JP2519287B2 - Damping method for vortex excitation of bridge main tower - Google Patents

Damping method for vortex excitation of bridge main tower

Info

Publication number
JP2519287B2
JP2519287B2 JP63038563A JP3856388A JP2519287B2 JP 2519287 B2 JP2519287 B2 JP 2519287B2 JP 63038563 A JP63038563 A JP 63038563A JP 3856388 A JP3856388 A JP 3856388A JP 2519287 B2 JP2519287 B2 JP 2519287B2
Authority
JP
Japan
Prior art keywords
tower
main tower
cross
vibration
bridge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63038563A
Other languages
Japanese (ja)
Other versions
JPH01214608A (en
Inventor
隆文 武内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP63038563A priority Critical patent/JP2519287B2/en
Publication of JPH01214608A publication Critical patent/JPH01214608A/en
Application granted granted Critical
Publication of JP2519287B2 publication Critical patent/JP2519287B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Bridges Or Land Bridges (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は橋梁主塔の渦励振に対する制振方法に関する
ものである。
TECHNICAL FIELD The present invention relates to a vibration damping method for vortex excitation of a bridge main tower.

(従来の技術) 吊橋・斜張橋の主塔では、第8図(a)に示すごとく
主塔Tの架設時及び第8図(b)の如く主塔Tの架設終
了後ケーブルが張られるまでの独立状態(Free Standin
g)において、風により渦励振と呼ばれる振動が発生す
ることは周知である。更に、塔高の高い超長大橋又は剛
性の低い主塔では第8図(c)の如く、主塔Tに対しケ
ーブルa、桁b、ハンガーcの架設が完了して橋梁が完
成した後も、この渦励振が設計風速以下で発生する可能
性がある。この振動は架設時には作業ができなくなった
り、疲労による破損等の害が考えられ、完成系では共用
できないか、あるいは疲労で破損する等が考えられ、こ
の振動を制振することは極めて重要である。
(Prior Art) In the main tower of a suspension bridge or cable-stayed bridge, a cable is stretched when the main tower T is erected as shown in FIG. 8 (a) and after the main tower T is erected as shown in FIG. 8 (b). Independence until (Free Standin
In g), it is well known that wind causes vibration called vortex excitation. Furthermore, even in the case of a super-long bridge with a high tower height or a main tower with low rigidity, even after the cable a, girder b, and hanger c have been erected on the main tower T as shown in Fig. 8 (c), the bridge has been completed. , This vortex excitation may occur below the design wind speed. This vibration may cause damage such as being unable to work during erection, damage due to fatigue, etc., and may not be shared in the completed system or may be damaged due to fatigue. It is extremely important to suppress this vibration. .

従来の主塔の制振対策としては、構造動力学的なワイ
ヤロープを用いたスライディングブロック方式、或いは
同じくワイヤロープを用いた重錘・ダンパ方式による制
振方法がしられている。又主塔の周囲に上述した動力学
的制振方法の設置が困難な場合には、空気力学的制振装
置としてネット又はシート方式、カウリング方式等がし
られている。
As a conventional vibration control method for a main tower, a sliding block method using a structural dynamic wire rope or a weight damping method using a wire rope is also used. Further, when it is difficult to install the above-mentioned dynamic vibration damping method around the main tower, a net or seat system, a cowling system or the like is used as an aerodynamic vibration damping device.

(発明が解決しようとする課題) 従来技術にしられるように、特に橋梁完成系に付加的
な装置を設置することは、スペース的に不利であり、か
つ長い年月に亘る供用に耐えねばならない橋梁において
は、メンテナンス上非常に不利なものとなる。そこで、
本発明においては架設系、独立状態時そして完成系にお
いても適用でき、従来技術のごとく付加的な装置を設置
しないで、制振を可能とする方法を提供せんとするもの
である。
(Problems to be Solved by the Invention) As in the prior art, it is disadvantageous in terms of space to install an additional device particularly in the bridge completion system, and the bridge must endure long-term service. In, it is very disadvantageous in terms of maintenance. Therefore,
The present invention can be applied to a erection system, an independent state and a completed system, and it is intended to provide a method capable of damping vibration without installing an additional device as in the prior art.

(課題を解決するための手段) 四隅部を隅切りして横断面十字形をした塔柱の振動モ
ード形状で腹となる部分近傍において、全高の約15〜35
%の部分の隅切り量を約60%以上減少させて太くした。
(Means for Solving the Problem) In the vicinity of the antinode of the vibration mode shape of the cross-shaped tower with four corners cut off, the total height is about 15 to 35.
The corner cutting amount of% was reduced by about 60% or more to make it thicker.

又断面十字形をした塔柱の塔基部から約70%の高さま
でを隅切り量を約60%以上減少させ、耐風安定性を向上
させた。
In addition, the amount of corner cut from the base of the tower with a cross-shaped cross section to a height of about 70% was reduced by about 60% or more, and wind resistance stability was improved.

さらに塔頂部を中央部より太らせて架設系・独立状態
の渦励振に対する制振を可能とした。
In addition, the top of the tower is made thicker than the center to enable damping against vortex excitation in the installed system and in an independent state.

(実施例) 橋梁の主塔Tは架設系・独立状態だけでなく、第9図
に示す様に橋梁完成系においても主塔Tが大きく振動す
る振動モードが存在する。即ち第9図(a)の如く主塔
曲げ逆対称振動や、又第9図(b)の如く主塔曲げ対称
振動が発生する。そこで、完成系主塔の渦励振について
塔頂部を拘束した場合の風速と振巾について風洞実験し
た結果、第10図の如き応答が現れた。すなわち主塔の略
中央部で振巾を計測してみると、風洞速度が2〜4m/sの
間、特に3m/sのとき最大の曲げが発生し、同じく5m/sで
最大の捩れが発生することがわかった。
(Example) The main tower T of the bridge has a vibration mode in which the main tower T greatly vibrates not only in the erection system / independent state but also in the bridge completion system as shown in FIG. That is, the main tower bending antisymmetric vibration as shown in FIG. 9 (a) and the main tower bending symmetrical vibration as shown in FIG. 9 (b) occur. Therefore, as a result of the wind tunnel experiment on the wind speed and the amplitude when the top of the tower was restrained, the response as shown in Fig. 10 appeared. In other words, when we measured the amplitude in the approximate center of the main tower, the maximum bending occurred when the wind tunnel speed was 2 to 4 m / s, especially 3 m / s, and the maximum twist was 5 m / s. It turned out to occur.

そこでこの振動を止める(抑制)することを目ざして
第1図に示す塔柱断面の組み合せと応答の関係を風洞実
験で調査した。即ち断面Aを基本断面とし、その四隅に
B〜Eの部材を取付けそれぞれ塔柱の隅部の断面形状を
B〜Eとする。即ち主塔Tの断面を段々と太らせる。主
塔Tの高さ方向全段に渡りA〜Eのいずれかとした場
合、第2図に矢印aで示す如く断面Aがその中では最も
耐風性が良好という結果が出た。
Therefore, with the aim of stopping (suppressing) this vibration, the relationship between the combination of tower column cross sections shown in Fig. 1 and the response was investigated by a wind tunnel experiment. That is, the cross section A is used as a basic cross section, and the members B to E are attached to the four corners thereof, and the cross sectional shapes of the corners of the towers are taken to be B to E, respectively. That is, the cross section of the main tower T is gradually thickened. When any of A to E was provided over the entire height of the main tower T, the result was that the cross section A had the best wind resistance among them, as shown by the arrow a in FIG.

更に塔高方向に断面形状を部分的に変化させた場合、
第2図(c)に示す通り基本断面をAとし、上から数え
てブロックNo.5,6,7だけを断面Dに変化(隅切り量をA
の面積の約1/4にする)させたDT3(第2図aの矢印b)
の場合、応答値は曲げ振動で約1/2、捩れ振動で約1/3に
抑制された(第2図b参照)。
Furthermore, when the cross-sectional shape is partially changed in the tower height direction,
As shown in FIG. 2 (c), the basic cross section is A, and only blocks No. 5, 6, 7 are changed to cross section D from the top (corner cutting amount is A
Approximately 1/4 of the area of DT3) (arrow b in Figure 2a)
In the case of, the response value was suppressed to about 1/2 by bending vibration and about 1/3 by torsional vibration (see Fig. 2b).

従って第3図に示す様に振動モード形状で腹(変位が
最大の点)となる付近で全高の15〜35%の部分を十字型
断面の隅切り量を60%程度以上減少させる(換言すれば
40%分だけ削りとり、塔柱としてはその部分だけ太らせ
ることになる)ことにより完成系主塔における渦励振が
抑制されることを発見した。
Therefore, as shown in FIG. 3, in the vicinity of the antinode (the point where the displacement is the maximum) in the vibration mode shape, the corner cut amount of the cross-shaped cross section is reduced by about 60% or more in the portion of 15 to 35% of the total height (in other words, If
It was discovered that vortex excitation in the completed main tower is suppressed by shaving only 40% and thickening only that part as a tower pillar.

以上は完成系についてのべたが、本発明は架設系・独
立状態の主塔にも応用することができる。因みに第5図
に独立状態の応答結果を示し、塔頂部から約40〜50%だ
け図中左上の斜線を施した部分を取付けた時、応答は最
小となった。
Although the above description is for a completed system, the present invention can also be applied to a erection system and an independent main tower. Incidentally, Fig. 5 shows the response results in the independent state, and when the shaded portion in the upper left part of the figure is attached by about 40 to 50% from the tower top, the response becomes the minimum.

(効果) 主塔Tは鉛直方向に高い構造物である(第4図)。こ
の主塔Tの塔頂部と、塔中央高さ部付近の流れのパター
ンをその断面形状を変えることにより、特に塔頂部と塔
中央部で後流交番渦の放出振動数、あるいは位相を変化
させることにより、放出渦の励振力の干渉効果で主塔T
に作用する力を弱め、応答値が抑制される。すなわち、
塔高方向に部分的に断面をふとらせる(あるいはやせさ
せる)ことで塔高方向への後流渦の放出のパターンをコ
ントロールし、渦励振を抑制することにより、 1)完成系の主塔Tの渦励振の制振が可能になった。
(Effect) The main tower T is a structure that is tall in the vertical direction (Fig. 4). By changing the cross-sectional shape of the flow pattern near the top of the main tower T and the height in the center of the tower, the emission frequency or phase of the wake alternating vortex is changed particularly at the top and the center of the tower. As a result, due to the interference effect of the excitation force of the discharge vortex, the main tower T
The force acting on is weakened and the response value is suppressed. That is,
By controlling the discharge pattern of the wake vortex in the tower height direction by partially (or thinning) the cross section in the tower height direction, and suppressing vortex excitation, 1) the main tower of the completed system It became possible to suppress the vortex excitation of T.

2)断面形状を高さ方向に変えるという、特別の装置の
製作ではなく、かつ空力的対策のアタッチメントの取付
けもないので美観上も有利である。従ってメンテナンス
を特に必要とせず、設置場所も不要である。
2) It is aesthetically advantageous because it does not require the production of a special device that changes the cross-sectional shape in the height direction and there is no attachment of an aerodynamic countermeasure attachment. Therefore, no particular maintenance is required and no installation place is required.

3)架設系・独立状態の主塔にも応用することができ
る。
3) It can be applied to erection system and independent tower.

【図面の簡単な説明】[Brief description of drawings]

第1図は塔柱断面形状の寸法比較図。 第2図(a)は塔柱断面形状と最大応答値の関係を示
す。 第2図(b)は同じく断面と最大応答振巾の関係を示す
グラフ。 第2図(c)は主塔のブロック番号を示し、特に第2図
(a)におけるDT3を示す。 第3図は完成系主塔の振動モード形状を示す。 第4図は主塔後流渦放出概念図を示す。 第5図は塔頂より対策ブロック数と最大応答値の関係を
示す。 第6図は完成系における主塔の対策断面形状の一例を示
す。 第7図は独立状態における主塔の対策断面形状の一例を
示す。 第8図は主塔の建設段階の説明図。 第9図(a),(b)は橋梁完成系における主塔の振動
態様を示す。 第10図は完成系における主塔の渦励振発現状態を示す風
洞風速−振巾図を示す。
FIG. 1 is a dimension comparison diagram of tower column cross-sectional shapes. FIG. 2 (a) shows the relationship between the tower column cross-sectional shape and the maximum response value. Similarly, FIG. 2B is a graph showing the relationship between the cross section and the maximum response amplitude. FIG. 2 (c) shows the block number of the main tower, especially DT3 in FIG. 2 (a). FIG. 3 shows the vibration mode shape of the main tower of the completed system. FIG. 4 shows a conceptual diagram of vortex shedding in the wake of the main tower. Fig. 5 shows the relationship between the number of countermeasure blocks and the maximum response value from the top of the tower. FIG. 6 shows an example of a countermeasure cross-sectional shape of the main tower in the completed system. FIG. 7 shows an example of the countermeasure cross-sectional shape of the main tower in the independent state. Figure 8 is an illustration of the main tower construction stage. 9 (a) and 9 (b) show vibration modes of the main tower in the bridge completion system. Figure 10 shows a wind tunnel wind velocity-width chart showing the state of vortex-induced excitation of the main tower in the completed system.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】四隅部を隅切りして横断面十字形をした塔
柱の振動モード形状で腹となる部分近傍において、全高
の約15〜35%の部分の隅切り量を約60%以上減少させて
太くしたことを特徴とする橋梁主塔の渦励振に対する制
振方法。
1. A corner cutting amount of about 15 to 35% of the total height is about 60% or more in the vicinity of the antinode of the vibration mode shape of a tower column having a cross-shaped cross section by cutting the four corners. A damping method for vortex-induced vibration of a main tower of a bridge, which is characterized by reducing and thickening.
【請求項2】断面十字形をした塔柱の塔基部から約70%
の高さまでを隅切り量を約60%以上減少させ、耐風安定
性を向上させたことを特徴とする請求項1記載の橋梁主
塔の渦励振に対する制振方法。
2. About 70% from the tower base of the tower with a cross-shaped cross section
2. The method for damping vibration against vortex excitation of a bridge main tower according to claim 1, wherein the amount of corner cutting is reduced by about 60% or more to the height of the bridge to improve wind resistance stability.
【請求項3】塔頂部を中央部より太らせたことを特徴と
する架設系・独立状態の渦励振に対する制振方法。
3. A vibration damping method for eddy excitation in an installed system / independent state, wherein the tower top is made thicker than the center.
JP63038563A 1988-02-23 1988-02-23 Damping method for vortex excitation of bridge main tower Expired - Fee Related JP2519287B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63038563A JP2519287B2 (en) 1988-02-23 1988-02-23 Damping method for vortex excitation of bridge main tower

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63038563A JP2519287B2 (en) 1988-02-23 1988-02-23 Damping method for vortex excitation of bridge main tower

Publications (2)

Publication Number Publication Date
JPH01214608A JPH01214608A (en) 1989-08-29
JP2519287B2 true JP2519287B2 (en) 1996-07-31

Family

ID=12528770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63038563A Expired - Fee Related JP2519287B2 (en) 1988-02-23 1988-02-23 Damping method for vortex excitation of bridge main tower

Country Status (1)

Country Link
JP (1) JP2519287B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190089646A (en) * 2018-01-23 2019-07-31 현대건설주식회사 Pylon of Long Span Bridge and its Construction Method by Applying Hybrid Structure

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2601917B2 (en) * 1989-08-24 1997-04-23 三菱重工業株式会社 Aerodynamic damping method when installing tower
JP4939593B2 (en) * 2009-11-30 2012-05-30 三菱重工鉄構エンジニアリング株式会社 Bridge main tower and bridge equipped with the same
CN103952974A (en) * 2013-11-29 2014-07-30 西南交通大学 Wind-induced vibration suppression structure of square chamfered bridge tower
CN107338720B (en) * 2017-07-05 2023-05-16 中铁二院工程集团有限责任公司 Plate-type suspender wind-resistant flow guiding device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190089646A (en) * 2018-01-23 2019-07-31 현대건설주식회사 Pylon of Long Span Bridge and its Construction Method by Applying Hybrid Structure
KR102094834B1 (en) * 2018-01-23 2020-04-28 현대건설주식회사 Pylon of Long Span Bridge and its Construction Method by Applying Hybrid Structure

Also Published As

Publication number Publication date
JPH01214608A (en) 1989-08-29

Similar Documents

Publication Publication Date Title
US7743444B2 (en) Cable stayed suspension bridge making combined use of one-box and two-box girders
Wardlaw The improvement of aerodynamic performance
CN108505443B (en) A kind of big segment lifting self-anchored suspension bridge construction method not setting camber
CN109869438B (en) Sling vibration damping method
US5060332A (en) Cable stayed bridge construction
US4665578A (en) Streamlined box girder type suspension bridge
JP2519287B2 (en) Damping method for vortex excitation of bridge main tower
US5539946A (en) Temporary stiffening girder for suspension bridge
KR100674594B1 (en) Device and method for mitigating the cable vibration in cable-stayed bridge
EP0764742B1 (en) Method of suspending bridge girder suspension bridge
JPH0849215A (en) Cable structure of suspension bridge
Wardlaw Wind effects on bridges
JP2680518B2 (en) Wind-resistant damping structure of cable-stayed bridge
JP2001193013A (en) Edge box girder bridge
JP2720789B2 (en) Cable stiffening water pipe bridge
JP3082810B2 (en) Fluid excitation force reduction device for structures
CN113863141B (en) Self-anchored suspension bridge construction method based on cable-stayed bridge Cheng Liang conversion
JPH0860617A (en) Cable structure of suspension bridge and construction method of the bridge
JPH02243806A (en) Suspension bridge having damping mechanism
JP2005314921A (en) Suspended bridge
JP2635757B2 (en) Stiffening girder of suspension bridge with double concrete slab
JP4959359B2 (en) Bridge
JP2012062749A (en) Bridge design method
SU866081A2 (en) Truss
JP2001140496A (en) Suspended damping method and suspended damping structure for super-high-rise building

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees