JP2516860B2 - Method for producing concentrated highly unsaturated fatty acid-containing fats and oils - Google Patents

Method for producing concentrated highly unsaturated fatty acid-containing fats and oils

Info

Publication number
JP2516860B2
JP2516860B2 JP3283560A JP28356091A JP2516860B2 JP 2516860 B2 JP2516860 B2 JP 2516860B2 JP 3283560 A JP3283560 A JP 3283560A JP 28356091 A JP28356091 A JP 28356091A JP 2516860 B2 JP2516860 B2 JP 2516860B2
Authority
JP
Japan
Prior art keywords
fatty acid
unsaturated fatty
highly unsaturated
lipase
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3283560A
Other languages
Japanese (ja)
Other versions
JPH0595792A (en
Inventor
佳次 小杉
登 冨塚
直輝 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP3283560A priority Critical patent/JP2516860B2/en
Publication of JPH0595792A publication Critical patent/JPH0595792A/en
Application granted granted Critical
Publication of JP2516860B2 publication Critical patent/JP2516860B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は濃縮された高度不飽
和脂肪酸油脂、特に、濃縮されたω−3高度不飽和脂肪
酸含有油脂の製造方法に関する。なお、本明細書におけ
るω−3高度不飽和脂肪酸とは、炭素鎖の末端メチルか
ら第3番目と第4番目の炭素の結合が二重結合であり、
かつ炭素鎖中の全二重結合数が2個以上の不飽和脂肪酸
を意味する。また、高度不飽和脂肪酸含有油脂とは、全
二重結合数が2以上の不飽和脂肪酸トリグリセリドを含
む油脂を意味する。
TECHNICAL FIELD The present invention relates to a concentrated polyunsaturated fatty acid oil / fat, and more particularly to a method for producing a concentrated ω-3 highly unsaturated fatty acid-containing oil / fat. In the present specification, the ω-3 highly unsaturated fatty acid is a double bond in the third and fourth carbons from the terminal methyl of the carbon chain.
It also means an unsaturated fatty acid having 2 or more total double bonds in the carbon chain. Further, the highly unsaturated fatty acid-containing fat or oil means a fat or oil containing an unsaturated fatty acid triglyceride having a total number of double bonds of 2 or more.

【0002】[0002]

【従来の技術及びその問題点】ω−3高度不飽和脂肪酸
含有油脂は、C18脂肪酸油脂が主成分を占める牛脂な
どとは異り、各種魚類の油、肝油などの海産食品に多く
含まれており、最近では、健康食品の成分として知られ
るアラキドン酸やリノール酸などのω−6高度不飽和脂
肪酸とバランス良く摂取することが必要であると言われ
ている。このバランスをとるため、ω−3高度不飽和脂
肪酸のエチルエステルが使用されている。しかしながら
この脂肪酸のエチルエステルは、原料油脂すなわち脂肪
酸トリグリセリドと比較して消化吸収の程度が低い〔例
えばCarol M. Wojenshi氏らのBio
chem.Biophys.Acta 1081(19
91)33〜38参照〕。一方、魚油等の原料油脂を加
水分解してω−3高度不飽和脂肪酸を濃縮生成させる手
段として、酵素を用いる方法が考えられ、リパーゼを用
いた場合の不飽和脂肪酸と飽和脂肪酸との分解速度の差
を利用する方法〔T.Hoshino,T.Yaman
eおよびS.Shimizu氏らのAgric.Bio
l.Chem.54(1990)、1459−146
7〕あるいはキャンディダ属菌に由来するリパーゼを用
いてω−3高度不飽和脂肪酸油脂を選択的に加水分解
後、この脂肪酸とグリセリンとを、クロモバクテリウム
属の細菌に由来するリパーゼの作用で反応させてトリグ
リセリドを合成することでω−3高度不飽和脂肪酸を濃
縮する方法〔田中、今村および小菅氏らによる「実践バ
イオリアクター」、食品産業バイオリアクターシステム
技術研究組合成果論文集(1990年)第391〜41
1頁〕が知られているが、これらの方法においてω−3
高度不飽和脂肪酸を濃縮するプロセスはいずれも原料油
脂をリパーゼの作用で選択的に加水分解する工程のみに
置かれ、方法全体としては効率的とは言い難い。さらに
リパーゼを用いる方法として、いわし油を加水分解し、
ω−3高度不飽和脂肪酸を濃縮し、次いでグリセリンを
用いて同じくクロモバクテリウム属の細菌に由来するリ
パーゼの作用によりこの脂肪酸のトリグリセリドを合成
する方法〔長田、高橋、羽田野および細川氏らによる日
水誌57(1991年)、第119〜125頁〕が知ら
れているが、この方法によるトリグリセリドの収率は5
0%以下であって効率的な方法とは言えない。ω−3高
度不飽和脂肪酸含有油脂は前述したように健康食品とし
て摂取することが望まれるが、このものは分子中の不飽
和結合部分で酸化され易く、また、二重結合の移動、異
性化が起り易くまた価格的にも非常に高価である。した
がってω−3高度不飽和脂肪酸を一層高度な割合で含有
する油脂を得ることが望まれている。
PRIOR ART AND PROBLEMS THEREOF ω-3 highly unsaturated fatty acid-containing fats and oils are different from beef tallow in which C 18 fatty acid fats are the main component, and are often contained in marine foods such as various fish oils and liver oils. Recently, it has been said that it is necessary to take a well-balanced intake with ω-6 highly unsaturated fatty acids such as arachidonic acid and linoleic acid which are known as components of health foods. To balance this, ethyl esters of omega-3 highly unsaturated fatty acids have been used. However, the ethyl ester of this fatty acid has a lower degree of digestion and absorption as compared with the raw material oil and fat, that is, fatty acid triglyceride [eg Carol M. et al. Bio by Wojenshi et al.
chem. Biophys. Acta 1081 (19
91) 33-38]. On the other hand, as a means for hydrolyzing raw material fats such as fish oil to concentrate and produce ω-3 highly unsaturated fatty acids, a method using an enzyme is considered, and the decomposition rate of unsaturated fatty acids and saturated fatty acids when lipase is used. Method of using the difference of [T. Hoshino, T .; Yaman
e and S.E. Shimizu et al., Agric. Bio
l. Chem. 54 (1990), 1459-146.
7] Alternatively, after selectively hydrolyzing the ω-3 highly unsaturated fatty acid oil and fat using a lipase derived from Candida, the fatty acid and glycerin are treated by the lipase derived from a bacterium of the genus Chromobacterium. Method of concentrating ω-3 highly unsaturated fatty acids by reacting to synthesize triglyceride ["Practical bioreactor" by Tanaka, Imamura, and Kosuge et al., Food Industry Bioreactor System Technology Research Association Proceedings (1990) 391st to 41st
1 page] is known, but in these methods, ω-3
All of the processes of concentrating highly unsaturated fatty acids are placed only in the step of selectively hydrolyzing the raw fat or oil by the action of lipase, and it cannot be said that the method as a whole is efficient. Furthermore, as a method using lipase, hydrolyzing sardine oil,
A method of concentrating ω-3 highly unsaturated fatty acids and then using glycerin to synthesize triglycerides of these fatty acids by the action of a lipase also derived from a bacterium of the genus Chromobacterium [Nagata, Takahashi, Hatano and Hosokawa et al. Water magazine 57 (1991), pp. 119-125] is known, but the yield of triglyceride by this method is 5
It is less than 0% and cannot be said to be an efficient method. As described above, ω-3 highly unsaturated fatty acid-containing fats and oils are desired to be ingested as health foods, but these are easily oxidized at the unsaturated bond portion in the molecule, and double bond transfer and isomerization are also likely to occur. Is likely to occur and is very expensive in price. Therefore, it is desired to obtain an oil / fat containing a higher proportion of ω-3 highly unsaturated fatty acid.

【0003】[0003]

【発明が解決しようとする課題】本発明は、高度不飽和
脂肪酸含有油脂、特に、ω−3高度不飽和脂肪酸含有油
脂を、この脂肪酸の変性を起すことなく効率的に加水分
解し、さらに加水分解生成物からこの高度不飽和脂肪酸
を濃縮し、次いでグリセリンを作用させて高度に濃縮さ
れた高度不飽和脂肪酸のトリグリセリドを製造する方法
を提供することをその課題とする。
DISCLOSURE OF THE INVENTION The present invention efficiently hydrolyzes highly unsaturated fatty acid-containing fats and oils, particularly ω-3 highly unsaturated fatty acid-containing fats and oils without causing modification of this fatty acid, and further hydrolyzes It is an object of the present invention to provide a method for producing a highly concentrated triglyceride of highly unsaturated fatty acid by concentrating this highly unsaturated fatty acid from a decomposition product and then allowing glycerin to act.

【0004】[0004]

【課題を解決するための手段】本発明者らは前記課題を
解決するため鋭意検究を重ねた結果、本発明を完成し
た。
The present inventors have completed the present invention as a result of intensive investigations to solve the above-mentioned problems.

【0005】本発明によれば、高度不飽和脂肪酸含有油
脂または高度不飽和脂肪酸のアルコールエステルをシュ
ードモナス属菌の生産したリパーゼを含む固定化された
リパーゼを用いて加水分解率66%以上加水分解する工
程(A)、得られた加水分解生成物から、非アルコール
系の軽質溶剤を用いて高級不飽和脂肪酸を濃縮する工程
(B)、得られた濃縮物とその8〜10重量%のグリセ
リンからなる混合物を、キャンディダ属菌の生産したリ
パーゼを含む固定化されたリパーゼと接触させトリグリ
セリドに変換させる工程(C)からなることを特徴とす
る濃縮された高度不飽和脂肪酸含有油脂の製造方法が提
供される。高度不飽和脂肪酸は化学的に不安定なために
前記の各工程は不活性気体の雰囲気中で実施するのが好
ましい。
According to the present invention, a highly unsaturated fatty acid-containing oil or fat or an alcohol ester of a highly unsaturated fatty acid is hydrolyzed using an immobilized lipase containing a lipase produced by Pseudomonas sp. Step (A), Step (B) of concentrating higher unsaturated fatty acid from the obtained hydrolysis product using a non-alcoholic light solvent, from the obtained concentrate and its 8-10 wt% glycerin A method for producing a concentrated highly unsaturated fatty acid-containing oil or fat, which comprises the step (C) of contacting a mixture of the following with an immobilized lipase containing a lipase produced by a Candida genus, and converting the mixture into triglyceride: Provided. Since the polyunsaturated fatty acids are chemically unstable, it is preferable to carry out the above steps in an atmosphere of an inert gas.

【0006】本発明は、高度不飽和脂肪酸含有油脂をシ
ュードモナス属菌の生産するリパーゼの作用により選択
的に加水分解し、得られたω−3高度不飽和脂肪酸を濃
縮し、次いで微生物由来のリパーゼの作用によりグリセ
リンと反応させてトリグリセリドとすることにより濃縮
されたω−3高度不飽和脂肪酸含有油脂を得ることを意
図するものである。
The present invention selectively hydrolyzes highly unsaturated fatty acid-containing fats and oils by the action of a lipase produced by Pseudomonas, concentrates the obtained ω-3 highly unsaturated fatty acid, and then lipase derived from a microorganism. It is intended to obtain concentrated ω-3 highly unsaturated fatty acid-containing oil or fat by reacting with glycerin to give triglyceride.

【0007】本発明において原料として使用される油脂
は、高度不飽和脂肪酸トリグリセリド、特に、ω−3高
度不飽和脂肪酸トリグリセリドを高割合例えば10重量
%以上含有する油脂であり、このような油脂は海産性ま
たは淡水産性のプランクトンを捕食している生物、例え
ば魚類の油脂、一般的に魚油と呼ばれるもので、大量に
捕獲できる鰯、さば等の魚油、またはこれら魚類の肝油
である。また鰯油のようなω−3高度不飽和脂肪酸を含
有する油脂をエタノールのようなアルコールでアルコー
ル分解したアルコールエステルも本発明の原料として使
用できる。
The fats and oils used as a raw material in the present invention are highly unsaturated fatty acid triglycerides, particularly fats and oils containing a high proportion of ω-3 highly unsaturated fatty acid triglycerides, for example, 10% by weight or more. Organisms that eat planktonic or freshwater plankton, such as fish oils and fats, generally called fish oils, are fish oils such as sardines, mackerel, and the like, or liver oils of these fishes. Also, an alcohol ester obtained by alcoholyzing an oil or fat containing ω-3 highly unsaturated fatty acid such as sardine oil with an alcohol such as ethanol can be used as a raw material of the present invention.

【0008】本発明における前記油脂の加水分解は、ア
ルカリ等の化学的手段を用いることなく、シュードモナ
ス属菌の生産するリパーゼを用いて生化学的手段で実施
する。このリパーゼは、高度不飽和脂肪酸含有油脂のア
シル基を加水分解し、脂肪酸とグリセリンを生成させ
る。本発明で使用するシュードモナス属菌のリパーゼは
通常担体に固定して使用するのが好適であり、中でもシ
ュードモナス属の菌に由来するリパーゼを陰イオン交換
樹脂に固定したリパーゼは加水分解の反応物質が流動性
を持つ50〜60℃の温度においても長時間安定であ
り、魚油等の油脂の分解性もよく、加水分解率66%以
上に加水分解を行うとω−3高度不飽和脂肪酸を効率よ
く生成する。魚油分解の際の化学組成は未分解のトリグ
リセリド、一部分解のジグリセリドおよび完全分解した
脂肪酸であリ、モノグリセリドの割合は極めて少ない。
このモノグリセリドは界面活性作用が大きいので生成し
た脂肪酸の分離を困難にするので好ましくないが、この
モノグリセリドの量が少ないことは分離効率を高めるこ
とになる。また未分解のグリセリドにはエイコサンペン
タエン酸が濃縮される傾向を示す。油脂の加水分解率
は、脂肪酸にまで分解された油脂の重量%で表わして、
66%以上、好ましくは80〜99重量%である。
The hydrolysis of the fat or oil in the present invention is carried out by biochemical means using lipase produced by Pseudomonas sp., Without using chemical means such as alkali. This lipase hydrolyzes an acyl group of a highly unsaturated fatty acid-containing oil or fat to produce a fatty acid and glycerin. Pseudomonas lipase used in the present invention is preferably used by fixing it to a carrier usually, and among them, lipase obtained by fixing the lipase derived from Pseudomonas bacteria to an anion exchange resin is a reaction product of hydrolysis. It is stable for a long time even at a temperature of 50 to 60 ° C, which has fluidity, and has good decomposability of oils and fats such as fish oil. To generate. The chemical composition during decomposition of fish oil is undecomposed triglyceride, partially decomposed diglyceride and completely decomposed fatty acid, and the ratio of monoglyceride is extremely small.
This monoglyceride is not preferable because it has a large surface-active effect and thus makes it difficult to separate the produced fatty acid, but a small amount of this monoglyceride increases the separation efficiency. In addition, eicosampentaenoic acid tends to be concentrated in undegraded glyceride. The hydrolysis rate of fats and oils is expressed by weight% of fats and oils that have been decomposed into fatty acids,
It is 66% or more, preferably 80 to 99% by weight.

【0009】この加水分解を実施するには、反応器に固
定したシュードモナス属由来のリパーゼを満たし軽質の
原料油脂と水とを向流的に接触させる。この際生成した
脂肪酸を含む流れとグリセリンおよび水を含む流れとが
よく分離するように容器は直立型のものとし、重力によ
ってこれらの流れが向流的に流れるようにするとよい。
この際の反応温度は一般に40〜70℃であり、50〜
60℃の温度に保持するのが好ましい。この加水分解反
応を実施する際、反応器を不活性気体の雰囲気に保持す
ることが好ましく、不活性気体としては窒素、アルゴ
ン、炭酸ガス、ネオン等を使用することができ、反応器
の空気をこれら不活性気体のいずれかで置換する。炭酸
ガスおよびアルゴンは比重が大きいので置換処理には便
利な気体である。反応帯域を不活性気体の雰囲気にする
ことにより、高度不飽和脂肪酸中の二重結合が酸素の作
用により過酸化結合を生じ過酸化物価が上昇するのが防
止できる。また、この反応の際、水より軽質成分の脂肪
酸、未反応グリセリド等を分離するのを助長するために
非アルコール系の水非混和性軽質溶剤を用いることがで
きる。本明細書において「軽質」とは比重的に水より小
さい、すなわち水より軽いことを意味する。この水非混
合性軽質溶剤には、例えば、イソオクタン、オクタン、
ペンタン、ヘプタン、ヘキサン等の炭化水素及びその他
の疎水性溶剤が挙げられる。この溶剤は反応前に油脂に
添加してもよく、また反応の任意の時点で反応系中に加
えることができる。この溶剤を添加することにより、低
比重生成物として水より分離される生成物の分離が容易
になる。特にイソオクタンを用いた場合、油水分離が極
めて良好であり、イソオクタンを反応前に添加すると、
加水分解率が向上し更に好ましい。反応は連続的にまた
は非連続的に実施することができ、回分式で加水分解反
応を実施した場合、一般に15〜20時間を必要とす
る。高度不飽和脂肪酸を含む生成物は低比重生産物とし
て、水およびグリセリンを含む高比重生成物から分離さ
れる。
In order to carry out this hydrolysis, a light feedstock fat and oil is countercurrently contacted with water, which is filled with a lipase derived from Pseudomonas fixed in a reactor. It is preferable that the container be of an upright type so that the flow containing the fatty acid and the flow containing glycerin and water are well separated, and that these flows flow countercurrently by gravity.
The reaction temperature at this time is generally 40 to 70 ° C. and 50 to 70 ° C.
It is preferable to maintain the temperature at 60 ° C. When carrying out this hydrolysis reaction, it is preferable to maintain the reactor in an atmosphere of an inert gas, and as the inert gas, nitrogen, argon, carbon dioxide, neon or the like can be used, and the air in the reactor is Substitute with one of these inert gases. Since carbon dioxide and argon have large specific gravities, they are gases convenient for substitution treatment. By making the reaction zone an atmosphere of an inert gas, it is possible to prevent the double bond in the highly unsaturated fatty acid from forming a peroxide bond due to the action of oxygen and increasing the peroxide value. In addition, in this reaction, a non-alcoholic water-immiscible light solvent can be used in order to promote separation of light components such as fatty acids and unreacted glycerides from water. As used herein, “light” means smaller in specific gravity than water, that is, lighter than water. This water-immiscible light solvent includes, for example, isooctane, octane,
Hydrocarbons such as pentane, heptane, hexane and other hydrophobic solvents are mentioned. This solvent may be added to the fat or oil before the reaction, or may be added to the reaction system at any time during the reaction. The addition of this solvent facilitates the separation of products which are separated from water as low specific gravity products. Especially when isooctane is used, oil-water separation is extremely good, and if isooctane is added before the reaction,
It is more preferable because the hydrolysis rate is improved. The reaction can be carried out continuously or discontinuously, and when the hydrolysis reaction is carried out batchwise, it generally requires 15 to 20 hours. The product containing polyunsaturated fatty acids is separated from the high density product containing water and glycerin as a low density product.

【0010】加水分解反応によって得られ、高比重生成
物から分離された高度不飽和脂肪酸を含有する低比重生
成物は、これを軽質溶剤に溶解し、分離、及び必要に応
じて精製してその脂肪酸の濃縮を行う。溶解、分離、精
製処理には溶剤として、軽質溶剤が用いられる。このよ
うな軽質溶剤としては、脂肪酸エステルを生成する恐れ
のあるアルコール性OH基を分子内に持たない、非アル
コール系軽質溶剤、例えば、アセトン、メチルエチルケ
トンのようなケトン、ペンタン、ヘキサン、ペプタン、
オクタン、イソオクタンのような炭化水素、その他エー
テル類を用いる。加水分解生成物中に高度不飽和脂肪酸
のアルコールエステルが存在すると、最終工程で高度不
飽和脂肪酸をトリグリセリドに変換する際の収率が低下
するので、軽質溶剤としてはアルコール性OH基を分子
内に持たない前記のような溶剤を使用する。
The low specific gravity product containing the highly unsaturated fatty acid obtained by the hydrolysis reaction and separated from the high specific gravity product is dissolved in a light solvent, separated and, if necessary, purified. Concentrate fatty acids. A light solvent is used as a solvent for the dissolution, separation, and purification treatments. As such a light solvent, a non-alcoholic light solvent which does not have an alcoholic OH group which may generate a fatty acid ester in the molecule, for example, acetone, a ketone such as methyl ethyl ketone, pentane, hexane, peptane,
Hydrocarbons such as octane and isooctane, and other ethers are used. The presence of alcohol ester of highly unsaturated fatty acid in the hydrolysis product lowers the yield when converting the highly unsaturated fatty acid to triglyceride in the final step. Therefore, as a light solvent, an alcoholic OH group is included in the molecule. Use a solvent as described above that does not have.

【0011】高度不飽和脂肪酸の濃縮はそれ自体周知の
方法で実施され、例えば、前記低比重生成物を軽質溶剤
に溶解させ、得られた溶液から、必要により溶剤を蒸散
させ、次いで低温分別結晶法、塩形成法、尿素付加法、
吸着分離法などが使用される。この濃縮工程も不活性気
体の雰囲気で実施して高度不飽和脂肪酸の酸化による変
成を防止することが望ましい。
Concentration of the polyunsaturated fatty acid is carried out by a method known per se, for example, by dissolving the low specific gravity product in a light solvent, evaporating the solvent from the obtained solution, and then performing low temperature fractional crystallization. Method, salt formation method, urea addition method,
An adsorption separation method or the like is used. It is desirable that this concentration step is also performed in an atmosphere of an inert gas to prevent denaturation of highly unsaturated fatty acids due to oxidation.

【0012】加水分解時に水非混合性軽質溶剤を用いた
場合には、溶剤の回収を簡単にするためには、濃縮時に
用いる溶剤は、それと同一の溶剤であることが望ましい
が、加水分解時と濃縮時とで異った溶剤を用いることも
勿論可能である。この濃縮工程において高度不飽和脂肪
酸の濃度は濃縮前の濃度の約2〜6倍に濃縮することが
できる。
When a water-immiscible light solvent is used during hydrolysis, the solvent used for concentration is preferably the same solvent as that used for concentration in order to simplify the recovery of the solvent. Of course, it is possible to use different solvents for the concentration and the concentration. In this concentration step, the concentration of highly unsaturated fatty acid can be concentrated to about 2 to 6 times the concentration before concentration.

【0013】溶剤を蒸発させることによって得られた高
度不飽和脂肪酸濃縮物は次にグリセリンと反応(エステ
ル化)させてトリグリセリドに変換させる。このトリグ
リセリド合成において生成した水はエステル化と同時に
脱水処理によって除去する。この合成反応はキャンディ
ダ属の生産したリパーゼを含む固定化されたリパーゼと
の接触反応によって実施される。この固定化されたリパ
ーゼは水分含有量が100ppm以下のほぼ無水状態で
も活性を維持でき、高度不飽和脂肪酸トリグリセリドの
合成に好適なものである。このような固定化されたリパ
ーゼとしては、例えばキャンディダ属菌に由来するリパ
ーゼをアクリル樹脂に固定化したもの等が挙げられる。
従来、トリグリセリドへの変換に有効とされているムコ
ール属菌に由来するリパーゼを使用した場合は、ドコサ
ヘキサエン酸トリグリセリドの合成には劣る。本発明で
は、トリグリセリドへの変換効率の点で、特に、ドコサ
ヘキサエン酸のトリグリセリドへの変換効率の点で、リ
パーゼとしてキャンディダ属菌により生産されるリパー
ゼを使用するので極めて優れている。なお高度不飽和脂
肪酸濃縮物中にアルコールエステルが存在する場合には
リパーゼの基質特異性により、遊離脂肪酸を用いた場合
と比較してトリグリセリドの収率が悪くなる。したがっ
て本発明における加水分解工程、濃縮工程で用いる溶剤
の選択には注意を要する。
The highly unsaturated fatty acid concentrate obtained by evaporating the solvent is then reacted (esterified) with glycerin to convert it into triglycerides. The water generated in this triglyceride synthesis is removed by dehydration at the same time as esterification. This synthetic reaction is carried out by a catalytic reaction with immobilized lipase containing lipase produced by Candida. This immobilized lipase can maintain its activity even in a substantially anhydrous state having a water content of 100 ppm or less, and is suitable for the synthesis of highly unsaturated fatty acid triglyceride. Examples of such immobilized lipase include those in which lipase derived from Candida is immobilized on acrylic resin.
When a lipase derived from a bacterium belonging to the genus Mucor, which has been conventionally known to be effective for conversion into triglyceride, is used, synthesis of docosahexaenoic acid triglyceride is inferior. The present invention is extremely excellent in terms of conversion efficiency into triglycerides, particularly in terms of conversion efficiency of docosahexaenoic acid into triglycerides, since lipase produced by Candida is used as the lipase. When alcohol esters are present in the polyunsaturated fatty acid concentrate, the substrate specificity of the lipase results in a poor yield of triglyceride as compared with the case where free fatty acids are used. Therefore, care must be taken in selecting the solvent used in the hydrolysis step and the concentration step in the present invention.

【0014】このトリグリセリドの合成に際して使用さ
れるグリセリンは、この反応の化学量論量付近である。
高度不飽和脂肪酸が反応中に変成するのを考慮して脂肪
酸の分子量から計算すると、使用する高度不飽和脂肪酸
濃縮物の8〜10重量%の量のグリセリンが使用され
る。
The glycerin used in the synthesis of this triglyceride is near the stoichiometric amount of this reaction.
Glycerin is used in an amount of 8 to 10% by weight of the polyunsaturated fatty acid concentrate used, calculated from the molecular weight of the fatty acids, taking into account that the polyunsaturated fatty acids are modified during the reaction.

【0015】本発明における固定化リパーゼの接触反応
と同時に行われる脱水処理は真空脱水方式または乾燥不
活性気体の通気方式が採用される。この際反応系に存在
する水分および固化されたリパーゼの作用でグリセリン
と高度不飽和脂肪酸濃縮物との反応によって生成した水
分が共に脱水され、反応系内の水分濃度をほぼ無水の1
00ppm以下にする。このトリグリセリド合成反応に
おいてアルコールエステルが存在すると前述したように
リパーゼの基質特異性によりトリグリセリドの収率が低
下し、また副生するアルコールを活性炭充填カラムに通
して脱アルコール処理することが必要となる。
The dehydration treatment carried out at the same time as the catalytic reaction of the immobilized lipase in the present invention employs a vacuum dehydration method or a dry inert gas aeration method. At this time, the water present in the reaction system and the water produced by the reaction between the glycerin and the polyunsaturated fatty acid concentrate are dehydrated together by the action of the solidified lipase, so that the water concentration in the reaction system is almost anhydrous.
It is set to 00 ppm or less. If alcohol ester is present in this triglyceride synthesis reaction, the yield of triglyceride is reduced due to the substrate specificity of lipase as described above, and it is necessary to pass the by-produced alcohol through a column packed with activated carbon for dealcoholization.

【0016】前記のトリグリセリド合成反応に際して、
反応温度は高度不飽和脂肪酸中の二重結合の移動等を防
止するため低い方が好ましいが、酵素反応であることを
考慮し、その効率性から30〜60℃、望ましくは40
〜60℃である。反応に要する時間は温度その他の条件
にもよるが一般に24〜48時間である。
In the above triglyceride synthesis reaction,
The reaction temperature is preferably low in order to prevent migration of double bonds in the polyunsaturated fatty acid, but in view of the enzymatic reaction, the reaction temperature is 30 to 60 ° C, preferably 40 ° C.
~ 60 ° C. Although the time required for the reaction depends on the temperature and other conditions, it is generally 24 to 48 hours.

【0017】前記の反応により得られた高度不飽和脂肪
酸トリグリセリドは種々の方法、例えば、カラム処理に
より精製できる。溶剤としてエーテルやヘキサンを用
い、塩基性アルミナ充填カラムまたはマグネシウムで活
性化したシリカゲル充填カラムにより精製を行うと過酸
化物も除去されたトリグリセリドが得られるので好都合
である。前記のトリグリセリド合成反応によって得られ
る生成物の80%以上が高度不飽和脂肪酸トリグリセリ
ドである。この生成物をエーテルを溶剤として塩基性ア
ルミナ充填カラムで処理し、吸着物を除去したエーテル
溶出液として処理し、この溶出液を蒸発させると約99
%以上の高純度の高度不飽和脂肪酸トリグリセリドが得
られる。高度不飽和脂肪酸中にアルコールエステルが混
在するとトリグリセリドの収量が悪くなり、また、トリ
グリセリド合成も脱アルコール処理を同時に行う必要が
生じるようになり、反応操作が複雑になる。この工程も
不活性気体の雰囲気中で実施するのが望ましい。
The polyunsaturated fatty acid triglyceride obtained by the above reaction can be purified by various methods such as column treatment. It is convenient to use ether or hexane as a solvent and perform purification with a column packed with basic alumina or a column packed with silica gel activated with magnesium to obtain triglyceride from which peroxide is also removed. 80% or more of the products obtained by the above triglyceride synthesis reaction are highly unsaturated fatty acid triglycerides. The product was treated with a column packed with basic alumina using ether as a solvent, treated with an ether eluate from which adsorbed substances were removed, and the eluate was evaporated to about 99%.
% Or more of highly pure highly unsaturated fatty acid triglyceride is obtained. When alcohol ester is mixed in the polyunsaturated fatty acid, the yield of triglyceride is deteriorated, and it becomes necessary to carry out dealcoholization treatment for triglyceride synthesis at the same time, which complicates the reaction operation. It is desirable to carry out this step in an inert gas atmosphere.

【0018】本発明方法の好適な一例によれば、シュー
ドモナス属の細菌に由来するリパーゼを陰イオン交換樹
脂に固定化して製造した固定化リパーゼの作用により、
鰯油のようなω−3高度不飽和脂肪酸含有油脂を分解率
80%以上まで加水分解することにより遊離のω−3高
度不飽和脂肪酸を80%以上含有する低比重分解産物が
得られる。この際未分解のグリセリドには界面活性の大
きいモノグリセリドが含まれずしかもエイコサペンタエ
ン酸が濃縮されていた。また原料のω−3高度不飽和脂
肪酸含有油脂を水非混和性軽質溶剤としてイソオクタン
に溶解して加水分解を行うと、酵素的油脂加水分解に悪
影響を与えずに油分と水分との分離が促進され、工程を
連続的に実施した場合、生成物である低比重分解産物の
回収過程が容易になる。こうして得られたω−3高度不
飽和脂肪酸を含む生成物をアルコール性OH基を持たな
い溶剤であるヘキサンに溶解し、濃縮処理を行うことに
よりその脂肪酸のエステル化を防止することができる。
次にキャンデイダ属菌の生産したリパーゼを例えばアク
リル樹脂に固定化して製造した固定化リパーゼを用いて
濃縮されたω−3高度不飽和脂肪酸とグリセリンを反応
させるとドコサヘキサエン酸のようなω−3高度不飽和
脂肪酸もトリグリセライドに効率よく合成できる。
According to a preferred example of the method of the present invention, by the action of the immobilized lipase produced by immobilizing a lipase derived from a bacterium of the genus Pseudomonas on an anion exchange resin,
By hydrolyzing an oil / fat containing ω-3 highly unsaturated fatty acid such as sardine oil to a decomposition rate of 80% or more, a low specific gravity decomposition product containing 80% or more of free ω-3 highly unsaturated fatty acid can be obtained. At this time, undegraded glyceride did not contain monoglyceride having large surface activity and eicosapentaenoic acid was concentrated. In addition, if the raw material ω-3 highly unsaturated fatty acid-containing fats and oils is dissolved in isooctane as a water-immiscible light solvent and hydrolyzed, the separation of oil and water is promoted without adversely affecting the enzymatic fat and oil hydrolysis. In the case where the steps are continuously carried out, the process of recovering the low specific gravity decomposition product, which is a product, becomes easy. Esterification of the fatty acid can be prevented by dissolving the product containing the ω-3 highly unsaturated fatty acid thus obtained in hexane, which is a solvent having no alcoholic OH group, and performing concentration treatment.
Next, a immobilized lipase produced by immobilizing a lipase produced by a Candida genus on, for example, an acrylic resin is used to react concentrated ω-3 highly unsaturated fatty acid with glycerin to produce ω-3 highly unsaturated docosahexaenoic acid. Unsaturated fatty acids can also be efficiently synthesized into triglycerides.

【0019】[0019]

【実施例】次に本発明の方法を実施例を挙げてさらに詳
しく説明する。
EXAMPLES The method of the present invention will now be described in more detail with reference to examples.

【0020】実施例1 シュードモナス フルオレセンス(Pseudomon
us fluorescence)バイオタイプIによ
り生産されたリパーゼを陰イオン交換樹脂に固定化した
もの(エンチロンPF、洛東化成社製)1g、鰯油1g
および水1gを50mlの三角フラスコにとり、シリコ
ン栓をつけて50℃で振とうした。各反応時間で脂肪酸
画分をガスクロマトグラフィー(WCOT CP−Si
l88Chrompack社製)にかけ脂肪酸分析した
結果を表1に示す。分解率は酸価と鹸化価との比より求
めた。表1をみると、分解率66%以上分解すればメタ
ノール分解と同じ程度の炭素数20で、二重結合を5個
有するエイコサペンタエン酸(C20:5)および炭素
数22で、二重結合を6個有するドコサヘキサエン酸
(C22:6)が得られることが解った。
Example 1 Pseudomonas Fluorescens (Pseudomon)
us fluorence) Lipase produced by biotype I is immobilized on anion exchange resin (Enchiron PF, manufactured by Rakuto Kasei Co., Ltd.) 1 g, sardine oil 1 g
Then, 1 g of water was placed in a 50 ml Erlenmeyer flask, a silicon stopper was attached, and the mixture was shaken at 50 ° C. The fatty acid fraction was analyzed by gas chromatography (WCOT CP-Si) at each reaction time.
Table 1 shows the results of fatty acid analysis by applying 188 Chrompack. The decomposition rate was obtained from the ratio of the acid value and the saponification value. Looking at Table 1, if the decomposition rate is 66% or more, eicosapentaenoic acid (C20: 5) having 5 carbons and 20 double carbons, which has the same carbon number as methanol decomposition, and 22 carbons, is formed. It was found that docosahexaenoic acid having 6 (C22: 6) was obtained.

【0021】[0021]

【表1】 [Table 1]

【0022】実施例2 図1に示す反応器を用意した。この反応器は向流接触型
の二相系反応器である。仕切り板5及びエマルジョン破
壊装置10は75ミクロンの編目を持つステンレススチ
ールメッシュの付切り板である。図面には示していない
が反応槽はマントルにより囲まれていて恒温の液体を導
入、排出させることにより、温度が一定に保たれるよう
になっている。上端と下端に円錐状の静置槽2,8を設
け、上端の静置槽2の上端部に低比重生成物排出管1が
あり、下端の静置槽8には高比重生産物排出管9があ
る。中間の6個の撹拌槽のうち上端の撹拌槽には高比重
基質供給管3があり、下端の撹拌槽には低比重基質供給
管7がある。各槽の直径が50mm、高さは26〜30
mmで上下の静置槽まで含めた反応器内の体積は421
mlであった。6個の撹拌槽4に加えた固定化酵素(エ
ンチロンPF)量は、合計で64.6gであった。高比
重生成物排出管9には120度の方向に三方に分かれた
分岐管を有する継ぎ手がその分岐管の1つを介してつな
いであり、残りの一方の分岐管11はパルス発生機6に
つながれ、残りの他方の分岐管12には送液ポンプが接
続されている。パルス発生機6は1分間に15回ずつ脈
流が流れるようになっている。1回の脈流の大きさは約
15mlである。この脈流は撹拌槽内容物を混合させる
作用を示す。高比重生成物排出管9を閉じて高比重基質
供給管3より水、低比重基質供給管7より鰯油を両者が
約1:1になるように反応器内に基質を満たし、送液ポ
ンプは止めたままパルス発生機6のみを一晩動かすと二
相分離が達成される。なお図示していないが基質は窒素
ガスで飽和にしたのち窒素ガス加圧下の容器に保存す
る。パルス発生機6を作動しながら低比重基質供給管7
より鰯油を5ml/時間、高比重基質供給管3より水を
2.5ml/時間で供給し、高比重生成物排出管9より
120〜190mg/mlのグリセリンを含む高比重生
成物を1〜3ml/時間で回収してやると、低比重生成
物が3〜5ml/時間で回収された。低比重生成物は窒
素で容器中の大気を置換した−90℃の容器に保存し
た。上記のような条件で反応器を840時間運転したの
ち、条件を変えて鰯油に水非混和性軽質溶剤として30
%のヘキサンを加えて296時間、30%のイソオクタ
ンを加えて240時間および最初と同じ条件であるが反
応時間を96時間にして運転した。その結果を表2に示
す。
Example 2 The reactor shown in FIG. 1 was prepared. This reactor is a countercurrent contact type two-phase system reactor. The partition plate 5 and the emulsion destruction device 10 are stainless steel mesh partition plates having 75 micron stitches. Although not shown in the drawing, the reaction tank is surrounded by a mantle, and the temperature is kept constant by introducing and discharging a constant temperature liquid. Conical stationary tanks 2 and 8 are provided at the upper and lower ends, a low specific gravity product discharge pipe 1 is provided at the upper end of the stationary tank 2 at the upper end, and a high specific gravity product discharge pipe is provided at the stationary tank 8 at the lower end. There is 9. Among the six stirring tanks in the middle, a high specific gravity substrate supply pipe 3 is provided in the upper stirring tank, and a low specific gravity substrate supply pipe 7 is provided in the lower stirring tank. The diameter of each tank is 50 mm and the height is 26-30
The volume in the reactor including the upper and lower stationary tanks in mm is 421.
It was ml. The total amount of immobilized enzyme (ENTILON PF) added to the six stirring tanks 4 was 64.6 g. The high specific gravity product discharge pipe 9 is connected to a joint having a branch pipe divided into three directions in the direction of 120 degrees through one of the branch pipes, and the other one of the branch pipes 11 is connected to the pulse generator 6. A liquid feed pump is connected to the other branch pipe 12 connected to the other. The pulse generator 6 is designed so that a pulsating flow flows 15 times per minute. The size of one pulsating flow is about 15 ml. This pulsating flow has the function of mixing the contents of the stirring tank. The high specific gravity product discharge pipe 9 is closed, water is supplied from the high specific gravity substrate supply pipe 3, and sardine oil is filled from the low specific gravity substrate supply pipe 7 in the reactor such that the ratio of both is about 1: 1. Two-phase separation is achieved by moving only the pulse generator 6 overnight while it is stopped. Although not shown, the substrate is saturated with nitrogen gas and then stored in a container under pressure of nitrogen gas. Low specific gravity substrate supply pipe 7 while operating the pulse generator 6
More sardine oil was supplied at 5 ml / hour, water was supplied at 2.5 ml / hour from the high specific gravity substrate supply pipe 3, and high specific gravity products containing 120 to 190 mg / ml of glycerin were discharged from the high specific gravity product discharge pipe 1 to 1 to 1. When it was collected at 3 ml / hour, low specific gravity products were collected at 3 to 5 ml / hour. The low specific gravity product was stored in a container at −90 ° C. in which the atmosphere in the container was replaced with nitrogen. After operating the reactor for 840 hours under the above conditions, the conditions were changed to 30% as a water-immiscible light solvent in sardine oil.
% Hexane was added for 296 hours, 30% isooctane was added for 240 hours, and the same conditions as at the beginning but with a reaction time of 96 hours. The results are shown in Table 2.

【0023】[0023]

【表2】 [Table 2]

【0024】表2のTGは未反応トリグリセリド、DG
はジグリセリド、MGはモノグリセリド、FAは脂肪酸
を表し、HPLCカラム(SHODEX GPC Kf
−802 昭和電工社製 300x3)で求めた。イソ
オクタンを添加すると無溶媒に比較すると6〜7%分解
率も上昇し油水分離も良好であった。また前記の固定化
リパーゼによると油水分離に悪影響を及ぼす界面活性作
用の強いモノグリセリドの生成も少なかった。
TG in Table 2 is unreacted triglyceride, DG
Represents diglyceride, MG represents monoglyceride, FA represents fatty acid, and HPLC column (SHODEX GPC Kf
-802 It was calculated by Showa Denko KK 300x3). When isooctane was added, the decomposition rate was increased by 6 to 7% as compared with the case where no solvent was used, and oil-water separation was also good. In addition, the immobilized lipase produced less monoglyceride having a strong surface-active effect which adversely affects oil-water separation.

【0025】また以下の表3には鰯油及び無溶媒の分解
産物(分解率81%)中の脂肪酸組成を示す。グリセリ
ド及び脂肪酸画分は、分解産物を薄層クロマトグラフィ
ーにより分画した。表2および表3をみると未分解のジ
グリセリド部分(DG)にはω−3のエイコサペンタン
酸(C20:5)、ドコサペンタエン酸(C22:
5)、およびドコサヘキサエン酸(C22:6)が濃縮
されているが、これは低比重生産物中に回収される。な
お表3中、下線を付した数値はω−3高度不飽和脂肪酸
についてのものである。
Table 3 below shows the fatty acid composition in sardine oil and solvent-free decomposition products (decomposition rate 81%). For the glyceride and fatty acid fractions, the degradation products were fractionated by thin layer chromatography. Looking at Tables 2 and 3, the undegraded diglyceride moiety (DG) was found to be ω-3 eicosapentaenoic acid (C20: 5) and docosapentaenoic acid (C22:
5), and docosahexaenoic acid (C22: 6) are concentrated but are recovered in the low specific gravity product. In Table 3, the underlined numbers are for ω-3 highly unsaturated fatty acids.

【0026】[0026]

【表3】 [Table 3]

【0027】実施例3 実施例2のイソオクタン添加の低比重生成物(分解率8
1%)にイソオクタンを蒸散させた加水分解物190g
に塩形成法による濃縮のために軽質溶剤として7倍量の
アセトン1330gおよび4規定の水酸化カリウムメタ
ノール溶液202mlを加え30分間室温で撹拌し−2
0℃に16時間放置した。次いでカリウム塩として沈殿
する部分を除き濾液58.2gに対し、582gのアセ
トンを加えて、−20℃に16時間放置した。沈殿する
部分を除き濾液を4規定の塩酸で酸性にしアセトンを蒸
散させたのちヘキサンを加え洗液がpH7なるまで水洗
した。ヘキサンを蒸散させて24.4gのω−3高度不
飽和脂肪酸濃縮物を得た。この濃縮物1gにグリセリン
0.09gおよび固定化リパーゼsp382を0.1g
を加え、60℃で24時間10〜20トル(Torr)
まで脱気し、真空乾燥しながら60℃で振とう反応し
た。固定化リパーゼsp382(Novo社製)はキャ
ンデダ・アンタクチカの生産するリパーゼをアクリル樹
脂に固定化したものである。24時間後のこの反応物の
組成は、トリグリセリド68.3%、ジグリセリド2
4.7%、モノグリセリド3.7%および脂肪酸3.3
%であった。この反応物をエチルエーテルに溶かし固定
化酵素を濾別した後、塩基性アルミナカラムにより精製
した。各段階の組成および脂肪酸組成を、表4に示す。
Example 3 A low specific gravity product with the addition of isooctane of Example 2 (decomposition rate 8
190 g of hydrolyzate obtained by evaporating isooctane to 1%)
In order to concentrate by the salt forming method, 1330 g of 7 times amount of acetone and 202 ml of 4N potassium hydroxide methanol solution were added as a light solvent and stirred for 30 minutes at room temperature.
It was left at 0 ° C. for 16 hours. Then, 582 g of acetone was added to 58.2 g of the filtrate except the portion precipitated as a potassium salt, and the mixture was allowed to stand at -20 ° C for 16 hours. After removing the precipitated portion, the filtrate was acidified with 4N hydrochloric acid to evaporate acetone, and then hexane was added to the solution and the solution was washed with water until the pH became 7. Hexane was evaporated to give 24.4 g of ω-3 highly unsaturated fatty acid concentrate. To 1 g of this concentrate, 0.09 g of glycerin and 0.1 g of immobilized lipase sp382
10 to 20 Torr at 60 ° C. for 24 hours
The mixture was degassed, and the mixture was shaken at 60 ° C. with vacuum drying. Immobilized lipase sp382 (manufactured by Novo) is obtained by immobilizing lipase produced by Candeda antactica on an acrylic resin. The composition of this reaction product after 24 hours was as follows: triglyceride 68.3%, diglyceride 2
4.7%, monoglyceride 3.7% and fatty acid 3.3
%Met. This reaction product was dissolved in ethyl ether, the immobilized enzyme was filtered off, and then purified by a basic alumina column. Table 4 shows the composition of each stage and the fatty acid composition.

【0028】[0028]

【表4】 [Table 4]

【0029】表中、下線を付した数値はω−3高度不飽
和脂肪酸についてのものである。本方法によると、エイ
コサペンタエン酸およびドコサヘキサエン酸の場合に
は、濃縮処理により、いずれも約5倍濃縮されているこ
とが判る。またトリグリセリド合成の際の酵素としてキ
ャンデイダ属の菌由来のリパーゼを用いているので、ド
コサヘキサエン酸(C22:6)のトリグリセリドへの
取り込みが良くトリグリセリド合成量も68.3%と良
いものであった。
In the table, the underlined numbers are for ω-3 highly unsaturated fatty acids. According to this method, in the case of eicosapentaenoic acid and docosahexaenoic acid, it was found that both were concentrated about 5 times by the concentration treatment. Further, since lipase derived from a bacterium belonging to the genus Candida is used as an enzyme for the synthesis of triglyceride, the incorporation of docosahexaenoic acid (C 22 : 6) into triglyceride was good, and the amount of triglyceride synthesized was 68.3%. .

【0030】比較例3 実施例2の無溶媒の低比重生成物(分解率81%)にヘ
キサンを加え無水硫酸ナトリウムで脱水し、ヘキサンを
蒸散させた分解産物35gに、低温分別結晶法による濃
縮のため軽質溶剤として7倍量のアセトンを加え、−5
0℃で一晩放置後濾過し、−50℃にしたアセトンで洗
浄し濾液及び洗液のアセトンを蒸散させ1次濃縮物1
8.72gを得た。再び7倍量のアセトンを加え−80
℃で一晩放置後同様にして2次濃縮物10.31gを得
た。2次濃縮物1gにグリセリン0.0714gをリボ
ザイムIM60を0.1g加え、10〜20トル(To
rr)まで脱気し真空乾燥しながら、60℃で振とう反
応した。リポザイムIM60(Novo社製)はムコー
ル・ミーヘイの生産したリパーゼをマクロ細孔の陰イオ
ン交換樹脂に固定化したものである。48時間後の反応
物の組成は、トリグリセリド61.2%、ジグリセリド
22.0%、モノグリセリド2.8%および脂肪酸1
3.9%であった。この反応物をエチルエーテルに溶か
し固定化酵素を濾別した後、塩基性アルミナカラム(ア
ルミニウムオキシド90(メルク社製製品番号107
6)およびアルカリ脱酸法により精製した。各段階の組
成および脂肪酸組成を、表5に示す。表中、下線を付し
た数値はいずれもω−3高度不飽和脂肪酸についてのも
のであり、その結果エイコサペンタエン酸およびドコサ
ペンタエン酸の場合にはアセトンによる低温分別結晶法
による濃縮の結果、第2次濃縮物にいずれも2倍濃縮さ
れていることが判るが、これらの脂肪酸はグリセリンと
の反応によりドコサヘキサエン酸(C22:6)のトリ
グリセリドへの取込みが悪いことを示している。
Comparative Example 3 To the solventless low specific gravity product (decomposition rate 81%) of Example 2, hexane was added and dehydrated with anhydrous sodium sulfate, and 35 g of the decomposition product obtained by evaporating hexane was concentrated by the low temperature fractional crystallization method. Therefore, add 7 times the amount of acetone as a light solvent, and
The mixture was left at 0 ° C overnight, filtered, washed with acetone at -50 ° C, and the filtrate and acetone in the washing liquid were evaporated to remove the primary concentrate 1
8.72 g was obtained. Add 7 times more acetone again-80
After standing overnight at 0 ° C., 10.31 g of a secondary concentrate was obtained in the same manner. Glycerin (0.0714 g) and ribozyme IM60 (0.1 g) were added to the secondary concentrate (1 g) to obtain 10 to 20 Torr (To
The mixture was degassed to rr) and dried under vacuum, and a shaking reaction was performed at 60 ° C. Lipozyme IM60 (manufactured by Novo) is obtained by immobilizing lipase produced by Mucor Mihay on an anion exchange resin having macropores. The composition of the reaction product after 48 hours was as follows: triglyceride 61.2%, diglyceride 22.0%, monoglyceride 2.8% and fatty acid 1
It was 3.9%. This reaction product was dissolved in ethyl ether and the immobilized enzyme was filtered off, followed by a basic alumina column (aluminum oxide 90 (product number 107 manufactured by Merck).
6) and the alkaline deoxidation method. Table 5 shows the composition of each stage and the fatty acid composition. In the table, all underlined numbers are for ω-3 highly unsaturated fatty acids, and as a result, in the case of eicosapentaenoic acid and docosapentaenoic acid, the results of the concentration by the low temperature fractional crystallization method with acetone, It can be seen that each of the secondary concentrates was twice concentrated, but these fatty acids show poor uptake of docosahexaenoic acid (C 22 : 6) into triglycerides due to reaction with glycerin.

【0031】[0031]

【表5】 [Table 5]

【0032】[0032]

【発明の効果】ω−3高度不飽和脂肪酸は、循環器系疾
病の予防効果、ラットの学習能力の向上効果等重要な生
理的意義がある。本発明によれば、ω−3高度不飽和脂
肪酸を豊富に含み多量に供給入手が可能な魚油等の油脂
を原料として、酵素反応を利用してω−3高度不飽和脂
肪酸含有油脂を一旦加水分解して脂肪酸とし、これを低
温分別結晶法などの濃縮方法により他の脂肪酸などから
分離濃縮し、再度酵素反応を利用してグリセリンと反応
させることにより、ω−3高度不飽和脂肪酸トリグリセ
リド油脂を効率良く得ることができる。この際の原料油
脂は安価であり、反応はすべて緩和な条件下で実施で
き、しかもω−3高度不飽和脂肪酸を実質的な変成を起
すことなく高度に濃縮できる。従って本発明は単に機能
性食品としての利用ばかりでなく医学的および薬学的な
応用にたいしても寄与するものである。
EFFECT OF THE INVENTION ω-3 highly unsaturated fatty acids have important physiological significance such as a preventive effect on cardiovascular diseases and an effect of improving learning ability of rats. According to the present invention, an oil and fat such as fish oil which is rich in ω-3 highly unsaturated fatty acid and can be supplied and obtained in a large amount is used as a raw material, and the enzyme reaction is used to once hydrolyze the oil and fat containing ω-3 highly unsaturated fatty acid. By decomposing it into fatty acid, separating and concentrating it from other fatty acids by a concentrating method such as low temperature fractional crystallization method, and again reacting with glycerin using enzymatic reaction, ω-3 highly unsaturated fatty acid triglyceride It can be obtained efficiently. The raw material fats and oils at this time are inexpensive, all the reactions can be carried out under mild conditions, and the ω-3 highly unsaturated fatty acids can be highly concentrated without causing substantial alteration. Therefore, the present invention not only serves as a functional food but also contributes to medical and pharmaceutical applications.

【図面の簡単な説明】[Brief description of drawings]

【図1】向流接触型の二相系固定化酵素充填反応器の説
明断面図である。
FIG. 1 is an explanatory sectional view of a countercurrent contact type two-phase system immobilized enzyme packed reactor.

【符号の説明】[Explanation of symbols]

1.低比重生産物排出管 2.上端の静置層 3.高比重基質供給管 4.撹拌槽 5.仕切り板 6.パルス発生機 7.低比重基質供給管 8.下端の静置層 9.高比重生産物排出管 10.エマルジョン破壊装置 11.パルス発生機につながれた分岐管 12.定量ポンプにつながれた分岐管 1. Low specific gravity product discharge pipe 2. Top standing layer 3. High specific gravity substrate supply pipe 4. Stirring tank 5. Partition plate 6. Pulse generator 7. Low specific gravity substrate supply pipe 8. Bottom layer at bottom 9. High specific gravity product discharge pipe 10. Emulsion breaker 11. Branch pipe connected to pulse generator 12. Branch pipe connected to metering pump

───────────────────────────────────────────────────── フロントページの続き (72)発明者 東 直輝 千葉県船橋市日の出2丁目17番1号 ボ ーソー油脂株式会社内 審査官 谷口 博 (56)参考文献 特開 昭62−278991(JP,A) 特開 昭62−91188(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Naoki Higashi 2-171-1, Hinode 2-chome, Funabashi City, Chiba Prefecture Hiroshi Taniguchi, Examiner, Bosso Yushi Co., Ltd. (56) Reference JP-A-62-278991 (JP, A) ) JP-A-62-91188 (JP, A)

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 高度不飽和脂肪酸含有油脂または高度不
飽和脂肪酸のアルコールエステルをシュードモナス属菌
の生産したリパーゼを含む固定化されたリパーゼを用い
て加水分解率66%以上加水分解する工程(A)、得ら
れた加水分解生成物から、非アルコール系の軽質溶剤を
用いて高級不飽和脂肪酸を濃縮する工程(B)、得られ
た濃縮物とその8〜10重量%のグリセリンからなる混
合物を、キャンディダ属菌の生産したリパーゼを含む固
定化されたリパーゼと接触させトリグリセリドに変換さ
せる工程(C)からなることを特徴とする濃縮された高
度不飽和脂肪酸含有油脂の製造方法。
1. A step (A) of hydrolyzing a highly unsaturated fatty acid-containing oil or fat or an alcohol ester of a highly unsaturated fatty acid using an immobilized lipase containing a lipase produced by Pseudomonas sp. A step (B) of concentrating the higher unsaturated fatty acid from the obtained hydrolysis product using a non-alcoholic light solvent, a mixture comprising the obtained concentrate and 8 to 10% by weight of glycerin, A method for producing a concentrated highly unsaturated fatty acid-containing oil or fat, which comprises the step (C) of bringing into contact with an immobilized lipase containing a lipase produced by a Candida bacterium to convert it into triglyceride.
【請求項2】 前記高度不飽和脂肪酸が、ω−3高度不
飽和脂肪酸であることを特徴とする請求項1記載の濃縮
された高度不飽和脂肪酸含有油脂の製造方法
2. The method for producing a concentrated highly unsaturated fatty acid-containing fat according to claim 1, wherein the highly unsaturated fatty acid is an ω-3 highly unsaturated fatty acid.
【請求項3】 前記工程(A)を、非アルコール系の水
非混合性軽質溶剤の存在下で行なうことを特徴とする請
求項1記載の濃縮された高度不飽和脂肪酸含有油脂の製
造方法。
3. The method for producing a concentrated highly unsaturated fatty acid-containing fat according to claim 1, wherein the step (A) is performed in the presence of a non-alcoholic water-immiscible light solvent.
【請求項4】 前記水非混合性軽質溶剤として、イソオ
クタンを用いることを特徴とする請求項3記載の高度不
飽和脂肪酸含有油脂の製造方法。
4. The method for producing a highly unsaturated fatty acid-containing oil or fat according to claim 3, wherein isooctane is used as the water-immiscible light solvent.
【請求項5】 前記工程(A)、(B)、(C)の少な
くとも1つの工程を不活性気体の雰囲気中で実施するこ
とを特徴とする請求項1記載の高度不飽和脂肪酸含有油
脂の製造方法。
5. The highly unsaturated fatty acid-containing fat according to claim 1, wherein at least one of the steps (A), (B) and (C) is carried out in an atmosphere of an inert gas. Production method.
JP3283560A 1991-10-03 1991-10-03 Method for producing concentrated highly unsaturated fatty acid-containing fats and oils Expired - Fee Related JP2516860B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3283560A JP2516860B2 (en) 1991-10-03 1991-10-03 Method for producing concentrated highly unsaturated fatty acid-containing fats and oils

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3283560A JP2516860B2 (en) 1991-10-03 1991-10-03 Method for producing concentrated highly unsaturated fatty acid-containing fats and oils

Publications (2)

Publication Number Publication Date
JPH0595792A JPH0595792A (en) 1993-04-20
JP2516860B2 true JP2516860B2 (en) 1996-07-24

Family

ID=17667115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3283560A Expired - Fee Related JP2516860B2 (en) 1991-10-03 1991-10-03 Method for producing concentrated highly unsaturated fatty acid-containing fats and oils

Country Status (1)

Country Link
JP (1) JP2516860B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2731015B1 (en) * 1995-02-24 1997-05-30 Sci Sartone PROCESS FOR THE ENZYMATIC ENRICHMENT OF OILS OF MARINE ORIGIN AND THE TRIGLYCERIDES OF POLYUNSATURATED FATTY ACIDS THUS OBTAINED
EP0739591B1 (en) * 1995-04-28 2001-06-13 Loders Croklaan B.V. Triglycerides rich in polyunsaturated fatty acids
EP0739589B1 (en) * 1995-04-28 2001-06-13 Loders Croklaan B.V. Triglycerides, rich in Polyunsaturated fatty acids
EP0739590B1 (en) * 1995-04-28 2001-06-13 Loders Croklaan B.V. Triglycerides, rich in polyunsaturated fatty acids
WO1996037587A1 (en) * 1995-05-24 1996-11-28 Loders Croklaan B.V. Production of materials high in long chain polyunsaturated fatty acids
AU5898896A (en) * 1995-05-24 1996-12-11 Loders Croklaan B.V. Production method for fats with long chain polyunsaturated f atty acids
AU729424B2 (en) * 1995-11-24 2001-02-01 Unilever Plc Composition based on fish oil
US6261812B1 (en) * 1997-08-18 2001-07-17 Kao Corporation Process for producing diglycerides
AU2003222739A1 (en) * 2002-05-08 2003-11-11 Danmarks Tekniske Universitet (Technical University Of Denmark) A facile two-step enzyme process for increasing the content of polyunsaturated fatty acids in fish oil
JP3840459B2 (en) * 2003-03-20 2006-11-01 裕司 島田 Glyceride and method for producing the same
JP4849967B2 (en) 2005-06-21 2012-01-11 花王株式会社 Method for producing fatty acids
KR100684642B1 (en) * 2006-09-14 2007-02-22 주식회사 일신웰스 Glyceride oil composition from fish oil and preparation method thereof
BRPI1013321A2 (en) * 2009-04-06 2015-09-01 Novozymes As Processes for producing a triglyceride product, and use of the saturated fatty acid alkyl ester fraction
KR101204748B1 (en) * 2009-12-17 2012-11-26 (주) 켐포트 Process for Preparing Triglycerides Containing High Concentrations of Polyunsaturated Fatty Acids

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6291188A (en) * 1985-10-17 1987-04-25 Nisshin Oil Mills Ltd:The Production of highly unsaturated fatty acid glyceride
JPS62278991A (en) * 1986-05-28 1987-12-03 Japanese Res & Dev Assoc Bio Reactor Syst Food Ind Production of highly unsaturated fatty acid
JPH0225447A (en) * 1988-07-13 1990-01-26 Nippon Oil & Fats Co Ltd Production of highly unsaturated fatty acids

Also Published As

Publication number Publication date
JPH0595792A (en) 1993-04-20

Similar Documents

Publication Publication Date Title
JP5111363B2 (en) Method for producing highly unsaturated fatty acid concentrated oil
JP2516860B2 (en) Method for producing concentrated highly unsaturated fatty acid-containing fats and oils
JP4236128B2 (en) Essential oil composition
US9556401B2 (en) Method for producing EPA-enriched oil and DHA-enriched oil
JP2002027995A (en) Method for producing glyceride with lipase
JP2002537442A (en) Lipase-catalyzed esterification of marine oil
Torres et al. Lipase-catalyzed glycerolysis of an oil rich in eicosapentaenoic acid residues
JP5753963B1 (en) Process for producing composition containing lower alcohol fatty acid ester and composition containing lower alcohol fatty acid ester
JP3840459B2 (en) Glyceride and method for producing the same
JP3340182B2 (en) Method for producing triglyceride containing docosahexaenoic acid
JPH0751075A (en) Production of docosahexaenoic acid-containing substance
JPH08214892A (en) Production of partial glyceride containing highly unsaturated fatty acid
JPH11263750A (en) Long-chain unsaturated fatty acid menthol ester and its production by enzyme method
JPH08214891A (en) Production of oil and fat containing highly unsaturated fatty acid-containing triglyceride
JP4310387B2 (en) Omega-3 highly unsaturated fatty acid-containing partial glyceride composition and method for producing the same
JP3880095B2 (en) Method for purifying highly unsaturated fatty acids
JP2009153485A (en) Method for concentrating higher unsaturated fatty acid
JP3773315B2 (en) Method for purifying omega-3 highly unsaturated fatty acid ester
JP3734905B2 (en) Method for purifying omega-3 polyunsaturated fatty acids
JP3853767B2 (en) Conjugated fatty acid menthol ester and method for producing the same
JPH03103499A (en) Production of highly unsaturated fatty acid monoglyceride
JPH03133385A (en) Preparation of glyceride mixture for elevating the content of gamma-linolenic acid and stearidonic acid
JPWO2015129190A1 (en) Method for purifying stearidonic acid
JP2008278781A (en) Method for producing triacylglycerol having higher dha content at 1, 3 positions than that at 2 position
WO2016158605A1 (en) Method for manufacturing lower alcohol fatty acid esterification product-containing composition and lower alcohol fatty acid esterification product-containing composition

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees