JP2518422B2 - Method of manufacturing magnesia chrome brick - Google Patents

Method of manufacturing magnesia chrome brick

Info

Publication number
JP2518422B2
JP2518422B2 JP1279294A JP27929489A JP2518422B2 JP 2518422 B2 JP2518422 B2 JP 2518422B2 JP 1279294 A JP1279294 A JP 1279294A JP 27929489 A JP27929489 A JP 27929489A JP 2518422 B2 JP2518422 B2 JP 2518422B2
Authority
JP
Japan
Prior art keywords
magnesia
clinker
coating
brick
magnesia clinker
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1279294A
Other languages
Japanese (ja)
Other versions
JPH03141148A (en
Inventor
健 室井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP1279294A priority Critical patent/JP2518422B2/en
Publication of JPH03141148A publication Critical patent/JPH03141148A/en
Application granted granted Critical
Publication of JP2518422B2 publication Critical patent/JP2518422B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、溶鋼の精錬用容器等の内張に用いられる
焼成マグネシア・クロム質れんがに関し、特にれんが侵
食を起こしやすい塩基度(cao/sio2比)が1〜3のスラ
グに接触する用途や、高い二次燃焼を起こさせて高温で
操業する製鋼炉などに使用しても優れた耐食性を発揮す
る高温度焼成マグネシア・クロム質れんがの製造方法に
関する。
Description: TECHNICAL FIELD The present invention relates to a fired magnesia / chromic brick used as a lining for a vessel for refining molten steel and the like, and particularly to a basicity (cao / sio) which easily causes brick erosion. (2 ratio) 1-3 high-temperature fired magnesia / chrome bricks that exhibit excellent corrosion resistance even when used in contact with slag or in steelmaking furnaces that operate at high temperatures by causing high secondary combustion. It relates to a manufacturing method.

(従来の技術) 焼成マグネシア・クロム質れんが(以下、「マグネシ
ア・クロム質れんが」を当業界の慣用語である「マグク
ロれんが」と記す)は、塩基性耐火物の中では熱衝撃抵
抗性、荷重軟化性および高温強度の点で優れた耐火物
で、特に塩基度の低いスラグに優れた耐食性を示す。こ
のため、古くから製鋼炉内張り、セメント焼成炉、ガラ
ス炉チェッカ、非鉄金属精錬炉等に広く使用されてい
る。しかしながら、この種のれんがの相(Phase)は、M
gO−Cr2O3−Al2O3−FeOx−CaO−SiO2からなる複雑な酸
化物系をなし、必ずしも十分には解明されていない。
(Prior Art) Fired magnesia-chromic bricks (hereinafter, "magnesia-chromic bricks" are referred to as "magcro bricks", which is a term used in the industry), have thermal shock resistance in basic refractories. It is a refractory material that has excellent softening properties under load and high-temperature strength, and exhibits excellent corrosion resistance, especially for slag with low basicity. Therefore, it has been widely used for a long time in steelmaking furnace linings, cement firing furnaces, glass furnace checkers, non-ferrous metal refining furnaces, etc. However, the phase of this type of brick is M
gO-Cr 2 O 3 -Al 2 O 3 -FeO x -CaO-SiO 2 forms a complex oxide consisting of, not necessarily sufficient elucidated.

一般に焼成マグクロれんがといえば、マグネシアクリ
ンカーとクロム鉄鉱を原料とし、粉砕、混練、成形、乾
燥の後、約1600℃で焼成して得られるもので、主にクロ
ム鉄鉱中に含まれるシリケートの反応によってセラミッ
クボンドを形成したものを言う。
Generally speaking, calcined magcro bricks are obtained by using magnesia clinker and chromite as raw materials, crushing, kneading, molding, drying, and then calcination at about 1600 ° C, mainly by the reaction of silicate contained in chromite. A ceramic bond is formed.

近年、耐火物の使用条件が苛酷化するのに伴って、原
料の一部を電融マグクロクリンカーと置き換えて高純度
化するとともに、1700℃〜1800℃の高温焼成して部分的
にはセラミックボンドを介さず、マグネシアやマグネシ
アクロミア系スピネルの結晶同志の直接結合を形成させ
たマグクロれんがが開発されている。これは、上記の一
般焼成マグクロれんがと区別して、中温焼成ないし高温
焼成マグクロれんがと呼ばれている。或いは、前記セラ
ミックボンドと区別してダイレクトボンドれんがと呼ぶ
場合もある。本明細書では、これを高温度焼成マグクロ
れんがと記す。
In recent years, as refractory usage conditions have become more severe, some of the raw materials have been replaced with electromelted magcro clinker for high purity, and at the same time, they have been fired at a high temperature of 1700 ° C to 1800 ° C and partially ceramic. Magnesia bricks have been developed that form a direct bond between crystallites of magnesia and magnesia chromia-based spinel without a bond. This is called a medium-temperature or high-temperature fired maguro brick in distinction from the above-mentioned general fired maguro brick. Alternatively, it may be called a direct bond brick in distinction from the ceramic bond. In the present specification, this is referred to as high temperature fired magcro brick.

高温焼成マグクロれんがは、従来のものと異なって高
温における強度が大きい。これは焼成れんが中の結合形
態に帰因し、結合形態別に大きくはダイレクトボンド系
とリボンド系に分類される場合もある。前者はマグネシ
アとクロム鉄鉱を原料として高温焼成したもので、後者
は電融マグクロクリンカーを主原料とする。また、両者
の中間概念で3種類の原料よりなるセミリボンド系を含
め3形態に区分する場合もある。鉄鉱製造プロセスで使
用されている焼成れんがの大半は、ダイレクトボンド系
あるいはセミリボンド系の高温度焼成れんがであり、多
くはRH、DH炉等の二次精錬炉やAOD、VOD、VAD炉等の特
殊鋼の溶製炉に使用されている。
High-temperature fired magcro bricks have high strength at high temperatures, unlike conventional ones. This is attributed to the bond form in the fired brick, and may be roughly classified into direct bond type and ribbon type depending on the bond form. The former is a high-temperature calcined material from magnesia and chromite, and the latter is mainly composed of electrofused magcro clinker. In addition, there is a case where the intermediate concept of both is divided into three forms including a semi-ribboned system composed of three kinds of raw materials. Most of the fired bricks used in the iron ore manufacturing process are high temperature fired bricks of direct bond type or semi-ribbon type, and most of them are special refining furnaces such as RH and DH furnaces and special refining furnaces such as AOD, VOD and VAD furnaces. Used in steel melting furnaces.

近年、転炉等の脱炭炉においてもコスト合理化の視点
からスクラップの多配合や各種鉱石の溶融還元を促進す
るため、二次燃焼比を増大させて熱源を確保する試みが
なされている。このような高温操業に対し、高い耐火性
を有するマグクロれんがが着目され、材料そのものの耐
食性改善が検討されている。一般的には、焼成温度を通
常より高くして上記の直接結合を促進させる方法が採ら
れているが、この場合、配合する原料の粒度構成などが
原因で直接結合の完全を期することは困難であり、焼成
前後での亀裂も生じ易い。
In recent years, even in decarburization furnaces such as converters, attempts have been made to increase the secondary combustion ratio to secure a heat source in order to promote a large amount of scrap and smelting reduction of various ores from the viewpoint of cost rationalization. For such high-temperature operation, attention has been paid to magro bricks having high fire resistance, and improvement of the corrosion resistance of the material itself has been studied. In general, a method of promoting the above direct bonding by raising the firing temperature higher than usual is used, but in this case, it is not possible to achieve complete direct bonding due to the particle size constitution of the raw materials to be blended. It is difficult and cracks are likely to occur before and after firing.

また、クロム鉄鉱、酸化クロム等のクロム源の添加に
よるクロム成分の増量、分散、あるいは電融マグクロ、
ピクロクロマイト等のクロム源の配合による耐火物構成
成分の高耐食性化も検討されているが、使用条件の苛酷
化に対して必ずしも十分な成果が得られていない。
In addition, addition or dispersion of chromium components by addition of chromium sources such as chromite or chromium oxide, or electrofused magcro,
High corrosion resistance of refractory constituents by blending chromium sources such as picrochromite has also been investigated, but sufficient results have not been obtained against severe operating conditions.

この中でマグネシアクロミア系スピネルによるマグネ
シアの被覆という点に着目した特開昭63−252959号公報
記載の発明では、マグネシアクリンカー以外のクロム源
の粒度、成分を操作して耐食性の向上を得ている。しか
し、粒度配合のみによる操作ではマグネシアクリンカー
の被覆効果が不確実であり、被覆のなされない部分が生
じればそれが耐食性を損なう原因となり、大きな改善は
期待できない。
Among them, in the invention described in JP-A-63-252959, which focuses on the coating of magnesia with a magnesia chromia spinel, the particle size and components of the chromium source other than the magnesia clinker are manipulated to improve the corrosion resistance. . However, the operation of only blending the particle size is uncertain about the coating effect of the magnesia clinker, and if there is an uncoated portion, it causes the corrosion resistance to be impaired, and a major improvement cannot be expected.

また、特開昭61−222955号公報には、マグネシアクリ
ンカーに耐火材料の細粒を表面被覆し、1900℃で焼成す
ることによってマグネシアクリンカーの表面にマグネシ
アクロミア系スピネル(Mg−Cr−O系)を形成させて、
マグネシアクリンカー自体の耐スラグ浸透性を向上させ
る発明が開示されている。この方法で得られる耐火材料
は表面の被覆という目的は達しているが、定型れんがに
するには再度焼成工程を経ねばならず実生産上、経済的
に不利であるばかりでなく、再度の昇温と降温の際の熱
応力により表面被覆層にクラックが発生する恐れもあ
り、使用時に耐スラグ浸透性が損なわれる可能性もあ
る。さらにまた、上記、特開昭63−252959号公報および
特開昭61−222955号公報の方法は、いずれもマグネシア
クリンカー表面に形成させるマグネシアクロミア系スピ
ネルの被覆厚さを任意に調整できない欠点を有し、耐食
性と経済性を両立させた耐火物を得ることは困難であ
る。
Further, in JP-A-61-222955, a magnesia clinker is coated with fine particles of a refractory material on the surface thereof, and the magnesia clinker surface is fired at 1900 ° C. to form a magnesia chromia spinel (Mg-Cr-O) To form
An invention is disclosed that improves the slag penetration resistance of the magnesia clinker itself. Although the refractory material obtained by this method has achieved the purpose of coating the surface, it is not economically disadvantageous in actual production because it has to go through the firing step again to form a standard brick, and it is also promoted again. There is a possibility that cracks may occur in the surface coating layer due to heat stress during the temperature lowering and cooling, and the slag penetration resistance may be impaired during use. Furthermore, both of the methods described in JP-A-63-252959 and JP-A-61-222955 have the drawback that the coating thickness of the magnesia chromia spinel formed on the surface of the magnesia clinker cannot be adjusted arbitrarily. However, it is difficult to obtain a refractory having both corrosion resistance and economy.

(発明が解決しようとする課題) 本発明の目的は、れんがに焼成された後に骨材のマグ
ネシアクリンカーがマグネシアクロミア系スピネル構造
の層状組織で完全に被覆されていて、侵食性の強いスラ
グがクリンカー粒内に侵入することがなく、高い耐食性
を発揮する高温度焼成マグクロれんがを製造する技術を
提供することにある。
(Problems to be Solved by the Invention) An object of the present invention is that the magnesia clinker of the aggregate is completely covered with the layered tissue of the magnesia chromia spinel structure after the brick is fired, and the slag having strong erosion is clinker. It is an object of the present invention to provide a technique for producing a high-temperature fired magcro brick that does not penetrate into grains and exhibits high corrosion resistance.

(課題を解決するための手段) 本発明者は、れんが侵食性の強いスラグ(全鉄含有
量:30%、塩基度(CaO/SiO2):3)を用いて既述の結合
形態の異なる高温度焼成マグクロれんがの侵食テストを
行った結果、殆どの場合、れんがの主成分であるMgOの
溶出が顕著に進行していた。スラグと接触していたれん
が稼動面を詳細に観察すると、マグネシアクリンカーの
粒子がマグネシアクロミア系スピネル(Mg−Cr−O系)
層で被覆された部分は、スラグの侵入は軽微であった。
(Means for Solving the Problem) The present inventor uses the slag with strong erosion resistance of bricks (total iron content: 30%, basicity (CaO / SiO 2 ): 3) to obtain different bonding morphologies as described above. As a result of the erosion test of the high temperature fired magcro bricks, in most cases, the elution of MgO, the main component of the bricks, proceeded significantly. A detailed observation of the working surface of the brick that was in contact with the slag revealed that the magnesia clinker particles were magnesia chromia spinel (Mg-Cr-O).
The portion covered with the layer had a small slag penetration.

比較的良好な耐食性を示したマグクロれんがの稼動面
ではマグネシア粒の外周面に沿ってマグネシアクロミア
系スピネル層が発達し、スラグとの接触面ではスラグ中
の鉄分との反応で高融点の別種のスピネル(Fe−Cr−O
系)が生成しており、さらに内層へのスラグ侵入が抑制
されていた。
The magnesia chromia-based spinel layer develops along the outer surface of the magnesia grains on the working surface of magcro bricks, which showed relatively good corrosion resistance, and on the contact surface with slag, it reacts with the iron content in the slag to form a high melting point Spinel (Fe-Cr-O
System) was generated and slag invasion into the inner layer was suppressed.

従って、比較的れんが浸食性の強いスラグに対しても
れんが中のマグネシアクリンカーすなわち、主要骨材粒
子の表面上にCr源を密集して分布させると耐食性が大幅
に向上する可能性があるとの知見を得た。
Therefore, if the magnesia clinker in the brick against the slag with relatively strong erosion, that is, the Cr source is densely distributed on the surface of the main aggregate particles, the corrosion resistance may be significantly improved. I got the knowledge.

本発明者は、上記の知見を基にして、さらに、焼成後
のれんがの骨材であるマグネシアクリンカーの表面がマ
グネシアクロミア系スピネル層で被覆されているような
マグクロれんがを確実に製造する方法を探究し、下記の
点を要旨とする本発明を完成した。
The present inventor, based on the above findings, further, a method for reliably producing a magcro brick such that the surface of a magnesia clinker, which is an aggregate of a brick after firing, is covered with a magnesia chromia spinel layer. The present invention has been completed by making a search for the following points.

「粗粒マグネシアクリンカーの表面に非水溶性結合剤を
用いて細粒のクロム源原料粉を予め被覆したものを骨材
とし、この骨材に電融マグクロクリンカーまたは/およ
びクロム鉄鉱粉を配合して混練、成形、乾燥し、高温焼
成することを特徴とするマグネシア・クロム質れんがの
製造方法」 上記の方法において、クロム源原料粉の平均粒径は粗
粒マグネシアクリンカーの平均粒径(加重平均)の1/60
〜1/600であることが望ましい。
“The surface of the coarse-grained magnesia clinker was pre-coated with a fine-grained chromium source material powder using a water-insoluble binder to form an aggregate, and this aggregate was blended with electromelted magcroclinker and / or chromium iron ore powder. And then kneading, molding, drying, and baking at a high temperature, which is characterized in that the average particle size of the chromium source raw material powder is the average particle size (weighted) of the coarse magnesia clinker. 1/60 of the average
It is desirable to be 1/600.

以下、本発明の方法を具体的に説明する。 Hereinafter, the method of the present invention will be specifically described.

本発明の方法でマグネシアクリンカーの表面にクロム
源原料粉を被覆する工程は一種の造粒工程とも言えるも
ので、装置としては通常の撹拌−混合型造粒機を用い
る。また、遠心流動造粒機も使用可能である。被覆処理
方法は以下の手順で実施する。すなわち、あらかじめ秤
量した粗粒のマグネシアクリンカーを上記装置に投入
し、非水溶性結合剤を加え、粒子の表面が充分濡れるま
で混合する。さらに、混合操作をつづけながら所定量の
クロム源原料の細粒粉を2〜3回に分投し、混合を継続
して粗粒マグネシアクリンカー粒子ほ表面を細粒のクロ
ム源原料粉で被覆、造粒し、これを温風乾燥する。特
に、均一な被覆粒を得るには分投完了後混合しながら赤
外線ヒーターあるいはスチームヒーターで加熱するのが
望ましい。乾燥温度は100〜300℃として、有機質揮発分
および水分を除去する。
The step of coating the surface of the magnesia clinker with the chromium source raw material powder by the method of the present invention can be said to be a kind of granulation step, and an ordinary stirring-mixing type granulator is used as an apparatus. A centrifugal fluidized granulator can also be used. The coating treatment method is performed according to the following procedure. That is, a coarse-grained magnesia clinker weighed in advance is put into the above apparatus, a water-insoluble binder is added, and mixed until the surface of the particles is sufficiently wet. Furthermore, while continuing the mixing operation, a predetermined amount of fine powder of the chromium source raw material is dispensed in 2-3 times, and the mixing is continued to coat the coarse magnesia clinker particles and the surface with the fine powder of chromium source raw material. Granulate and dry with warm air. In particular, in order to obtain uniform coated particles, it is desirable to heat with an infrared heater or a steam heater while mixing after completion of dispensing. The drying temperature is 100-300 ° C to remove organic volatiles and water.

細粒のクロム源原料として、電融マグクロクリンカ
ー、クロム鉄鉱粉のほか、酸化クロム粉、あるいはピク
ロクロマイト粉も使用できる。ただし、マグネシアクリ
ンカーとクロム源原料とによるシリケートの生成を押さ
えるため、これらに含まれるSiO2とCaOの量はそれぞれ
2.0%未満、1.0%未満に抑えるのが望ましい。そして不
純物量がこれらの範囲を越えない限りにおいてはMg−Cr
−O系耐火物の廃材もまた使用できる。
As a fine-grain chromium source material, in addition to electrofused magcro clinker and chrome iron ore powder, chromium oxide powder or picrochromite powder can be used. However, in order to suppress the formation of silicate by the magnesia clinker and the chromium source material, the amounts of SiO 2 and CaO contained in these are respectively
It is desirable to keep it below 2.0% and below 1.0%. As long as the amount of impurities does not exceed these ranges, Mg-Cr
Waste material of -O refractory can also be used.

粗粒マグネシアクリンカー表面に被覆する細粒クロム
源原料の平均粒径は、マグネシアクリンカーの平均粒径
の1/60〜1/600の範囲内とするのがよい。こうすること
によって、後述するとおり良好な被覆効果が得られる。
The average particle diameter of the fine chromium source material coated on the surface of the coarse magnesia clinker is preferably within the range of 1/60 to 1/600 of the average diameter of the magnesia clinker. By doing so, a good coating effect can be obtained as described later.

非水溶性結合剤としては、ポリスチレン、フェノール
樹脂、フラン樹脂、アルキル樹脂等の合成樹脂あるいは
流動パラフィン、ポリオレフィンワックス等の脂肪族炭
化水素を用いてよく、その種類は問わない。あまに油、
一部のワックスあるいはタール等歴青物質も接着力は若
干低いが、使用条件を考慮すれば有効である。
As the water-insoluble binder, synthetic resins such as polystyrene, phenol resin, furan resin, and alkyl resin, or aliphatic hydrocarbons such as liquid paraffin and polyolefin wax may be used, and the kind thereof is not limited. Linseed oil,
Some bituminous substances such as wax and tar also have slightly low adhesive strength, but they are effective in consideration of usage conditions.

これら結合剤の添加量は原料粒度と結合剤の種類によ
って異なるが、通常、粗粒マグネシアに対し、重量比で
1〜7%の範囲で使用する。また、被覆処理する場合、
溶媒(溶剤)により粘着性を調整した非水溶性結合剤を
使用して、膜厚を調整してもよいが、本発明の接着被覆
では単に粗粒に対する細粒の体積比を変えることによ
り、膜厚を調整できる利点を有する。
The amount of these binders added varies depending on the particle size of the raw material and the type of binder, but is usually used in the range of 1 to 7% by weight relative to the coarse-grained magnesia. Also, in the case of coating treatment,
Using a water-insoluble binder whose tackiness is adjusted by a solvent (solvent), the film thickness may be adjusted, but in the adhesive coating of the present invention, simply by changing the volume ratio of fine particles to coarse particles, It has the advantage that the film thickness can be adjusted.

上記のようにして得られたクロム源原料粉を表面被覆
したマグネシアクリンカーに、電融マグクロクリンカ
ー、クロム鉄鉱等を所定のれんが成分比に配合し、通常
の製造手順で水溶性結合剤を添加して混練、成形後、乾
燥、焼成してれんがにする。焼成は1700〜1800℃程度の
高温焼成とする。
To the magnesia clinker surface-coated with the chromium source raw material powder obtained as described above, an electromelting magcro clinker, chromite ore, etc. are blended in a predetermined brick component ratio, and a water-soluble binder is added in a usual manufacturing procedure. After kneading and molding, it is dried and fired to make bricks. Firing is performed at a high temperature of about 1700 to 1800 ° C.

1700℃よりも低温での焼成ではマグネシアクリンカー
とクロム源粉末との反応が極端に遅くなる。
When fired at a temperature lower than 1700 ° C, the reaction between the magnesia clinker and the chromium source powder becomes extremely slow.

1800℃を越える温度での焼成では、上記の反応は促進
されるが、焼成に要するエネルギーの増加、焼成炉の炉
体の損耗増大などにより製造コストが嵩み実生産の上で
は好ましくない。
Firing at a temperature higher than 1800 ° C. promotes the above reaction, but the production cost increases due to an increase in energy required for firing and an increase in wear of the furnace body of the firing furnace, which is not preferable in actual production.

水溶性結合剤としては従来の塩基性耐火物の製造にお
いて使用されている苦汁、硫酸マグネシウム、リグニン
スルホン酸塩、PVA等を用いることができる。
As the water-soluble binder, bittern, magnesium sulfate, lignin sulfonate, PVA and the like which have been used in the production of conventional basic refractories can be used.

本発明方法は、粗粒クリンカーの被覆工程で非水溶性
結合剤を用いることを特徴の一つとしている。すなわ
ち、被覆されたクリンカーが混練、成形工程で被覆状況
を保持し、かつ焼成工程では添加水分、特に結晶水、結
合水の蒸発過程で粗粒と細粒との接着が破壊されないよ
うな強い接着被覆を得るために、非水溶性結合剤を用い
るのである。
The method of the present invention is characterized by using a water-insoluble binder in the step of coating the coarse-grained clinker. In other words, the coated clinker maintains the coating state in the kneading and molding steps, and in the baking step, strong adhesion such that the adhesion between the coarse particles and the fine particles is not broken during the evaporation process of the added water, especially crystallization water and bound water. A water-insoluble binder is used to obtain the coating.

成型の際には通常の水溶性結合剤を用いて差し支えな
い。
An ordinary water-soluble binder may be used for molding.

(作用) 第1表は後述の実施例のマグネシアクリンカーの被覆
処理条件のうち、粗粒マグネシアクリンカーおよび被覆
用クロム源原料粉の粒径を変化させ、被覆後、成型後、
焼成後の各粒子被覆状況および結合剤(ノボラック型フ
ェノール樹脂)使用量を調査した結果である。
(Function) Table 1 shows that among the coating treatment conditions for the magnesia clinker of the examples described later, the particle diameters of the coarse-grained magnesia clinker and the chromium source raw material powder for coating were changed, and after coating and molding,
It is the result of investigating the coating state of each particle after firing and the amount of binder (novolak type phenol resin) used.

第1表に見られるように、粒径の大きいクロム源原料
粉を用いた実験No.1、5では、クロム源原料粉のマグネ
シアクリンカー表面への付着性が低下するとともに、付
着時の粗粒と細粒との間の空間が大きくなり、被覆後、
混練成型後、焼成後の被覆率は順次低下している。
As seen in Table 1, in Experiment Nos. 1 and 5 using the chromium source raw material powder having a large particle size, the adhesion of the chromium source raw material powder to the surface of the magnesia clinker was reduced, and the coarse particles at the time of the adhesion were reduced. After the coating, the space between
After the kneading and molding, the coverage after firing gradually decreases.

また、0.004mm以下のような超微粒のクロム源原料粉
を用いた実験No.4、8では混練成型後の被覆層の剥離、
脱落もなく、焼成工程での焼結作用も円滑に進められる
が、添加する非水溶性結合剤の使用量が増大し、焼成後
に空間が残存して被覆率が低下している。
In addition, in Experiment Nos. 4 and 8 using the ultra-fine chromium source raw material powder of 0.004 mm or less, peeling of the coating layer after kneading and molding,
Although there is no drop-off and the sintering action in the firing step proceeds smoothly, the amount of the non-water-soluble binder added increases and the space remains after firing to lower the coverage.

焼成後まで完全な被覆効果が得られたのは実験No.2、
3、6、7であり、クロム源原料粉の粒径(rC)のマグ
ネシアクリンカーの加重平均粒径(rM)に対する粒径比
(rC/rM)が1/80〜1/600の範囲内にある。すなわち、マ
グネシアクリンカーの加重平均粒径の1/60〜1/600の範
囲内の粒径を有するクロム源原料粉をクリンカー表面に
非水溶性結合剤を用いて被覆することにより、焼成後の
れんがにおいても被覆効果が保持され、スラグ侵入によ
る耐食性の劣化を抑制する効果がえられる。
Experiment No. 2 showed that the complete coating effect was obtained until after firing.
A 3,6,7, particle diameter ratio (r C / r M) is 1 / 80-1 / 600 for the weighted average particle size of magnesia clinker particle size of the chromium source material powder (r C) (r M) Is within the range of. That is, by coating the chromium source raw material powder having a particle size within the range of 1/60 to 1/600 of the weighted average particle size of the magnesia clinker with the water-insoluble binder on the clinker surface, the brick after firing The coating effect is retained even in the case of, and an effect of suppressing deterioration of corrosion resistance due to slag intrusion can be obtained.

焼成後のれんがの組織では、マグネシアクリンカーの
外周にマグネシアクロミア系スピネル層が発達し、被覆
クロム源同志が焼結してマグネシアクリンカーの外側の
殻を形成している。即ち、れんがの使用時に耐溶損性に
乏しいマグネシアクリンカーが、耐溶損性に優れたマグ
ネシアクロミア系スピネル層とクロム源に覆われること
になり、全体として耐スラグ溶損性が著しく向上する。
In the fired brick structure, a magnesia chromia-based spinel layer develops around the magnesia clinker and the coated chromium sources sinter to form the outer shell of the magnesia clinker. That is, the magnesia clinker, which is poor in erosion resistance when the brick is used, is covered with the magnesia chromia spinel layer having excellent erosion resistance and the chromium source, and the slag erosion resistance is significantly improved as a whole.

以下に本発明方法の実施例を比較例、従来例と対比し
て説明する。
Examples of the method of the present invention will be described below in comparison with comparative examples and conventional examples.

(実施例1) 第2表に示す原料を用いて、本発明方法によってマグ
クロれんがを製作した。さらにこの過程で被覆造粒処理
後、成形後およびは焼成後におけるマグネシアクリンカ
ーの被覆状況を観察した。
Example 1 Using the raw materials shown in Table 2, magro bricks were manufactured by the method of the present invention. Further, in this process, the coating state of the magnesia clinker was observed after the coating granulation treatment, the molding and the firing.

原料の粒度(加重平均粒径)は粗粒域:3mm、中粒域:
0.3mm、細粒域:0.03mmと区分し、各域を重量比4:3:3の
配合とした。ただし、マグネシアクリンカーは粗粒域、
被覆用クロム源原料は細粒域に限定し、また、被覆の厚
さは、細粒重量と各種非水溶性結合剤の添加量を変えて
調整した。
The grain size of the raw material (weighted average grain size) is coarse grain area: 3 mm, medium grain area:
It was classified into 0.3 mm and fine grain area: 0.03 mm, and each area was mixed with a weight ratio of 4: 3: 3. However, magnesia clinker is a coarse grain area,
The chromium source material for coating was limited to the fine grain region, and the coating thickness was adjusted by changing the fine grain weight and the addition amount of various water-insoluble binders.

まず、混合型造粒機内で10kgのマグネシアクリンカー
と非水溶性結合剤を5分間混合し、細粒域のクロム源原
料を3回に分けて添加した。混合10分後に混合しながら
温風乾燥して被覆処理を終了させた。さらに処理後のマ
グネシアクリンカーと第2表の原料の残余分(中粒域粒
度)とを配合して10kgを秤量し、リグニンスルホン酸塩
水溶液を3%添加し、10分間混練したのち、800kg/cm2
の成形圧で50φ×50l(mm)の大きさの直円柱状ブリケ
ットを作った。ついでこれらブリケットを養生乾燥後、
1750℃〜1850℃(平均1805℃)に加熱されたガス炉中で
1.5時間焼成しれんがを得た。
First, 10 kg of magnesia clinker and a water-insoluble binder were mixed in a mixing type granulator for 5 minutes, and the chromium source raw material in the fine particle region was added in three portions. After 10 minutes of mixing, the coating treatment was terminated by drying with warm air while mixing. After the treatment, the magnesia clinker was mixed with the rest of the raw materials shown in Table 2 (medium grain size), 10 kg was weighed, 3% of the lignin sulfonate aqueous solution was added, and the mixture was kneaded for 10 minutes, then 800 kg / cm 2
A straight cylindrical briquette with a size of 50φ x 50 l (mm) was made with the molding pressure of. Then, after curing and drying these briquettes,
In a gas furnace heated to 1750 ° C to 1850 ° C (average 1805 ° C)
Got a brick for 1.5 hours.

なお、被覆の厚さの測定は、被覆後あるいは成形後の
試料をエポキシ樹脂で固定し、研摩した切断面をSEM、
光学顕微鏡、実態顕微鏡下で測定する方法を採り、各10
回測定した平均値で示した。
The thickness of the coating was measured by fixing the sample after coating or molding with epoxy resin and polishing the cut surface with SEM,
Measured under an optical microscope and a real-life microscope, each measuring 10
The average value measured twice was shown.

焼成後の状況についてはSEM像とEPMAによるCr分布状
況から厚さを推定した。両者は±10%の誤差範囲で一致
していた。
Regarding the condition after firing, the thickness was estimated from the SEM image and the Cr distribution condition by EPMA. Both agree within an error range of ± 10%.

第3表に被覆処理の配合構成と被覆の厚さを成形後の
素地で測定した結果を示す。
Table 3 shows the results of measuring the composition of the coating treatment and the coating thickness on the base material after molding.

第3表の試番A、B、Cに見られるように被覆用の細
粒クロム源原料に電融マグクロ、クロム鉄鉱、酸化クロ
ム(Cr2O3)あるいはピクロクロマイト(MgO・Cr2O3
を用いても、また、非水溶性結合剤にレゾール型フェノ
ール樹脂、ノボラック型フェノール樹脂あるいはポリス
チレンを用いても本発明の方法で被覆処理したマグネシ
アクリンカーは良好な被覆状態を示し、被覆厚さはいず
れも0.2mmに調整されていた。また、焼成後には骨材の
周囲に一様にマグネシアクロミア系スピネルが形成され
ていた。試番E、A、Dはこの順序で細粒クロム源原料
の配合量を増加したもので、被覆厚さは配合量に応じて
それぞれ0.1、0.2、0.3mmが得られている。単に被覆用
原料の配合量を変化させるだけで被覆厚さを調整できる
という本発明方法の別の効果を示している。
As can be seen in the trial numbers A, B, and C in Table 3, the fine-grain chromium source raw material for coating is electromelted magchrome, chromite, chromium oxide (Cr 2 O 3 ) or picromromite (MgO ・ Cr 2 O). 3 )
Or using a resol type phenol resin, a novolac type phenol resin or polystyrene as the water-insoluble binder, the magnesia clinker coated by the method of the present invention shows a good coating state, and the coating thickness is Both were adjusted to 0.2 mm. Further, after firing, magnesia chromia spinel was uniformly formed around the aggregate. Trial Nos. E, A, and D are obtained by increasing the compounding amount of the fine-grain chromium source material in this order, and the coating thicknesses of 0.1, 0.2, and 0.3 mm are obtained according to the compounding amount. It shows another effect of the method of the present invention that the coating thickness can be adjusted simply by changing the blending amount of the coating raw material.

(実施例2) 実施例1の試番A、B、Cの条件で被覆されたマグネ
シアクリンカーを用い、実施例1で記載したのと同じ方
法で並型形状のマグクロれんがを製造した。但し、第4
表に示すように製品れんがバルクの化学組成中のCr2O3
量を20%前後に統一するため、試番Aの被覆マグネシア
クリンカーにはクロム鉄鉱と電融マグクロを配合し、試
番B、Cの被覆マグネシアクリンカーには電融マグクロ
を配合した。また、この配合用クロム源原料の粒度は実
施例1の中粒域にとらわれず、最適充填密度の粒度構成
に調整した。
(Example 2) Using the magnesia clinker coated under the conditions of the trial numbers A, B, and C of Example 1, a parallel type magcro brick was manufactured by the same method as described in Example 1. However, the fourth
As shown in the table, Cr 2 O 3 in the chemical composition of product brick bulk
In order to unify the amount to around 20%, the coated magnesia clinker of trial number A was mixed with chromite ore and electrofused magkuro, and the coated magnesia clinker of trial numbers B and C was mixed with electrofused magcro. Further, the particle size of the chromium source material for compounding was not restricted to the medium particle size region of Example 1, and the particle size constitution of the optimum packing density was adjusted.

得られた65×114×230(mm)のれんがから所要形状の
供試材を切り出し、侵食テストを実施して耐食性を比較
した。
From the obtained 65 × 114 × 230 (mm) bricks, test pieces of the required shape were cut out and subjected to an erosion test to compare the corrosion resistance.

なお、侵食テスト方法は、台形状(40,60)×70×200
mmのテストピースを200kg容量の高周波誘導炉に内張り
し、鋼材溶解後、溶鋼中に合成スラグを投入するスラグ
侵食テスト法でれんがの溶損状況を評価した。試験条件
は以下のとおりである。
The erosion test method is trapezoidal (40,60) x 70 x 200
mm test pieces were lined in a high-frequency induction furnace with a capacity of 200 kg, and the melting condition of bricks was evaluated by the slag erosion test method in which the synthetic slag was introduced into the molten steel after melting the steel materials. The test conditions are as follows.

鋼種…JIS SS41、 スラグ組成…CaO/SiO2:3、FeO:25%、MnO:10% スラグ/メタル比…40kg/ton 温度…1750℃ 侵食時間…2時間 また、侵食指数は内張りのスラグライン部での最大溶
損量(mm/hr)を求め、従来例の結果を100とした比較値
で示した。
Steels ... JIS SS41, slag composition ... CaO / SiO 2: 3, FeO: 25%, MnO: 10% slag / metal ratio ... 40 kg / ton Temperature ... 1750 ° C. erosion time ... 2 hours The erosion index slag line of the lining The maximum amount of melt loss (mm / hr) in each part was determined, and the result of the conventional example was set as 100 and shown as a comparative value.

主要性状およびテスト結果を第4表に示す。 Table 4 shows the main properties and test results.

ここで、比較例とは被覆の工程を省略して製造したも
ので原料の配合構成は本発明例と同等のものである。
また、従来例は見掛気孔率が本発明例のれんがと同等
で、れんがの成分純度の良いものから抽出した市販品で
ある。
Here, the comparative example is manufactured by omitting the coating step, and the composition of the raw materials is the same as that of the example of the present invention.
Further, the conventional example is a commercial product extracted from the one having the apparent porosity equal to that of the brick of the present invention and having a good brick component purity.

第4表の本発明例と比較例を対比すると、配合量、
れんが中MgO、Cr2O3濃度、見掛気孔率がほぼ同一である
にもかかわらず、侵食指数は比較例の105に対し、本発
明例は80と低くなっている。この耐食性向上は本発明
例では被覆マグネシアクリンカーを用いているのに対
し、比較例はマグネシアクリンカーを被覆せずに用いて
いることに起因する。本発明方法による事例、、
と従来例を比較すると、本発明の被覆マグネシアクリン
カーの使用により従来例より少ないCr2O3含有量で、従
来例より良好な耐食性が得られていることがわかる。
Comparing the present invention example and the comparative example in Table 4, the blending amount,
Although the MgO and Cr 2 O 3 concentrations in the brick and the apparent porosity are almost the same, the erosion index is as low as 105 in the comparative example and 80 in the present invention. This improvement in corrosion resistance results from the fact that the coated magnesia clinker is used in the examples of the present invention, whereas the magnesia clinker is used in the comparative example without coating. Example by the method of the present invention,
Comparing with the conventional example, it can be seen that by using the coated magnesia clinker of the present invention, the corrosion resistance better than that of the conventional example can be obtained with the Cr 2 O 3 content lower than that of the conventional example.

(発明の効果) 本発明方法によれば、骨材のマグネシアクリンカーが
マグネシアクロミア系スピネル構造の層状組織で被覆さ
れた優れたスラグ耐食性ををもつマグクロれんがが得ら
れる。この高耐食性マグクロれんがは製鋼工程の合理
化、効率化に伴うれんが侵食の苛酷化に充分対応するこ
とができる。
(Effect of the Invention) According to the method of the present invention, a magnesia brick having excellent slag corrosion resistance in which the magnesia clinker of the aggregate is covered with the layered structure of the magnesia chromia spinel structure is obtained. This highly corrosion-resistant magcro brick can sufficiently cope with the severer erosion of bricks due to the rationalization and efficiency of the steelmaking process.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】粗粒マグネシアクリンカーの表面に非水溶
性結合剤を用いて細粒のクロム源原料粉を予め被覆した
ものを骨材とし、この骨材に電融マグクロクリンカーま
たは/およびクロム鉄鉱粉を配合して混練、成形、乾燥
し、高温焼成することを特徴とするマグネシア・クロム
質れんがの製造方法。
1. An aggregate comprising a coarse-grained magnesia clinker pre-coated with a fine-grained chromium source raw material powder using a water-insoluble binder, and this aggregate is used as an electromelting magcro-clinker or / and chromium. A method for producing magnesia-chromic bricks, which comprises blending iron ore powder, kneading, molding, drying and firing at high temperature.
【請求項2】クロム源原料粉の平均粒径が粗粒マグネシ
アクリンカーの平均粒径の1/60〜1/600である請求項
(1)のマグネシア・クロム質れんがの製造方法。
2. The method for producing a magnesia-chromic brick according to claim 1, wherein the average particle size of the chromium source raw material powder is 1/60 to 1/600 of the average particle size of the coarse magnesia clinker.
JP1279294A 1989-10-26 1989-10-26 Method of manufacturing magnesia chrome brick Expired - Lifetime JP2518422B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1279294A JP2518422B2 (en) 1989-10-26 1989-10-26 Method of manufacturing magnesia chrome brick

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1279294A JP2518422B2 (en) 1989-10-26 1989-10-26 Method of manufacturing magnesia chrome brick

Publications (2)

Publication Number Publication Date
JPH03141148A JPH03141148A (en) 1991-06-17
JP2518422B2 true JP2518422B2 (en) 1996-07-24

Family

ID=17609166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1279294A Expired - Lifetime JP2518422B2 (en) 1989-10-26 1989-10-26 Method of manufacturing magnesia chrome brick

Country Status (1)

Country Link
JP (1) JP2518422B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2589905A (en) * 2019-12-12 2021-06-16 Univ Exeter Refractory materials and methods of manufacture thereof
PL3868731T3 (en) * 2020-02-20 2023-03-13 Refractory Intellectual Property Gmbh & Co. Kg Grains for the production of a sintered refractory product, a batch for the production of a sintered refractory product, a process for the production of a sintered refractory product and a sintered refractory product
CN116253575A (en) * 2023-03-21 2023-06-13 东北大学 Magnesium-chromium sand magnesium-based ceramic core and preparation method thereof

Also Published As

Publication number Publication date
JPH03141148A (en) 1991-06-17

Similar Documents

Publication Publication Date Title
CA2642607A1 (en) Coarse-ceramic refractory batch and refractory product made therefrom
CN110563476A (en) Fiber-reinforced refractory brick and preparation method thereof
JPH02217354A (en) Magnesite-carbon refractory
JP2518422B2 (en) Method of manufacturing magnesia chrome brick
CN112760444A (en) Converter modifier regenerated by dry material of used tundish and preparation method thereof
CN111083926B (en) Refractory product, batch for manufacturing such a product, method for manufacturing such a product and use of such a product
US3141784A (en) High temperature refractory
CA2310431C (en) Refractory batch, in particular for the production of a shaped body, and process for producing the shaped body
JPH0118030B2 (en)
JP4328053B2 (en) Magnesia-spinel brick
CN113800891A (en) Magnesium light tundish coating material and using method thereof
JP6742579B2 (en) How to build a molten metal container
JPS604244B2 (en) Manufacturing method of stopper for preventing slag outflow
CN100453510C (en) Electrical melting ferric aluminum magnesium synthetical material and manufacturing method thereof
JP2000263013A (en) Method for using aluminum dross residual ash, and alumina spinel castable refractory material
MX2007000419A (en) High durability refractory composition.
CN105152667B (en) Chrome-free brick for lining of vacuum refining furnace and preparation method of chrome-free brick
JPH10203862A (en) Magnesium-chromium brick fired at high temperature
JP2002068850A (en) High alumina brick for ladle for high alloy steel and production method thereof
JP3833800B2 (en) Standard refractory
JP4373509B2 (en) Basic refractory
JPS6143305B2 (en)
JP2003226583A (en) Unshaped refractory for hot metal
JP4484173B2 (en) Indefinite refractory
JP2599870B2 (en) Amorphous refractory composition

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20080523

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20090523

LAPS Cancellation because of no payment of annual fees