganic needles observed inside and calculating the average value of the lengths as N number 50.
繊維補強炭酸化セメント成形物に含まれる無機針状物は、アスペクト比が20以上、好ましくは25以上、より好ましくは30以上、さらに好ましくは33以上である。無機針状物のアスペクト比が上記下限値以上であると、繊維補強炭酸化セメント成形物の寸法変化率が小さく、クラックを抑制することができ、さらに繊維補強炭酸化セメント成形物の機械強度を向上させることができる。本発明の一実施態様において、無機針状物のアスペクト比は、通常1000以下、特に500以下、とりわけ300以下、さらに100以下、例えば50以下である。なお、無機針状物のアスペクト比は、繊維補強炭酸化セメント成形物の一部を割り、その破断面の無機針状物を電子顕微鏡にて観察し、視野中に確認される無機針状物の幅と長さの平均(平均幅および平均長さ)をそれぞれとり、その平均長さを平均幅で除することで算出することができ、例えば繊維補強炭酸化セメント成形物の破断面の任意の10箇所において、それぞれ電子顕微鏡による60μm×90μmの断面拡大画像を得、それら10枚の断面拡大画像中に観察される無機針状物から任意に50本を選び、N数50としてその幅と長さの平均値(平均幅および平均長さ)をそれぞれ算出し、その平均長さを平均幅で除することで無機針状物のアスペクト比を算出することができる。
The inorganic needles contained in the fiber-reinforced carbonated cement molding have an aspect ratio of 20 or more, preferably 25 or more, more preferably 30 or more, and even more preferably 33 or more. When the aspect ratio of the inorganic needle-shaped material is not less than the above lower limit, the dimensional change rate of the fiber-reinforced carbonated cement molded product is small, cracks can be suppressed, and the mechanical strength of the fiber-reinforced carbonated cement molded product is further reduced. Can be improved. In one embodiment of the present invention, the aspect ratio of the inorganic needles is usually 1000 or less, especially 500 or less, especially 300 or less, more preferably 100 or less, for example 50 or less. In addition, the aspect ratio of the inorganic needles is a part of the fiber-reinforced carbonated cement molded product, and the inorganic needles of the fracture surface are observed with an electron microscope and confirmed in the field of view. Can be calculated by taking the average of the width and length (average width and average length) and dividing the average length by the average width, for example, any of the fracture surfaces of the fiber-reinforced carbonated cement molding In each of the 10 locations, an enlarged cross-sectional image of 60 μm × 90 μm was obtained with an electron microscope, and 50 arbitrarily selected from the inorganic needles observed in the 10 cross-sectional enlarged images, The average value of length (average width and average length) is calculated, and the average length can be calculated by dividing the average length by the average width.
上記無機針状物としては、例えば炭酸カルシウム、酸化チタン、チタン酸カリウム、塩基性硫酸マグネシウム、水酸化アルミニウム、ホウ酸アルミニウム、ケイ酸カルシウム、石膏繊維、グラスファイバー、セピオライト、ゾノトライト、ワラストナイト、カオリナイト、およびカピオライト、ならびにこれらの混合物等が挙げられる。製造性および炭酸化での耐膨張性の観点から、無機針状物は、炭酸カルシウム、チタン酸カリウムまたはホウ酸アルミニウムからなることが好ましく、炭酸カルシウムまたはチタン酸カリウムからなることがより好ましく、炭酸カルシウムからなることがさらに好ましい。
Examples of the inorganic needles include calcium carbonate, titanium oxide, potassium titanate, basic magnesium sulfate, aluminum hydroxide, aluminum borate, calcium silicate, gypsum fiber, glass fiber, sepiolite, zonolite, wollastonite, Examples include kaolinite and kapiolite, and mixtures thereof. From the viewpoint of manufacturability and expansion resistance in carbonation, the inorganic needles are preferably made of calcium carbonate, potassium titanate or aluminum borate, more preferably calcium carbonate or potassium titanate, More preferably, it consists of calcium.
本発明の一実施態様において、上記繊維補強炭酸化セメント成形物は、繊維補強炭酸化セメント成形物1μm2当たり、上記無機針状物を、好ましくは2×10-2~1000×10-2本、より好ましくは3×10-2~900×10-2本、さらに好ましくは4×10-2~800×10-2本、特に好ましくは5×10-2~700×10-2本、とりわけ好ましくは10×10-2~600×10-2本、非常に好ましくは20×10-2~500×10-2本、特に30×10-2~400×10-2本、とりわけ40×10-2~300×10-2本、例えば50×10-2~200×10-2本含有する。繊維補強炭酸化セメント成形物における上記無機針状物1μm2当たりの本数が上記下限値以上であると、繊維補強炭酸化セメント成形物の曲げ強度をさらに高くすることができる。繊維補強炭酸化セメント成形物における上記無機針状物1μm2当たりの本数が上記上限値以下であると、成形性および分散性が良好である。なお、単位当たりの本数は、繊維補強炭酸化セメント成形物の一部を割り、その破断面を電子顕微鏡にて観察して得られる20μm×30μmの断面拡大画像中において、任意に10μm×10μm区画を10箇所選び、それら区画中に確認できる無機針状物の本数を数え、1μm2当たりの本数に換算して求めることができる。
本発明の一実施態様において、上記の通りに、任意に選択された10箇所の10μm×10μm区画中に確認できる無機針状物の本数の標準偏差は、好ましくは15本以下、より好ましくは14本以下、さらに好ましくは13本以下であり、通常3本以上である。上記標準偏差が上記上限値以下であると、繊維補強炭酸化セメント成形物における無機針状物の分散性が高いため、曲げ強度等の機械強度のムラが少なく、機械強度の高い繊維補強炭酸化セメント成形物を得ることができる。なお、上記標準偏差は、10μm×10μm区画中に確認できる無機針状物の本数を、10箇所それぞれについて測定し、その測定値に基づいて算出することができる。 In one embodiment of the present invention, the fiber-reinforced carbonated cement molded product preferably has 2 × 10 −2 to 1000 × 10 −2 inorganic needles per 1 μm 2 of fiber-reinforced carbonated cement molded product. More preferably 3 × 10 −2 to 900 × 10 −2 , still more preferably 4 × 10 −2 to 800 × 10 −2 , particularly preferably 5 × 10 −2 to 700 × 10 −2 , especially Preferably 10 × 10 −2 to 600 × 10 −2 , very preferably 20 × 10 −2 to 500 × 10 −2 , especially 30 × 10 −2 to 400 × 10 −2 , especially 40 × 10 -2 to 300 × 10 −2 , for example, 50 × 10 −2 to 200 × 10 −2 . When the number per 1 μm 2 of the inorganic needles in the fiber-reinforced carbonated cement molded product is equal to or higher than the lower limit, the bending strength of the fiber-reinforced carbonated cement molded product can be further increased. When the number per 1 μm 2 of the inorganic needle-like material in the fiber-reinforced carbonated cement molded product is equal to or less than the upper limit, moldability and dispersibility are good. The number per unit is divided into 10 μm × 10 μm sections in a 20 μm × 30 μm cross-sectional enlarged image obtained by dividing a part of the fiber reinforced carbonated cement molding and observing the fracture surface with an electron microscope. 10 places, and the number of inorganic needles that can be confirmed in these sections is counted and converted into the number per 1 μm 2 .
In one embodiment of the present invention, as described above, the standard deviation of the number of inorganic needles that can be confirmed in 10 arbitrarily selected 10 μm × 10 μm sections is preferably 15 or less, more preferably 14 This is less than this, more preferably 13 or less, and usually 3 or more. When the standard deviation is less than or equal to the above upper limit, the dispersibility of inorganic needles in the fiber-reinforced carbonated cement molding is high, so there is little unevenness in mechanical strength such as bending strength, and fiber-reinforced carbonation with high mechanical strength. A cement molding can be obtained. In addition, the said standard deviation can measure the number of the inorganic needle-like objects which can be confirmed in a 10 micrometer x 10 micrometer division about 10 places, respectively, and can calculate it based on the measured value.
本発明の一実施態様において、上記の通りに、任意に選択された10箇所の10μm×10μm区画中に確認できる無機針状物の本数の標準偏差は、好ましくは15本以下、より好ましくは14本以下、さらに好ましくは13本以下であり、通常3本以上である。上記標準偏差が上記上限値以下であると、繊維補強炭酸化セメント成形物における無機針状物の分散性が高いため、曲げ強度等の機械強度のムラが少なく、機械強度の高い繊維補強炭酸化セメント成形物を得ることができる。なお、上記標準偏差は、10μm×10μm区画中に確認できる無機針状物の本数を、10箇所それぞれについて測定し、その測定値に基づいて算出することができる。 In one embodiment of the present invention, the fiber-reinforced carbonated cement molded product preferably has 2 × 10 −2 to 1000 × 10 −2 inorganic needles per 1 μm 2 of fiber-reinforced carbonated cement molded product. More preferably 3 × 10 −2 to 900 × 10 −2 , still more preferably 4 × 10 −2 to 800 × 10 −2 , particularly preferably 5 × 10 −2 to 700 × 10 −2 , especially Preferably 10 × 10 −2 to 600 × 10 −2 , very preferably 20 × 10 −2 to 500 × 10 −2 , especially 30 × 10 −2 to 400 × 10 −2 , especially 40 × 10 -2 to 300 × 10 −2 , for example, 50 × 10 −2 to 200 × 10 −2 . When the number per 1 μm 2 of the inorganic needles in the fiber-reinforced carbonated cement molded product is equal to or higher than the lower limit, the bending strength of the fiber-reinforced carbonated cement molded product can be further increased. When the number per 1 μm 2 of the inorganic needle-like material in the fiber-reinforced carbonated cement molded product is equal to or less than the upper limit, moldability and dispersibility are good. The number per unit is divided into 10 μm × 10 μm sections in a 20 μm × 30 μm cross-sectional enlarged image obtained by dividing a part of the fiber reinforced carbonated cement molding and observing the fracture surface with an electron microscope. 10 places, and the number of inorganic needles that can be confirmed in these sections is counted and converted into the number per 1 μm 2 .
In one embodiment of the present invention, as described above, the standard deviation of the number of inorganic needles that can be confirmed in 10 arbitrarily selected 10 μm × 10 μm sections is preferably 15 or less, more preferably 14 This is less than this, more preferably 13 or less, and usually 3 or more. When the standard deviation is less than or equal to the above upper limit, the dispersibility of inorganic needles in the fiber-reinforced carbonated cement molding is high, so there is little unevenness in mechanical strength such as bending strength, and fiber-reinforced carbonation with high mechanical strength. A cement molding can be obtained. In addition, the said standard deviation can measure the number of the inorganic needle-like objects which can be confirmed in a 10 micrometer x 10 micrometer division about 10 places, respectively, and can calculate it based on the measured value.
本発明の一実施態様において、繊維補強炭酸化セメント成形物における上記無機針状物の含有量は、無機針状物の種類ならびに繊維、パルプおよび骨材等の他の成分の量および種類によるが、繊維補強炭酸化セメント成形物の全質量に基づいて、好ましくは0.1~10質量%、より好ましくは0.3~8質量%、さらに好ましくは0.6~6質量%、特に好ましくは0.8~4質量%、とりわけ好ましくは1~3質量%である。繊維補強炭酸化セメント成形物における上記無機針状物の含有量が上記下限値以上であると、繊維補強炭酸化セメント成形物の曲げ強度をさらに高くすることができる。繊維補強炭酸化セメント成形物における上記無機針状物の含有量が上記上限値以下であると、成形性および分散性が良好である。繊維補強炭酸化セメント成形物における上記無機針状物の含有量は、例えば、無機針状物の添加量から算出することができ、また、無機針状物がチタン酸カリウム等からなる場合にはチタン等の元素を元素分析等により定量することにより測定することもできる。
In one embodiment of the present invention, the content of the inorganic needles in the fiber-reinforced carbonated cement molding depends on the type of inorganic needles and the amount and type of other components such as fibers, pulp and aggregates. Based on the total mass of the fiber-reinforced carbonated cement molding, preferably 0.1 to 10% by mass, more preferably 0.3 to 8% by mass, still more preferably 0.6 to 6% by mass, particularly preferably 0.8 to 4% by mass, particularly preferably 1 to 3% by mass. When the content of the inorganic needle-like material in the fiber-reinforced carbonated cement molded product is equal to or higher than the lower limit, the bending strength of the fiber-reinforced carbonated cement molded product can be further increased. When the content of the inorganic needle-like material in the fiber-reinforced carbonated cement molded product is equal to or less than the upper limit, moldability and dispersibility are good. The content of the inorganic needles in the fiber-reinforced carbonated cement molding can be calculated from, for example, the amount of inorganic needles added, and when the inorganic needles are made of potassium titanate or the like. It can also be measured by quantifying elements such as titanium by elemental analysis or the like.
(パルプ)
上記繊維補強炭酸化セメント成形物はパルプをさらに含むことが好ましい。上記パルプは、天然パルプまたは合成パルプのいずれでもよい。天然パルプとしては、針葉樹または広葉樹からの未晒しパルプおよび晒しパルプが挙げられ、具体的には、ワラ、竹、木綿、麻、ラミー、こうぞ、みつまた、またはユーカリ等から得られるパルプが挙げられる。また、新聞紙や紙袋、段ボール箱等から得られる回収古紙も挙げられる。合成パルプとしては、ポリオレフィン系パルプやポリアラミド系パルプ等が挙げられ、また、合成パルプはこれらに形状が類似したフィブリル状の物質であれば何でもよい。 (pulp)
It is preferable that the fiber-reinforced carbonated cement molding further includes pulp. The pulp may be natural pulp or synthetic pulp. Natural pulp includes unbleached and bleached pulp from conifers or hardwoods, specifically pulp obtained from straw, bamboo, cotton, hemp, ramie, ridge, honey or eucalyptus. . In addition, recovered waste paper obtained from newspapers, paper bags, cardboard boxes, and the like is also included. Examples of the synthetic pulp include polyolefin-based pulp and polyaramid-based pulp. The synthetic pulp may be anything as long as it is a fibrillar substance having a shape similar to these.
上記繊維補強炭酸化セメント成形物はパルプをさらに含むことが好ましい。上記パルプは、天然パルプまたは合成パルプのいずれでもよい。天然パルプとしては、針葉樹または広葉樹からの未晒しパルプおよび晒しパルプが挙げられ、具体的には、ワラ、竹、木綿、麻、ラミー、こうぞ、みつまた、またはユーカリ等から得られるパルプが挙げられる。また、新聞紙や紙袋、段ボール箱等から得られる回収古紙も挙げられる。合成パルプとしては、ポリオレフィン系パルプやポリアラミド系パルプ等が挙げられ、また、合成パルプはこれらに形状が類似したフィブリル状の物質であれば何でもよい。 (pulp)
It is preferable that the fiber-reinforced carbonated cement molding further includes pulp. The pulp may be natural pulp or synthetic pulp. Natural pulp includes unbleached and bleached pulp from conifers or hardwoods, specifically pulp obtained from straw, bamboo, cotton, hemp, ramie, ridge, honey or eucalyptus. . In addition, recovered waste paper obtained from newspapers, paper bags, cardboard boxes, and the like is also included. Examples of the synthetic pulp include polyolefin-based pulp and polyaramid-based pulp. The synthetic pulp may be anything as long as it is a fibrillar substance having a shape similar to these.
上記パルプは、叩解されていてもよい。叩解の程度を表すCSF(カナダ標準濾水度、Canadian Standard Freeness)は、好ましくは30~750ml、より好ましくは50~300mlである。本発明において、CSFは、JIS P 8121「パルプの濾水度試験方法」に従って測定することができる。パルプの叩解は、リファイナーやビーターのような叩解機にて行うことができる。
The above pulp may be beaten. The CSF (Canadian Standard Freeness) representing the degree of beating is preferably 30 to 750 ml, more preferably 50 to 300 ml. In the present invention, CSF can be measured according to JIS P 8121 “Pulp Freeness Test Method”. The pulp can be beaten with a beater such as a refiner or beater.
上記繊維補強炭酸化セメント成形物がパルプを含有する場合、パルプの含有量は、繊維補強炭酸化セメント成形物に対して、好ましくは1~10質量%、より好ましくは2~6質量%である。繊維補強炭酸化セメント成形物中のパルプの含有量が上記下限値以上であると、粒子状物質の捕捉性が良好となる。繊維補強炭酸化セメント成形物中のパルプの含有量が上記上限値以下であると、分散の均一性が良好となり、また層間剥離が抑制され、さらに高い難燃性を得ることができる。
When the fiber-reinforced carbonated cement molded product contains pulp, the content of the pulp is preferably 1 to 10% by mass, more preferably 2 to 6% by mass with respect to the fiber-reinforced carbonated cement molded product. . When the content of the pulp in the fiber-reinforced carbonated cement molded product is equal to or higher than the lower limit, the trapping property of the particulate matter is improved. When the pulp content in the fiber-reinforced carbonated cement molding is less than or equal to the above upper limit, the uniformity of dispersion becomes good, delamination is suppressed, and higher flame retardancy can be obtained.
本発明の好適な実施態様においては、繊維補強炭酸化セメント成形物はパルプを含む。上記繊維補強炭酸化セメント成形物がパルプを含有することにより、繊維補強炭酸化セメント成形物中における繊維の分散性が向上され、通気率制御も容易となり、かつ補強効果にも寄与することができる。また、パルプが存在する場合には、抄造法による繊維補強炭酸化セメント成形物の製造の場合、製造が容易となる。抄造とは、セメント成分などを水媒体に懸濁させたスラリー状の硬化性組成物をメッシュに濾し取り成型することをいう。抄造板(抄造体)とは、上記抄造により成型された成型板(成形物)をいう。
In a preferred embodiment of the invention, the fiber reinforced carbonated cement molding comprises pulp. When the fiber-reinforced carbonated cement molded product contains pulp, the dispersibility of fibers in the fiber-reinforced carbonated cement molded product is improved, air permeability control is facilitated, and the reinforcing effect can be contributed. . In the case where pulp is present, the production is facilitated in the case of producing a fiber-reinforced carbonated cement molding by a papermaking method. Papermaking means that a slurry-like curable composition in which a cement component or the like is suspended in an aqueous medium is filtered and molded into a mesh. The papermaking plate (papermaking body) refers to a molding plate (molded product) formed by the papermaking.
(骨材)
繊維補強炭酸化セメント成形物には骨材が含まれてよい。骨材としては、必要に応じてさまざまな骨材を使用することができる。骨材として、例えば、細骨材、軽量骨材および粗骨材等が挙げられる。骨材は、単独でまたは二種以上組み合わせて使用してもよい。 (aggregate)
The fiber reinforced carbonated cement molding may include aggregate. As the aggregate, various aggregates can be used as necessary. Examples of the aggregate include fine aggregate, lightweight aggregate, and coarse aggregate. Aggregates may be used alone or in combination of two or more.
繊維補強炭酸化セメント成形物には骨材が含まれてよい。骨材としては、必要に応じてさまざまな骨材を使用することができる。骨材として、例えば、細骨材、軽量骨材および粗骨材等が挙げられる。骨材は、単独でまたは二種以上組み合わせて使用してもよい。 (aggregate)
The fiber reinforced carbonated cement molding may include aggregate. As the aggregate, various aggregates can be used as necessary. Examples of the aggregate include fine aggregate, lightweight aggregate, and coarse aggregate. Aggregates may be used alone or in combination of two or more.
細骨材は、粒径が5mm以下の細骨材であってもよく、例えば、粒径が5mm以下の砂類;珪石、フライアッシュ、高炉スラグ、火山灰系シラス、各種汚泥、および岩石鉱物等の無機質材を粉末化または顆粒状化した細骨材等が挙げられる。これらの細骨材は、単独でまたは二種以上組み合わせて使用してもよい。砂類としては、例えば、川砂、山砂、海砂、砕砂、珪砂、鉱滓、ガラス砂、鉄砂、灰砂、炭酸カルシウム、および人工砂等の砂類が挙げられる。これらの細骨材は、単独でまたは二種以上組み合わせて使用してもよい。
The fine aggregate may be a fine aggregate having a particle size of 5 mm or less, such as sands having a particle size of 5 mm or less; silica stone, fly ash, blast furnace slag, volcanic ash-based shirasu, various sludges, rock minerals, etc. Fine aggregate obtained by pulverizing or granulating the inorganic material. These fine aggregates may be used alone or in combination of two or more. Examples of sands include sands such as river sand, mountain sand, sea sand, crushed sand, quartz sand, slag, glass sand, iron sand, ash sand, calcium carbonate, and artificial sand. These fine aggregates may be used alone or in combination of two or more.
粗骨材は、粒径5mm以上の粒子が85質量%以上含まれる骨材である。粗骨材は、粒径5mm超の粒子からなるものであってもよい。粗骨材としては、例えば、各種砂利類、人工骨材(高炉スラグ等)および再生骨材(建築廃材の再生骨材等)等が挙げられる。これらの粗骨材は、単独でまたは二種以上組み合わせて使用してもよい。
The coarse aggregate is an aggregate containing 85% by mass or more of particles having a particle size of 5 mm or more. The coarse aggregate may be composed of particles having a particle size of more than 5 mm. Examples of the coarse aggregate include various types of gravel, artificial aggregate (eg, blast furnace slag), recycled aggregate (eg, recycled aggregate of building waste), and the like. These coarse aggregates may be used alone or in combination of two or more.
軽量骨材としては、火山砂利、膨張スラグおよび炭殻等の天然軽量骨材、ならびに発泡真珠岩、発泡パーライト、発泡黒よう石、バーミキュライト、シラスバルーンおよびフライアッシュマイクロバルーン等の人工軽量骨材が挙げられる。これらの軽量骨材は、単独でまたは二種以上組み合わせて使用してもよい。上記繊維補強炭酸化セメント成形物は、薄肉化した場合であっても機械強度を保持できるので、製造工程中に粉砕し易い軽量骨材の量を低減しつつ、軽量化が可能である。したがって、全骨材中における軽量骨材の割合は、好ましくは10質量%以下、より好ましくは5質量%以下に低減することが可能である。
Lightweight aggregates include natural lightweight aggregates such as volcanic gravel, expanded slag and charcoal, and artificial lightweight aggregates such as foamed pearlite, foamed perlite, foamed black stone, vermiculite, shirasu balloons and fly ash microballoons. Can be mentioned. These lightweight aggregates may be used alone or in combination of two or more. Since the fiber-reinforced carbonated cement molded product can maintain mechanical strength even when it is thinned, it is possible to reduce the weight while reducing the amount of lightweight aggregate that is easily pulverized during the manufacturing process. Therefore, the proportion of the lightweight aggregate in the total aggregate can be reduced to preferably 10% by mass or less, more preferably 5% by mass or less.
また、上記繊維補強炭酸化セメント成形物は、機能性骨材を含んでもよい。ここで、機能性骨材とは、有色の骨材、硬質の骨材、弾性を有する骨材、および特定の形状を有する骨材等が挙げられ、具体的には、層状ケイ酸塩(例えば、マイカ、タルク、カオリン)、アルミナ、およびシリカ等が挙げられる。骨材に対する機能性骨材の割合は、それぞれの種類に応じて適宜設定することが可能であるが、例えば、骨材と機能性骨材との質量比(骨材/機能性骨材)は、99/1~70/30であってもよく、好ましくは98/2~75/25であってもよく、より好ましくは97/3~80/20であってもよい。これらの機能性骨材は、単独でまたは二種以上組み合わせて使用してもよい。
Further, the fiber-reinforced carbonated cement molding may include a functional aggregate. Here, functional aggregates include colored aggregates, hard aggregates, aggregates having elasticity, aggregates having a specific shape, and the like. Specifically, layered silicates (for example, , Mica, talc, kaolin), alumina, silica and the like. The ratio of the functional aggregate to the aggregate can be appropriately set according to each type. For example, the mass ratio of the aggregate to the functional aggregate (aggregate / functional aggregate) is 99/1 to 70/30, preferably 98/2 to 75/25, more preferably 97/3 to 80/20. These functional aggregates may be used alone or in combination of two or more.
上記繊維補強炭酸化セメント成形物が骨材を含む場合、骨材の総量(S)とセメント成分(C)の質量比(骨材(S)/セメント成分(C))は、好ましくは1/20~100/1、より好ましくは1/10~50/1、さらに好ましくは1/6~3/1であってもよい。
When the fiber-reinforced carbonated cement molding includes aggregate, the mass ratio of aggregate (S) to cement component (C) (aggregate (S) / cement component (C)) is preferably 1 / It may be 20 to 100/1, more preferably 1/10 to 50/1, still more preferably 1/6 to 3/1.
本発明の好適な実施態様においては、繊維補強炭酸化セメント成形物は骨材を含む。繊維補強炭酸化セメント成形物が骨材を含むことによって、骨材による補強効果だけでなく、骨材と繊維とが共存することにより炭酸化反応率を高まり、機械強度を高くすることができる。このメカニズムは明らかではないが、繊維および骨材間を伝って炭酸ガスが繊維補強炭酸化セメント成形物内部に通気し易くなり、炭酸化養生工程において、炭酸ガスの通気率が向上し、炭酸化反応率が高まることが考えられる。
In a preferred embodiment of the present invention, the fiber reinforced carbonated cement molding comprises aggregate. When the fiber-reinforced carbonated cement molding includes the aggregate, not only the reinforcing effect by the aggregate but also the coexistence of the aggregate and the fiber can increase the carbonation reaction rate and increase the mechanical strength. Although this mechanism is not clear, it becomes easier for carbon dioxide to pass through the fiber and aggregate through the fiber reinforced carbonated cement molding, and in the carbonation curing process, the carbon dioxide ventilation rate is improved and carbonation is improved. It is conceivable that the reaction rate increases.
上記繊維補強炭酸化セメント成形物は、適宜、必要に応じて各種混和剤を含んでよい。混和剤としては、例えば、AE剤、流動化剤、減水剤、高性能減水剤、AE減水剤、高性能AE減水剤、増粘剤、保水剤、撥水剤、膨張剤、硬化促進剤、炭酸化促進剤および凝結遅延剤等が挙げられる。混和剤は、単独でまたは二種以上組み合わせて含まれていてもよい。
The above-mentioned fiber-reinforced carbonated cement molding may contain various admixtures as necessary. Examples of the admixture include AE agent, fluidizing agent, water reducing agent, high performance water reducing agent, AE water reducing agent, high performance AE water reducing agent, thickener, water retention agent, water repellent, swelling agent, curing accelerator, A carbonation accelerator, a setting retarder, etc. are mentioned. The admixture may be contained alone or in combination of two or more.
上記繊維補強炭酸化セメント成形物は、また、必要に応じて水溶性高分子物質を含んでいてもよい。水溶性高分子物質としては、例えば、メチルセルロース、ヒドロキシメチルセルロース、ヒドロキシエチルセルロース、カルボキシメチルセルロース、ヒドロキシプロピルメチルセルロース等のセルロースエーテル、ポリビニルアルコール、ポリアクリル酸、およびリグニンスルホン酸塩等が挙げられる。水溶性高分子物質は、単独でまたは二種以上組み合わせて使用されていてもよい。
The above-mentioned fiber-reinforced carbonated cement molding may also contain a water-soluble polymer substance as necessary. Examples of the water-soluble polymer substance include cellulose ethers such as methyl cellulose, hydroxymethyl cellulose, hydroxyethyl cellulose, carboxymethyl cellulose, and hydroxypropyl methyl cellulose, polyvinyl alcohol, polyacrylic acid, and lignin sulfonate. The water-soluble polymer substance may be used alone or in combination of two or more.
上記繊維補強炭酸化セメント成形物は、必要に応じて水硬性成分(セメント成分)の硬化促進剤を含んでもよい。硬化促進剤としては、例えば塩化カルシウム、塩化アルミニウム、塩化鉄、塩化ナトリウム、塩化マグネシウム、硫酸アルカリ、炭酸アルカリ、およびケイ酸ソーダ、および硫酸カルシウム(石膏等)等が挙げられる。
The above-mentioned fiber reinforced carbonated cement molding may contain a hardening accelerator (a cement ingredient) as necessary. Examples of the curing accelerator include calcium chloride, aluminum chloride, iron chloride, sodium chloride, magnesium chloride, alkali sulfate, alkali carbonate, sodium silicate, and calcium sulfate (such as gypsum).
さらに上記繊維補強炭酸化セメント成形物は、必要に応じて炭酸化促進剤を含んでもよい。炭酸化促進剤としては、例えば、水性ポリマーディスパージョンとして、ポリアクリル酸エステル、ポリ酢酸ビニル、およびエチレン-酢酸ビニル共重合体等の熱可塑性エマルジョン、ならびにスチレンブタジエンゴム等の合成ゴムラテックスが挙げられる。また、再乳化形粉末樹脂(粉末エマルジョン)として、例えば、エチレン-酢酸ビニル共重合体、酢酸ビニルビニルバーサテート(VAVeoVa)等が挙げられる。
Further, the fiber-reinforced carbonated cement molding may contain a carbonation accelerator as necessary. Examples of the carbonation accelerator include water-based polymer dispersions, thermoplastic emulsions such as polyacrylic acid esters, polyvinyl acetate, and ethylene-vinyl acetate copolymers, and synthetic rubber latexes such as styrene-butadiene rubber. . Examples of the re-emulsifying powder resin (powder emulsion) include ethylene-vinyl acetate copolymer and vinyl acetate vinyl versatate (VAVeoVa).
また、上記繊維補強炭酸化セメント成形物は炭酸ガスと親和性の高い薬剤を含んでもよい。親和性の高い薬剤としては、例えばモノエタノールアミン、ジエタノールアミン、およびトリエタノールアミンをはじめとするアミン系薬剤、ならびにそれらが固定されたゲルなど、特に制限なく使用することができる。なお、これらは単独でまたは二種以上組み合わせて使用してもよい。
Further, the fiber-reinforced carbonated cement molding may contain a chemical having a high affinity for carbon dioxide gas. Examples of drugs having high affinity include amine drugs such as monoethanolamine, diethanolamine, and triethanolamine, and gels on which they are immobilized, without particular limitation. In addition, you may use these individually or in combination of 2 or more types.
上記繊維補強炭酸化セメント成形物は炭酸化されている。炭酸化とは、セメント成分の水和反応によって生じたCa(OH)2や、セメント成分であるビーライトが炭酸ガスと反応してCaCO3を生成することを意味する。上記繊維補強炭酸化セメント成形物の炭酸化反応率は、好ましくは30%以上、より好ましくは40%以上、さらに好ましくは50%以上、特に好ましくは60%以上、とりわけ好ましくは70%以上、非常に好ましくは80%以上、最も好ましくは90%以上である。繊維補強炭酸化セメント成形物の炭酸化反応率が上記下限値以上であると、繊維補強炭酸化セメント成形物内部がより緻密化するために、さらに高い機械強度(曲げ強度等)を有する繊維補強炭酸化セメント成形物を得ることができる。なお、繊維補強炭酸化セメント成形物の炭酸化反応率の上限値は、特に限定されるものではないが、通常99%以下、例えば98%以下、特に95%以下である。繊維補強炭酸化セメント成形物の炭酸化反応率は後述の方法によって測定することができる。
The fiber-reinforced carbonated cement molding is carbonated. Carbonation means that Ca (OH) 2 generated by a hydration reaction of a cement component and belite, which is a cement component, react with carbon dioxide gas to generate CaCO 3 . The carbonation reaction rate of the fiber-reinforced carbonated cement molded product is preferably 30% or more, more preferably 40% or more, still more preferably 50% or more, particularly preferably 60% or more, and particularly preferably 70% or more. Is preferably 80% or more, and most preferably 90% or more. If the carbonation reaction rate of the fiber reinforced carbonated cement molding is equal to or higher than the above lower limit, the fiber reinforced carbonated cement molding has a higher mechanical strength (bending strength, etc.) because the inside of the fiber reinforced carbonated cement molding becomes more dense. A carbonated cement molding can be obtained. The upper limit of the carbonation reaction rate of the fiber-reinforced carbonated cement molded product is not particularly limited, but is usually 99% or less, such as 98% or less, and particularly 95% or less. The carbonation reaction rate of the fiber-reinforced carbonated cement molding can be measured by the method described later.
上記繊維補強炭酸化セメント成形物は、機械強度に優れるため、薄肉化が可能であり、例えば、繊維補強炭酸化セメント成形物における最も薄い部分の厚みは、好ましくは8~100mm、より好ましくは10~95mm、さらに好ましくは15~90mmである。
The fiber-reinforced carbonated cement molded article is excellent in mechanical strength and can be thinned. For example, the thickness of the thinnest part in the fiber-reinforced carbonated cement molded article is preferably 8 to 100 mm, more preferably 10 mm. It is ˜95 mm, more preferably 15 to 90 mm.
上記繊維補強炭酸化セメント成形物の製造方法は、特に限定されない。本発明の好適な実施態様においては、
上記のセメント成分、無機針状物、繊維および水を混合して硬化性組成物を得る混合工程、
上記水硬性組成物を成型して成型体を得る成型工程、
成型体を前養生して硬化体を得る前養生工程、および
硬化体を炭酸化養生して繊維補強炭酸化セメント成形物を得る炭酸化養生工程
を含む方法によって、繊維補強炭酸化セメント成形物を製造することができる。 The manufacturing method of the said fiber reinforced carbonated cement molding is not specifically limited. In a preferred embodiment of the present invention,
A mixing step of mixing the cement component, inorganic needles, fibers and water to obtain a curable composition;
A molding step for obtaining a molded body by molding the hydraulic composition;
A fiber reinforced carbonated cement molding is obtained by a method including a pre-curing step for precuring a molded body to obtain a cured body, and a carbonation curing step for obtaining a fiber-reinforced carbonated cement molding by carbonizing and curing the cured body. Can be manufactured.
上記のセメント成分、無機針状物、繊維および水を混合して硬化性組成物を得る混合工程、
上記水硬性組成物を成型して成型体を得る成型工程、
成型体を前養生して硬化体を得る前養生工程、および
硬化体を炭酸化養生して繊維補強炭酸化セメント成形物を得る炭酸化養生工程
を含む方法によって、繊維補強炭酸化セメント成形物を製造することができる。 The manufacturing method of the said fiber reinforced carbonated cement molding is not specifically limited. In a preferred embodiment of the present invention,
A mixing step of mixing the cement component, inorganic needles, fibers and water to obtain a curable composition;
A molding step for obtaining a molded body by molding the hydraulic composition;
A fiber reinforced carbonated cement molding is obtained by a method including a pre-curing step for precuring a molded body to obtain a cured body, and a carbonation curing step for obtaining a fiber-reinforced carbonated cement molding by carbonizing and curing the cured body. Can be manufactured.
(混合工程)
上記のセメント成分、繊維および水、ならびに必要に応じてパルプ、骨材および/または各種混和剤は、公知または慣用のミキサーなどの混合手段により混合することにより、スラリー状の硬化性組成物を得ることができる。なお、硬化性組成物がパルプを含む場合、混合にあたりパルプと水を混合し、パルプを水中に分散させた後、他の成分を添加することが、各成分の分散性の観点から好ましい。
なお、混合にあたり、混合順序は特に制限ないが、好ましくは、硬化性組成物がパルプを含む場合にはパルプと水を混合しパルプを水中に分散させた後、セメント成分や混和剤等の他の添加剤と共に無機針状物を投入混合し、最後に繊維を添加することが、各成分の分散性の観点からより好ましい。 (Mixing process)
The above-mentioned cement component, fiber and water, and if necessary, pulp, aggregate and / or various admixtures are mixed by mixing means such as a known or conventional mixer to obtain a slurry-like curable composition. be able to. In addition, when a curable composition contains a pulp, it is preferable from a viewpoint of the dispersibility of each component to mix a pulp and water and to mix a pulp in water, and to add another component after mixing.
In mixing, the mixing order is not particularly limited, but preferably, when the curable composition contains pulp, the pulp and water are mixed and the pulp is dispersed in water, and then other components such as cement components and admixtures are used. It is more preferable from the viewpoint of the dispersibility of each component to add and mix the inorganic needles together with the additives, and finally add the fibers.
上記のセメント成分、繊維および水、ならびに必要に応じてパルプ、骨材および/または各種混和剤は、公知または慣用のミキサーなどの混合手段により混合することにより、スラリー状の硬化性組成物を得ることができる。なお、硬化性組成物がパルプを含む場合、混合にあたりパルプと水を混合し、パルプを水中に分散させた後、他の成分を添加することが、各成分の分散性の観点から好ましい。
なお、混合にあたり、混合順序は特に制限ないが、好ましくは、硬化性組成物がパルプを含む場合にはパルプと水を混合しパルプを水中に分散させた後、セメント成分や混和剤等の他の添加剤と共に無機針状物を投入混合し、最後に繊維を添加することが、各成分の分散性の観点からより好ましい。 (Mixing process)
The above-mentioned cement component, fiber and water, and if necessary, pulp, aggregate and / or various admixtures are mixed by mixing means such as a known or conventional mixer to obtain a slurry-like curable composition. be able to. In addition, when a curable composition contains a pulp, it is preferable from a viewpoint of the dispersibility of each component to mix a pulp and water and to mix a pulp in water, and to add another component after mixing.
In mixing, the mixing order is not particularly limited, but preferably, when the curable composition contains pulp, the pulp and water are mixed and the pulp is dispersed in water, and then other components such as cement components and admixtures are used. It is more preferable from the viewpoint of the dispersibility of each component to add and mix the inorganic needles together with the additives, and finally add the fibers.
上記混合物には無機針状物そのものを添加してもよいし、混合物中において無機針状物をインサイチュで形成させるために、該無機針状物の原料となる化合物を添加してもよい。該無機針状物の原料となる化合物を添加する場合、前養生工程および炭酸化養生工程を経た後に、繊維補強炭酸化セメント成形物中に無機針状物が形成すればよい。
The inorganic needles themselves may be added to the above mixture, or a compound that is a raw material for the inorganic needles may be added to form the inorganic needles in situ in the mixture. When adding the compound used as the raw material of the inorganic needle-like material, the inorganic needle-like material may be formed in the fiber-reinforced carbonated cement molding after passing through the pre-curing step and the carbonation-curing step.
繊維の分散方法は、さまざまな方法によって行うことができる。例えば、撹拌性能の高いミキサーまたはニーダーを用いることができ、撹拌性能の高いミキサーおよびニーダーとしては、例えば、抄造法で用いられる縦型ミキサー、スクリュー式ミキサー、双腕ニーダー、加圧ニーダー、アイリッヒミキサー、スーパーミキサー、プラネタリーミキサー、バンバリーミキサー、コンティニュアスミキサー、および連続混練機等が挙げられる。
The fiber dispersion method can be performed by various methods. For example, a mixer or kneader having high stirring performance can be used. Examples of the mixer and kneader having high stirring performance include, for example, a vertical mixer, a screw mixer, a double-arm kneader, a pressure kneader, and an Eirich used in papermaking. Examples thereof include a mixer, a super mixer, a planetary mixer, a Banbury mixer, a continuous mixer, and a continuous kneader.
上記水硬性組成物に含まれる水は、例えば、水/セメント成分比(W/C)が20~80質量%であってもよく、好ましくは25~70質量%、より好ましくは30~60質量%であってもよい。
The water contained in the hydraulic composition may have, for example, a water / cement component ratio (W / C) of 20 to 80% by mass, preferably 25 to 70% by mass, more preferably 30 to 60% by mass. %.
(成型工程)
成型工程においては、上記のようにして調合されたスラリー状の硬化性組成物を成型して成型体を得ることができる。例えば、以下のように硬化性組成物は成型される。上記硬化性組成物は、湿式抄造機の複数バットに送り込まれ、バット中の内部陰圧の網目シリンダーの回転によりシリンダー表面にケーキとなって抄き上げられて、メイキングロールまで運搬され、単層または積層されて所定の厚みにして巻き取りロールから切り離される。切り離された湿潤状態の板状の成形物は必要に応じてプレス機で加圧成型され、ついで養生(前養生および炭酸化養生)、その後必要に応じて乾燥されて、所望の水硬性無機質成型板が製造される。以上、ハチェック式抄造機による場合について述べたが、上記水硬性組成物の成型方法は、特に限定されず、一般的な繊維補強コンクリートやセメントの成型方法を用いることもできる。例えば、一層抄き等の長網抄造方式成型、流し込み成型、プレス成型、押出成型、または、スラリーを用いて1回または数回で所望の厚みを得るフローオン方式などの方法により、容易に所望の形状の成型体を成型することができる。 (Molding process)
In the molding step, a molded body can be obtained by molding the slurry-like curable composition prepared as described above. For example, the curable composition is molded as follows. The above curable composition is fed into a plurality of bats of a wet papermaking machine, is made into a cake on the cylinder surface by the rotation of a mesh cylinder of internal negative pressure in the bat, is transported to a making roll, and is a single layer Or it is laminated | stacked and it cut | disconnects from a winding roll by making predetermined thickness. The separated plate-like molded product in a wet state is pressure-molded with a press if necessary, then cured (pre-curing and carbonation curing), and then dried as necessary to form a desired hydraulic inorganic molding. A board is manufactured. As mentioned above, although the case using a Hatschek paper machine was described, the molding method of the hydraulic composition is not particularly limited, and a general fiber-reinforced concrete or cement molding method can also be used. For example, it is easily desired by a method such as long net paper making method molding such as single paper making, casting molding, press molding, extrusion molding, or a flow-on method that obtains a desired thickness once or several times using slurry. It is possible to mold a molded body of the shape.
成型工程においては、上記のようにして調合されたスラリー状の硬化性組成物を成型して成型体を得ることができる。例えば、以下のように硬化性組成物は成型される。上記硬化性組成物は、湿式抄造機の複数バットに送り込まれ、バット中の内部陰圧の網目シリンダーの回転によりシリンダー表面にケーキとなって抄き上げられて、メイキングロールまで運搬され、単層または積層されて所定の厚みにして巻き取りロールから切り離される。切り離された湿潤状態の板状の成形物は必要に応じてプレス機で加圧成型され、ついで養生(前養生および炭酸化養生)、その後必要に応じて乾燥されて、所望の水硬性無機質成型板が製造される。以上、ハチェック式抄造機による場合について述べたが、上記水硬性組成物の成型方法は、特に限定されず、一般的な繊維補強コンクリートやセメントの成型方法を用いることもできる。例えば、一層抄き等の長網抄造方式成型、流し込み成型、プレス成型、押出成型、または、スラリーを用いて1回または数回で所望の厚みを得るフローオン方式などの方法により、容易に所望の形状の成型体を成型することができる。 (Molding process)
In the molding step, a molded body can be obtained by molding the slurry-like curable composition prepared as described above. For example, the curable composition is molded as follows. The above curable composition is fed into a plurality of bats of a wet papermaking machine, is made into a cake on the cylinder surface by the rotation of a mesh cylinder of internal negative pressure in the bat, is transported to a making roll, and is a single layer Or it is laminated | stacked and it cut | disconnects from a winding roll by making predetermined thickness. The separated plate-like molded product in a wet state is pressure-molded with a press if necessary, then cured (pre-curing and carbonation curing), and then dried as necessary to form a desired hydraulic inorganic molding. A board is manufactured. As mentioned above, although the case using a Hatschek paper machine was described, the molding method of the hydraulic composition is not particularly limited, and a general fiber-reinforced concrete or cement molding method can also be used. For example, it is easily desired by a method such as long net paper making method molding such as single paper making, casting molding, press molding, extrusion molding, or a flow-on method that obtains a desired thickness once or several times using slurry. It is possible to mold a molded body of the shape.
(前養生工程)
上記前養生工程は、所望形状に成型された成型体全体が硬化する程度に養生を行うのが好ましい。全体が硬化しないと、脱板または脱型をして以降の工程へ移行するハンドリング時に成型体が破損する恐れがあるだけでなく、後述する炭酸化で生成するCaCO3による質量増加(すなわち体積増加)により、成型体もつられて膨張することになるため、緻密化効果が発現し難い。そのため、前養生は少なくとも成型体中の水分が蒸発しない高湿度雰囲気下で行うことが好ましい。硬化は、セメント成分の水和反応(凝結反応)によるものであるが、成型体内の水分が蒸発するとセメント成分の水和反応が阻害され、成型体をハンドリングできるまで硬化が進行しなくなる場合がある。相対湿度が、好ましくは30~100%、より好ましくは50~100%、さらに好ましくは65~100%、さらにより好ましくは80~100%、特に好ましくは90~100%、とりわけ好ましくは100%の雰囲気下において前養生工程を行う。また、このような高湿度雰囲気下において更に、水分を通さない容器または袋等に成型体を入れたり、プラスチック板またはプラスチックフィルム(ポリエチレンシート等)、金属板に成型体を挟んだりする方法等、成型体中の水分の蒸発が防止できる方法で養生を行ってもよい。前養生工程の養生温度としては特に限定されないが、例えば30~120℃、好ましくは50~110℃である。100℃以上の温度において前養生工程を行う場合には、オートクレーブ処理を行ってもよい。なお、繊維としてポリビニルアルコール系繊維を用いる場合には、同繊維の耐湿熱性の観点から、120℃以下の温度で前養生工程を行うことが好ましい。また、養生に必要なマチュリティー(養生温度℃×養生時間hr)は、200~2000が好ましく、250~1500がより好ましく、300~1000がさらに好ましい。 (Pre-curing process)
The pre-curing step is preferably performed to such an extent that the entire molded body molded into a desired shape is cured. If the whole is not cured, not only the molded body may be damaged during handling to deplate or mold and move to the subsequent process, but also mass increase due to CaCO 3 generated by carbonation described later (that is, volume increase) ), The molded body is entangled and expands, so that the densification effect is hardly exhibited. Therefore, it is preferable to perform the pre-curing at least in a high-humidity atmosphere in which moisture in the molded body does not evaporate. Curing is due to the hydration reaction (condensation reaction) of the cement component, but if the moisture in the molded body evaporates, the hydration reaction of the cement component is inhibited, and curing may not proceed until the molded body can be handled. . The relative humidity is preferably 30 to 100%, more preferably 50 to 100%, still more preferably 65 to 100%, even more preferably 80 to 100%, particularly preferably 90 to 100%, particularly preferably 100%. A pre-curing process is performed in an atmosphere. In addition, in such a high humidity atmosphere, the molded body is put into a container or bag that does not allow moisture to pass, a plastic plate or plastic film (polyethylene sheet, etc.), a method of sandwiching the molded body between metal plates, etc. Curing may be performed by a method that can prevent evaporation of moisture in the molded body. The curing temperature in the pre-curing process is not particularly limited, but is, for example, 30 to 120 ° C, preferably 50 to 110 ° C. When the pre-curing step is performed at a temperature of 100 ° C. or higher, an autoclave treatment may be performed. In addition, when using a polyvinyl alcohol-type fiber as a fiber, it is preferable to perform a pre-curing process at the temperature of 120 degrees C or less from a heat-and-moisture-resistant viewpoint of the fiber. The maturity necessary for curing (curing temperature ° C. × curing time hr) is preferably 200 to 2000, more preferably 250 to 1500, and still more preferably 300 to 1000.
上記前養生工程は、所望形状に成型された成型体全体が硬化する程度に養生を行うのが好ましい。全体が硬化しないと、脱板または脱型をして以降の工程へ移行するハンドリング時に成型体が破損する恐れがあるだけでなく、後述する炭酸化で生成するCaCO3による質量増加(すなわち体積増加)により、成型体もつられて膨張することになるため、緻密化効果が発現し難い。そのため、前養生は少なくとも成型体中の水分が蒸発しない高湿度雰囲気下で行うことが好ましい。硬化は、セメント成分の水和反応(凝結反応)によるものであるが、成型体内の水分が蒸発するとセメント成分の水和反応が阻害され、成型体をハンドリングできるまで硬化が進行しなくなる場合がある。相対湿度が、好ましくは30~100%、より好ましくは50~100%、さらに好ましくは65~100%、さらにより好ましくは80~100%、特に好ましくは90~100%、とりわけ好ましくは100%の雰囲気下において前養生工程を行う。また、このような高湿度雰囲気下において更に、水分を通さない容器または袋等に成型体を入れたり、プラスチック板またはプラスチックフィルム(ポリエチレンシート等)、金属板に成型体を挟んだりする方法等、成型体中の水分の蒸発が防止できる方法で養生を行ってもよい。前養生工程の養生温度としては特に限定されないが、例えば30~120℃、好ましくは50~110℃である。100℃以上の温度において前養生工程を行う場合には、オートクレーブ処理を行ってもよい。なお、繊維としてポリビニルアルコール系繊維を用いる場合には、同繊維の耐湿熱性の観点から、120℃以下の温度で前養生工程を行うことが好ましい。また、養生に必要なマチュリティー(養生温度℃×養生時間hr)は、200~2000が好ましく、250~1500がより好ましく、300~1000がさらに好ましい。 (Pre-curing process)
The pre-curing step is preferably performed to such an extent that the entire molded body molded into a desired shape is cured. If the whole is not cured, not only the molded body may be damaged during handling to deplate or mold and move to the subsequent process, but also mass increase due to CaCO 3 generated by carbonation described later (that is, volume increase) ), The molded body is entangled and expands, so that the densification effect is hardly exhibited. Therefore, it is preferable to perform the pre-curing at least in a high-humidity atmosphere in which moisture in the molded body does not evaporate. Curing is due to the hydration reaction (condensation reaction) of the cement component, but if the moisture in the molded body evaporates, the hydration reaction of the cement component is inhibited, and curing may not proceed until the molded body can be handled. . The relative humidity is preferably 30 to 100%, more preferably 50 to 100%, still more preferably 65 to 100%, even more preferably 80 to 100%, particularly preferably 90 to 100%, particularly preferably 100%. A pre-curing process is performed in an atmosphere. In addition, in such a high humidity atmosphere, the molded body is put into a container or bag that does not allow moisture to pass, a plastic plate or plastic film (polyethylene sheet, etc.), a method of sandwiching the molded body between metal plates, etc. Curing may be performed by a method that can prevent evaporation of moisture in the molded body. The curing temperature in the pre-curing process is not particularly limited, but is, for example, 30 to 120 ° C, preferably 50 to 110 ° C. When the pre-curing step is performed at a temperature of 100 ° C. or higher, an autoclave treatment may be performed. In addition, when using a polyvinyl alcohol-type fiber as a fiber, it is preferable to perform a pre-curing process at the temperature of 120 degrees C or less from a heat-and-moisture-resistant viewpoint of the fiber. The maturity necessary for curing (curing temperature ° C. × curing time hr) is preferably 200 to 2000, more preferably 250 to 1500, and still more preferably 300 to 1000.
本発明の一実施態様によれば、成型体が無機針状物を含むことにより成型体の機械強度を高めることができるため、前養生工程における養生時間が短くても硬化体を型から取り出し可能な程度に硬化させることができ、また、前養生工程における養生時間が短くても炭酸化養生工程にて硬化体の膨張を抑制することができ、高い曲げ強度および低い寸法変化率を有する繊維補強炭酸化セメント成形物を得ることできるため、工業的に有利である。本発明の好適な実施態様において、前養生工程における養生時間は、養生温度によるが、好ましくは12時間以内、より好ましくは10時間以内、さらに好ましくは8時間以内、特に好ましくは6時間以内、とりわけ好ましくは5時間以内である。なお、養生時間は通常1時間以上、特に2時間以上、とりわけ3時間以上である。
According to one embodiment of the present invention, since the molded body can include the inorganic needles, the mechanical strength of the molded body can be increased, so that the cured body can be removed from the mold even if the curing time in the pre-curing process is short. It can be cured to any extent, and even if the curing time in the precuring process is short, the expansion of the cured body can be suppressed in the carbonation curing process, and the fiber reinforcement has high bending strength and low dimensional change rate. Since a carbonated cement molding can be obtained, it is industrially advantageous. In a preferred embodiment of the present invention, the curing time in the pre-curing step depends on the curing temperature, but is preferably within 12 hours, more preferably within 10 hours, even more preferably within 8 hours, particularly preferably within 6 hours, especially Preferably it is within 5 hours. The curing time is usually 1 hour or longer, particularly 2 hours or longer, especially 3 hours or longer.
前養生工程における養生雰囲気ガスとしては特に限定されず、空気以外に、炭酸化養生における濃度よりも低い濃度の炭酸ガス、窒素、酸素、水蒸気、ヘリウムもしくはアルゴンまたはこれらの混合ガス等を、本発明の目的を阻害しない範囲内で混合して使用することができる。
The curing atmosphere gas in the pre-curing step is not particularly limited, and other than air, carbon dioxide, nitrogen, oxygen, water vapor, helium or argon having a concentration lower than the concentration in carbonation curing, or a mixed gas thereof is used in the present invention. Can be used in a range that does not impede the purpose.
水硬性組成物は、パルプおよび/または骨材を含むことが好ましい。水硬性組成物がパルプおよび/または骨材を含む場合、前養生工程において得られる硬化体の通気率を高めることができる。通気率の上昇により、後の炭酸化反応が進行し易くなる。硬化体の通気率は、例えば、水硬性組成物中のパルプおよび/または骨材の含有量を増やしたり、骨材として軽量骨材を一部使用したり、プレス圧を調整したりすることなどにより調整することができる。
The hydraulic composition preferably contains pulp and / or aggregate. When the hydraulic composition contains pulp and / or aggregate, the air permeability of the cured product obtained in the pre-curing process can be increased. The increase in the air permeability facilitates the subsequent carbonation reaction. The air permeability of the cured body is, for example, increasing the content of pulp and / or aggregate in the hydraulic composition, partially using lightweight aggregate as the aggregate, adjusting the press pressure, etc. Can be adjusted.
本発明の別の実施態様によれば、上記のセメント成分、無機針状物および繊維を含む繊維補強セメント成形物であって、該無機針状物は、長さが1mm以下であり、アスペクト比が20以上である、繊維補強セメント成形物も提供される。該繊維補強セメント成形物とは、炭酸化されておらず、即ち前養生工程後の硬化体である。該繊維補強セメント成形物は、炭酸化を経ることにより高い曲げ強度および低い寸法変化率を達成することが可能である。上記繊維補強セメント成形物の炭酸化反応率は、好ましくは5%以下、より好ましくは3%以下、さらに好ましくは1%以下であり、通常0%以上である。
According to another embodiment of the present invention, there is provided a fiber-reinforced cement molded article comprising the above cement component, inorganic needles and fibers, wherein the inorganic needles have a length of 1 mm or less and an aspect ratio. Also provided are fiber reinforced cement moldings having a ≧ 20. The fiber-reinforced cement molded product is not carbonized, that is, a cured product after the pre-curing step. The fiber-reinforced cement molding can achieve high bending strength and low dimensional change rate by undergoing carbonation. The carbonation reaction rate of the fiber-reinforced cement molded article is preferably 5% or less, more preferably 3% or less, still more preferably 1% or less, and usually 0% or more.
(炭酸化養生工程)
前養生工程によって得られた硬化体は、型から取り出し可能な程度に全体が硬化されていることが好ましい。この硬化体を用いて炭酸化養生工程を行う。ここで、硬化体の炭酸化養生工程においては、セメント成分の水和反応により生成した水酸化カルシウム:Ca(OH)2[下記式(1)参照]と、浸透してきた炭酸ガス:CO2とが反応して、下記式(2)に示すように、炭酸カルシウム:CaCO3および水が生じる反応が行われる。この時、硬化体が高アルカリ性から中性側に移行するので、硬化体の切断面にフェノールフタレイン溶液を塗布して呈色状況を観察することにより容易に炭酸化反応率を確認することができる。
CaO・SiO2+H2O→Ca(OH)2+SiO2 ・・・(1)
Ca(OH)2+CO2→CaCO3+H2O ・・・・・・・(2) (Carbonation curing process)
The cured body obtained by the pre-curing step is preferably cured as a whole so that it can be taken out from the mold. A carbonation curing process is performed using this hardening body. Here, in the carbonation curing process of the hardened body, calcium hydroxide generated by hydration reaction of the cement component: Ca (OH) 2 [see the following formula (1)], and carbon dioxide gas that has permeated: CO 2 React to produce calcium carbonate: CaCO 3 and water as shown in the following formula (2). At this time, since the cured body shifts from highly alkaline to neutral side, it is possible to easily confirm the carbonation reaction rate by applying a phenolphthalein solution to the cut surface of the cured body and observing the coloration state. it can.
CaO.SiO 2 + H 2 O → Ca (OH) 2 + SiO 2 (1)
Ca (OH) 2 + CO 2 → CaCO 3 + H 2 O (2)
前養生工程によって得られた硬化体は、型から取り出し可能な程度に全体が硬化されていることが好ましい。この硬化体を用いて炭酸化養生工程を行う。ここで、硬化体の炭酸化養生工程においては、セメント成分の水和反応により生成した水酸化カルシウム:Ca(OH)2[下記式(1)参照]と、浸透してきた炭酸ガス:CO2とが反応して、下記式(2)に示すように、炭酸カルシウム:CaCO3および水が生じる反応が行われる。この時、硬化体が高アルカリ性から中性側に移行するので、硬化体の切断面にフェノールフタレイン溶液を塗布して呈色状況を観察することにより容易に炭酸化反応率を確認することができる。
CaO・SiO2+H2O→Ca(OH)2+SiO2 ・・・(1)
Ca(OH)2+CO2→CaCO3+H2O ・・・・・・・(2) (Carbonation curing process)
The cured body obtained by the pre-curing step is preferably cured as a whole so that it can be taken out from the mold. A carbonation curing process is performed using this hardening body. Here, in the carbonation curing process of the hardened body, calcium hydroxide generated by hydration reaction of the cement component: Ca (OH) 2 [see the following formula (1)], and carbon dioxide gas that has permeated: CO 2 React to produce calcium carbonate: CaCO 3 and water as shown in the following formula (2). At this time, since the cured body shifts from highly alkaline to neutral side, it is possible to easily confirm the carbonation reaction rate by applying a phenolphthalein solution to the cut surface of the cured body and observing the coloration state. it can.
CaO.SiO 2 + H 2 O → Ca (OH) 2 + SiO 2 (1)
Ca (OH) 2 + CO 2 → CaCO 3 + H 2 O (2)
炭酸化養生工程は、炭酸ガス濃度が高い雰囲気下において行われることが好ましい。炭酸化養生工程は、好ましくは濃度5%以上、より好ましくは8%以上、好ましくは30%以下、より好ましくは20%以下の炭酸ガス雰囲気下において行われる。炭酸ガス濃度が上記下限値以上であると、炭酸化がより促進され、繊維補強炭酸化セメント成形物の機械強度が向上し、さらに塗料の選択性が広がる。また、炭酸ガス濃度が上記上限値以下であると、炭酸ガス濃度の過剰な上昇による危険性が低減され、また経済的にも有利である。なお、雰囲気ガスとしては炭酸ガス以外に、空気、窒素、酸素、水蒸気、ヘリウム、またはアルゴン等のガスを本発明の目的を阻害しない範囲内で混合して使用することができる。また、炭酸ガスを含む高圧容器中で炭酸化することも、生産性向上の面から有効である。一方で、炭酸化の温度としては特に限定されないが、高温であるほど炭酸化反応を早くすることができ、例えば0℃以上、好ましくは20℃以上、より好ましくは30℃以上、さらに好ましくは40℃以上、特に好ましくは50℃以上、とりわけ好ましくは60℃以上である。なお、繊維としてポリビニルアルコール系繊維を用いる場合には、同繊維の耐湿熱性の観点から、120℃以下の温度で炭酸化養生工程を行うことが好ましい。炭酸化養生工程の時間は、炭酸化養生工程の時間および炭酸ガス濃度等に応じて異なるが、通常、8~48時間である。
The carbonation curing step is preferably performed in an atmosphere having a high carbon dioxide gas concentration. The carbonation curing step is preferably performed in a carbon dioxide gas atmosphere having a concentration of 5% or more, more preferably 8% or more, preferably 30% or less, more preferably 20% or less. When the carbon dioxide concentration is not less than the above lower limit, carbonation is further promoted, the mechanical strength of the fiber-reinforced carbonated cement molding is improved, and the selectivity of the paint is further expanded. Further, when the carbon dioxide concentration is less than or equal to the above upper limit, the danger due to excessive increase of the carbon dioxide concentration is reduced, and it is economically advantageous. As the atmospheric gas, in addition to carbon dioxide gas, a gas such as air, nitrogen, oxygen, water vapor, helium, or argon can be mixed and used within a range that does not impair the object of the present invention. Carbonation in a high-pressure vessel containing carbon dioxide gas is also effective from the viewpoint of improving productivity. On the other hand, the carbonation temperature is not particularly limited, but the higher the temperature, the faster the carbonation reaction. For example, 0 ° C. or higher, preferably 20 ° C. or higher, more preferably 30 ° C. or higher, and still more preferably 40 ° C. C. or higher, particularly preferably 50 ° C. or higher, particularly preferably 60 ° C. or higher. In addition, when using a polyvinyl alcohol-type fiber as a fiber, it is preferable to perform a carbonation curing process at the temperature of 120 degrees C or less from a heat-and-moisture-resistant viewpoint of the fiber. The time for the carbonation curing process varies depending on the time for the carbonation curing process and the concentration of carbon dioxide gas, but is usually 8 to 48 hours.
本発明の一実施態様においては、炭酸化反応には、上記式(1)の通り、水が必要であるため、炭酸化養生工程も一定の湿度下で行うことが好ましい。炭酸化養生工程における相対湿度は、好ましくは30~95%、より好ましくは35~90%、さらに好ましくは40~85%である。炭酸化養生工程における相対湿度が上記下限値以上であると、炭酸化反応およびセメント成分の水和反応をより促進させることができる。また、炭酸化養生工程における相対湿度が上記上限値以下であると、硬化体表面での結露水の発生が抑制され、炭酸ガスが硬化体内部まで侵入し易くなり、また結露水による硬化体表面の浸食が抑制されるために製品の外観が良好となる。
In one embodiment of the present invention, as the carbonation reaction requires water as in the above formula (1), the carbonation curing step is preferably performed at a constant humidity. The relative humidity in the carbonation curing process is preferably 30 to 95%, more preferably 35 to 90%, and still more preferably 40 to 85%. When the relative humidity in the carbonation curing step is not less than the above lower limit value, the carbonation reaction and the hydration reaction of the cement component can be further promoted. Further, when the relative humidity in the carbonation curing process is not more than the above upper limit value, the generation of condensed water on the surface of the cured body is suppressed, and the carbon dioxide gas easily enters the inside of the cured body, and the surface of the cured body due to the condensed water. Since the erosion of the product is suppressed, the appearance of the product is improved.
前養生工程において得られた硬化体が、炭酸化養生により硬化体表面だけでなく内部まで炭酸化反応が進行することで、硬化体全体の均一な緻密化を行うことができる。ビーライトを含有するセメント硬化体の場合、炭酸ガスによりさらに緻密化が進行し易い。そのメカニズムについては未解明な部分も多いが、次のように考えられる。通常のセメント硬化体が炭酸化(中性化)する場合には、上記式(1)および(2)に示されるように、セメントの水和反応によって生じたCa(OH)2が炭酸ガスと反応してCaCO3になるが、セメント硬化体中にビーライトが多量に存在すると、ビーライトが水和反応せずに直接炭酸ガスと反応して多量のCaCO3およびSiO2を生成する。同時に、水和反応で生成したC-S-Hゲルも、炭酸ガスと反応することで、同様にCaCO3およびSiO2を生成する。さらに、セメントの水和反応で生じたCa(OH)2も炭酸ガスと反応してCaCO3となる。このため、通常のセメント硬化体に比べ早期に多量の反応生成物が生じ、これがセメント硬化体内の空隙を埋めて緻密化すると考えられる。実際、炭酸化された硬化体は、炭酸化される前に比べ、比重は増加し、吸水率は低減し、細孔総容積は減少し、さらには寸法変化率も減少することからも、内部組織の緻密化が起こっていることが理解される。細孔総容積は、水銀圧入法による細孔分布測定から把握することができる。なお、CaCO3の結晶形態としては、カルサイト、アラゴナイト、バテライトの3種類が存在する。いずれの場合でも緻密化できる点で好ましいが、特にアラゴナイトおよびバテライトが好ましい。アラゴナイトは、アスペクト比が20mmに満たない針状結晶であるが、繊維補強炭酸化セメント成形物の曲げ強度向上にわずかに寄与し得る。バテライトは、カルサイトおよびアラゴナイトに比べて比重が小さく、そのためセメント硬化体中に同一質量のCaCO3が存在した場合、占有体積はバテライトの方が大きくなるため、より緻密化には有効で好ましい。なお、カルサイトはCa(OH)2から生成されやすいのに対し、アラゴナイトやバテライトはビーライトやC-S-Hゲルから生成されやすい。そのことも、緻密化に有効なアラゴナイトおよびバテライトが早い段階で生成される点で、本発明の大きな特徴の1つである。このような炭酸化による緻密化は、硬化前にプレス等を施すことで機械的に比重を増加させ空隙を少なくする方法に比べ、より効率的に緻密化することができる点で好ましい。例えば寸法変化率は、吸水/蒸発時の膨張/収縮に伴うものであり、比重を高くすることで変化率を抑制することができるが、同じ比重においては、プレスして比重を高めた場合と比較し、炭酸化により緻密化した場合の方が、比重当たりの寸法変化率が低い繊維補強炭酸化セメント成形物が得られる。
The hardened body obtained in the pre-curing process can be densified uniformly throughout the hardened body as the carbonation reaction proceeds not only to the surface of the hardened body but also to the inside by the carbonation curing. In the case of a hardened cement containing belite, densification is more likely to proceed with carbon dioxide gas. There are many unclear points about the mechanism, but it is thought to be as follows. When a normal hardened cement body is carbonated (neutralized), as shown in the above formulas (1) and (2), Ca (OH) 2 generated by the hydration reaction of cement is converted to carbon dioxide gas. Although it reacts to become CaCO 3 , if a large amount of belite exists in the hardened cement, the belite does not hydrate and reacts directly with carbon dioxide gas to generate a large amount of CaCO 3 and SiO 2 . At the same time, the C—S—H gel produced by the hydration reaction reacts with carbon dioxide gas to produce CaCO 3 and SiO 2 in the same manner. Furthermore, Ca (OH) 2 generated by the cement hydration reaction also reacts with carbon dioxide to become CaCO 3 . For this reason, it is considered that a large amount of reaction product is generated at an early stage as compared with a normal hardened cement body, which fills voids in the hardened cement body and densifies it. In fact, the carbonized cured body has an increased specific gravity, a reduced water absorption, a reduced total pore volume, and a reduced dimensional change rate. It is understood that organization densification is occurring. The total pore volume can be grasped from the pore distribution measurement by mercury porosimetry. Note that there are three types of CaCO 3 crystal forms: calcite, aragonite, and vaterite. In any case, it is preferable in terms of densification, but aragonite and vaterite are particularly preferable. Aragonite is an acicular crystal having an aspect ratio of less than 20 mm, but can slightly contribute to the improvement of the bending strength of the fiber-reinforced carbonated cement molding. Vaterite has a lower specific gravity than calcite and aragonite. Therefore, when the same mass of CaCO 3 is present in the hardened cement body, the occupied volume becomes larger in the vaterite, which is more effective and preferable for densification. In addition, calcite is easily generated from Ca (OH) 2 , whereas aragonite and vaterite are easily generated from belite and C—S—H gel. This is also one of the major features of the present invention in that aragonite and vaterite effective for densification are generated at an early stage. Such densification by carbonation is preferable in that it can be densified more efficiently than a method of mechanically increasing specific gravity and reducing voids by applying a press or the like before curing. For example, the dimensional change rate is associated with expansion / contraction during water absorption / evaporation, and the rate of change can be suppressed by increasing the specific gravity. However, at the same specific gravity, the specific gravity is increased by pressing. In comparison, a fiber-reinforced carbonated cement molding having a lower dimensional change rate per specific gravity is obtained when densified by carbonation.
本発明の一実施態様である繊維補強炭酸化セメント成形物は、前養生工程により型から取り出し可能な程度に成型体全体が硬化されてから炭酸化養生工程を行うことにより、反応速度の速い炭酸化が先行して緻密化が進行するため、炭酸化に比べ反応速度の遅い水硬性成分の水和反応が不完全でも、短期間に、曲げ強度が高く、かつ、比重あたりの寸法変化率が小さく、耐透水性に優れ、かつ、塗装性が良好な繊維補強炭酸化セメント成形物を得ることができる。
The fiber-reinforced carbonated cement molded product according to one embodiment of the present invention is a carbonic acid having a high reaction rate by performing the carbonation curing process after the entire molded body is cured to the extent that it can be removed from the mold by the precuring process. Because of the advancement of densification, the hydration reaction of hydraulic components, which have a slower reaction rate than carbonation, is incomplete, and in a short time the bending strength is high and the dimensional change rate per specific gravity is high. It is possible to obtain a fiber-reinforced carbonated cement molding that is small, excellent in water permeability, and excellent in paintability.
また、本発明の一実施態様によれば、硬化体が無機針状物を含むことにより、硬化体の機械強度が高められ、炭酸化で生成するCaCO3に起因する硬化体の外部への膨張を抑えることができる。それゆえ、炭酸化で生成するCaCO3の増量分の大部分または全てが更なる緻密化に寄与する。本発明の一実施態様によれば、硬化体が無機針状物を含むことにより、炭酸化養生による緻密化効果を高めることができる。
さらに、このような無機針状物に起因する緻密化効果により、硬化体内部のセメント成分と繊維との密着性が高まり、繊維補強炭酸化セメント成形物の曲げ強度等の機械強度をさらに高め、寸法変化率を低くすることができる。 Moreover, according to one embodiment of the present invention, the cured body contains inorganic needles, whereby the mechanical strength of the cured body is increased, and expansion of the cured body to the outside due to CaCO 3 generated by carbonation. Can be suppressed. Therefore, most or all of the increased amount of CaCO 3 produced by carbonation contributes to further densification. According to one embodiment of the present invention, when the cured body contains inorganic needles, the densification effect by the carbonation curing can be enhanced.
Furthermore, due to the densification effect resulting from such inorganic needles, the adhesion between the cement component and the fibers inside the cured body is increased, and the mechanical strength such as the bending strength of the fiber-reinforced carbonated cement molding is further increased, The dimensional change rate can be lowered.
さらに、このような無機針状物に起因する緻密化効果により、硬化体内部のセメント成分と繊維との密着性が高まり、繊維補強炭酸化セメント成形物の曲げ強度等の機械強度をさらに高め、寸法変化率を低くすることができる。 Moreover, according to one embodiment of the present invention, the cured body contains inorganic needles, whereby the mechanical strength of the cured body is increased, and expansion of the cured body to the outside due to CaCO 3 generated by carbonation. Can be suppressed. Therefore, most or all of the increased amount of CaCO 3 produced by carbonation contributes to further densification. According to one embodiment of the present invention, when the cured body contains inorganic needles, the densification effect by the carbonation curing can be enhanced.
Furthermore, due to the densification effect resulting from such inorganic needles, the adhesion between the cement component and the fibers inside the cured body is increased, and the mechanical strength such as the bending strength of the fiber-reinforced carbonated cement molding is further increased, The dimensional change rate can be lowered.
このように、上記繊維補強炭酸化セメント成形物は、繊維および無機針状物を含み、炭酸化養生を経て製造されるため、比重当たりの寸法変化率が非常に低く、好ましくは0.1%以下、より好ましくは0.09%以下、さらに好ましくは0.08%以下、特に好ましくは0.075%以下であり、寸法変化率の低い繊維補強炭酸化セメント成形物を得ることができる。なお、繊維補強炭酸化セメント成形物の比重当たりの寸法変化率は、通常0%以上である。
Thus, since the fiber-reinforced carbonated cement molding includes fibers and inorganic needles and is manufactured through carbonation curing, the dimensional change rate per specific gravity is very low, preferably 0.1%. In the following, it is more preferably 0.09% or less, further preferably 0.08% or less, particularly preferably 0.075% or less, and a fiber-reinforced carbonated cement molding having a low dimensional change rate can be obtained. In addition, the dimensional change rate per specific gravity of the fiber reinforced carbonated cement molding is usually 0% or more.
炭酸化養生工程は、特に制限なく実施することができ、例えば前養生工程において得られる硬化体をラック等に入れて養生槽に導入した後で、所定の条件下で養生することによって行うことができる。一方で、炭酸ガスの硬化体への接触が抑制され、硬化体内で反応斑が発生すると、硬化体が反る等の問題が生じることがある。そのため、反応斑を解消するために、養生槽内の気体を循環させたり、硬化体の上下から炭酸ガスを均一に吹き付けたり、ラックに硬化体を積載する際に硬化体同士が重ならないようスペーサーを設けたり、硬化体を縦置きにするなど、炭酸ガスが硬化体に均一に接触できるように工夫することが特に好ましい。
The carbonation curing process can be carried out without any particular limitation. For example, the carbonized curing process can be performed by putting the cured product obtained in the pre-curing process into a rack or the like and introducing it into a curing tank, followed by curing under predetermined conditions. it can. On the other hand, when the contact of carbon dioxide gas with the cured body is suppressed and reaction spots are generated in the cured body, problems such as warping of the cured body may occur. Therefore, in order to eliminate reaction spots, spacers are used to circulate the gas in the curing tank, spray carbon dioxide uniformly from the top and bottom of the cured body, and prevent the cured bodies from overlapping each other when loading the cured bodies on the rack. It is particularly preferable to devise so that the carbon dioxide gas can be brought into uniform contact with the cured body, for example, by providing a hard disk or by placing the cured body vertically.
炭酸化養生工程において、前養生工程において得られた硬化体は、炭酸化反応率が好ましくは30%以上、より好ましくは40%以上、さらに好ましくは50%以上、特に好ましくは60%以上、とりわけ好ましくは70%以上、非常に好ましくは80%以上、最も好ましくは90%以上まで炭酸化される。炭酸化反応率が上記下限値以上であると、繊維補強炭酸化セメント成形物内部において緻密化(高密度化)が進行し易く、高い機械強度を有する繊維補強炭酸化セメント成形物を得ることができる。なお、炭酸化反応率の上限値は、特に限定されるものではないが、通常99%以下、例えば98%以下、特に95%以下である。
In the carbonation curing step, the cured product obtained in the pre-curing step has a carbonation reaction rate of preferably 30% or more, more preferably 40% or more, further preferably 50% or more, particularly preferably 60% or more, especially Preferably it is carbonated to 70% or more, very preferably 80% or more, most preferably 90% or more. When the carbonation reaction rate is equal to or higher than the lower limit, densification (densification) easily proceeds inside the fiber-reinforced carbonated cement molded article, and a fiber-reinforced carbonated cement molded article having high mechanical strength can be obtained. it can. The upper limit value of the carbonation reaction rate is not particularly limited, but is usually 99% or less, for example 98% or less, particularly 95% or less.
炭酸化養生工程後の繊維補強炭酸化セメント成形物表面は、必要に応じて塗料を用いて塗装されていてもよい。塗料としては、特に限定されるものではなく、フェノール樹脂塗料、合成樹脂調合ペイント、アルキド樹脂塗料、フタル酸樹脂塗料、アクリルアルキド樹脂塗料、アミノアルキド樹脂塗料、メラミン焼付樹脂塗料、エポキシ樹脂塗料、変性エポキシ樹脂塗料、タールエポキシ樹脂塗料、ポリウレタン樹脂塗料、湿気硬化ポリウレタン樹脂塗料、アクリルウレタン樹脂塗料、ポリエステルウレタン樹脂塗料、アルキド変性シリコン樹脂塗料、アクリルシリコン樹脂塗料、シリコン樹脂塗料、塩化ゴム系樹脂塗料、酢酸ビニルエマルション塗料、アクリル樹脂塗料、アクリルエマルション樹脂塗料、NADアクリル樹脂塗料、塩化ビニル樹脂塗料、フッ素樹脂塗料、およびラッカー塗料等が挙げられる。上記繊維補強炭酸化セメント成形物は緻密性が高く、かつ中性化が進んでいるので、通常のセメント系材料に必要である耐アルカリ性の塗料を選ぶ必要もなく、経済的に優れている。
The surface of the fiber-reinforced carbonated cement molded product after the carbonation curing process may be painted using a paint as necessary. The paint is not particularly limited, and is a phenol resin paint, synthetic resin blend paint, alkyd resin paint, phthalic acid resin paint, acrylic alkyd resin paint, amino alkyd resin paint, melamine baked resin paint, epoxy resin paint, modified Epoxy resin paint, tar epoxy resin paint, polyurethane resin paint, moisture-curing polyurethane resin paint, acrylic urethane resin paint, polyester urethane resin paint, alkyd modified silicone resin paint, acrylic silicone resin paint, silicone resin paint, chlorinated rubber resin paint, Examples thereof include vinyl acetate emulsion paint, acrylic resin paint, acrylic emulsion resin paint, NAD acrylic resin paint, vinyl chloride resin paint, fluororesin paint, and lacquer paint. The above-mentioned fiber-reinforced carbonated cement molded article has high density and is becoming neutralized. Therefore, it is not necessary to select an alkali-resistant paint necessary for ordinary cement-based materials, and is economically superior.
本発明の一実施態様である繊維補強炭酸化セメント成形物は、建築材料として有用である。建築材料としては、例えばスレート、瓦、壁パネル、天井材、床パネル、屋根材、および間仕切り壁などの成形物ならびに二次製品等が挙げられる。
The fiber-reinforced carbonated cement molding which is one embodiment of the present invention is useful as a building material. Examples of building materials include moldings such as slate, tiles, wall panels, ceiling materials, floor panels, roof materials, and partition walls, and secondary products.
本発明の別の実施態様においては、上記繊維補強炭酸化セメント成形物の使用および使用方法、特に建築材料としての使用および使用方法も提供される。
In another embodiment of the present invention, a method for using and using the above-mentioned fiber reinforced carbonated cement molding, particularly a method for using and using as a building material, is also provided.
以下、実施例および比較例を挙げて本発明を詳細に説明するが、本発明は、これらの実施例に限定されるものではない。
Hereinafter, the present invention will be described in detail with reference to examples and comparative examples, but the present invention is not limited to these examples.
(繊維の平均繊維径(μm)およびアスペクト比)
JIS L 1015「化学繊維ステープル試験方法(8.5.1)」に準じて平均繊維長を算出し、平均繊維径との比により繊維のアスペクト比を評価した。なお、平均繊維径については、無作為に繊維を100本取り出し、それぞれの繊維の長さ方向の中央部における繊維径を光学顕微鏡により測定し、その平均値を平均繊維径(mm)とした。 (Average fiber diameter (μm) and aspect ratio)
The average fiber length was calculated according to JIS L 1015 “Testing method for chemical fiber staples (8.5.1)”, and the aspect ratio of the fiber was evaluated based on the ratio to the average fiber diameter. In addition, about the average fiber diameter, 100 fibers were taken out at random, the fiber diameter in the center part of the length direction of each fiber was measured with the optical microscope, and the average value was made into the average fiber diameter (mm).
JIS L 1015「化学繊維ステープル試験方法(8.5.1)」に準じて平均繊維長を算出し、平均繊維径との比により繊維のアスペクト比を評価した。なお、平均繊維径については、無作為に繊維を100本取り出し、それぞれの繊維の長さ方向の中央部における繊維径を光学顕微鏡により測定し、その平均値を平均繊維径(mm)とした。 (Average fiber diameter (μm) and aspect ratio)
The average fiber length was calculated according to JIS L 1015 “Testing method for chemical fiber staples (8.5.1)”, and the aspect ratio of the fiber was evaluated based on the ratio to the average fiber diameter. In addition, about the average fiber diameter, 100 fibers were taken out at random, the fiber diameter in the center part of the length direction of each fiber was measured with the optical microscope, and the average value was made into the average fiber diameter (mm).
(無機針状物の長さ(mm)およびアスペクト比)
無機針状物の長さは、繊維補強炭酸化セメント成形物の一部を割り、その破断面を走査型電子顕微鏡S-3400N(株式会社日立ハイテクノロジーズ社製、Scanning Electron Microscope)にて観察し、視野中に確認された無機針状物の長さの平均をとることで算出した。観察は、繊維補強炭酸化セメント成形物の破断面の任意の10箇所において行い、それぞれ上記走査型電子顕微鏡による60μm×90μmの断面拡大画像を得た後、それら10枚の断面拡大画像中に観察される無機針状物から任意に50本を選び、その長さおよび幅の平均値(平均長さおよび平均幅)を算出した。この平均長さを無機針状物の長さとした。また、平均長さを平均幅で除することでアスペクト比を算出した。 (Length (mm) and aspect ratio of inorganic needles)
The length of the inorganic needles was determined by dividing a part of the fiber-reinforced carbonated cement molding and observing the fracture surface with a scanning electron microscope S-3400N (manufactured by Hitachi High-Technologies Corporation, Scanning Electron Microscope). It was calculated by taking the average length of inorganic needles confirmed in the visual field. Observation was performed at any 10 locations on the fractured surface of the fiber-reinforced carbonated cement molding, and after obtaining a 60 μm × 90 μm cross-sectional enlarged image with the above-mentioned scanning electron microscope, observations were made in these 10 cross-sectional enlarged images. 50 inorganic needles were arbitrarily selected, and the average values of the length and width (average length and average width) were calculated. This average length was taken as the length of the inorganic needles. Further, the aspect ratio was calculated by dividing the average length by the average width.
無機針状物の長さは、繊維補強炭酸化セメント成形物の一部を割り、その破断面を走査型電子顕微鏡S-3400N(株式会社日立ハイテクノロジーズ社製、Scanning Electron Microscope)にて観察し、視野中に確認された無機針状物の長さの平均をとることで算出した。観察は、繊維補強炭酸化セメント成形物の破断面の任意の10箇所において行い、それぞれ上記走査型電子顕微鏡による60μm×90μmの断面拡大画像を得た後、それら10枚の断面拡大画像中に観察される無機針状物から任意に50本を選び、その長さおよび幅の平均値(平均長さおよび平均幅)を算出した。この平均長さを無機針状物の長さとした。また、平均長さを平均幅で除することでアスペクト比を算出した。 (Length (mm) and aspect ratio of inorganic needles)
The length of the inorganic needles was determined by dividing a part of the fiber-reinforced carbonated cement molding and observing the fracture surface with a scanning electron microscope S-3400N (manufactured by Hitachi High-Technologies Corporation, Scanning Electron Microscope). It was calculated by taking the average length of inorganic needles confirmed in the visual field. Observation was performed at any 10 locations on the fractured surface of the fiber-reinforced carbonated cement molding, and after obtaining a 60 μm × 90 μm cross-sectional enlarged image with the above-mentioned scanning electron microscope, observations were made in these 10 cross-sectional enlarged images. 50 inorganic needles were arbitrarily selected, and the average values of the length and width (average length and average width) were calculated. This average length was taken as the length of the inorganic needles. Further, the aspect ratio was calculated by dividing the average length by the average width.
(繊維補強炭酸化セメント成形物1μm2当たりの無機針状物の本数の測定)
繊維補強炭酸化セメント成形物の一部を割り、その破断面を走査型電子顕微鏡S-3400N(株式会社日立ハイテクノロジーズ社製、Scanning Electron Microscope)にて観察し、得られた20μm×30μmの断面拡大画像中において、任意に10μm×10μm区画を10箇所選び、それら区画中に確認された無機針状物の本数を数え、1μm2当たりの本数に換算して、繊維補強炭酸化セメント成形物1μm2当たりの無機針状物の本数を求めた。
また、上記10箇所の10μm×10μm区画中に確認できる無機針状物の本数に基づいて、無機針状物の本数の標準偏差を算出した。 (Measurement of the number of inorganic needles per 1 μm 2 of fiber-reinforced carbonated cement molding)
A part of the fiber reinforced carbonated cement molding was divided, and the fracture surface was observed with a scanning electron microscope S-3400N (manufactured by Hitachi High-Technologies Corporation, Scanning Electron Microscope). The resulting cross section of 20 μm × 30 μm was obtained. In the enlarged image, 10 sections of 10 μm × 10 μm are arbitrarily selected, the number of inorganic needles confirmed in these sections is counted, converted to the number per 1 μm 2 , and 1 μm of fiber reinforced carbonated cement molding. The number of inorganic needles per 2 was determined.
In addition, the standard deviation of the number of inorganic needles was calculated based on the number of inorganic needles that can be confirmed in the 10 μm × 10 μm compartments at the 10 locations.
繊維補強炭酸化セメント成形物の一部を割り、その破断面を走査型電子顕微鏡S-3400N(株式会社日立ハイテクノロジーズ社製、Scanning Electron Microscope)にて観察し、得られた20μm×30μmの断面拡大画像中において、任意に10μm×10μm区画を10箇所選び、それら区画中に確認された無機針状物の本数を数え、1μm2当たりの本数に換算して、繊維補強炭酸化セメント成形物1μm2当たりの無機針状物の本数を求めた。
また、上記10箇所の10μm×10μm区画中に確認できる無機針状物の本数に基づいて、無機針状物の本数の標準偏差を算出した。 (Measurement of the number of inorganic needles per 1 μm 2 of fiber-reinforced carbonated cement molding)
A part of the fiber reinforced carbonated cement molding was divided, and the fracture surface was observed with a scanning electron microscope S-3400N (manufactured by Hitachi High-Technologies Corporation, Scanning Electron Microscope). The resulting cross section of 20 μm × 30 μm was obtained. In the enlarged image, 10 sections of 10 μm × 10 μm are arbitrarily selected, the number of inorganic needles confirmed in these sections is counted, converted to the number per 1 μm 2 , and 1 μm of fiber reinforced carbonated cement molding. The number of inorganic needles per 2 was determined.
In addition, the standard deviation of the number of inorganic needles was calculated based on the number of inorganic needles that can be confirmed in the 10 μm × 10 μm compartments at the 10 locations.
(炭酸化反応率の測定)
炭酸化養生工程前および炭酸化養生工程後の硬化体の断面に和光純薬工業(株)製1.0w/v%フェノールフタレインエタノール(90)溶液を塗り、1分後に硬化体の断面の写真を撮った。その後、炭酸化養生工程後の断面写真に対して、炭酸化養生工程前のフェノールフタレインで染色されたものと同等の色目を持つ部分の総面積を、画像解析ソフト(フリーソフトIMAGE-J)を用いて算出し、以下式により炭酸化反応率(%)を算出した。
炭酸化反応率(%)={(断面積-染色面積)/(断面積)}×100 (Measurement of carbonation reaction rate)
Apply a 1.0 w / v% phenolphthalein ethanol (90) solution manufactured by Wako Pure Chemical Industries, Ltd. to the cross section of the cured body before and after the carbonation curing process, and after 1 minute, I took a picture. After that, for the cross-sectional photograph after the carbonation curing process, the total area of the part with the same color as that dyed with phenolphthalein before the carbonation curing process is image analysis software (free software IMAGE-J) The carbonation reaction rate (%) was calculated by the following formula.
Carbonation reaction rate (%) = {(cross-sectional area−dyed area) / (cross-sectional area)} × 100
炭酸化養生工程前および炭酸化養生工程後の硬化体の断面に和光純薬工業(株)製1.0w/v%フェノールフタレインエタノール(90)溶液を塗り、1分後に硬化体の断面の写真を撮った。その後、炭酸化養生工程後の断面写真に対して、炭酸化養生工程前のフェノールフタレインで染色されたものと同等の色目を持つ部分の総面積を、画像解析ソフト(フリーソフトIMAGE-J)を用いて算出し、以下式により炭酸化反応率(%)を算出した。
炭酸化反応率(%)={(断面積-染色面積)/(断面積)}×100 (Measurement of carbonation reaction rate)
Apply a 1.0 w / v% phenolphthalein ethanol (90) solution manufactured by Wako Pure Chemical Industries, Ltd. to the cross section of the cured body before and after the carbonation curing process, and after 1 minute, I took a picture. After that, for the cross-sectional photograph after the carbonation curing process, the total area of the part with the same color as that dyed with phenolphthalein before the carbonation curing process is image analysis software (free software IMAGE-J) The carbonation reaction rate (%) was calculated by the following formula.
Carbonation reaction rate (%) = {(cross-sectional area−dyed area) / (cross-sectional area)} × 100
(嵩比重の測定方法)
JIS A 5430に準拠し、繊維補強炭酸化セメント成形物をかきまぜ機付空気乾燥器に入れ、105℃±5℃で24時間乾燥後の質量と体積から嵩比重(g/cm3)を求めた。 (Method for measuring bulk specific gravity)
In accordance with JIS A 5430, the fiber-reinforced carbonated cement molding was put into an air dryer equipped with a stirrer, and the bulk specific gravity (g / cm 3 ) was determined from the mass and volume after drying at 105 ° C. ± 5 ° C. for 24 hours. .
JIS A 5430に準拠し、繊維補強炭酸化セメント成形物をかきまぜ機付空気乾燥器に入れ、105℃±5℃で24時間乾燥後の質量と体積から嵩比重(g/cm3)を求めた。 (Method for measuring bulk specific gravity)
In accordance with JIS A 5430, the fiber-reinforced carbonated cement molding was put into an air dryer equipped with a stirrer, and the bulk specific gravity (g / cm 3 ) was determined from the mass and volume after drying at 105 ° C. ± 5 ° C. for 24 hours. .
(曲げ強度の測定)
繊維補強炭酸化セメント成形物より、長さ約150mm、幅約50mmの短冊状に切り出した切出片を繊維補強炭酸化セメント成形物1枚あたり3体切出した。その後、切出片の測定時の含水率を一定に調整するため、切出片を、40℃に調整した乾燥機にて72時間乾燥した。曲げ強度(N/mm2)の測定方法は、JIS A 1408に準じて測定した。島津製作所社製オートグラフAG5000-Bにて、試験速度(戴荷ヘッドスピード)2mm/分、中央戴荷方式で曲げスパン100mmで、3点曲げ荷重試験を行った。 (Measurement of bending strength)
From the fiber-reinforced carbonated cement molded product, three pieces cut into strips having a length of about 150 mm and a width of about 50 mm were cut out for each fiber-reinforced carbonated cement molded product. Then, in order to adjust the moisture content at the time of measurement of a cut piece uniformly, the cut piece was dried for 72 hours with the dryer adjusted to 40 degreeC. The measuring method of bending strength (N / mm 2 ) was measured according to JIS A 1408. A three-point bending load test was performed on an autograph AG5000-B manufactured by Shimadzu Corporation with a test speed (loading head speed) of 2 mm / min, a center loading method and a bending span of 100 mm.
繊維補強炭酸化セメント成形物より、長さ約150mm、幅約50mmの短冊状に切り出した切出片を繊維補強炭酸化セメント成形物1枚あたり3体切出した。その後、切出片の測定時の含水率を一定に調整するため、切出片を、40℃に調整した乾燥機にて72時間乾燥した。曲げ強度(N/mm2)の測定方法は、JIS A 1408に準じて測定した。島津製作所社製オートグラフAG5000-Bにて、試験速度(戴荷ヘッドスピード)2mm/分、中央戴荷方式で曲げスパン100mmで、3点曲げ荷重試験を行った。 (Measurement of bending strength)
From the fiber-reinforced carbonated cement molded product, three pieces cut into strips having a length of about 150 mm and a width of about 50 mm were cut out for each fiber-reinforced carbonated cement molded product. Then, in order to adjust the moisture content at the time of measurement of a cut piece uniformly, the cut piece was dried for 72 hours with the dryer adjusted to 40 degreeC. The measuring method of bending strength (N / mm 2 ) was measured according to JIS A 1408. A three-point bending load test was performed on an autograph AG5000-B manufactured by Shimadzu Corporation with a test speed (loading head speed) of 2 mm / min, a center loading method and a bending span of 100 mm.
(比重あたりの寸法変化率の測定)
JIS A 5430に準じ、試験体を撹拌機付き乾燥機に入れ、その温度を60±3℃に保ち、24時間経過した後取り出して、シリカゲルで調湿したデシケータに入れ、室温(20±1.5℃)になるまで放置した。次に、試験体にガラス片を貼り標線間距離が約140mmになるように標線を刻み、1/500mmの精度をもつコンパレータで標線間の長さを測定して、それを基長とした。次に、試験体の長さ方向を水平にこば立てし、水面下約30mmとなるようにして、20℃±1.5℃の水中に浸漬した。24時間経過した後、水中から取り出して表面に付着した水を拭き取り、再び標線間の長さを測定した。吸水による長さ変化率は、(吸水時の標線間の長さ-乾燥時の標線間の長さ)/乾燥時の長さ×100にて求めた。さらに、得られた長さ変化率を嵩比重で除して、比重あたりの寸法変化率(%)を求めた。 (Measurement of dimensional change rate per specific gravity)
In accordance with JIS A 5430, the test specimen was put in a dryer equipped with a stirrer, the temperature was kept at 60 ± 3 ° C., taken out after 24 hours, put into a desiccator conditioned with silica gel, and room temperature (20 ± 1. (5 ° C). Next, a piece of glass is attached to the specimen, and the marked line is engraved so that the distance between the marked lines is about 140 mm. The length between the marked lines is measured by a comparator having an accuracy of 1/500 mm, It was. Next, the length direction of the test body was raised horizontally and immersed in water at 20 ° C. ± 1.5 ° C. so as to be about 30 mm below the water surface. After 24 hours, the water was removed from the water and adhered to the surface, and the length between the marked lines was measured again. The rate of change in length due to water absorption was determined by (length between marked lines during water absorption−length between marked lines during drying) / length during drying × 100. Further, the obtained rate of change in length was divided by the bulk specific gravity to determine the dimensional change rate (%) per specific gravity.
JIS A 5430に準じ、試験体を撹拌機付き乾燥機に入れ、その温度を60±3℃に保ち、24時間経過した後取り出して、シリカゲルで調湿したデシケータに入れ、室温(20±1.5℃)になるまで放置した。次に、試験体にガラス片を貼り標線間距離が約140mmになるように標線を刻み、1/500mmの精度をもつコンパレータで標線間の長さを測定して、それを基長とした。次に、試験体の長さ方向を水平にこば立てし、水面下約30mmとなるようにして、20℃±1.5℃の水中に浸漬した。24時間経過した後、水中から取り出して表面に付着した水を拭き取り、再び標線間の長さを測定した。吸水による長さ変化率は、(吸水時の標線間の長さ-乾燥時の標線間の長さ)/乾燥時の長さ×100にて求めた。さらに、得られた長さ変化率を嵩比重で除して、比重あたりの寸法変化率(%)を求めた。 (Measurement of dimensional change rate per specific gravity)
In accordance with JIS A 5430, the test specimen was put in a dryer equipped with a stirrer, the temperature was kept at 60 ± 3 ° C., taken out after 24 hours, put into a desiccator conditioned with silica gel, and room temperature (20 ± 1. (5 ° C). Next, a piece of glass is attached to the specimen, and the marked line is engraved so that the distance between the marked lines is about 140 mm. The length between the marked lines is measured by a comparator having an accuracy of 1/500 mm, It was. Next, the length direction of the test body was raised horizontally and immersed in water at 20 ° C. ± 1.5 ° C. so as to be about 30 mm below the water surface. After 24 hours, the water was removed from the water and adhered to the surface, and the length between the marked lines was measured again. The rate of change in length due to water absorption was determined by (length between marked lines during water absorption−length between marked lines during drying) / length during drying × 100. Further, the obtained rate of change in length was divided by the bulk specific gravity to determine the dimensional change rate (%) per specific gravity.
実施例および比較例において、以下の成分を用いた。
In the examples and comparative examples, the following components were used.
(繊維)
重合度1700の完全ケン化ポリビニルアルコールを16.5質量%の濃度で水に溶解し、ポリビニルアルコールに対して、ホウ酸を1.6質量%添加して紡糸原液とした。該紡糸原液を水酸化ナトリウム11g/L、ボウ硝350g/Lからなる70℃の凝固浴中に湿式紡糸し、常法に従ってローラ延伸、中和、湿熱延伸、水洗、および乾燥後、同じく繊維製造工程内の熱処理工程内で、235℃で総延伸倍率が19倍となるように乾熱延伸して巻き取った。得られた繊維は、平均繊維径7μmであった。これを4mmの繊維長にカットし(アスペクト比:571)、PVA繊維を得た。 (fiber)
A completely saponified polyvinyl alcohol having a polymerization degree of 1700 was dissolved in water at a concentration of 16.5% by mass, and 1.6% by mass of boric acid was added to the polyvinyl alcohol to obtain a spinning dope. This spinning dope is wet-spun into a coagulation bath at 70 ° C. consisting of sodium hydroxide 11 g / L and bow glass 350 g / L, followed by roller drawing, neutralization, wet heat drawing, washing with water, and drying, followed by fiber production. In the heat treatment process in the process, the film was wound by dry heat drawing at 235 ° C. so that the total draw ratio was 19 times. The obtained fiber had an average fiber diameter of 7 μm. This was cut into a fiber length of 4 mm (aspect ratio: 571) to obtain a PVA fiber.
重合度1700の完全ケン化ポリビニルアルコールを16.5質量%の濃度で水に溶解し、ポリビニルアルコールに対して、ホウ酸を1.6質量%添加して紡糸原液とした。該紡糸原液を水酸化ナトリウム11g/L、ボウ硝350g/Lからなる70℃の凝固浴中に湿式紡糸し、常法に従ってローラ延伸、中和、湿熱延伸、水洗、および乾燥後、同じく繊維製造工程内の熱処理工程内で、235℃で総延伸倍率が19倍となるように乾熱延伸して巻き取った。得られた繊維は、平均繊維径7μmであった。これを4mmの繊維長にカットし(アスペクト比:571)、PVA繊維を得た。 (fiber)
A completely saponified polyvinyl alcohol having a polymerization degree of 1700 was dissolved in water at a concentration of 16.5% by mass, and 1.6% by mass of boric acid was added to the polyvinyl alcohol to obtain a spinning dope. This spinning dope is wet-spun into a coagulation bath at 70 ° C. consisting of sodium hydroxide 11 g / L and bow glass 350 g / L, followed by roller drawing, neutralization, wet heat drawing, washing with water, and drying, followed by fiber production. In the heat treatment process in the process, the film was wound by dry heat drawing at 235 ° C. so that the total draw ratio was 19 times. The obtained fiber had an average fiber diameter of 7 μm. This was cut into a fiber length of 4 mm (aspect ratio: 571) to obtain a PVA fiber.
(セメント成分)
・普通ポルトランドセメント:ビーライト含有量18質量%、太平洋セメント社製 (Cement component)
-Ordinary Portland cement: Belite content 18% by mass, made by Taiheiyo Cement
・普通ポルトランドセメント:ビーライト含有量18質量%、太平洋セメント社製 (Cement component)
-Ordinary Portland cement: Belite content 18% by mass, made by Taiheiyo Cement
(無機針状物および無機物)
・針状炭酸カルシウム:長さ0.02mm、アスペクト比40
・チタン酸カリウムウィスカー:長さ0.015mm、アスペクト比33
・炭酸カルシウム(カルサイト):長さ0.007mm、アスペクト比1
・炭酸カルシウム(アラゴナイト):長さ0.001mm、アスペクト比10
・グラスファイバー:長さ3mm、アスペクト比230 (Inorganic needles and inorganic substances)
・ Acicular calcium carbonate: length 0.02mm, aspect ratio 40
Potassium titanate whisker: length 0.015 mm, aspect ratio 33
・ Calcium carbonate (calcite): length 0.007mm, aspect ratio 1
Calcium carbonate (Aragonite): length 0.001 mm, aspect ratio 10
・ Glass fiber: Length 3mm, aspect ratio 230
・針状炭酸カルシウム:長さ0.02mm、アスペクト比40
・チタン酸カリウムウィスカー:長さ0.015mm、アスペクト比33
・炭酸カルシウム(カルサイト):長さ0.007mm、アスペクト比1
・炭酸カルシウム(アラゴナイト):長さ0.001mm、アスペクト比10
・グラスファイバー:長さ3mm、アスペクト比230 (Inorganic needles and inorganic substances)
・ Acicular calcium carbonate: length 0.02mm, aspect ratio 40
Potassium titanate whisker: length 0.015 mm, aspect ratio 33
・ Calcium carbonate (calcite): length 0.007mm, aspect ratio 1
Calcium carbonate (Aragonite): length 0.001 mm, aspect ratio 10
・ Glass fiber: Length 3mm, aspect ratio 230
(パルプ)
・NUKP:兵庫パルプ(株)社製、セロファイバー、CSF=115ml (pulp)
-NUKP: Hyogo Pulp Co., Ltd. cello fiber, CSF = 115 ml
・NUKP:兵庫パルプ(株)社製、セロファイバー、CSF=115ml (pulp)
-NUKP: Hyogo Pulp Co., Ltd. cello fiber, CSF = 115 ml
実施例1
ハチェック式抄造機を用いて、パルプ(NUKP)3質量%、無機針状物として針状炭酸カルシウム(長さ:0.02mm、アスペクト比:40)1質量%、普通ポルトランドセメント(βビーライト含有量:27質量%)94.5質量%、および繊維としてPVA繊維1.5質量%、ならびに水を混合し、水硬性組成物を得た。得られた水硬性組成物を成型して抄造板(サイズ:30cm×45cm×6mm)を得た。なお、水硬性組成物における水の含有量に関して、水/セメント成分(W/C)=40質量%であった。また、パルプ、無機針状物、普通ポルトランドセメントおよび繊維の添加量は、全固形分に対しての比率を基準とする数値である。 Example 1
Pulp (NUKP) 3% by mass using a checkered papermaking machine, acicular calcium carbonate (length: 0.02 mm, aspect ratio: 40) 1% by mass as inorganic needles, ordinary Portland cement (β Belite) Content: 27% by mass) 94.5% by mass, and 1.5% by mass of PVA fibers as fibers and water were mixed to obtain a hydraulic composition. The obtained hydraulic composition was molded to obtain a papermaking plate (size: 30 cm × 45 cm × 6 mm). The water content in the hydraulic composition was water / cement component (W / C) = 40% by mass. Moreover, the added amount of pulp, inorganic needles, ordinary Portland cement and fiber is a numerical value based on the ratio to the total solid content.
ハチェック式抄造機を用いて、パルプ(NUKP)3質量%、無機針状物として針状炭酸カルシウム(長さ:0.02mm、アスペクト比:40)1質量%、普通ポルトランドセメント(βビーライト含有量:27質量%)94.5質量%、および繊維としてPVA繊維1.5質量%、ならびに水を混合し、水硬性組成物を得た。得られた水硬性組成物を成型して抄造板(サイズ:30cm×45cm×6mm)を得た。なお、水硬性組成物における水の含有量に関して、水/セメント成分(W/C)=40質量%であった。また、パルプ、無機針状物、普通ポルトランドセメントおよび繊維の添加量は、全固形分に対しての比率を基準とする数値である。 Example 1
Pulp (NUKP) 3% by mass using a checkered papermaking machine, acicular calcium carbonate (length: 0.02 mm, aspect ratio: 40) 1% by mass as inorganic needles, ordinary Portland cement (β Belite) Content: 27% by mass) 94.5% by mass, and 1.5% by mass of PVA fibers as fibers and water were mixed to obtain a hydraulic composition. The obtained hydraulic composition was molded to obtain a papermaking plate (size: 30 cm × 45 cm × 6 mm). The water content in the hydraulic composition was water / cement component (W / C) = 40% by mass. Moreover, the added amount of pulp, inorganic needles, ordinary Portland cement and fiber is a numerical value based on the ratio to the total solid content.
その後、得られた抄造板(成型体)をポリエチレンシートに包み、相対湿度100%、50℃下において6時間の前養生工程を行い、硬化体を得た。
Thereafter, the resulting papermaking sheet (molded body) was wrapped in a polyethylene sheet, and a precuring process was performed at 100% relative humidity and 50 ° C. for 6 hours to obtain a cured body.
次に、得られた硬化体を朝日科学株式会社製アサヒ中性化試験装置ACT-250に入れ、炭酸ガス濃度20%、相対湿度60%、温度60℃において24時間の炭酸化養生工程を行った。こうして繊維補強炭酸化セメント成形物(1)を得た。繊維補強炭酸化セメント成形物(1)の物性を表2に示す。
Next, the obtained cured product is put into an Asahi Scientific Co., Ltd. Asahi neutralization test apparatus ACT-250, and a carbonation curing process is performed for 24 hours at a carbon dioxide concentration of 20%, a relative humidity of 60%, and a temperature of 60 ° C. It was. A fiber-reinforced carbonated cement molding (1) was thus obtained. Table 2 shows the physical properties of the fiber-reinforced carbonated cement molding (1).
実施例2
無機針状物の添加量を1質量%に代えて3質量%とし、普通ポルトランドセメント(βビーライト含有量:27質量%)を94.5質量%に代えて92.5質量%とした以外は、実施例1と同様にして、繊維補強炭酸化セメント成形物(2)を得た。繊維補強炭酸化セメント成形物(2)の物性を表2に示す。 Example 2
The amount of inorganic needles added was changed to 3% by mass instead of 1% by mass, and ordinary Portland cement (β belite content: 27% by mass) was changed to 92.5% by mass instead of 94.5% by mass. Produced a fiber-reinforced carbonated cement molding (2) in the same manner as in Example 1. Table 2 shows the physical properties of the fiber-reinforced carbonated cement molding (2).
無機針状物の添加量を1質量%に代えて3質量%とし、普通ポルトランドセメント(βビーライト含有量:27質量%)を94.5質量%に代えて92.5質量%とした以外は、実施例1と同様にして、繊維補強炭酸化セメント成形物(2)を得た。繊維補強炭酸化セメント成形物(2)の物性を表2に示す。 Example 2
The amount of inorganic needles added was changed to 3% by mass instead of 1% by mass, and ordinary Portland cement (β belite content: 27% by mass) was changed to 92.5% by mass instead of 94.5% by mass. Produced a fiber-reinforced carbonated cement molding (2) in the same manner as in Example 1. Table 2 shows the physical properties of the fiber-reinforced carbonated cement molding (2).
実施例3
無機針状物として、針状炭酸カルシウムに代えてチタン酸カリウムウィスカー(長さ:0.015mm、アスペクト比:33)を用いた以外は、実施例1と同様にして、繊維補強炭酸化セメント成形物(3)を得た。繊維補強炭酸化セメント成形物(3)の物性を表2に示す。 Example 3
Fiber reinforced carbonated cement molding was carried out in the same manner as in Example 1 except that potassium titanate whiskers (length: 0.015 mm, aspect ratio: 33) were used as inorganic needles instead of acicular calcium carbonate. A product (3) was obtained. Table 2 shows the physical properties of the fiber-reinforced carbonated cement molding (3).
無機針状物として、針状炭酸カルシウムに代えてチタン酸カリウムウィスカー(長さ:0.015mm、アスペクト比:33)を用いた以外は、実施例1と同様にして、繊維補強炭酸化セメント成形物(3)を得た。繊維補強炭酸化セメント成形物(3)の物性を表2に示す。 Example 3
Fiber reinforced carbonated cement molding was carried out in the same manner as in Example 1 except that potassium titanate whiskers (length: 0.015 mm, aspect ratio: 33) were used as inorganic needles instead of acicular calcium carbonate. A product (3) was obtained. Table 2 shows the physical properties of the fiber-reinforced carbonated cement molding (3).
比較例1
無機針状物を添加しなかったこと、および炭酸化養生工程を行わなかったこと以外は、実施例1と同様にして、繊維補強炭酸化セメント成形物(4)を得た。繊維補強炭酸化セメント成形物(4)の物性を表2に示す。 Comparative Example 1
A fiber-reinforced carbonated cement molded article (4) was obtained in the same manner as in Example 1 except that the inorganic needles were not added and the carbonation curing process was not performed. Table 2 shows the physical properties of the fiber-reinforced carbonated cement molding (4).
無機針状物を添加しなかったこと、および炭酸化養生工程を行わなかったこと以外は、実施例1と同様にして、繊維補強炭酸化セメント成形物(4)を得た。繊維補強炭酸化セメント成形物(4)の物性を表2に示す。 Comparative Example 1
A fiber-reinforced carbonated cement molded article (4) was obtained in the same manner as in Example 1 except that the inorganic needles were not added and the carbonation curing process was not performed. Table 2 shows the physical properties of the fiber-reinforced carbonated cement molding (4).
比較例2
無機針状物を添加しなかった以外は、実施例1と同様にして、繊維補強炭酸化セメント成形物(5)を得た。繊維補強炭酸化セメント成形物(5)の物性を表2に示す。 Comparative Example 2
A fiber-reinforced carbonated cement molded article (5) was obtained in the same manner as in Example 1 except that the inorganic needles were not added. Table 2 shows the physical properties of the fiber-reinforced carbonated cement molding (5).
無機針状物を添加しなかった以外は、実施例1と同様にして、繊維補強炭酸化セメント成形物(5)を得た。繊維補強炭酸化セメント成形物(5)の物性を表2に示す。 Comparative Example 2
A fiber-reinforced carbonated cement molded article (5) was obtained in the same manner as in Example 1 except that the inorganic needles were not added. Table 2 shows the physical properties of the fiber-reinforced carbonated cement molding (5).
比較例3
無機物として、針状炭酸カルシウムに代えて粒子状の炭酸カルシウム(カルサイト、長さ:0.007mm、アスペクト比:1)を用いた以外は、実施例1と同様にして、繊維補強炭酸化セメント成形物(6)を得た。繊維補強炭酸化セメント成形物(6)の物性を表2に示す。 Comparative Example 3
Fiber reinforced carbonated cement in the same manner as in Example 1 except that particulate calcium carbonate (calcite, length: 0.007 mm, aspect ratio: 1) was used instead of acicular calcium carbonate as the inorganic substance. A molded product (6) was obtained. Table 2 shows the physical properties of the fiber-reinforced carbonated cement molding (6).
無機物として、針状炭酸カルシウムに代えて粒子状の炭酸カルシウム(カルサイト、長さ:0.007mm、アスペクト比:1)を用いた以外は、実施例1と同様にして、繊維補強炭酸化セメント成形物(6)を得た。繊維補強炭酸化セメント成形物(6)の物性を表2に示す。 Comparative Example 3
Fiber reinforced carbonated cement in the same manner as in Example 1 except that particulate calcium carbonate (calcite, length: 0.007 mm, aspect ratio: 1) was used instead of acicular calcium carbonate as the inorganic substance. A molded product (6) was obtained. Table 2 shows the physical properties of the fiber-reinforced carbonated cement molding (6).
比較例4
無機針状物として、針状炭酸カルシウムに代えて炭酸カルシウム(アラゴナイト、長さ:0.001mm、アスペクト比:10)を用いた以外は、実施例1と同様にして、繊維補強炭酸化セメント成形物(7)を得た。繊維補強炭酸化セメント成形物(7)の物性を表2に示す。 Comparative Example 4
Fiber reinforced carbonated cement molding in the same manner as in Example 1 except that calcium carbonate (aragonite, length: 0.001 mm, aspect ratio: 10) was used instead of acicular calcium carbonate as the inorganic needle. A product (7) was obtained. Table 2 shows the physical properties of the fiber-reinforced carbonated cement molding (7).
無機針状物として、針状炭酸カルシウムに代えて炭酸カルシウム(アラゴナイト、長さ:0.001mm、アスペクト比:10)を用いた以外は、実施例1と同様にして、繊維補強炭酸化セメント成形物(7)を得た。繊維補強炭酸化セメント成形物(7)の物性を表2に示す。 Comparative Example 4
Fiber reinforced carbonated cement molding in the same manner as in Example 1 except that calcium carbonate (aragonite, length: 0.001 mm, aspect ratio: 10) was used instead of acicular calcium carbonate as the inorganic needle. A product (7) was obtained. Table 2 shows the physical properties of the fiber-reinforced carbonated cement molding (7).
比較例5
無機針状物として、針状炭酸カルシウムに代えてグラスファイバー(長さ:3mm、アスペクト比:230)を用いた以外は、実施例1と同様にして、繊維補強炭酸化セメント成形物(8)を得た。繊維補強炭酸化セメント成形物(8)の物性を表2に示す。 Comparative Example 5
A fiber-reinforced carbonated cement molded article (8) in the same manner as in Example 1 except that glass fibers (length: 3 mm, aspect ratio: 230) were used as inorganic needles instead of acicular calcium carbonate. Got. Table 2 shows the physical properties of the fiber-reinforced carbonated cement molding (8).
無機針状物として、針状炭酸カルシウムに代えてグラスファイバー(長さ:3mm、アスペクト比:230)を用いた以外は、実施例1と同様にして、繊維補強炭酸化セメント成形物(8)を得た。繊維補強炭酸化セメント成形物(8)の物性を表2に示す。 Comparative Example 5
A fiber-reinforced carbonated cement molded article (8) in the same manner as in Example 1 except that glass fibers (length: 3 mm, aspect ratio: 230) were used as inorganic needles instead of acicular calcium carbonate. Got. Table 2 shows the physical properties of the fiber-reinforced carbonated cement molding (8).
比較例6
PVA繊維を添加しなかった以外は、実施例1と同様にして、繊維補強炭酸化セメント成形物(9)を得た。繊維補強炭酸化セメント成形物(9)の物性を表2に示す。 Comparative Example 6
A fiber-reinforced carbonated cement molding (9) was obtained in the same manner as in Example 1 except that no PVA fiber was added. Table 2 shows the physical properties of the fiber-reinforced carbonated cement molding (9).
PVA繊維を添加しなかった以外は、実施例1と同様にして、繊維補強炭酸化セメント成形物(9)を得た。繊維補強炭酸化セメント成形物(9)の物性を表2に示す。 Comparative Example 6
A fiber-reinforced carbonated cement molding (9) was obtained in the same manner as in Example 1 except that no PVA fiber was added. Table 2 shows the physical properties of the fiber-reinforced carbonated cement molding (9).
比較例7
炭酸化養生工程を行わなかった以外は、実施例1と同様にして、繊維補強炭酸化セメント成形物(10)を得た。繊維補強炭酸化セメント成形物(10)の物性を表2に示す。 Comparative Example 7
A fiber-reinforced carbonated cement molding (10) was obtained in the same manner as in Example 1 except that the carbonation curing process was not performed. Table 2 shows the physical properties of the fiber-reinforced carbonated cement molding (10).
炭酸化養生工程を行わなかった以外は、実施例1と同様にして、繊維補強炭酸化セメント成形物(10)を得た。繊維補強炭酸化セメント成形物(10)の物性を表2に示す。 Comparative Example 7
A fiber-reinforced carbonated cement molding (10) was obtained in the same manner as in Example 1 except that the carbonation curing process was not performed. Table 2 shows the physical properties of the fiber-reinforced carbonated cement molding (10).
表2に示された結果から、実施例1~3において得られた繊維補強炭酸化セメント成形物(1)~(3)は、曲げ強度が高く、寸法変化率が低く抑えられていた。また、比重が高く、緻密化を達成したことが分かる。
一方、比較例1では、無機針状物を用いず、炭酸化養生工程を行っていないため、寸法変化率が高く、曲げ強度も低い結果となった。また、無機針状物を用いていない比較例2では、実施例1~3において得られた繊維補強炭酸化セメント成形物(1)~(3)と比べて、比重が低く、寸法変化率も高くなっていることから、緻密化の程度がより低くなっており、また曲げ強度が低くなった。アスペクト比が1である無機物、アスペクト比が10である無機針状物または長さが3mmである無機針状物を用いた比較例3~5でも、同様に、緻密化の程度がより低くなっており、また曲げ強度も低くなった。ポリビニルアルコール繊維を用いなかった比較例6では、比重は比較的高いものの、曲げ強度が低くなった。これは、炭酸化養生工程において無機針状物による硬化体の外部への膨張は抑制されたものの、ポリビニルアルコール繊維による補強効果が得られなかったためと考えられる。炭酸化養生を行わなかった比較例7では、比重が低く、寸法変化率が高くなった。 From the results shown in Table 2, the fiber-reinforced carbonated cement moldings (1) to (3) obtained in Examples 1 to 3 had a high bending strength and a low dimensional change rate. It can also be seen that the specific gravity is high and densification is achieved.
On the other hand, in Comparative Example 1, the inorganic needle-like material was not used and the carbonation curing process was not performed, so that the dimensional change rate was high and the bending strength was low. Further, in Comparative Example 2 in which no inorganic needles are used, the specific gravity is low and the dimensional change rate is also lower than those of the fiber-reinforced carbonated cement molded products (1) to (3) obtained in Examples 1 to 3. Since it was higher, the degree of densification was lower and the bending strength was lower. Similarly, in the comparative examples 3 to 5 using the inorganic material having an aspect ratio of 1, an inorganic needle material having an aspect ratio of 10, or an inorganic needle material having a length of 3 mm, the degree of densification is similarly reduced. In addition, the bending strength was low. In Comparative Example 6 in which no polyvinyl alcohol fiber was used, although the specific gravity was relatively high, the bending strength was low. This is presumably because the expansion effect to the outside of the cured body by the inorganic needles was suppressed in the carbonation curing process, but the reinforcing effect by the polyvinyl alcohol fiber was not obtained. In Comparative Example 7 where carbonation curing was not performed, the specific gravity was low and the dimensional change rate was high.
一方、比較例1では、無機針状物を用いず、炭酸化養生工程を行っていないため、寸法変化率が高く、曲げ強度も低い結果となった。また、無機針状物を用いていない比較例2では、実施例1~3において得られた繊維補強炭酸化セメント成形物(1)~(3)と比べて、比重が低く、寸法変化率も高くなっていることから、緻密化の程度がより低くなっており、また曲げ強度が低くなった。アスペクト比が1である無機物、アスペクト比が10である無機針状物または長さが3mmである無機針状物を用いた比較例3~5でも、同様に、緻密化の程度がより低くなっており、また曲げ強度も低くなった。ポリビニルアルコール繊維を用いなかった比較例6では、比重は比較的高いものの、曲げ強度が低くなった。これは、炭酸化養生工程において無機針状物による硬化体の外部への膨張は抑制されたものの、ポリビニルアルコール繊維による補強効果が得られなかったためと考えられる。炭酸化養生を行わなかった比較例7では、比重が低く、寸法変化率が高くなった。 From the results shown in Table 2, the fiber-reinforced carbonated cement moldings (1) to (3) obtained in Examples 1 to 3 had a high bending strength and a low dimensional change rate. It can also be seen that the specific gravity is high and densification is achieved.
On the other hand, in Comparative Example 1, the inorganic needle-like material was not used and the carbonation curing process was not performed, so that the dimensional change rate was high and the bending strength was low. Further, in Comparative Example 2 in which no inorganic needles are used, the specific gravity is low and the dimensional change rate is also lower than those of the fiber-reinforced carbonated cement molded products (1) to (3) obtained in Examples 1 to 3. Since it was higher, the degree of densification was lower and the bending strength was lower. Similarly, in the comparative examples 3 to 5 using the inorganic material having an aspect ratio of 1, an inorganic needle material having an aspect ratio of 10, or an inorganic needle material having a length of 3 mm, the degree of densification is similarly reduced. In addition, the bending strength was low. In Comparative Example 6 in which no polyvinyl alcohol fiber was used, although the specific gravity was relatively high, the bending strength was low. This is presumably because the expansion effect to the outside of the cured body by the inorganic needles was suppressed in the carbonation curing process, but the reinforcing effect by the polyvinyl alcohol fiber was not obtained. In Comparative Example 7 where carbonation curing was not performed, the specific gravity was low and the dimensional change rate was high.
本発明に係る繊維補強炭酸化セメント成形物は、高い曲げ強度と小さい寸法変化率とを兼ね備えるため、建築材料、特にスレート、瓦、壁パネル、天井材、床パネル、屋根材、および間仕切り壁等として好適に使用することができる。
Since the fiber-reinforced carbonated cement molding according to the present invention has both high bending strength and a small dimensional change rate, it is a building material, particularly slate, tile, wall panel, ceiling material, floor panel, roofing material, partition wall, etc. Can be suitably used.
Claims (10)
- セメント成分、無機針状物および繊維を含む繊維補強炭酸化セメント成形物であって、
該無機針状物は、長さが1mm以下であり、アスペクト比が20以上である、繊維補強炭酸化セメント成形物。 A fiber reinforced carbonated cement molding comprising a cement component, inorganic needles and fibers,
The inorganic needle-like product is a fiber-reinforced carbonated cement molded product having a length of 1 mm or less and an aspect ratio of 20 or more. - 炭酸化反応率が30%以上である、請求項1に記載の繊維補強炭酸化セメント成形物。 The fiber-reinforced carbonated cement molding according to claim 1, wherein the carbonation reaction rate is 30% or more.
- 前記繊維はポリビニルアルコール系繊維である、請求項1または2に記載の繊維補強炭酸化セメント成形物。 The fiber-reinforced carbonated cement molding according to claim 1 or 2, wherein the fiber is a polyvinyl alcohol fiber.
- 前記無機針状物は炭酸カルシウムまたはチタン酸カリウムからなる、請求項1~3のいずれかに記載の繊維補強炭酸化セメント成形物。 The fiber-reinforced carbonated cement molded product according to any one of claims 1 to 3, wherein the inorganic needle-shaped material is made of calcium carbonate or potassium titanate.
- 前記繊維補強炭酸化セメント成形物1μm2当たり、前記無機針状物を2×10-2~1000×10-2本含有する、請求項1~4のいずれかに記載の繊維補強炭酸化セメント成形物。 5. The fiber-reinforced carbonated cement molding according to claim 1, wherein 2 × 10 −2 to 1000 × 10 −2 inorganic needles are contained per 1 μm 2 of the fiber-reinforced carbonated cement molding. object.
- 前記セメント成分はビーライトを18質量%以上含有する、請求項1~5のいずれかに記載の繊維補強炭酸化セメント成形物。 The fiber-reinforced carbonated cement molding according to any one of claims 1 to 5, wherein the cement component contains 18% by mass or more of belite.
- パルプをさらに含む、請求項1~6のいずれかに記載の繊維補強炭酸化セメント成形物。 The fiber-reinforced carbonated cement molded article according to any one of claims 1 to 6, further comprising pulp.
- セメント成分、無機針状物および繊維を含む繊維補強セメント成形物であって、
該無機針状物は、長さが1mm以下であり、アスペクト比が20以上である、繊維補強セメント成形物。 A fiber reinforced cement molding comprising a cement component, inorganic needles and fibers,
The inorganic needle-like article is a fiber-reinforced cement molded article having a length of 1 mm or less and an aspect ratio of 20 or more. - セメント成分、無機針状物、繊維、および水を混合して硬化性組成物を得る混合工程、
上記水硬性組成物を成型して成型体を得る成型工程、
該成型体を前養生して硬化体を得る前養生工程、および
該硬化体を炭酸化養生して繊維補強炭酸化セメント成形物を得る炭酸化養生工程
を含む、請求項1~7のいずれかに記載の繊維補強炭酸化セメント成形物を製造する方法。 A mixing step of mixing a cement component, inorganic needles, fibers, and water to obtain a curable composition;
A molding step for obtaining a molded body by molding the hydraulic composition;
8. A pre-curing step for pre-curing the molded body to obtain a cured body, and a carbonation curing step for obtaining a fiber-reinforced carbonated cement molding by carbonizing and curing the cured body. A method for producing the fiber-reinforced carbonated cement molding according to claim 1. - 前記前養生工程における養生時間は12時間以内である、請求項9に記載の方法。 The method according to claim 9, wherein the curing time in the pre-curing step is within 12 hours.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018525084A JP6898926B2 (en) | 2016-06-30 | 2017-06-20 | Fiber reinforced carbonated cement molded product and its manufacturing method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-130326 | 2016-06-30 | ||
JP2016130326 | 2016-06-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018003612A1 true WO2018003612A1 (en) | 2018-01-04 |
Family
ID=60787293
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/022749 WO2018003612A1 (en) | 2016-06-30 | 2017-06-20 | Fiber-reinforced carbonated cement molded product and method for producing same |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6898926B2 (en) |
WO (1) | WO2018003612A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020093957A (en) * | 2018-12-13 | 2020-06-18 | ショーボンド建設株式会社 | Concrete, and method for repairing constructed concrete structure |
CN113015712A (en) * | 2018-11-14 | 2021-06-22 | 埃泰克斯服务股份有限公司 | Carbonization of fiber cement products |
JP7075644B1 (en) | 2021-03-29 | 2022-05-26 | Smrc株式会社 | Manufacturing method of concrete structure |
KR102645981B1 (en) * | 2023-12-28 | 2024-03-11 | 노시훈 | Modified asphalt composition for film-type waterproofing and composite waterproofing sheet of newly established and repaired bridges and newly established and repaired bridges waterproofing construction method using the same |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0543297A (en) * | 1991-08-09 | 1993-02-23 | Toray Ind Inc | Inorganic composition for extrusion |
JP2001233656A (en) * | 2000-02-23 | 2001-08-28 | Taiheiyo Cement Corp | Concrete member of inclined structure |
JP2001302326A (en) * | 2000-04-26 | 2001-10-31 | Kenzai Gijutsu Kenkyusho:Kk | Calcium silicate formed body and its production process |
JP2004026629A (en) * | 2002-05-07 | 2004-01-29 | Sekisui Chem Co Ltd | Carbonated hardened body and method of manufacturing the same |
WO2015068704A1 (en) * | 2013-11-05 | 2015-05-14 | 株式会社クラレ | Fiber-reinforced carbonated hydraulic inorganic molded plate and method for producing same |
-
2017
- 2017-06-20 WO PCT/JP2017/022749 patent/WO2018003612A1/en active Application Filing
- 2017-06-20 JP JP2018525084A patent/JP6898926B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0543297A (en) * | 1991-08-09 | 1993-02-23 | Toray Ind Inc | Inorganic composition for extrusion |
JP2001233656A (en) * | 2000-02-23 | 2001-08-28 | Taiheiyo Cement Corp | Concrete member of inclined structure |
JP2001302326A (en) * | 2000-04-26 | 2001-10-31 | Kenzai Gijutsu Kenkyusho:Kk | Calcium silicate formed body and its production process |
JP2004026629A (en) * | 2002-05-07 | 2004-01-29 | Sekisui Chem Co Ltd | Carbonated hardened body and method of manufacturing the same |
WO2015068704A1 (en) * | 2013-11-05 | 2015-05-14 | 株式会社クラレ | Fiber-reinforced carbonated hydraulic inorganic molded plate and method for producing same |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113015712A (en) * | 2018-11-14 | 2021-06-22 | 埃泰克斯服务股份有限公司 | Carbonization of fiber cement products |
JP2020093957A (en) * | 2018-12-13 | 2020-06-18 | ショーボンド建設株式会社 | Concrete, and method for repairing constructed concrete structure |
JP7138034B2 (en) | 2018-12-13 | 2022-09-15 | ショーボンド建設株式会社 | Method for repairing concrete and existing concrete structures |
JP7075644B1 (en) | 2021-03-29 | 2022-05-26 | Smrc株式会社 | Manufacturing method of concrete structure |
JP2022153010A (en) * | 2021-03-29 | 2022-10-12 | Smrc株式会社 | Manufacturing method of concrete structure |
KR102645981B1 (en) * | 2023-12-28 | 2024-03-11 | 노시훈 | Modified asphalt composition for film-type waterproofing and composite waterproofing sheet of newly established and repaired bridges and newly established and repaired bridges waterproofing construction method using the same |
Also Published As
Publication number | Publication date |
---|---|
JPWO2018003612A1 (en) | 2019-04-18 |
JP6898926B2 (en) | 2021-07-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6609474B2 (en) | Fiber reinforced carbonated hydraulic inorganic molded plate and method for producing the same | |
WO2018003612A1 (en) | Fiber-reinforced carbonated cement molded product and method for producing same | |
US4350567A (en) | Method of producing a building element | |
KR20080035504A (en) | Inorganic plate and its production | |
TW201105602A (en) | Fiber cement board with modified fiber | |
KR20140002468A (en) | Inorganic board and method for manufacturing inorganic board | |
TW200829767A (en) | Bearing wall board and a method of producing the same | |
WO2022004643A1 (en) | Cured body reinforced with fibers | |
CN113795470B (en) | Autoclaved cement composition | |
JP2017119606A (en) | Flexible hydraulic sheet-like product and method for producing the same | |
JPS58208163A (en) | Manufacture of inorganic hardened body | |
WO2018065522A1 (en) | Methods for comminuting cured fiber cement material | |
JP6887375B2 (en) | Fiber-containing carbonated roof tile and its manufacturing method | |
JP2014195957A (en) | Manufacturing method of fiber-reinforced hydraulic inorganic molded body | |
US11554987B2 (en) | Methods for producing fiber cement products with fiber cement waste | |
TW202208306A (en) | Layered molded plate and method for manufacturing the same | |
JP7577246B1 (en) | Cured product of hydraulic composition | |
JP3251565B2 (en) | Lightweight calcium silicate plate and method for producing the same | |
JP2005238572A (en) | Building interior material and its manufacturing method | |
WO2024225386A1 (en) | Hardened body of hydraulic composition | |
JP3763614B2 (en) | Inorganic curable composition, inorganic molded body, and method for producing the same | |
KR101854131B1 (en) | Fiber Reinforced Mortar Composition Containing Basalt Fiber and Natural Hydraulic Lime And Manufacturing Method Thereof | |
EP4428110A1 (en) | Porous molded plate | |
JP2006069806A (en) | Inorganic board and its manufacturing method | |
JPH0976404A (en) | Composite material and production thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2018525084 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17819971 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17819971 Country of ref document: EP Kind code of ref document: A1 |