JP2517876B2 - Non-halogen flame-retardant resin molding for radiation exposure environment - Google Patents

Non-halogen flame-retardant resin molding for radiation exposure environment

Info

Publication number
JP2517876B2
JP2517876B2 JP5295937A JP29593793A JP2517876B2 JP 2517876 B2 JP2517876 B2 JP 2517876B2 JP 5295937 A JP5295937 A JP 5295937A JP 29593793 A JP29593793 A JP 29593793A JP 2517876 B2 JP2517876 B2 JP 2517876B2
Authority
JP
Japan
Prior art keywords
parts
weight
retardant resin
radiation
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5295937A
Other languages
Japanese (ja)
Other versions
JPH07126445A (en
Inventor
伸尚 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP5295937A priority Critical patent/JP2517876B2/en
Publication of JPH07126445A publication Critical patent/JPH07126445A/en
Application granted granted Critical
Publication of JP2517876B2 publication Critical patent/JP2517876B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、放射線被曝環境下にお
いて優れた耐放射線性を発揮する放射線被曝環境下用非
ハロゲン系の難燃性樹脂成形体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-halogen flame-retardant resin molding for a radiation exposure environment, which exhibits excellent radiation resistance in a radiation exposure environment.

【0002】[0002]

【従来の技術】従来から、原子力発電所を始めとする放
射線被曝環境で使用される電線・ケーブルは、その電気
絶縁物が耐放射線性に優れていることが要求されてい
る。また同時に、高い安全性を維持するため、万一の火
災時にも優れた耐延焼性を有していることが要求されて
いる。これらの要求を満たすため、現用材では、ポリエ
チレン等のポリオレフィン樹脂にハロゲン系難燃剤を配
合した難燃性樹脂組成物が使用されている。しかしなが
ら、このようなハロゲン系難燃剤配合の組成物による成
形体は、燃焼時に金属腐食性ガスや多量の煙を発生する
などの問題があった。一方、最近、ポリオレフィン樹脂
に金属水和物を多量に配合した非ハロゲン系の難燃性樹
脂組成物の開発・実用化が進んでいる。このような非ハ
ロゲン系の難燃性樹脂組成物を用いた成形体は、燃焼時
の発煙量も少なく、金属腐食性を示すハロゲン系ガスを
発生させないなどの利点があるため、高度の安全性を必
要とする原子力発電所などの用途にも、その応用が期待
されている。
2. Description of the Related Art Conventionally, electric wires and cables used in a radiation exposure environment such as a nuclear power plant have been required to have excellent radiation resistance in their electrical insulators. At the same time, in order to maintain high safety, it is required to have excellent fire spread resistance even in the event of a fire. In order to meet these requirements, currently used materials use a flame-retardant resin composition in which a halogen-based flame retardant is mixed with a polyolefin resin such as polyethylene. However, the molded product made of such a composition containing a halogen-based flame retardant has a problem that it generates a metal corrosive gas or a large amount of smoke during combustion. On the other hand, recently, a halogen-free flame-retardant resin composition obtained by blending a large amount of a metal hydrate with a polyolefin resin has been developed and put into practical use. A molded article using such a non-halogen flame-retardant resin composition has a high safety because it has a small amount of smoke when burned and does not generate a halogen-based gas that exhibits metal corrosiveness. It is also expected to be applied to applications such as nuclear power plants that require

【0003】[0003]

【発明が解決しようとする課題】しかしながら、このよ
うな従来の非ハロゲン系の難燃性樹脂成形体は、大量の
放射線を被曝すると非常に脆くなり、特に伸び特性が低
下し、その実用性が著しく低下する欠点があった。本発
明は、従来の非ハロゲン系の難燃性樹脂成形体に見られ
た放射線劣化性に着目し、放射線被曝環境下において優
れた耐放射線性を発揮する放射線被曝環境下用の非ハロ
ゲン系難燃性樹脂成形体を提供することを目的とするも
のである。
However, such a conventional non-halogen flame-retardant resin molded article becomes very brittle when exposed to a large amount of radiation, and particularly its elongation property is deteriorated, and its practicality is impaired. There was a drawback that it was significantly reduced. The present invention focuses on the radiation-degrading property found in conventional non-halogen flame-retardant resin moldings, and exhibits excellent radiation resistance in a radiation-exposed environment. It is intended to provide a flammable resin molded body.

【0004】[0004]

【課題を解決するための手段】本発明は、上記目的達成
のため鋭意検討した結果、ベンゼン環のπ電子が放射線
に対して安定化効果を持つことに着目し、架橋反応を利
用して非ハロゲン系の難燃性樹脂組成物に、このベンゼ
ン環を有するモノマーを導入することで成形体の耐放射
線性を向上させ得たものである。即ち、本発明の放射線
被曝環境下用の非ハロゲン系難燃性樹脂成形体は、ポリ
オレフィン系樹脂100重量部に対して、水酸化マグネ
シウム80〜200重量部および2,4−ジフェニル−
4−メチル−1−ペンテン0.5〜10重量部および所
望量の架橋剤を配合した樹脂組成物を成形し、加熱によ
る架橋処理を施してなることを特徴とするものである。
Means for Solving the Problems In the present invention, as a result of extensive studies aimed at achieving the above object, it was noted that the π-electrons of the benzene ring have a stabilizing effect on radiation, and a crosslinking reaction By introducing this monomer having a benzene ring into the halogen-based flame-retardant resin composition, the radiation resistance of the molded product can be improved. That is, the non-halogen flame-retardant resin molding for use in a radiation-exposed environment of the present invention contains 80 to 200 parts by weight of magnesium hydroxide and 2,4-diphenyl-based resin based on 100 parts by weight of polyolefin resin.
It is characterized in that a resin composition containing 0.5 to 10 parts by weight of 4-methyl-1-pentene and a desired amount of a crosslinking agent is molded and subjected to a crosslinking treatment by heating.

【0005】また、本発明の他の放射線被曝環境下用の
非ハロゲン系難燃性樹脂成形体は、ポリオレフィン系樹
脂100重量部に対して、水酸化マグネシウム80〜2
00重量部および2,4−ジフェニル−4−メチル−1
−ペンテン0.5〜10重量部を配合した樹脂組成物を
成形し、電子線照射による架橋処理を施してなることを
特徴とするものである。
Another halogen-free flame-retardant resin molding for use in a radiation-exposed environment of the present invention is 80 to 2 parts magnesium hydroxide per 100 parts by weight of polyolefin resin.
00 parts by weight and 2,4-diphenyl-4-methyl-1
A resin composition containing 0.5 to 10 parts by weight of pentene is molded and subjected to a crosslinking treatment by electron beam irradiation.

【0006】本発明におけるポリオレフィン系樹脂とし
ては、水酸化マグネシウムの高配合が可能なものであれ
ば、特に限定されるものでないが、好ましいものとして
は、極低密度ポリエチレン(VLDPE)、エチレン−
エチルアクリレート共重合体(EEA)、エチレン−酢
酸ビニル共重合体(EVA)、エチレン−メチルアクリ
レート共重合体(EMA)等が挙げられる。難燃性付与
剤として、水酸化マグネシウムを配合する理由は、水酸
化マグネシウム以外の金属水和物では、得られる成形体
の電気特性が低下するためである。また、水酸化マグネ
シウムの配合量は、ポリオレフィン系樹脂100重量部
に対して80〜200重量部が好ましく、80重量部未
満では、得られる成形体の難燃性が不十分であり、20
0重量部を超えた量であると、得られる成形体の機械的
特性が著しく低下する等の問題がある。なお、水酸化マ
グネシウムの粒径は、平均粒径で0. 8〜5μm程度の
ものが好ましい。
The polyolefin resin in the present invention is not particularly limited as long as it is capable of containing magnesium hydroxide in a high proportion, but preferred are very low density polyethylene (VLDPE) and ethylene-
Examples thereof include ethyl acrylate copolymer (EEA), ethylene-vinyl acetate copolymer (EVA), ethylene-methyl acrylate copolymer (EMA). The reason for incorporating magnesium hydroxide as the flame retardant-imparting agent is that the electrical characteristics of the obtained molded article deteriorate with a metal hydrate other than magnesium hydroxide. Further, the compounding amount of magnesium hydroxide is preferably 80 to 200 parts by weight with respect to 100 parts by weight of the polyolefin-based resin, and if it is less than 80 parts by weight, the flame retardancy of the obtained molded article is insufficient.
If the amount exceeds 0 parts by weight, there is a problem that the mechanical properties of the obtained molded product are significantly deteriorated. The average particle size of magnesium hydroxide is preferably about 0.8 to 5 μm.

【0007】また、2,4−ジフェニル−4−メチル−
1−ペンテンの配合量は、ポリオレフィン系樹脂100
重量部に対して、0. 5重量部〜10重量部が好まし
く、0. 5重量部未満では、得られる難燃性樹脂成形体
への耐放射線性付与効果が薄く、また、10重量部を超
えて多量に配合しても耐放射線性付与効果の一層の向上
は認められず、反面、組成物の架橋度が大きく低下する
ようになり、実用的な機械的強度をもった成形体が得ら
れなくなる。
Further, 2,4-diphenyl-4-methyl-
The compounding amount of 1-pentene is 100
0.5 parts by weight to 10 parts by weight is preferable, and if less than 0.5 parts by weight, the effect of imparting radiation resistance to the obtained flame-retardant resin molded article is small, and 10 parts by weight is added. Even if compounded in a large amount exceeding the above range, further improvement of the radiation resistance imparting effect was not recognized, but on the other hand, the degree of crosslinking of the composition came to be greatly reduced, and a molded product having practical mechanical strength was obtained. I will not be able to.

【0008】本発明の樹脂成形体は、架橋剤を用いる化
学架橋法または電子線等を照射する放射線照射架橋法に
よって架橋処理が施される。架橋剤を用いる化学架橋法
の場合では、例えばジクミルパーオキサイド(DC
P)、t−ブチルクミルパーオキサイド、α,α, −ビ
ス(t−ブチルパーオキシ−m−イソプロピル)ベンゼ
ン、m−(t−ブチルパーオキシイソプロピル)イソプ
ロピルベンゼン等の有機過酸化物を架橋剤として用い、
その配合量はポリオレフィン系樹脂100重量部に対し
て、0. 5〜10重量部程度を配合すればよい。なお、
化学架橋法および放射線照射架橋法などにより架橋処理
すると、架橋反応だけでなく、ポリマー鎖の切断反応が
生起し、架橋反応が阻害される場合があるため、架橋処
理時にポリマー鎖の切断反応を抑制し、架橋反応を促進
する効果のある架橋助剤を併用するのが好ましい。この
ような目的に用いられる好ましい架橋助剤としては、ト
リアリルイソシアネート(TAIC)、トリアリルシア
ヌレート(TAC)、トリメチロールプロパントリメタ
アクリレート(TMPT)等がある。
The resin molding of the present invention is subjected to a crosslinking treatment by a chemical crosslinking method using a crosslinking agent or a radiation irradiation crosslinking method of irradiating an electron beam or the like. In the case of a chemical cross-linking method using a cross-linking agent, for example, dicumyl peroxide (DC
P), t-butylcumyl peroxide, α, α , -bis (t-butylperoxy-m-isopropyl) benzene, m- (t-butylperoxyisopropyl) isopropylbenzene and other organic peroxides as cross-linking agents Used as
The blending amount may be about 0.5 to 10 parts by weight with respect to 100 parts by weight of the polyolefin resin. In addition,
When the cross-linking treatment is performed by the chemical cross-linking method or the radiation cross-linking method, not only the cross-linking reaction but also the polymer chain-breaking reaction may occur and the cross-linking reaction may be inhibited. However, it is preferable to use a crosslinking aid having an effect of promoting the crosslinking reaction in combination. Preferred crosslinking aids used for such purpose include triallyl isocyanate (TAIC), triallyl cyanurate (TAC), trimethylolpropane trimethacrylate (TMPT) and the like.

【0009】[0009]

【作用】本発明の放射線被曝環境下用の非ハロゲン系難
燃性樹脂成形体では、配合した2,4−ジフェニル−4
−メチル−1−ペンテンが、架橋処理時にその分子内の
二重結合の部分を介してポリオレフィン系樹脂にグラフ
トしてベンゼン環を有する2,4−ジフェニル−4−メ
チル−1−ペンテンが樹脂中に導入されると共に、架橋
反応に関与する架橋助剤的な働きをして、架橋した成形
体の耐放射線性を向上させる。
In the non-halogen flame-retardant resin molding for use in the radiation exposure environment of the present invention, the compounded 2,4-diphenyl-4 is used.
-Methyl-1-pentene is grafted to a polyolefin resin through a double bond portion in the molecule during the cross-linking treatment, and 2,4-diphenyl-4-methyl-1-pentene having a benzene ring is present in the resin. And acts as a cross-linking auxiliary agent involved in the cross-linking reaction and improves the radiation resistance of the cross-linked molded article.

【0010】[0010]

【実施例】以下、本発明を実施例を挙げて説明する。 (実施例1〜5、比較例1〜5)表1に示す各成分をそ
れぞれ混合した組成物をロールで均一に混練した後、温
度160℃、30分間プレス成形して試験用架橋物シー
トをそれぞれ作製した。こうして作製した試験用架橋物
シートについて、機械的特性、難燃性、耐放射線性等を
測定評価した。得られた結果を表1に併記する。なお、
一般に、ケーブルの絶縁体やシースの引張強度は、JI
S規格ではポリエチレンやポリ塩化ビニルでは10MP
a程度以上が要求される。また、伸びについては、曲げ
に対するフレキシビリティが必要なことから、γ線照射
後の伸び率が高いほど良い。
EXAMPLES The present invention will be described below with reference to examples. (Examples 1 to 5 and Comparative Examples 1 to 5) The compositions obtained by mixing the components shown in Table 1 were uniformly kneaded with a roll, and then press-molded at a temperature of 160 ° C. for 30 minutes to obtain a test crosslinked product sheet. Each was produced. The test cross-linked product sheet thus prepared was measured and evaluated for mechanical properties, flame retardancy, radiation resistance and the like. The obtained results are also shown in Table 1. In addition,
Generally, the tensile strength of cable insulators and sheaths is
10MP for polyethylene and polyvinyl chloride according to S standard
A or more is required. As for the elongation, the flexibility after bending is required. Therefore, the higher the elongation rate after γ-ray irradiation, the better.

【0011】[0011]

【表1】 [Table 1]

【0012】表1から明らかなように、ポリオレフィン
系樹脂としてエチレン−酢酸ビニル共重合体を用い、こ
れに、2,4−ジフェニル−4−メチル−1−ペンテン
を配合し化学架橋処理した実施例1〜3の成形体は、γ
線総照射線量が1, 0×106 Gyで、その引張強度は
11. 0〜11. 6MPaを保有し、伸びも320〜3
93%(γ線照射線前の56〜62%)の高い伸びを保
持していた。また、γ線総照射線量が2, 25×106
Gyでも、その引張強度は7. 8〜8. 8MPaを保有
し、伸びも178〜250%(γ線照射線前の30〜3
9%)の伸びを保持していた。これに対して、2,4−
ジフェニル−4−メチル−1−ペンテンを配合しない比
較例1〜3の成形体は、γ線総照射線量が1, 0×10
6 Gyで、その引張強度は10. 7〜12. 3MPaと
本発明の実施例品と同等の引張強度を保有していたが、
伸びは195〜243%(γ線照射線前の36〜48
%)に大幅に低下した。そして、γ線総照射線量が2,
25×106 Gyでは、その引張強度は10.5〜11.
4MPaとあまり低下しなかったが、伸びは132〜
153%(γ線照射線前の24〜30%)と大幅に低下
したものとなった。また、2,4−ジフェニル−4−メ
チル−1−ペンテンの配合量が、本発明での規定量より
多い配合量である比較例4の成形体は、架橋阻害により
γ線照射前の引張強度の初期値が、既に8. 7MPaと
一段と低いものであった。
As is clear from Table 1, an example in which ethylene-vinyl acetate copolymer was used as a polyolefin resin, and 2,4-diphenyl-4-methyl-1-pentene was added thereto and chemically crosslinked was used. Molded bodies 1 to 3 are γ
The total radiation dose is 1.0 × 10 6 Gy, the tensile strength is 11.0 to 11.6 MPa, and the elongation is 320 to 3
It retained a high elongation of 93% (56 to 62% before gamma ray irradiation). In addition, the total irradiation dose of γ rays is 225 × 10 6
Even Gy has a tensile strength of 7.8 to 8.8 MPa and an elongation of 178 to 250% (30 to 3 before γ-ray irradiation).
9%) was maintained. On the other hand, 2,4-
The molded articles of Comparative Examples 1 to 3 containing no diphenyl-4-methyl-1-pentene had a total γ-ray irradiation dose of 1.0 × 10.
The tensile strength was 6 Gy and the tensile strength was 10.7 to 12.3 MPa, which was equivalent to that of the example product of the present invention.
Elongation is 195-243% (36-48 before gamma irradiation
%). And the total γ-ray irradiation dose is 2,
At 25 × 10 6 Gy, the tensile strength is 10.5-11.
Although it did not decrease so much as 4 MPa, the elongation was 132-
It was 153% (24 to 30% before gamma ray irradiation), which was a large decrease. In addition, the molded product of Comparative Example 4 in which the content of 2,4-diphenyl-4-methyl-1-pentene was greater than the specified amount in the present invention, the tensile strength before γ-ray irradiation due to crosslinking inhibition. The initial value of was already much lower at 8.7 MPa.

【0013】また、ポリオレフィン系樹脂として極低密
度ポリエチレンを用いた実施例4〜5および比較例5で
は、実施例4〜5の成形体は、γ線総照射線量が1, 0
×106 Gyで、その引張強度は10. 7〜11. 3M
Paを保有し、伸びも204〜252%(γ線照射前の
39〜43%)と高い伸びを保持していた。これに対し
て、2,4−ジフェニル−4−メチル−1−ペンテンを
配合しない比較例5の成形体は、γ線総照射線量が1,
0×106 Gyで、その引張強度は9. 3MPaと大幅
に低下し、伸びも65%と(γ線照射前の19%)に大
幅に低下した。そして、γ線総照射線量が2, 25×1
6 Gyでは、その引張強度は11.2MPaとあまり
低下しなかったが、伸びは50%以下と(線照射前の9
%以下)大幅に低下したものとなった。
In Examples 4 to 5 and Comparative Example 5 in which extremely low density polyethylene was used as the polyolefin resin, the molded articles of Examples 4 to 5 had a total gamma ray irradiation dose of 1.0.
× 10 6 Gy, with tensile strength of 10.7 to 11.3M
It possessed Pa and had a high elongation of 204 to 252% (39 to 43% before gamma ray irradiation). On the other hand, the molded body of Comparative Example 5 containing no 2,4-diphenyl-4-methyl-1-pentene had a total γ-ray irradiation dose of 1,
At 0 × 10 6 Gy, the tensile strength was significantly reduced to 9.3 MPa, and the elongation was also significantly reduced to 65% (19% before γ-ray irradiation). And the total γ-ray irradiation dose is 2, 25 × 1
In 0 6 Gy, the tensile strength did not decrease so much as 11.2 MPa, but the elongation was 50% or less (9
% Or less).

【0014】(実施例6〜7、比較例6〜7)表2に示
す各成分をそれぞれ混合した組成物をロールで均一に混
練した後、帯状に取り出し、これを粒状(角ペレット)
化した。次に、この粒状ペレットを押出機を用いて太さ
2mm2 の導体上に外径が3.4mmとなるように押出
被覆して絶縁電線を製造した。次に、この製造した絶縁
電線に照射量15Mrad、加速電圧750kevの条
件で電子線照射して架橋処理した。以上のようにして製
造した架橋絶縁電線について、機械特性、難燃性、耐放
射線性等を測定した。得られた結果を表2に併記する。
(Examples 6 to 7 and Comparative Examples 6 to 7) The compositions obtained by mixing the respective components shown in Table 2 were uniformly kneaded with a roll and then taken out in a band shape, which was then granulated (square pellets).
Turned into Next, the granular pellets were extrusion-coated on a conductor having a thickness of 2 mm 2 with an extruder so that the outer diameter was 3.4 mm, to produce an insulated electric wire. Next, the produced insulated wire was irradiated with an electron beam under the conditions of an irradiation amount of 15 Mrad and an accelerating voltage of 750 kev to perform a crosslinking treatment. Mechanical properties, flame retardancy, radiation resistance, etc. were measured for the crosslinked insulated wire manufactured as described above. The obtained results are also shown in Table 2.

【0015】[0015]

【表2】 [Table 2]

【0016】表2から明らかなように、実施例6〜7の
架橋絶縁電線の絶縁体は、γ線総照射線量が1, 0×1
6 Gyで、その引張強度は11. 3〜13. 6MPa
とγ線照射処理前とほとんど変わらず、また、伸びは3
68〜385%(γ線照射処理前の61〜73%)を保
有していた。そして、γ線総照射線量が2, 25×10
6 Gyでは、その引張強度は10.8〜11. 5MPa
を保有し、伸びも88〜105%(γ線照射前の16〜
17%)を保有していた。これに対して、2,4−ジフ
ェニル−4−メチル−1−ペンテンを配合しない比較例
6の絶縁体は、γ線総照射線量が1, 0×106 Gy
で、その引張強度は10. 7MPaを保有していたが、
伸びは180%と(γ線照射処理前の41%)大幅に低
下した。そして、γ線総照射線量が2, 25×106
yでは、その引張強度は12.9MPaと高くなり、伸
びは50%以下と(γ線照射処理前の11%以下)大幅
に低下したものとなった。また、2,4−ジフェニル−
4−メチル−1−ペンテンの配合量が、本発明での規定
量より多い配合量である比較例7の絶縁体は、架橋阻害
によりγ線照射前の引張強度の初期値が、既に6. 6M
Paと一段と低いものであった。
As is apparent from Table 2, the insulators of the crosslinked insulated wires of Examples 6 to 7 had a total γ ray irradiation dose of 1.0 × 1.
The tensile strength is 0. 6 Gy, and the tensile strength is 11.3 to 13.6 MPa.
Is almost the same as before the γ-ray irradiation treatment, and the elongation is 3
It held 68 to 385% (61 to 73% before γ-ray irradiation treatment). And the total γ-ray irradiation dose is 225 × 10
At 6 Gy, the tensile strength is 10.8 to 11.5 MPa.
And has an elongation of 88-105% (16-
17%). On the other hand, in the insulator of Comparative Example 6 in which 2,4-diphenyl-4-methyl-1-pentene was not mixed, the total γ-ray irradiation dose was 1,0 × 10 6 Gy.
So, its tensile strength was 10.7 MPa,
The elongation was significantly reduced to 180% (41% before the γ-ray irradiation treatment). Then, the total irradiation dose of γ-rays is 225 × 10 6 G
In y, the tensile strength was as high as 12.9 MPa, and the elongation was 50% or less (11% or less before the γ-ray irradiation treatment), which was significantly reduced. In addition, 2,4-diphenyl-
In the insulator of Comparative Example 7 in which the content of 4-methyl-1-pentene was larger than the specified amount in the present invention, the initial value of the tensile strength before γ-ray irradiation was already 6. 6M
It was much lower than Pa.

【0017】[0017]

【発明の効果】以上、実施例から明らかなように、本発
明の放射線被曝環境下用の非ハロゲン系難燃性樹脂成形
体は、放射線被曝環境下において難燃性が何ら阻害され
ることなく、優れた耐放射線性を有するものであり、そ
の実用的価値は極めて大きいものである。
As is apparent from the above examples, the non-halogen flame-retardant resin molding for use in a radiation exposure environment of the present invention does not impair flame retardancy under a radiation exposure environment. It has excellent radiation resistance, and its practical value is extremely large.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ポリオレフィン系樹脂100重量部に対
して、水酸化マグネシウム80〜200重量部および
2,4−ジフェニル−4−メチル−1−ペンテン0.5
〜10重量部および所望量の架橋剤を配合した樹脂組成
を成形し、加熱による架橋処理を施してなることを特
徴とする放射線被曝環境下用非ハロゲン系難燃性樹脂成
形体。
1. 80 to 200 parts by weight of magnesium hydroxide and 0.5 to 2,4-diphenyl-4-methyl-1-pentene based on 100 parts by weight of a polyolefin resin.
A halogen-free flame-retardant resin molded article for use in a radiation-exposed environment, which is obtained by molding a resin composition containing 10 parts by weight and a desired amount of a cross-linking agent and subjecting the resin composition to cross-linking by heating.
【請求項2】 ポリオレフィン系樹脂100重量部に対
して、水酸化マグネシウム80〜200重量部および
2,4−ジフェニル−4−メチル−1−ペンテン0.5
〜10重量部を配合した樹脂組成物を成形し、電子線照
射による架橋処理を施してなることを特徴とする放射線
被曝環境下用非ハロゲン系難燃性樹脂成形体。
2. 80 to 200 parts by weight of magnesium hydroxide and 0.5 to 2,4-diphenyl-4-methyl-1-pentene based on 100 parts by weight of the polyolefin resin.
A non-halogen flame-retardant resin molded article for use in a radiation exposure environment, which is obtained by molding a resin composition containing 10 parts by weight of the resin composition and subjecting the resin composition to crosslinking treatment by electron beam irradiation.
JP5295937A 1993-11-02 1993-11-02 Non-halogen flame-retardant resin molding for radiation exposure environment Expired - Lifetime JP2517876B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5295937A JP2517876B2 (en) 1993-11-02 1993-11-02 Non-halogen flame-retardant resin molding for radiation exposure environment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5295937A JP2517876B2 (en) 1993-11-02 1993-11-02 Non-halogen flame-retardant resin molding for radiation exposure environment

Publications (2)

Publication Number Publication Date
JPH07126445A JPH07126445A (en) 1995-05-16
JP2517876B2 true JP2517876B2 (en) 1996-07-24

Family

ID=17827048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5295937A Expired - Lifetime JP2517876B2 (en) 1993-11-02 1993-11-02 Non-halogen flame-retardant resin molding for radiation exposure environment

Country Status (1)

Country Link
JP (1) JP2517876B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1557436B1 (en) * 2002-10-25 2008-07-16 Nof Corporation Graft copolymer, composition containing the same and molded object thereof, and process for producing the same

Also Published As

Publication number Publication date
JPH07126445A (en) 1995-05-16

Similar Documents

Publication Publication Date Title
EP1000981B1 (en) Flame-retardant resin composition, and insulating electric wire, tube, heat-shrinkable tube, flat cable, and dc high-tension electric wire all made of the composition
JP2008303307A (en) Radiation resistant non-halogen flame retardant resin composition and wire/cable using the same
JP2010097881A (en) Insulation wire
JP2006179452A (en) Nonhalogen electric wire, electric wire bundle, and automobile wire harness
JP3358228B2 (en) Resin composition and insulated wire and insulated tube therefrom
JP2010095638A (en) Non-halogen flame retardant resin composition and non-halogen flame retardant electric wire
JP2517876B2 (en) Non-halogen flame-retardant resin molding for radiation exposure environment
US4001174A (en) Incombustible polyolefin molding compositions and method of crosslinking same
JPH0573135B2 (en)
JPH06145483A (en) Resin composition and tube made therefrom
JP2927058B2 (en) Heat-resistant flame-retardant insulated wire and method of manufacturing the same
JPH07145288A (en) Resin composition and thermally shrinkable tube therefrom
JPH07126450A (en) Non-halogenic flame-retardant insulating composition useful under radiation exposure environment
JP4381663B2 (en) Weather resistant flame retardant resin composition and electric wire
JP2811970B2 (en) Flame retardant electrical cable
KR20200102704A (en) Finishing tape for covering a pipe-insulating materialand the preparation method thereof
JPH07304909A (en) Flame-retardant resin composition, heat-shrinkable tube, and insulated wire
JP2871810B2 (en) Flame retardant resin composition
JP2595255B2 (en) Radiation resistant insulation composition
JP2820736B2 (en) Radiation resistant insulation composition
JP2847540B2 (en) Insulation composition for radiation-resistant flame-retardant electric wires and cables
JP3105938B2 (en) Flame retardant resin composition
JPH03172334A (en) Radiation-resistant flame-retardant composition
JPH0912786A (en) Radiation-resistant resin composition
JPH07216146A (en) Flame-retardant cross-linkable polyolefin resin composition

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term