JPS63201048A - Sepiolite formed body - Google Patents

Sepiolite formed body

Info

Publication number
JPS63201048A
JPS63201048A JP3398787A JP3398787A JPS63201048A JP S63201048 A JPS63201048 A JP S63201048A JP 3398787 A JP3398787 A JP 3398787A JP 3398787 A JP3398787 A JP 3398787A JP S63201048 A JPS63201048 A JP S63201048A
Authority
JP
Japan
Prior art keywords
sepiolite
weight
parts
calcium silicate
dry matter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3398787A
Other languages
Japanese (ja)
Other versions
JPH0723242B2 (en
Inventor
江上 誠一
利彦 三田
義彦 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Mining and Cement Co Ltd
Original Assignee
Mitsubishi Mining and Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Mining and Cement Co Ltd filed Critical Mitsubishi Mining and Cement Co Ltd
Priority to JP3398787A priority Critical patent/JPH0723242B2/en
Publication of JPS63201048A publication Critical patent/JPS63201048A/en
Publication of JPH0723242B2 publication Critical patent/JPH0723242B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Paper (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はセピオライト成形体に係り、特に、建築用耐火
断熱材として好適な、軽量かつ強靭で、不燃性、耐熱性
、耐水性等に優れたセピオライト成形体に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a sepiolite molded product, and in particular, it is lightweight, strong, and has excellent nonflammability, heat resistance, water resistance, etc., and is suitable as a fireproof insulation material for buildings. The present invention relates to a sepiolite molded body.

[従来の技術] 珪酸カルシウム成形体は、軽量で断熱性、耐熱性に優れ
、加工性も良いことから、これを更に繊維で補強するこ
とにより曲げ強度及び靭性を高め、建築用の壁材、床材
その他の構造材等として広く用いられている。
[Prior art] Calcium silicate molded bodies are lightweight, have excellent heat insulation and heat resistance, and are easy to work with, so they can be further reinforced with fibers to increase bending strength and toughness, and can be used as wall materials for construction. Widely used as flooring and other structural materials.

珪酸カルシウム成形体は石灰石原料粉末と珪酸質原料粉
末とをCaOとSiO2のモル比がほぼ1になる割合と
し、これに水を加えて混合し、水熱反応させることによ
り珪酸カルシウムスラリを得、これを脱水成形したのち
乾燥することにより製造されている。
The calcium silicate molded body is made by mixing limestone raw material powder and silicate raw material powder in a ratio such that the molar ratio of CaO and SiO2 is approximately 1, adding water to the mixture, and performing a hydrothermal reaction to obtain a calcium silicate slurry. It is manufactured by dehydrating it and then drying it.

[発明が解決しようとする問題点] しかしながら、このような方法で製造された珪酸カルシ
ウム成形体は、耐火断熱性及び加工性には優れるものの
、機械的強度が低く、表面より粉状崩壊しやすく、また
吸水性が大きく寒冷地では吸水した水分の凍結により破
壊する等の欠点を有している。
[Problems to be Solved by the Invention] However, although the calcium silicate molded body produced by such a method has excellent fire resistance and heat insulation properties and workability, it has low mechanical strength and is more likely to disintegrate into powder than the surface. Also, it has a drawback that it has a high water absorption property and can be destroyed by freezing of the absorbed water in cold regions.

また、珪酸カルシウム成形体は、その製造工程において
、珪酸カルシウムスラリの水熱反応を要するため、この
水熱反応のために高価なオートクレーブ装置が必要であ
り、製造工程が?!雑でしかも反応に大量の熱エネルギ
ーを必要とする。
In addition, the manufacturing process of calcium silicate molded bodies requires a hydrothermal reaction of the calcium silicate slurry, so an expensive autoclave device is required for this hydrothermal reaction, making the manufacturing process difficult. ! The reaction is complicated and requires a large amount of thermal energy.

[問題点を解決するための手段] 本発明はこのような問題を解決し、簡単な工程で、低エ
ネルギーで製造することができ、しかも軽量かつ強靭で
、不燃性、断熱性、耐水性等に優れ、建築材料として好
適な新規な材料を提供するものであって、 ポリマーエマルジョンを吸着したセビオライト、補強繊
維及び水を混合して得られる混合物を脱水成形した後乾
燥してなるセピオライト成形体であって、セビオライト
のポリマーエマルジョン吸着量がセビオライト乾物10
0重量部に対し乾物で5〜30重量部で、セピオライト
乾物100重量部に対する補強繊維の混合割合が2〜1
5重量部であることを特徴とするセビオライト成形体、 及び ポリマーエマルジョンを吸着したセビオライト、補強繊
維、珪酸カルシウムスラリ及び水を混合して得られる混
合物を脱水成形した後乾燥してなるセピオライト成形体
であって、セビオライトのポリマーエマルジョン吸着量
が、セピオライト乾物100重量部に対し、乾物で5〜
30重量部で、セピオライト乾物100重量部に対する
補強繊維の混合割合が2〜15重量部、同珪酸カルシウ
ムスラリ乾物の混合割合が100重量部以下であること
を特徴とするセピオライト成形体、を要旨とするもので
ある。
[Means for Solving the Problems] The present invention solves these problems, and can be manufactured by a simple process and with low energy consumption, and is lightweight, strong, nonflammable, heat insulating, water resistant, etc. The objective is to provide a new material that has excellent properties and is suitable as a building material, and is a sepiolite molded product obtained by dehydrating a mixture obtained by mixing Seviolite adsorbed with a polymer emulsion, reinforcing fibers, and water, and then drying it. Therefore, the adsorption amount of polymer emulsion of Seviolite is 10% of Seviolite dry matter.
The mixing ratio of reinforcing fibers is 2 to 1 part by weight per 100 parts by weight of sepiolite dry matter.
5 parts by weight, and a sepiolite molded body obtained by dehydrating and molding a mixture obtained by mixing Seviolite adsorbed with a polymer emulsion, reinforcing fibers, calcium silicate slurry, and water, and then drying the mixture. Therefore, the adsorption amount of the polymer emulsion of Seviolite is 5 to 5 parts by weight on dry matter per 100 parts by weight of Seviolite dry matter.
30 parts by weight, the mixing ratio of reinforcing fibers to 100 parts by weight of sepiolite dry matter is 2 to 15 parts by weight, and the mixing ratio of calcium silicate slurry dry matter is 100 parts by weight or less. It is something to do.

以下に本発明を更に詳細に説明する。The present invention will be explained in more detail below.

本発明のセピオライト成形体を製造するには、まず、ポ
リマーエマルジョンを吸着したセビオライトを、補強繊
維及び水、必要に応じて更に珪酸カルシウムスラリと共
に混合する。
To produce the sepiolite molded article of the present invention, first, Seviolite adsorbed with a polymer emulsion is mixed with reinforcing fibers, water, and, if necessary, calcium silicate slurry.

セビオライトは、狭義にはマグネシウムの含水珪酸塩鉱
物の1種であり、角セン石と同じく複鎖状構造を有する
ものであるが、本発明ではこれと同様構造を有するパリ
ゴルスカイト、アタパルジャイトをも用い得る。そのた
め、本発明において、セビオライトは、狭義のセビオラ
イトの他、パリゴルスカイト、アタパルジャイト等を含
む概念とする。これらの鉱物は、山皮あるいは海泡石と
も呼ばれ、天然に産するが、人工的にも製造可能である
。セピオライトは繊維状でさらにその繊維が中空構造を
有し、他物質を吸着する性能が大きい物質である。
Seviolite, in a narrow sense, is a type of magnesium hydrated silicate mineral, and has a multi-chain structure like amphibite, but in the present invention, palygorskite and attapulgite, which have a similar structure, can also be used. . Therefore, in the present invention, Seviolite is a concept that includes Seviolite in a narrow sense, palygorskite, attapulgite, and the like. These minerals, also called mountain bark or meerschaum, occur naturally, but can also be produced artificially. Sepiolite is a fibrous substance with a hollow structure, and has a high ability to adsorb other substances.

セビオライトの粒子の大きさは脱水成形時の脱水効率あ
るいは成形体の強度に影響を及ぼす。即ち粒子の径が小
さいと脱水効率が低く、脱水時にエネルギーを多く消費
する。また、粒子の径が大きいと脱水効率は高くなるが
、得られる成形体の強度が低下する。このため、本発明
においては、セビオライトは、その粒度が149μm網
篩全通から0.59mm網篩全通までの範囲であること
が望ましい。
The particle size of Seviolite affects the dehydration efficiency during dehydration molding or the strength of the molded product. That is, if the diameter of the particles is small, the dehydration efficiency is low and a lot of energy is consumed during dehydration. Furthermore, if the diameter of the particles is large, the dehydration efficiency increases, but the strength of the obtained molded product decreases. Therefore, in the present invention, it is desirable that the particle size of Seviolite falls within the range of passing through a 149 μm mesh sieve to passing through a 0.59 mm mesh sieve.

セビオライトへのポリマーエマルジョンの吸着は、セビ
オライトの粉末に所定量のポリマーエマルジョンを添加
し混合するだけで比較的容易に行なえる。この場合、ポ
リマーエマルジョンの分散を良くし、吸着を速やかに行
なわせるために、分散剤を使用することもできる。分散
剤としては、脂肪酸エステル、ポリオキシエチレン等を
用いることができる。
Adsorption of the polymer emulsion onto Seviolite can be achieved relatively easily by simply adding a predetermined amount of the polymer emulsion to Seviolite powder and mixing. In this case, a dispersant may be used to improve the dispersion of the polymer emulsion and to speed up the adsorption. As the dispersant, fatty acid ester, polyoxyethylene, etc. can be used.

セピオライトに吸着させるポリマーエマルジョンとして
は、合成樹脂エマルジョン及びゴムラテックス等が挙げ
られる。合成樹脂エマルジョンとしては、例えば、酢酸
ビニル、塩化ビニル、アクリル酸あるいはメタアクリル
酸又はこれらのエステル等のエチレン性不飽和単量体の
水性媒体中における乳化重合、もしくは、これらの単量
体の2種以上の混合物の乳化共重合によって得られるエ
マルジョン等が挙げられる。具体的には、ポリスチレン
、エチレン−酢酸ビニル共重合体、スチレン−アクリル
ニトリル共重合体、ポリメタクリル酸メチル、ポリ塩化
ビニル、エチレン−プロピレン共重合体、ポリ塩化ビニ
リデン、ポリエチレン、ポリ酢酸ビニル、ハイインパク
トポリスチレン、ABS樹脂等が挙げられる。また、ゴ
ムラテックスとしては、天然ゴムラテックス及び合成ゴ
ムラテックス、例えば、スチレン−ブタジェン系ゴムラ
テックス、アクリルニトリル−ブタジェン系ゴムラテッ
クス、その他、ブタジェン系、ポリクロロプレン系、ア
クリル系、イソプレン系、アクリル酸メチル−ブタジェ
ン系ゴムラテックス等が挙げられる。これらはその2種
以上を混合して使用することも可能である。
Examples of the polymer emulsion adsorbed on sepiolite include synthetic resin emulsions and rubber latex. Synthetic resin emulsions include, for example, emulsion polymerization of ethylenically unsaturated monomers such as vinyl acetate, vinyl chloride, acrylic acid or methacrylic acid, or esters thereof in an aqueous medium, or polymerization of two of these monomers. Examples include emulsions obtained by emulsion copolymerization of a mixture of more than one species. Specifically, polystyrene, ethylene-vinyl acetate copolymer, styrene-acrylonitrile copolymer, polymethyl methacrylate, polyvinyl chloride, ethylene-propylene copolymer, polyvinylidene chloride, polyethylene, polyvinyl acetate, Examples include impact polystyrene and ABS resin. Examples of rubber latex include natural rubber latex and synthetic rubber latex, such as styrene-butadiene rubber latex, acrylonitrile-butadiene rubber latex, butadiene rubber latex, polychloroprene rubber latex, acrylic rubber latex, isoprene rubber latex, and methyl acrylate. -Butadiene-based rubber latex, etc. may be mentioned. It is also possible to use a mixture of two or more of these.

セピオライトに吸着させるポリマーエマルジョンの量は
、少ないと本発明の目的を達せず、多いと効果がなくな
るとともに製品の耐火性が損なわれるので、本発明にお
いては、ポリマーエマルジョンの量はセピオライト乾物
100重量部に対し乾物で5〜30重量部とする。
If the amount of polymer emulsion adsorbed on sepiolite is small, the purpose of the present invention cannot be achieved, and if it is too large, the effect will be lost and the fire resistance of the product will be impaired. 5 to 30 parts by weight of dry matter.

このようなポリマーエマルジョンを吸着したセピオライ
トは、大量の水を媒体として分散することが可能であり
、水中でのセピオライトの濃度が薄い程均−に分散する
。本発明において、セピオライト乾物100重量部に対
する水の混合割合は、珪酸カルシウムスラリの有無によ
っても異なるが、一般には300〜800重量部とする
のが好ましい。
Sepiolite adsorbed with such a polymer emulsion can be dispersed in a large amount of water as a medium, and the lower the concentration of sepiolite in water, the more evenly it is dispersed. In the present invention, the mixing ratio of water to 100 parts by weight of dry sepiolite varies depending on the presence or absence of calcium silicate slurry, but is generally preferably 300 to 800 parts by weight.

補強繊維としては、ガラス繊維、カーボン繊維、アスベ
スト、及びクラフトパルプ、木絽、レーヨン、ビニロン
、ナイロン、ポリビニルアルコール、ポリエチレン、ポ
リプロピレン等の天然あるいは合成の有機繊維を用いる
ことができる。
As the reinforcing fibers, natural or synthetic organic fibers such as glass fibers, carbon fibers, asbestos, kraft pulp, wood cloth, rayon, vinylon, nylon, polyvinyl alcohol, polyethylene, and polypropylene can be used.

これらの繊維は2種以上を混合して使用することもでき
る。
These fibers can also be used in combination of two or more types.

補強繊維の量は少な過ぎると十分な補強効果が得られず
、多過ぎても補強効果に制限があり、経済的に不利であ
る。しかも、補強繊維が有機繊維の場合には、その混合
量が多過ぎると得られる成形体の耐火性の面で問題が生
じることとなる。このようなことから、本発明において
、補強繊維の混合量は、セピオライト乾物100重量部
に対して2〜15重量部とする。
If the amount of reinforcing fibers is too small, a sufficient reinforcing effect cannot be obtained, and if it is too large, the reinforcing effect is limited, which is economically disadvantageous. Moreover, when the reinforcing fibers are organic fibers, if the amount of the reinforcing fibers is too large, problems will arise in terms of the fire resistance of the resulting molded product. For this reason, in the present invention, the amount of reinforcing fibers to be mixed is 2 to 15 parts by weight per 100 parts by weight of sepiolite dry matter.

本発明のセピオライト成形体には、珪酸カルシウム永和
物を構成材の一部として用いることができる。珪酸カル
シウム永和物は珪酸カルシウム成形体の主なる構成鉱物
であり、セピオライトと同様に組織間に気孔を多く含み
、圧縮成形により軽量成形物を製造し得るという効果を
有する。セピオライトと珪酸カルシウム永和物は任意の
割合で混合して成形物を製造し得る。しかしながら、珪
酸カルシウム水和物の割合が多くなると嵩比重がやや低
下し、曲げ強度も同様に低下する。また、珪酸カルシウ
ム水和物を多くすることは、製造工程を簡単にし、消費
エネルギーを減少させようとする本発明の趣旨に反する
。このため、本発明においては、珪酸カルシウム永和物
は、珪酸カルシウムスラリ乾物としてセピオライト乾物
100重量部に対し100重量部以下とする。
In the sepiolite molded body of the present invention, calcium silicate eternity can be used as a part of the constituent material. Calcium silicate ethos is the main constituent mineral of calcium silicate molded bodies, and like sepiolite, it contains many pores between its structures and has the effect of being able to produce lightweight molded bodies by compression molding. Sepiolite and calcium silicate permanent product can be mixed in any proportion to produce a molded article. However, when the proportion of calcium silicate hydrate increases, the bulk specific gravity slightly decreases, and the bending strength similarly decreases. Furthermore, increasing the amount of calcium silicate hydrate goes against the purpose of the present invention, which is to simplify the manufacturing process and reduce energy consumption. Therefore, in the present invention, the amount of calcium silicate permanent product is 100 parts by weight or less per 100 parts by weight of sepiolite dry material as calcium silicate slurry dry material.

珪酸カルシウムスラリは、石灰石原料粉末と珪酸質原料
粉末とをCaOと5iOs+のモル比がほぼ1となるよ
うに混合し、これに十分量の水を加え水熱反応させるこ
とによって得られる。
Calcium silicate slurry is obtained by mixing limestone raw material powder and silicate raw material powder so that the molar ratio of CaO and 5iOs+ is approximately 1, and adding a sufficient amount of water to the mixture to cause a hydrothermal reaction.

本発明においては、上記のポリマーエマルジョンを吸着
したセピオライトと補強繊維等よりなる混合物に必要に
応じて凝集剤、その他の改質剤等を混合使用することが
できる。凝集剤としては、NaCJ2、CaCj12、
AlI3 (SO2)3、HCf、H2S O4、HN
 O2%  リン酸、CH3C0OH,アクリル酸、イ
タコン酸、ポリアミン系又はポリアミド系のカチオン型
高分子凝集剤、アルキルアミン系又は第4アンモニウム
塩系のカチオン型界面活性剤等を用いることができる。
In the present invention, a flocculant, other modifiers, etc. can be mixed and used as necessary in a mixture of sepiolite adsorbed with the above polymer emulsion, reinforcing fibers, etc. As flocculants, NaCJ2, CaCj12,
AlI3 (SO2)3, HCf, H2S O4, HN
O2% Phosphoric acid, CH3C0OH, acrylic acid, itaconic acid, polyamine-based or polyamide-based cationic polymer flocculants, alkylamine-based or quaternary ammonium salt-based cationic surfactants, etc. can be used.

本発明においては、ポリマーエマルジョンを吸着したセ
ビオライトと、補強繊維及び水、必要に応じて更に珪酸
カルシウムスラリその他の添加剤等を十分に混合し、得
られる混合物を脱水成形し、成形物を乾燥する。脱水成
形は通常プレスにより行なうが、成形体の形状によって
は抄造成形、押出成形、減圧成形法等を採用することも
できる。
In the present invention, Seviolite adsorbed with the polymer emulsion, reinforcing fibers, water, and if necessary, calcium silicate slurry and other additives are sufficiently mixed, the resulting mixture is dehydrated and molded, and the molded product is dried. . Dehydration molding is usually carried out by pressing, but depending on the shape of the molded product, paper molding, extrusion molding, vacuum molding, etc. can also be employed.

本発明において、プレスによる脱水成形は、常法に従っ
て行なうことができ、その処理条件等に特に制限はない
が、一般にはプレス圧は30〜60 k g f / 
c m 2程度とする。
In the present invention, dehydration molding by pressing can be carried out according to a conventional method, and there are no particular restrictions on the processing conditions, but generally the pressing pressure is 30 to 60 kg f /
It should be about cm2.

また、脱水成形後の乾燥は、100〜180℃とりわけ
105〜150℃で行なうのが好ましい。
Further, drying after dehydration molding is preferably carried out at 100 to 180°C, especially at 105 to 150°C.

[作用] 本発明においては、ポリマーエマルジョンを吸着したセ
ビオライトを用いる。このセビオライトに吸着されたポ
リマーエマルジョンは、脱水成形時において、その一部
がセビオライトから滲出し、成形体の構成物質であるセ
ビオライト、補強繊維、珪酸カルシウム永和物間に入り
、それぞれを互いに強固に結合するため、高曲げ強度の
製品となる。また、これにより吸水性も改善される。
[Function] In the present invention, Seviolite adsorbed with a polymer emulsion is used. During dehydration molding, a portion of the polymer emulsion adsorbed on Seviolite oozes out from Seviolite and enters between Seviolite, reinforcing fibers, and calcium silicate eternity, which are the constituent materials of the molded product, and firmly binds each other to each other. This results in a product with high bending strength. This also improves water absorption.

[実施例コ 以下に実施例及び比較例を挙げて本発明を更に具体的に
説明するが、本発明はその要旨を超えない限り、以下の
実施例に限定されるものではない。
[Examples] The present invention will be described in more detail with reference to Examples and Comparative Examples below, but the present invention is not limited to the following Examples unless it exceeds the gist thereof.

実施例1〜3 0ツドミルで時間を変えて粉砕し、第1表に示す各種粒
度の乾燥セビオライトを調製した。
Examples 1 to 3 Dried Seviolite having various particle sizes shown in Table 1 was prepared by grinding in a 0.000 mm mill for different times.

各々の乾燥セビオライト100重量部に対し、スチレン
−ブタジェンゴムラテックス12重量部(固形分換算)
を吸着させ、これにガラス繊維(ミネロン(耐アルカリ
ガラス繊維)日本パルカー社製)5重量部及びセビオラ
イト乾物に対して4倍重量の水を添加し、十分に混合し
た後、プレス圧50 k g f / c m 2でプ
レス脱水成形し、得られた成形物を120℃で6時間乾
燥し、成形体(縦150mmx横100mmX厚さ10
mmの直方体)を製造した。
For each 100 parts by weight of dry Seviolite, 12 parts by weight of styrene-butadiene rubber latex (solid content equivalent)
5 parts by weight of glass fiber (Mineron (alkali-resistant glass fiber) manufactured by Nippon Palcar Co., Ltd.) and 4 times the weight of water relative to the dry weight of Seviolite were added thereto, and after thorough mixing, a press pressure of 50 kg was applied. Press dehydration molding was carried out at f/cm2, and the obtained molded product was dried at 120°C for 6 hours to form a molded product (length 150 mm x width 100 mm x thickness 10
A rectangular parallelepiped (mm) was manufactured.

製造された成形体について、嵩比重、曲げ強度、動弾性
係数を測定し、その結果を第1表に示した。
The bulk specific gravity, bending strength, and dynamic elastic modulus of the produced molded body were measured, and the results are shown in Table 1.

なお、曲げ強度及び弾性係数の測定はJISZ2113
r木材の曲げ試験方法」に従って次のような一方法で行
なった。
The bending strength and elastic modulus are measured in accordance with JIS Z2113.
The following method was used to conduct the bending test for wood.

即ち、約100mm(幅)X150mmxlOmm(厚
さ)の供試体に、inn/minで荷重をかけ、その時
の最大荷重P(kgf)と1mmたわむのに要する荷重
F(kgf/cm)をより求め、 で算出した。ただし、 △P;比例域における上限荷重と下限荷重の差(kgf
) △y:△Pに対するスパン中央のたわみ(cm) fLニスパン(cm) h:供試体厚さくcm) b:供試体幅(cm) ■=断面2次モーメント(Cm’) h3 実施例4 297μmlA篩全通の乾燥セビオライト100重量部
に対し、スチレン−ブタジェンゴムラテックス12重量
部(固形分換算)を吸着させ、これに珪酸カルシウムス
ラリ20重量部(固形分換算)及びガラス繊維6重量部
及びセピオライト乾物に対して3倍重量の水を加えたも
のを、実施例1と同様にして混合、脱水成形した後乾燥
し、成形体を得た。
That is, a load is applied to a specimen of approximately 100 mm (width) x 150 mm x lOmm (thickness) at a rate of inn/min, and the maximum load P (kgf) at that time and the load F (kgf/cm) required to deflect 1 mm are determined. Calculated by. However, △P: the difference between the upper limit load and lower limit load in the proportional region (kgf
) △y: Deflection at the center of the span relative to △P (cm) fL varnish span (cm) h: Specimen thickness (cm) b: Specimen width (cm) ■=Second moment of area (Cm') h3 Example 4 297μmlA 12 parts by weight of styrene-butadiene rubber latex (in terms of solid content) was adsorbed on 100 parts by weight of dry Seviolite passed through the sieve, and 20 parts by weight of calcium silicate slurry (in terms of solid content), 6 parts by weight of glass fiber, and A mixture of dry sepiolite and 3 times the weight of water was mixed, dehydrated and molded in the same manner as in Example 1, and then dried to obtain a molded product.

なお、珪酸カルシウムスラリは、消石灰と結晶質珪石粉
末とを5i02とCaOのモル比が1:1になるように
調合し、固形分の4倍重量の水を加えてスラリとし、9
0℃で1時間反応させてゲル化し、次いで、スラリの3
倍の重量の水を加え、オートクレーブ中で攪拌しながら
210℃で4時間反応させて製造した。
Note that the calcium silicate slurry is prepared by mixing slaked lime and crystalline silica stone powder so that the molar ratio of 5i02 and CaO is 1:1, and adding water four times the weight of the solid content to make a slurry.
The slurry was reacted for 1 hour at 0°C to form a gel, and then 3
The product was produced by adding twice the weight of water and reacting at 210° C. for 4 hours with stirring in an autoclave.

得られた成形体について実施例1と同様に嵩比重、曲げ
強度、弾性係数を測定し、結果を第1表に示した。
The bulk specific gravity, bending strength, and elastic modulus of the obtained molded body were measured in the same manner as in Example 1, and the results are shown in Table 1.

実施例5 実施例4において、スチレン−ブタジェンゴムラテック
スの吸着量を15重量部とし、珪酸カルシウムスラリを
50重量部、ガラス繊維を15重量部としたこと以外は
同様にして成形体を製造し、その物性測定試験を行なっ
た。結果を第1表に示す。
Example 5 A molded body was produced in the same manner as in Example 4, except that the adsorption amount of styrene-butadiene rubber latex was 15 parts by weight, the calcium silicate slurry was 50 parts by weight, and the glass fiber was 15 parts by weight. , conducted tests to measure its physical properties. The results are shown in Table 1.

実施例6.7 実施例4において、スチレン−ブタジェンゴムラテック
スの代りにアクリル樹脂エマルジョン(実施例6)又は
塩化ビニル樹脂(実施例7)を用いたこと以外は同様に
して成形体を製造し、その物性測定試験を行なった。結
果を第1表に示す。
Example 6.7 Molded bodies were produced in the same manner as in Example 4, except that acrylic resin emulsion (Example 6) or vinyl chloride resin (Example 7) was used instead of the styrene-butadiene rubber latex. , conducted tests to measure its physical properties. The results are shown in Table 1.

比較例1 実施例4で合成した珪酸カルシウムスラリ100重量部
に、スチレン−ブタジェンゴムラテックス10重量部、
ガラス繊維5重量部、凝集剤(ポリアクリルアミド(キ
シダ化学工業社製))0.5重量部を添加して十分に混
合した後、プレス圧50 k g f / c m 2
でプレス脱水成形し、120℃で6時間乾燥させて成形
体を製造した。得られた成形体の物性測定試験結果を第
1表に示す。
Comparative Example 1 To 100 parts by weight of the calcium silicate slurry synthesized in Example 4, 10 parts by weight of styrene-butadiene rubber latex,
After adding 5 parts by weight of glass fibers and 0.5 parts by weight of a coagulant (polyacrylamide (manufactured by Kishida Chemical Industry Co., Ltd.)) and thoroughly mixing them, a press pressure of 50 kg f/cm 2 was applied.
The molded product was press-dehydrated and dried at 120° C. for 6 hours to produce a molded product. Table 1 shows the physical property measurement test results of the obtained molded product.

第1表 第1表より、本発明のセピオライト成形体は曲げ強度が
著しく高く、弾性にも富むことが明らかである。
From Table 1, it is clear that the sepiolite molded article of the present invention has extremely high bending strength and is also rich in elasticity.

[発明の効果] 以上詳述した通り、本発明のセビオライト成形体の製造
方法は、所定量のポリマーエマルジョンを吸着したセピ
オライトと補強繊維及び水、必要に応じて更に珪酸カル
シウムスラリを混合し、得られた混合物を脱水成形した
後乾燥して得られるものであって、セピオライトに吸着
されたポリマーエマルジョンの作用により、成形体の構
成物質である補強繊維、セピオライト、珪酸カルシウム
が互いに強固に結合され、得られる成形体は曲げ強度、
曲げ弾性が大幅に向上する。しかも、本発明の成形体は
、低エネルギー消費で製造することができる。
[Effects of the Invention] As detailed above, the method for producing a Seviolite molded article of the present invention involves mixing Seviolite adsorbed with a predetermined amount of polymer emulsion, reinforcing fibers, water, and, if necessary, calcium silicate slurry. It is obtained by dehydrating and molding the resulting mixture and then drying it, and the reinforcing fibers, sepiolite, and calcium silicate, which are the constituent materials of the molded product, are firmly bonded to each other by the action of the polymer emulsion adsorbed on sepiolite. The molded product obtained has bending strength,
Bending elasticity is greatly improved. Moreover, the molded article of the present invention can be produced with low energy consumption.

このため、本発明によれば、軽量にして強靭で、かつ断
熱性、耐火性、耐水性等に優れた成形体が提供され、し
かもこの成形体は工業的に極めて有利に製造することが
できる。本発明の成形体は建築用材料等として極めて有
用である。
Therefore, according to the present invention, a molded article is provided that is lightweight, strong, and has excellent heat insulation, fire resistance, water resistance, etc., and furthermore, this molded article can be produced industrially with great advantage. . The molded article of the present invention is extremely useful as a building material and the like.

代理人 弁理士  重  野   剛 手続補正書Agent Patent Attorney Tsuyoshi Shigeno Procedural amendment

Claims (4)

【特許請求の範囲】[Claims] (1)ポリマーエマルジョンを吸着したセピオライト、
補強繊維及び水を混合して得られる混合物を脱水成形し
た後乾燥してなるセピオライト成形体であって、セピオ
ライトのポリマーエマルジョン吸着量がセピオライト乾
物100重量部に対し乾物で5〜30重量部で、セピオ
ライト乾物100重量部に対する補強繊維の混合割合が
2〜15重量部であることを特徴とするセピオライト成
形体。
(1) Sepiolite adsorbed with polymer emulsion,
A sepiolite molded body obtained by dehydrating and drying a mixture obtained by mixing reinforcing fibers and water, wherein the polymer emulsion adsorption amount of sepiolite is 5 to 30 parts by weight of dry matter per 100 parts by weight of sepiolite dry matter, A sepiolite molded article characterized in that the mixing ratio of reinforcing fibers to 100 parts by weight of dry sepiolite is 2 to 15 parts by weight.
(2)セピオライトの粒度が149μm網篩全通〜0.
59mm網篩全通の範囲であることを特徴とする特許請
求の範囲第1項に記載のセピオライト成形体。
(2) The particle size of sepiolite is 149 μm through a mesh sieve to 0.
The sepiolite molded article according to claim 1, which is within the range of passing through a 59 mm mesh sieve.
(3)セピオライトは、天然又は人工のマグネシウムの
含水珪酸塩鉱物であることを特徴とする特許請求の範囲
第1項又は第2項に記載のセピオライト成形体。
(3) The sepiolite molded article according to claim 1 or 2, wherein the sepiolite is a natural or artificial magnesium hydrated silicate mineral.
(4)ポリマーエマルジョンを吸着したセピオライト、
補強繊維、珪酸カルシウムスラリ及び水を混合して得ら
れる混合物を脱水成形した後乾燥してなるセピオライト
成形体であって、セピオライトのポリマーエマルジョン
吸着量が、セピオライト乾物100重量部に対し、乾物
で5〜30重量部で、セピオライト乾物100重量部に
対する補強繊維の混合割合が2〜15重量部、同珪酸カ
ルシウムスラリ乾物の混合割合が100重量部以下であ
ることを特徴とするセピオライト成形体。
(4) Sepiolite adsorbed with polymer emulsion;
A sepiolite molded body obtained by dehydrating and drying a mixture obtained by mixing reinforcing fibers, calcium silicate slurry, and water, wherein the polymer emulsion adsorption amount of sepiolite is 5 parts by dry matter based on 100 parts by weight of sepiolite dry matter. -30 parts by weight, the mixing ratio of reinforcing fibers to 100 parts by weight of sepiolite dry matter is 2 to 15 parts by weight, and the mixing ratio of the calcium silicate slurry dry matter is 100 parts by weight or less.
JP3398787A 1987-02-17 1987-02-17 Sepiolite molding Expired - Lifetime JPH0723242B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3398787A JPH0723242B2 (en) 1987-02-17 1987-02-17 Sepiolite molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3398787A JPH0723242B2 (en) 1987-02-17 1987-02-17 Sepiolite molding

Publications (2)

Publication Number Publication Date
JPS63201048A true JPS63201048A (en) 1988-08-19
JPH0723242B2 JPH0723242B2 (en) 1995-03-15

Family

ID=12401828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3398787A Expired - Lifetime JPH0723242B2 (en) 1987-02-17 1987-02-17 Sepiolite molding

Country Status (1)

Country Link
JP (1) JPH0723242B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04100993A (en) * 1990-08-20 1992-04-02 Tokiwa Denki:Kk Non-flammable paper
JPH05163696A (en) * 1991-12-11 1993-06-29 Tokiwa Denki:Kk Incombustible sheet and its production
JPH0625995A (en) * 1992-02-19 1994-02-01 Tokiwa Electric Co Ltd Incombustible sheet
US5341606A (en) * 1992-01-29 1994-08-30 Kyokuei Kenmakako Kabushiki Kaisha Device for cutting and grinding a doughnut shaped substrate and a method therefor
US5679433A (en) * 1991-10-31 1997-10-21 Kabushiki Kaish Tokiwa Denki Noncombustible sheet, noncombustible laminated sheet, noncombustible honey comb structural material, noncombustible board, noncombustible molded product, and manufacturing method thereof
JP2003089998A (en) * 2001-09-14 2003-03-28 Asahi Kasei Corp Nonflammable soft face material
JP2009084744A (en) * 2007-09-28 2009-04-23 Hokuetsu Paper Mills Ltd Nonflammable sheet or nonflammable mold, and method for producing the same
US9909766B2 (en) 2001-01-23 2018-03-06 Oy Halton Group Ltd. Real-time control of exhaust flow
CN113896948A (en) * 2020-07-06 2022-01-07 合肥杰事杰新材料股份有限公司 Activated sepiolite fiber and preparation method thereof, and nylon material containing activated sepiolite fiber and preparation method thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04100993A (en) * 1990-08-20 1992-04-02 Tokiwa Denki:Kk Non-flammable paper
US5679433A (en) * 1991-10-31 1997-10-21 Kabushiki Kaish Tokiwa Denki Noncombustible sheet, noncombustible laminated sheet, noncombustible honey comb structural material, noncombustible board, noncombustible molded product, and manufacturing method thereof
JPH05163696A (en) * 1991-12-11 1993-06-29 Tokiwa Denki:Kk Incombustible sheet and its production
US5341606A (en) * 1992-01-29 1994-08-30 Kyokuei Kenmakako Kabushiki Kaisha Device for cutting and grinding a doughnut shaped substrate and a method therefor
JPH0625995A (en) * 1992-02-19 1994-02-01 Tokiwa Electric Co Ltd Incombustible sheet
US9909766B2 (en) 2001-01-23 2018-03-06 Oy Halton Group Ltd. Real-time control of exhaust flow
JP2003089998A (en) * 2001-09-14 2003-03-28 Asahi Kasei Corp Nonflammable soft face material
JP2009084744A (en) * 2007-09-28 2009-04-23 Hokuetsu Paper Mills Ltd Nonflammable sheet or nonflammable mold, and method for producing the same
CN113896948A (en) * 2020-07-06 2022-01-07 合肥杰事杰新材料股份有限公司 Activated sepiolite fiber and preparation method thereof, and nylon material containing activated sepiolite fiber and preparation method thereof
CN113896948B (en) * 2020-07-06 2023-12-12 合肥杰事杰新材料股份有限公司 Activated sepiolite fiber and preparation method thereof, nylon material containing activated sepiolite fiber and preparation method thereof

Also Published As

Publication number Publication date
JPH0723242B2 (en) 1995-03-15

Similar Documents

Publication Publication Date Title
US4963603A (en) Composite fiberboard and process of manufacture
US5134179A (en) Composite fiberboard and process of manufacture
JPH05319888A (en) Fiber-reinforced molding
JP2008100877A (en) Inorganic board and its manufacturing method
US4925529A (en) Light-weight building boards based on mineral fibers and thermoplastic binders
JP4832810B2 (en) Surface decorative inorganic paperboard
JPS63201048A (en) Sepiolite formed body
GB1575047A (en) Shaped structures and their preparation
EP0406354B2 (en) Process of manufacture of composite fiberboard
JPS60246251A (en) Calcium silicate moldings
JPS63201050A (en) Manufacture of calcium silicate formed body
JPS623109B2 (en)
JP3251565B2 (en) Lightweight calcium silicate plate and method for producing the same
JP2525187B2 (en) Manufacturing method of calcium silicate plate
JP2823050B2 (en) Method for producing fiber-reinforced hydraulic inorganic molded article
JPS63100048A (en) Calcium silicate formed product
JPH0472788B2 (en)
JPS6021836A (en) Hydraulic inorganic board and manufacture
JPH01119554A (en) Aqueous slurry for calcium silicate hydrate and calcium silicate molded article made from slurry
JP5714923B2 (en) INORGANIC PLATE AND METHOD FOR PRODUCING INORGANIC PLATE
JPH10182208A (en) Production of hydraulic inorganic composition and production of inorganic hardened body
JP4886198B2 (en) Lightweight inorganic board
JPH05310456A (en) Production of gypsum board for high-strength building material using papermaking pulp sludge
JPS5992958A (en) Manufacture of inorganic board
JPH0459235A (en) Composite panel