JP2515688B2 - Hybrid FRP laminate - Google Patents

Hybrid FRP laminate

Info

Publication number
JP2515688B2
JP2515688B2 JP5171205A JP17120593A JP2515688B2 JP 2515688 B2 JP2515688 B2 JP 2515688B2 JP 5171205 A JP5171205 A JP 5171205A JP 17120593 A JP17120593 A JP 17120593A JP 2515688 B2 JP2515688 B2 JP 2515688B2
Authority
JP
Japan
Prior art keywords
layers
fiber
prepreg
layer
carbon fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5171205A
Other languages
Japanese (ja)
Other versions
JPH071625A (en
Inventor
貞樹 森
剛史 西脇
善一郎 前川
泰以 濱田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asics Corp
Original Assignee
Asics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asics Corp filed Critical Asics Corp
Priority to JP5171205A priority Critical patent/JP2515688B2/en
Publication of JPH071625A publication Critical patent/JPH071625A/en
Application granted granted Critical
Publication of JP2515688B2 publication Critical patent/JP2515688B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、炭素繊維プリプレグと
ガラス繊維プリプレグとから作られたハイブリッドFR
P積層体に関するものである。
BACKGROUND OF THE INVENTION The present invention relates to a hybrid FR made of carbon fiber prepreg and glass fiber prepreg.
It relates to a P laminate.

【0002】[0002]

【従来の技術】スキー板、テニスラケットフレーム、ゴ
ルフクラブシャフト、洋弓などのスポーツ・レジャー用
品おいては、プリプレグを用いたFRP積層体が用いら
れている。
2. Description of the Related Art In sports and leisure products such as skis, tennis racket frames, golf club shafts, and bows, FRP laminates using prepreg are used.

【0003】プリプレグは補強繊維に樹脂を含浸させた
ものからなるが、樹脂成分としてはエポキシ樹脂や不飽
和ポリエステル樹脂を用いることが多く、また補強繊維
として繊維方向が一方向である炭素繊維やガラス繊維を
用いることがある。
The prepreg consists of reinforcing fibers impregnated with a resin, but an epoxy resin or an unsaturated polyester resin is often used as the resin component, and the reinforcing fibers are unidirectional carbon fibers or glass. Fiber may be used.

【0004】強化繊維として一方向に配列された炭素繊
維中に、ボロン繊維、金属繊維、有機繊維、ガラス繊
維、無機繊維などの繊維を同一方向に配列したハイブリ
ッドプリプレグについては、特開平3−202322号
公報、特開平3−202323号公報、特開平3−20
2324号公報、特開平3−221412号公報、特開
平3−221413号公報、特開平3−221414号
公報に開示がある。
A hybrid prepreg in which fibers such as boron fibers, metal fibers, organic fibers, glass fibers and inorganic fibers are arranged in the same direction in carbon fibers arranged in one direction as reinforcing fibers is disclosed in Japanese Patent Laid-Open No. 202322/1993. Japanese Patent Laid-Open No. 3-202323, Japanese Patent Laid-Open No. 3-20
It is disclosed in Japanese Patent No. 2324, Japanese Patent Application Laid-Open No. 3-221414, Japanese Patent Application Laid-Open No. 3-221413, and Japanese Patent Application Laid-Open No. 3-221414.

【0005】[0005]

【発明が解決しようとする課題】FRP積層体は、軽量
である上にすぐれた力学的特性を有することから、スポ
ーツ・レジャー用品をはじめとする種々の分野において
用途展開がなされている。中でも力学的に異なる2種類
以上の強化繊維を組み合わせたハイブリッドFRP積層
体は、単一の強化繊維を用いたFRP積層体では得るこ
とのできないすぐれた機能を有する設計が可能になるこ
とが期待される。
Since the FRP laminate is lightweight and has excellent mechanical properties, it has been applied to various fields such as sports / leisure products. Among them, a hybrid FRP laminate in which two or more kinds of mechanically different reinforcing fibers are combined is expected to enable a design having an excellent function that cannot be obtained by an FRP laminate using a single reinforcing fiber. It

【0006】しかしながら、ハイブリッド積層板におい
ては、用いる強化繊維の弾性定数が異なるため、それら
の層間では応力の不連続性を生ずるという困難性があ
り、そのため、どのような設計が機能向上につながるの
か未解明であるのが現状である。
However, in the hybrid laminated plate, since the elastic constants of the reinforcing fibers used are different, it is difficult to cause stress discontinuity between the layers. Therefore, what kind of design leads to improvement in function? The current situation is unclear.

【0007】本発明は、このような背景下において、繊
維方向が一方向である炭素繊維プリプレグと繊維方向が
一方向であるガラス繊維プリプレグとから作られた高機
能のハイブリッドFRP積層体を提供することを目的と
するものである。
Under such circumstances, the present invention provides a highly functional hybrid FRP laminate made of a carbon fiber prepreg having a unidirectional fiber direction and a glass fiber prepreg having a unidirectional fiber direction. That is the purpose.

【0008】[0008]

【課題を解決するための手段】本発明のハイブリッドF
RP積層体は、繊維方向が一方向でかつ層数がn層(た
だしnは20以上の整数)である炭素繊維プリプレグ
(C) と、繊維方向が一方向でかつ層数がm層(ただしm
は1〜n/4 の整数)であるガラス繊維プリプレグ(G)
、各層の繊維方向が同じになるようにかつ上記n層
炭素繊維プリプレグ(C) のほぼ中心部分に上記m層のガ
ラス繊維プリプレグ(G) がサンドウィッチ状に介在する
ように積層された状態で、加熱一体化された構成を有す
るものである。
Hybrid F of the present invention
The RP laminate has one fiber direction and n layers (
Dashi n is an integer of 20 or more) Carbon fiber prepreg
(C) , the fiber direction is one direction and the number of layers is m (however, m
The glass fiber prepreg (G) is an integer) of 1 to n / 4
However , a state in which the fiber directions of the respective layers are the same and the m-layer glass fiber prepreg (G) is laminated so as to be sandwiched in a substantially central portion of the n-layer carbon fiber prepreg (C). Therefore, it has a structure integrated with heating.

【0009】以下本発明を詳細に説明する。The present invention will be described in detail below.

【0010】本発明においては、繊維方向が一方向であ
る炭素繊維プリプレグ(C) と繊維方向が一方向であるガ
ラス繊維プリプレグ(G) とを用いる。
In the present invention, a carbon fiber prepreg (C) having a unidirectional fiber direction and a glass fiber prepreg (G) having a unidirectional fiber direction are used.

【0011】この場合、ガラス繊維プリプレグ(G) の繊
維径が、炭素繊維プリプレグ(C) の繊維径よりも大であ
るように、さらに詳しくは、ガラス繊維プリプレグ(G)
の繊維径が、炭素繊維プリプレグ(C) の繊維径の2倍以
上、好ましくは 2.5倍以上であるように条件設定を行う
ことが望ましい。
In this case, the fiber diameter of the glass fiber prepreg (G) is larger than that of the carbon fiber prepreg (C), more specifically, the glass fiber prepreg (G).
It is desirable to set the conditions such that the fiber diameter of the carbon fiber prepreg (C) is 2 times or more, preferably 2.5 times or more the fiber diameter of the carbon fiber prepreg (C).

【0012】上記の炭素繊維プリプレグ(C) およびガラ
ス繊維プリプレグ(G) は、強化繊維(炭素繊維、ガラス
繊維)を一方向に引き揃えた後、ウエット法(溶剤タイ
プ)やドライ法(ホットメルトタイプ)により樹脂およ
び硬化剤の混合物を含浸させ、ついで乾燥(ウエット法
の場合)または冷却(ドライ法の場合)することにより
得られる。プリプレグに占める繊維成分の体積含有率V
f は、40〜70%程度に設定することが多い。
The above-mentioned carbon fiber prepreg (C) and glass fiber prepreg (G) are prepared by aligning reinforcing fibers (carbon fiber, glass fiber) in one direction, and then applying a wet method (solvent type) or a dry method (hot melt). Type) to impregnate a mixture of a resin and a curing agent, and then dry (in the wet method) or cool (in the dry method). Volume content V of fiber component in prepreg
f is often set to about 40 to 70%.

【0013】樹脂成分としては、エポキシ樹脂、不飽和
ポリエステル樹脂、フェノール樹脂、ジアリルフタレー
ト樹脂、ビニルエステル樹脂、シリコーン樹脂、ポリイ
ミドなどが用いられる。
As the resin component, epoxy resin, unsaturated polyester resin, phenol resin, diallyl phthalate resin, vinyl ester resin, silicone resin, polyimide or the like is used.

【0014】これらの樹脂の中では、ビスフェノールA
−ジグリシジルエーテル型エポキシ樹脂、ノボラック樹
脂−グリシジルエーテル型エポキシ樹脂をはじめとする
エポキシ樹脂が特に重要である。エポキシ樹脂を用いる
ときの硬化剤としては、有機酸無水物系やアミン系の硬
化剤が用いられる。
Among these resins, bisphenol A
-Epoxy resins such as diglycidyl ether type epoxy resin and novolac resin-glycidyl ether type epoxy resin are particularly important. As the curing agent when using the epoxy resin, organic acid anhydride-based or amine-based curing agents are used.

【0015】そして本発明においては、上記の繊維方向
が一方向でかつ層数がn層(ただしnは20以上の整
数)炭素繊維プリプレグ(C) と、繊維方向が一方向でか
つ層数がm層(ただしmは1〜n/4 の整数)であるガラ
ス繊維プリプレグ(G) の少数層とを、各層の繊維方向が
同じになるようにかつ上記n層の炭素繊維プリプレグ
(C) のほぼ中心部分に上記m層のガラス繊維プリプレグ
(G) がサンドウィッチ状に介在するように積層する。
And, in the present invention, the above fiber direction
Is in one direction and the number of layers is n (where n is an integer of 20 or more.
Number) Whether the fiber direction is one direction with the carbon fiber prepreg (C)
The number of layers is m (where m is an integer of 1 to n / 4 ) and the minority of the glass fiber prepreg (G), so that the fiber directions of the layers are the same and the n layers of carbon fiber prepreg are the same.
The glass fiber prepreg of the above-mentioned m-layer is provided almost in the center of (C).
(G) is laminated so that it sandwiches.

【0016】このようにn層の炭素繊維プリプレグ(C)
のほぼ中心部分にm層のガラス繊維プリプレグ(G) を介
在させると、積層体の曲げ剛性を低下させずに層間剪断
強度のみを向上させる点で特に好ましい結果が得られ
る。
Thus, the n-layer carbon fiber prepreg (C)
By interposing m layers of the glass fiber prepreg (G) in the substantially central portion of the above , particularly preferable results are obtained in that only the interlaminar shear strength is improved without lowering the bending rigidity of the laminate.

【0017】層間剪断強度の向上を第1義とするとき
は、介在させるガラス繊維プリプレグ(G) の層数mは、
1〜n/4 の範囲の中で少なければ少ないほど有利であ
る。一方、コストを重視する場合には、介在させるガラ
ス繊維プリプレグ(G) の層数mは、1〜n/4 の範囲の中
で多ければ多いほど有利である。
When the first purpose is to improve the interlaminar shear strength, the number of layers m of the glass fiber prepreg (G) to be interposed is:
The smaller the range is from 1 to n / 4, the more advantageous it is. On the other hand, if cost is important, there will be
The number of layers m of the fiber prepreg (G) is in the range of 1 to n / 4
The larger the number, the more advantageous.

【0018】層の炭素繊維プリプレグ(C) のほぼ中心
部分に層のガラス繊維プリプレグ(G) を介在させた状
態でかつ各層の繊維方向が同じになるようにして積層す
るに際しては、全体を平板状、湾曲板状、管状、筒状な
ど希望の形状となるように賦形し、ついで加熱一体化す
る。このときの硬化温度は樹脂成分の種類によっても大
きく異なるが、120〜230℃程度(通常グレードの
樹脂使用の場合は120〜160℃程度、耐熱グレード
の樹脂使用の場合は170〜230℃程度)に設定する
ことが多い。これにより、目的とするハイブリッドFR
P積層体が得られる。
When the m- layer glass fiber prepreg (G) is interposed in the substantially central portion of the n- layer carbon fiber prepreg (C) and the layers are laminated in the same fiber direction, Is shaped into a desired shape such as a flat plate shape, a curved plate shape, a tubular shape, or a tubular shape, and then integrated by heating. The curing temperature at this time varies greatly depending on the type of resin component, but is about 120 to 230 ° C (about 120 to 160 ° C when using normal grade resin, about 170 to 230 ° C when using heat resistant grade resin). Often set to. As a result, the target hybrid FR
A P laminate is obtained.

【0019】このようにして得られる本発明のハイブリ
ッドFRP積層体は、スキー板、テニスラケットフレー
ム、ゴルフクラブシャフト、洋弓・和弓、釣竿、野球バ
ット、マリンスポーツ(ヨト、モーターボート、セール
ボード、サーフボード等)、棒高飛びポール、バトン、
遊具(プール、滑り台等)をはじめとするスポーツ・レ
ジャー分野に特に有用であり、そのほか、航空機・宇宙
関係材料、自動車部品、電子・電気部品、一般産業用な
どにも用いることができる。
The hybrid FRP laminate of the present invention thus obtained is used for skis, tennis racket frames, golf club shafts, bows / waws, fishing rods, baseball bats, marine sports (yoto, motor boats, sailboards, surfboards). Etc.), pole fly pole, baton,
It is particularly useful in the sports and leisure fields including playground equipment (pools, slides, etc.), and can also be used in aircraft / space-related materials, automobile parts, electronic / electric parts, general industrial applications, and the like.

【0020】[0020]

【作用】繊維方向が一方向でかつ層数がn層(ただしn
は20以上の整数)である炭素繊維プリプレグ(C) と、
繊維方向が一方向でかつ層数がm層(ただしmは1〜n/
4 の整数)であるガラス繊維プリプレグ(G) とを、各層
の繊維方向が同じになるようにかつ層の炭素繊維プリ
プレグ(C) のほぼ中心部分に層のガラス繊維プリプレ
グ(G) がサンドウィッチ状に介在するように積層した状
態で加熱一体化すると、曲げ応力が加わったとき、中間
異種繊維層の層数により層間剥離個所が異なるようにな
る。中間異種繊維層がガラス繊維層である場合、その層
数がある層数以下のときに層間剪断強度が向上する。
Function: The fiber is unidirectional and the number of layers is n (however, n
Is an integer of 20 or more) , a carbon fiber prepreg (C) ,
The fiber direction is unidirectional and the number of layers is m (where m is 1 to n /
Glass fiber prepreg (G) , which is an integer of 4) , and m layers of glass fiber prepreg (G) are provided at approximately the center of the n layers of carbon fiber prepreg (C) so that the fiber directions of the layers are the same. When heat-integrated in a state of being laminated so as to interpose in a sandwich shape, when a bending stress is applied, the delamination point becomes different depending on the number of intermediate heterogeneous fiber layers. When the intermediate dissimilar fiber layer is a glass fiber layer, the interlaminar shear strength is improved when the number of layers is equal to or less than a certain number.

【0021】また、中間に介在させるガラス繊維プリプ
レグ(G) の繊維径を炭素繊維プリプレグ(C) の繊維径よ
りも大にすると、得られるハイブリッドFRP積層体中
の炭素繊維/ガラス繊維の層間では繊維径の大きいガラ
ス繊維層の繊維間の隙間に繊維径の小さい炭素繊維が入
り込み、それらの層間では応力の不連続性が生じている
にもかかわらず層間剥離を生じ難くなる。
Further, when the fiber diameter of the glass fiber prepreg (G) interposed in the middle is made larger than the fiber diameter of the carbon fiber prepreg (C), the carbon fiber / glass fiber layer in the obtained hybrid FRP laminate is separated. Carbon fibers having a small fiber diameter enter the gaps between the fibers of the glass fiber layer having a large fiber diameter, and delamination is unlikely to occur even though stress discontinuity occurs between the layers.

【0022】[0022]

【実施例】次に実施例をあげて本発明をさらに説明す
る。なおVf とは、先にも述べたように、プリプレグに
占める繊維成分の体積含有率のことである。
EXAMPLES The present invention will be further described with reference to examples. Note that Vf is the volume content of the fiber component in the prepreg, as described above.

【0023】〈試験片の作成〉厚さ 0.122mm、Vf =5
6%、繊維径7μm の一方向炭素繊維/エポキシ樹脂プ
リプレグ(C) と、厚さ 0.122mm、Vf =46%、繊維径
19μm の一方向ガラス繊維/エポキシ樹脂プリプレグ
(G) との2種類のプリプレグ(東燃株式会社製)を用
い、真空バッグ法により、下記のようにそれぞれ37層
の積層構成を有する100mm×200mm× 4.5mmの平板
の成形を行った。ついでこの平板から、30mm(繊維方
向)×6mm(繊維方向と直角の方向)の大きさの短冊状
の試験片を切り出した。
<Preparation of test piece> Thickness: 0.122 mm, Vf = 5
Unidirectional carbon fiber / epoxy resin prepreg (C) with 6%, fiber diameter 7 μm, and unidirectional glass fiber / epoxy resin prepreg with thickness 0.122 mm, Vf = 46%, fiber diameter 19 μm
Using two types of prepregs (G) and (Tonen Co., Ltd.), 100 mm × 200 mm × 4.5 mm flat plates each having a laminated structure of 37 layers were formed by the vacuum bag method as follows. Then, a strip-shaped test piece having a size of 30 mm (fiber direction) × 6 mm (direction perpendicular to the fiber direction) was cut out from this flat plate.

【0024】〈積層構成〉 Cタイプ ・C37 (C) 37層の一方向積層体 ・C18118 (C) 18層/(G) 1 層/(C) 18層の一
方向積層体 ・C17317 (C) 17層/(G) 3 層/(C) 17層の一
方向積層体 ・C14914 (C) 14層/(G) 9 層/(C) 14層の一
方向積層体 Gタイプ ・G37 (G) 37層の一方向積層体 ・G18118 (G) 18層/(C) 1 層/(G) 18層の一
方向積層体 ・G17317 (G) 17層/(C) 3 層/(G) 17層の一
方向積層体 ・G14914 (G) 14層/(C) 9 層/(G) 14層の一
方向積層体
<Lamination Structure> C type • C 37 (C) 37 layers unidirectional lamination body • C 18 G 1 C 18 (C) 18 layers / (G) 1 layer / (C) 18 layers unidirectional lamination Body ・ C 17 G 3 C 17 (C) 17 layers / (G) 3 layers / (C) 17 layers Unidirectional stack ・ C 14 G 9 C 14 (C) 14 layers / (G) 9 layers / ( C) 14-layer unidirectional laminate G type-G 37 (G) 37-layer unidirectional laminate-G 18 C 1 G 18 (G) 18-layer / (C) 1-layer / (G) 18-layer Directional stack ・ G 17 C 3 G 17 (G) 17 layers / (C) 3 layers / (G) 17 layers Unidirectional stack ・ G 14 C 9 G 14 (G) 14 layers / (C) 9 layers / (G) 14 layer unidirectional laminate

【0025】〈試験方法〉上記各試験片につき、インス
トロン4206型万能試験機を用い、スパン間距離20
mm、クロスヘッドスピード1mm/minの条件で3点曲げシ
ョートビーム法により最大荷重pmax を求め、これを下
記の式に代入して見掛けの層間剪断強度τmax を求め
た。下式において、bは試験片幅、hは試験片の厚みで
ある。 τmax =3pmax /4bh
<Test Method> For each of the above test pieces, an Instron 4206 universal tester was used, and the span distance was 20.
The maximum load p max was obtained by the three-point bending short beam method under the conditions of mm and crosshead speed of 1 mm / min, and this was substituted into the following formula to obtain the apparent interlayer shear strength τ max . In the following formula, b is the width of the test piece and h is the thickness of the test piece. τ max = 3p max / 4bh

【0026】〈結 果〉図1に、Cタイプ、Gタイプに
おいて所定数の異種プリプレグを介在させたときの見掛
けの層間剪断強度τmax と介在異種プリプレグの積層層
との関係を示す。また表1に、そのときの見掛けの層間
剪断強度τmax の平均値を示す。
<Results> FIG. 1 shows the relationship between the apparent interlaminar shear strength τ max and the laminated layer of the interstitial dissimilar prepregs when a predetermined number of dissimilar prepregs are interposed in the C type and G type. Table 1 shows the average value of the apparent interlayer shear strength τ max at that time.

【0027】[0027]

【表1】 積層構成 τmax 平均値 Cタイプ C37 8.977 mPa (100.0%) C18118 9.567 mPa (106.6%) C17317 9.174 mPa (102.2%) 14914 8.745 mPa ( 97.4%) Gタイプ G37 7.602 mPa (100.0%) G18118 7.596 mPa ( 99.9%) G17317 7.551 mPa ( 99.3%) 14914 7.895 mPa (103.4%) [Table 1] Laminate composition τ max Average value C type C 37 8.977 mPa (100.0%) C 18 G 1 C 18 9.567 mPa (106.6%) C 17 G 3 C 17 9.174 mPa (102.2%) C 14 G 9 C 14 8.745 mPa (97.4 %) G type G 37 7.602 mPa (100.0%) G 18 C 1 G 18 7.596 mPa (99.9%) G 17 C 3 G 17 7.551 mPa (99.3%) G 14 C 9 G 14 7.895 mPa (103.4%)

【0028】〈解 析〉図1および表1から、Gタイプ
においては、多数層のガラス繊維プリプレグ(G) の中間
に炭素繊維プリプレグ(C) を1層または3層介在させた
場合はガラス繊維プリプレグ(G) のみのFRP積層体と
ほぼ同じτmax が得られるが、中間に炭素繊維プリプレ
グ(C) を9層介在させるとτmax は若干向上することが
わかる。
<Analysis> From FIG. 1 and Table 1, in the G type, when one or three layers of carbon fiber prepreg (C) are interposed between the multiple layers of glass fiber prepreg (G), the glass fiber It can be seen that τ max is almost the same as that of the FRP laminate having only prepreg (G), but τ max is slightly improved by interposing 9 layers of carbon fiber prepreg (C) in the middle.

【0029】これに対しCタイプにおいては、多数層の
炭素繊維プリプレグ(C) の中間にガラス繊維プリプレグ
(G) を1層介在させた場合には炭素繊維プリプレグ(C)
のみのFRP積層体に比しτmax が6〜7%も増加し、
中間に炭素繊維プリプレグ(C) を3層介在させた場合も
炭素繊維プリプレグ(C) のみのFRP積層体に比しτ
max が増加しており、中間に炭素繊維プリプレグ(C) を
9層介在させた場合は炭素繊維プリプレグ(C) のみのF
RP積層体に比しτmax が若干劣るようになることがわ
かる。
On the other hand, in the C type, the glass fiber prepreg is provided in the middle of the carbon fiber prepreg (C) having many layers.
Carbon fiber prepreg (C) when one layer of (G) is interposed
Τ max increased by 6 to 7% compared to the FRP laminate of
Even when three layers of carbon fiber prepreg (C) are interposed in the middle, τ is smaller than that of an FRP laminate having only carbon fiber prepreg (C).
When max is increased and 9 layers of carbon fiber prepreg (C) are interposed in the middle, only F of carbon fiber prepreg (C) is used.
It can be seen that τ max becomes slightly inferior to the RP laminate.

【0030】各試験片の破断後の断面写真の観察では、
炭素繊維プリプレグ(C) のみのFRP積層体であるC37
においては、断面の数個所で層間剥離が生じているのに
対し、C18118ではガラス繊維プレプリグ(G) 層に
変更した中立軸を避け、その近傍1個所だけで剥離を生
じていることが判明した。C17317やC14914
では、ガラス繊維プリプレグ(G) 層および炭素繊維プリ
プレグ(C) 層の双方において剥離を生じていた。
In the observation of the cross-sectional photograph of each test piece after fracture,
C 37 which is an FRP laminate consisting of only carbon fiber prepreg (C)
In Fig. 1 , delamination occurs at several points on the cross section, whereas in C 18 G 1 C 18 , the neutral axis changed to the glass fiber prepreg (G) layer is avoided, and delamination occurs only at one point in the vicinity. It turned out that C 17 G 3 C 17 and C 14 G 9 C 14
In, the peeling occurred in both the glass fiber prepreg (G) layer and the carbon fiber prepreg (C) layer.

【0031】またガラス繊維プリプレグ(G) のみのFR
P積層体であるG37においては中立軸付近での剥離、G
18118ではガラス繊維プリプレグ(G) 層の剥離、G
17317ではガラス繊維プリプレグ(G) 層および炭素
繊維プリプレグ(C) 層の双方における剥離、G149
14では炭素繊維プリプレグ(C) 層のみの剥離を生じてい
た。このことから、中間異種層の積層により剥離位置が
変化していくことがわかる。
FR of glass fiber prepreg (G) only
In G 37 which is a P laminated body, peeling near the neutral axis, G
For 18 C 1 G 18 , peeling of the glass fiber prepreg (G) layer, G
For 17 C 3 G 17 , peeling in both the glass fiber prepreg (G) layer and the carbon fiber prepreg (C) layer, G 14 C 9 G
In No. 14 , peeling occurred only in the carbon fiber prepreg (C) layer. From this, it is understood that the peeling position changes due to the lamination of the intermediate different layers.

【0032】CタイプおよびGタイプのいずれにあって
も、顕微鏡観察では、全ての層構成において、炭素繊維
層/ガラス繊維層の層間では応力の不連続性が生ずるに
もかかわらずそれらの層間での剥離を生じていないこと
が判明した。
In both of the C type and G type, microscopic observation revealed that discontinuity of stress occurred between the layers of carbon fiber layer / glass fiber layer in all the layer constitutions, even though the discontinuity was generated between the layers. It was found that no peeling occurred.

【0033】図2はC18118の場合の炭素繊維/ガ
ラス繊維層間の断面図であり、(1)は炭素繊維層、(2)
はガラス繊維層である。実施例で使用した強化繊維の繊
維径は、炭素繊維プレプリグの場合は7μm 、ガラス繊
維プリプレグの場合は19μm であり、同配向角で積層
した場合、ガラス繊維間の隙間に炭素繊維が入り込んで
あることがわかる。従ってそれらの層間ではVf が高く
なり、局所的に強化されるため、全ての積層構成におい
て炭素繊維/ガラス繊維層間を避けて剥離を生じてい
る。
FIG. 2 is a sectional view between the carbon fiber / glass fiber layers in the case of C 18 G 1 C 18 , where (1) is the carbon fiber layer and (2) is
Is a glass fiber layer. The fiber diameters of the reinforcing fibers used in the examples are 7 μm in the case of carbon fiber prepreg and 19 μm in the case of glass fiber prepreg, and when they are laminated at the same orientation angle, carbon fibers enter into the gaps between the glass fibers. I understand. Therefore, Vf becomes high between these layers and is locally reinforced, so that peeling occurs in all the laminated structures while avoiding the carbon fiber / glass fiber layer.

【0034】C18118では、層間剪断応力の最も高
い中立軸付近が、ガラス繊維層の入り込みにより局所的
に強化され、中立軸近傍の炭素繊維層1個所で破壊する
ため、C37よりもかえってτmax が向上したものと考え
られる。しかしながら、C17317やC14914
おいては、中立軸付近のガラス繊維層の厚みが増し、層
間剪断強度の低いガラス繊維層間での剥離を生じている
ことから、C18118に比してはτmax が低下してい
る。
In C 18 G 1 C 18 , since the vicinity of the neutral axis having the highest interlaminar shear stress is locally strengthened by the penetration of the glass fiber layer and breaks at one carbon fiber layer near the neutral axis, C 37 It is considered that τ max is improved rather than that. However, in the C 17 G 3 C 17 and C 14 G 9 C 14, since the thickness of the glass fiber layer in the vicinity of the neutral axis increases, and peeling occurred in the low interlaminar shear strength glass fiber layers, C 18 Τ max is lower than that of G 1 C 18 .

【0035】Gタイプにおいても同様に、中間異種層の
積層数が3層、9層になると、炭素繊維層での層間剥離
が見られる。しかしながら、Cタイプの破壊形態とは異
なり、炭素繊維層を1層、3層用いてもガラス繊維層で
多数の層間剥離を生ずるため、τmax は向上しない。し
かし、G14914では炭素繊維層のみの剥離であるた
め、τmax の向上が見られる。
Similarly, in the G type, when the number of laminated intermediate different layers is 3 and 9, delamination is observed in the carbon fiber layer. However, unlike the C type fracture mode, even if one or three carbon fiber layers are used, a large number of delaminations occur in the glass fiber layer, so τ max is not improved. However, since a release of carbon fiber layers in the G 14 C 9 G 14 only, the improvement of tau max is observed.

【0036】Cタイプ、Gタイプとも中間異種層の積層
数により層間剥離形態が異なり、中間異種層の種類およ
びその積層数は、見掛けの層間剪断強度τmax に大きな
影響を与える。
In both C type and G type, the delamination morphology differs depending on the number of laminated intermediate different layers, and the type of intermediate different layers and the number of laminated layers have a great influence on the apparent interlayer shear strength τ max .

【0037】〈まとめ〉以上のことから、炭素繊維プリ
プレグ/ガラス繊維プリプレグの一方向サンドウィッチ
によるFRP積層体の積層構成と見掛けの層間剪断強度
τmax については、次の関係があることがわかる。 ・ 中間異種層の種類およびその積層数によって層間剥
離個所が異なるようになり、見掛けの層間剪断強度τ
max に影響を及ぼす。 ・ 繊維径の異なる2種類のプリプレグを同配向角で積
層した場合、それら層間では繊維径の大きい繊維間の隙
間に繊維径の小さい繊維が入り込み、それら層間は強化
される。
<Summary> From the above, it is understood that there is the following relationship between the laminated structure of the FRP laminate by the unidirectional sandwich of the carbon fiber prepreg / glass fiber prepreg and the apparent interlayer shear strength τ max .・ Depending on the type of intermediate heterogeneous layer and the number of laminated layers, the delamination point becomes different, and the apparent interlaminar shear strength τ
affect max . -When two types of prepregs having different fiber diameters are laminated at the same orientation angle, fibers having a small fiber diameter enter the gaps between the fibers having a large fiber diameter, and the layers are reinforced.

【0038】[0038]

【発明の効果】本発明によれば、層数がn層(ただしn
は20以上の整数)の炭素繊維プリプレグ(C) のほぼ中
心部分に層数がm層(ただしmは1〜n/4 の整数)のガ
ラス繊維プリプレグ(G) をサンドウィッチ状に介在する
ように積層すると共に、両強化繊維の繊維径の関係に留
意することにより、層間剪断強度の向上の目的を達成す
ることができ、あるいは層間剪断強度の維持しつつコス
トの低減を図ることができる。
According to the present invention, the number of layers is n.
The glass fiber prepreg (G) having m layers (where m is an integer from 1 to n / 4 ) is sandwiched in a substantially sandwiching manner in the central part of the carbon fiber prepreg (C) of 20 or more). By laminating and paying attention to the relationship between the fiber diameters of both reinforcing fibers, the purpose of improving the interlaminar shear strength can be achieved, or the cost can be reduced while maintaining the interlaminar shear strength.

【図面の簡単な説明】[Brief description of drawings]

【図1】Cタイプ、Gタイプにおいて所定数の異種プリ
プレグを介在させたときの見掛けの層間剪断強度τmax
と介在異種プリプレグの積層層との関係を示したグラフ
である。
FIG. 1 is an apparent interlaminar shear strength τ max when a predetermined number of different types of prepregs are interposed in C type and G type.
6 is a graph showing the relationship between the laminated layer of intervening different prepreg.

【図2】C18118の場合の炭素繊維/ガラス繊維層
間の断面図である。
FIG. 2 is a sectional view between carbon fiber / glass fiber layers in the case of C 18 G 1 C 18 .

【符号の説明】[Explanation of symbols]

(1) …炭素繊維層 (2) …ガラス繊維層 (1)… Carbon fiber layer (2)… Glass fiber layer

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】繊維方向が一方向でかつ層数がn層(ただ
しnは20以上の整数)である炭素繊維プリプレグ(C)
と、繊維方向が一方向でかつ層数がm層(ただしmは1
〜n/4 の整数)であるガラス繊維プリプレグ(G) とが
各層の繊維方向が同じになるようにかつ上記n層の炭素
繊維プリプレグ(C) のほぼ中心部分に上記m層のガラス
繊維プリプレグ(G) がサンドウィッチ状に介在するよう
に積層された状態で、加熱一体化された構成を有するハ
イブリッドFRP積層体。
1. The fiber direction is unidirectional and the number of layers is n (only
Where n is an integer of 20 or more) carbon fiber prepreg (C)
And the fiber direction is one direction and the number of layers is m (where m is 1
Glass fiber prepreg (G) , which is an integer of ~ n / 4 ),
In a state where the fiber directions of the respective layers are the same and the m-layer glass fiber prepregs (G) are laminated so as to be sandwiched in a substantially central portion of the n-layer carbon fiber prepregs (C), A hybrid FRP laminate having a structure integrated by heating.
【請求項2】ガラス繊維プリプレグ(G) の繊維径が、炭
素繊維プリプレグ(C) の繊維径よりも大である請求項1
記載のハイブリッドFRP積層体。
2. The fiber diameter of the glass fiber prepreg (G) is larger than the fiber diameter of the carbon fiber prepreg (C).
The hybrid FRP laminate described.
【請求項3】ガラス繊維プリプレグ(G) の繊維径が、炭
素繊維プリプレグ(C) の繊維径の2倍以上である請求項
記載のハイブリッドFRP積層体。
3. The fiber diameter of the glass fiber prepreg (G) is at least twice the fiber diameter of the carbon fiber prepreg (C).
2. The hybrid FRP laminate according to item 2 .
JP5171205A 1993-06-16 1993-06-16 Hybrid FRP laminate Expired - Fee Related JP2515688B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5171205A JP2515688B2 (en) 1993-06-16 1993-06-16 Hybrid FRP laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5171205A JP2515688B2 (en) 1993-06-16 1993-06-16 Hybrid FRP laminate

Publications (2)

Publication Number Publication Date
JPH071625A JPH071625A (en) 1995-01-06
JP2515688B2 true JP2515688B2 (en) 1996-07-10

Family

ID=15918979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5171205A Expired - Fee Related JP2515688B2 (en) 1993-06-16 1993-06-16 Hybrid FRP laminate

Country Status (1)

Country Link
JP (1) JP2515688B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100925485B1 (en) * 2008-01-24 2009-11-06 김연 Manufacturing method for glass fiber plates for limb of western-style archery

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5751672A (en) * 1995-07-26 1998-05-12 Sony Corporation Compact disc changer utilizing disc database
JP4723270B2 (en) * 2005-03-25 2011-07-13 東邦テナックス株式会社 Method for forming container using flame retardant hybrid composite material
AU2007100389A4 (en) * 2007-05-15 2007-06-07 Hayden Cox Pty Limited Parabolic Carbon Rail Surfboard
WO2020246440A1 (en) * 2019-06-07 2020-12-10 倉敷紡績株式会社 Fiber reinforced resin molded body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100925485B1 (en) * 2008-01-24 2009-11-06 김연 Manufacturing method for glass fiber plates for limb of western-style archery

Also Published As

Publication number Publication date
JPH071625A (en) 1995-01-06

Similar Documents

Publication Publication Date Title
EP2085215B1 (en) High-toughness fiber-metal laminate
EP0366979B1 (en) Improved interleaf layer in fiber reinforced resin laminate composites
EP1718459B1 (en) Aluminum-fiber laminate
EP1558442B1 (en) Porous polymeric membrane toughened composites
US20130130584A1 (en) Prepreg, fiber-reinforced composite material, and process for producing prepreg
US20130316148A1 (en) Metal sheet-fiber reinforced composite laminate
US20140329069A1 (en) Fiber-Metal Laminate
KR20140079819A (en) Composite laminate having improved impact strength and the use thereof
EP0156148A2 (en) High impact strength fiber resin matrix composites
US20140037939A1 (en) Prepreg and fiber reinforced composite material, and process for producing prepreg
JP2010059225A (en) Epoxy resin composition for carbon fiber-reinforced composite material, prepreg, and carbon fiber-reinforced composite material
JP2515688B2 (en) Hybrid FRP laminate
JPWO2018135594A1 (en) Prepreg and manufacturing method thereof, slit tape prepreg
EP0327142A2 (en) Resin matrix composites
JP4107475B2 (en) Reinforcing fibers for fiber reinforced composites
JPH0583072B2 (en)
JP2003277471A (en) Epoxy resin composition, prepreg and carbon fiber- reinforced composite material
JP2003103519A (en) Prepreg sheet, tubular article, and golf club shaft
JPS6397635A (en) Fiber-reinforced epoxy resin prepreg having interleaf
EP4215357A1 (en) Molded body and method for manufacturing same
JPH04251714A (en) Manufacture of carbon fiber reinforced composite material
JP3278985B2 (en) FRP cylinder
JP2000239417A (en) Cloth prepreg and fiber-reinforced composite material
JPH10158417A (en) Prepreg
JP3864751B2 (en) Resin composition for carbon fiber reinforced composite material, prepreg, and carbon fiber reinforced composite material

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960123

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090430

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100430

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100430

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110430

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120430

Year of fee payment: 16

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120430

Year of fee payment: 16

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 17

LAPS Cancellation because of no payment of annual fees