JP2513378B2 - Thermosetting resin - Google Patents

Thermosetting resin

Info

Publication number
JP2513378B2
JP2513378B2 JP21467691A JP21467691A JP2513378B2 JP 2513378 B2 JP2513378 B2 JP 2513378B2 JP 21467691 A JP21467691 A JP 21467691A JP 21467691 A JP21467691 A JP 21467691A JP 2513378 B2 JP2513378 B2 JP 2513378B2
Authority
JP
Japan
Prior art keywords
resin
thermosetting resin
present
compound
hours
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21467691A
Other languages
Japanese (ja)
Other versions
JPH0532750A (en
Inventor
利夫 塩原
久司 清水
学 鳴海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP21467691A priority Critical patent/JP2513378B2/en
Priority to US07/921,251 priority patent/US5306748A/en
Publication of JPH0532750A publication Critical patent/JPH0532750A/en
Application granted granted Critical
Publication of JP2513378B2 publication Critical patent/JP2513378B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Phenolic Resins Or Amino Resins (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、エポキシ樹脂又はフェ
ノール樹脂として、各種樹脂組成物の成分、各種樹脂の
改質剤として有効に用いられ、加工性、耐熱性に優れ、
高強度、高ガラス転移温度、低熱膨張率で、特に低吸水
性、高接着性の硬化物を与えるフッ素変性熱硬化性樹脂
に関する。
TECHNICAL FIELD The present invention is effectively used as an epoxy resin or a phenol resin as a component of various resin compositions and a modifier of various resins, and is excellent in processability and heat resistance.
The present invention relates to a fluorine-modified thermosetting resin which has a high strength, a high glass transition temperature, a low coefficient of thermal expansion, and gives a cured product having particularly low water absorption and high adhesiveness.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】熱硬化
性樹脂は、注型、含浸、積層、成形用の材料として、各
種電気材料、構造材料などに使用されているが、近年こ
れらの各用途において材料の使用条件は厳しくなる傾向
になり、特に材料の耐熱性及び低吸水性は重要な特性に
なっている。
2. Description of the Related Art Thermosetting resins have been used in various electrical materials, structural materials, etc. as materials for casting, impregnation, lamination and molding. The usage conditions of materials tend to be strict in applications, and heat resistance and low water absorption of materials are important characteristics.

【0003】従来より、熱硬化性樹脂のなかでもエポキ
シ樹脂とフェノール樹脂の有用性が高いが、耐熱性用の
ポリエポキシ化合物としては、フェノールノボラックの
エポキシ化物(例えば油化シェルエポキシ(株)製の商
品名エピコート154)、クレゾールノボラックのエポ
キシ化物(例えば日本化薬(株)製のEOCN)、メチ
レンジアニリンテトラエポキシド、トリ及びテトラ(ヒ
ドメキシフェニル)アルカンのエポキシ化物等が知られ
ている。また、フェノール樹脂としてはフェノールノボ
ラック樹脂、オルトクレゾールノボラック樹脂、ビスフ
ェノールA、トリフェノールメタン等の樹脂が知られて
いる。
Among thermosetting resins, epoxy resins and phenol resins have been highly useful, but as a heat-resistant polyepoxy compound, an epoxy compound of phenol novolac (for example, manufactured by Yuka Shell Epoxy Co., Ltd.) is used. Ep), epoxide of cresol novolac (for example, EOCN manufactured by Nippon Kayaku Co., Ltd.), methylene dianiline tetraepoxide, and epoxides of tri- and tetra (hydrmexoxyphenyl) alkane. As the phenol resin, resins such as phenol novolac resin, orthocresol novolac resin, bisphenol A and triphenol methane are known.

【0004】しかしながら、上記樹脂を用いた硬化物
は、いずれも比較的高い耐熱性を示すが、その耐熱性は
十分に満足できるものではなく、かつ、実用強度を発現
せしめるのに高温で長時間加熱する必要があるという欠
点があり、しかも、加工性も十分と言えるものではなか
った。また、特に半導体封止用途等においては、耐熱
性、低吸水性、加工性のほか低熱膨張率、高接着性など
の特性も要求される。
However, all of the cured products using the above-mentioned resins show relatively high heat resistance, but the heat resistance is not sufficiently satisfactory, and at the time of high temperature for a long time to develop practical strength. It has the drawback that it needs to be heated, and its workability is not sufficient. In addition, especially in semiconductor encapsulation applications, in addition to heat resistance, low water absorption, workability, low thermal expansion coefficient and high adhesiveness are also required.

【0005】本発明は、上記事情に鑑みなされたもの
で、エポキシ樹脂又はフェノール樹脂として、各種樹脂
組成物の成分、各種樹脂の改質剤として好適に用いら
れ、加工性が良好で耐熱性に優れ、かつ高強度、低熱膨
張率、低吸水率、高接着性の硬化物を与える熱硬化性樹
脂を提供することを目的とする。
The present invention has been made in view of the above circumstances, and is suitably used as an epoxy resin or a phenol resin as a component of various resin compositions and a modifier of various resins, and has good processability and heat resistance. An object of the present invention is to provide a thermosetting resin which gives a cured product having excellent strength, low thermal expansion coefficient, low water absorption coefficient and high adhesiveness.

【0006】[0006]

【課題を解決するための手段及び作用】本発明者は上記
目的を達成するため鋭意検討を重ねた結果、下記式
(3)で示されるフッ素変性ビスフェノールAと下記式
(4)で示されるモノ、ジ、トリ又はテトラヒドロキシ
ナフタレンとを用い、アルデヒド化合物を作用させてノ
ボラック化することにより、フェノール樹脂として、更
にこのフェノール樹脂をエポキシ化することによりエポ
キシ樹脂として、下記一般式(1)又は(2)で示され
る新規なフッ素変性熱硬化性樹脂を得ることができるこ
とを知見すると共に、この熱硬化性樹脂が良好な加工性
を有し、成形性に優れている上、耐熱性、長期熱劣化性
に優れ、かつ高強度、低熱膨張率、低吸水率で高接着性
の硬化物を与え、特に半導体封止用熱硬化性樹脂組成物
に用いるフェノール樹脂、エポキシ樹脂として優れてい
ることを見い出し、本発明をなすに至ったものである。
Means for Solving the Problems and Actions The inventors of the present invention have conducted extensive studies in order to achieve the above object, and as a result, have shown that fluorine-modified bisphenol A represented by the following formula (3) and mono-functional compounds represented by the following formula (4). , Di-, tri-, or tetrahydroxynaphthalene, and by reacting an aldehyde compound to form a novolak, as a phenol resin, and by further epoxidizing this phenol resin as an epoxy resin, the following general formula (1) or ( In addition to finding that the novel fluorine-modified thermosetting resin shown in 2) can be obtained, this thermosetting resin has good processability, excellent moldability, heat resistance, and long-term heat resistance. Phenolic resin which is excellent in deteriorating property, gives a cured product with high strength, low thermal expansion coefficient, low water absorption coefficient and high adhesiveness, and is particularly used for a thermosetting resin composition for semiconductor encapsulation. , It found to be excellent as an epoxy resin, in which the present invention has been accomplished.

【0007】[0007]

【化3】 Embedded image

【0008】[0008]

【化4】 Embedded image

【0009】従って、本発明は上記一般式(1)又は
(2)で示される熱硬化性樹脂を提供する。
Therefore, the present invention provides a thermosetting resin represented by the above general formula (1) or (2).

【0010】以下、本発明について更に説明すると、本
発明の熱硬化性樹脂は、上述したように下記一般式
(1)又は(2)で示されるものである。
The present invention will be further described below. The thermosetting resin of the present invention is represented by the following general formula (1) or (2) as described above.

【0011】[0011]

【化5】 Embedded image

【0012】[0012]

【化6】 [Chemical 6]

【0013】本発明の熱硬化性樹脂は、上述したよう
に、例えば式(3)で示されるフッ素変性ビスフェノー
ルAと式(4)で示されるモノ、ジ、トリ又はテトラヒ
ドロキシナフタレンとを用い、触媒の存在下、アルデヒ
ド化合物を作用させてノボラック化することによりフェ
ノール樹脂として容易に合成することができる。
As described above, the thermosetting resin of the present invention uses, for example, the fluorine-modified bisphenol A represented by the formula (3) and the mono-, di-, tri- or tetrahydroxynaphthalene represented by the formula (4), A phenol resin can be easily synthesized by reacting an aldehyde compound in the presence of a catalyst to form a novolak.

【0014】この場合、原料のフッ素変性ビスフェノー
ルAとヒドロキシナフタレンは市販のものを使用でき、
これらの使用割合は特に制限されないが、モル比でフッ
素変性ビスフェノールA/ヒドロキシナフタレン=0.
01〜100、特に0.1〜10とすることが好まし
い。
In this case, commercially available fluorine-modified bisphenol A and hydroxynaphthalene as raw materials can be used.
The use ratio of these is not particularly limited, but fluorine-modified bisphenol A / hydroxynaphthalene = 0.
It is preferably from 01 to 100, particularly preferably from 0.1 to 10.

【0015】また、アルデヒド化合物としては、具体的
にホルムアルデヒド、サリチルアルデヒド等が例示され
る。なお、アルデヒド化合物の使用量は特に制限されな
いが、原料のアルデヒド化合物/フェノール化合物の比
が、モル量比で0.05〜1、特に0.11〜0.7と
なることが好ましい。アルデヒド化合物/フェノール化
合物のモル量比が0.05未満では得られる重合体の分
子量が小さくなる場合があり、このモル量比が1を超え
るとゲル化する場合がある。
Specific examples of aldehyde compounds include formaldehyde and salicylaldehyde. The amount of the aldehyde compound used is not particularly limited, but the ratio of the raw material aldehyde compound / phenol compound is preferably 0.05 to 1, particularly 0.11 to 0.7 in terms of molar ratio. If the molar ratio of aldehyde compound / phenol compound is less than 0.05, the molecular weight of the obtained polymer may be small, and if the molar ratio exceeds 1, gelation may occur.

【0016】更に、触媒としては公知のアルカリ又は酸
触媒を使用することができ、アルカリ触媒としてはKO
H、NaOH等が挙げられ、酸触媒としては塩酸、硫
酸、硝酸、シュウ酸、パラトルエンスルホン酸、酢酸、
酪酸、プロピオン酸等が挙げられる。これらのアルカリ
触媒又は酸触媒の使用量は触媒量であるが、通常フェノ
ール化合物に対して0.5〜2重量%の範囲で使用する
ことができる。
Further, a known alkali or acid catalyst can be used as the catalyst, and KO is used as the alkali catalyst.
H, NaOH and the like, and the acid catalyst includes hydrochloric acid, sulfuric acid, nitric acid, oxalic acid, paratoluenesulfonic acid, acetic acid,
Examples include butyric acid and propionic acid. The amount of these alkali catalysts or acid catalysts used is a catalytic amount, but it can be usually used in the range of 0.5 to 2% by weight with respect to the phenol compound.

【0017】上記ノボラック化してポリマー化する反応
の反応条件は特に限定されないが、フッ素変性樹脂とア
ルデヒド化合物をアルカリ水溶液中でレゾール化した後
に酸性にし、ヒドロキシナフタレンを更に加えて100
〜150℃、4〜8時間反応を行いノボラックとするこ
とが好ましい。
The reaction conditions for the above-mentioned novolak-forming and polymerizing reaction are not particularly limited, but the fluorine-modified resin and the aldehyde compound are resolized in an alkaline aqueous solution and then acidified, and hydroxynaphthalene is further added to 100.
It is preferable to carry out the reaction at ˜150 ° C. for 4 to 8 hours to obtain a novolak.

【0018】このようにして本発明に係るフェノール樹
脂を得ることができ、更に必要によりエポキシ化して本
発明に係るエポキシ樹脂を得ることができる。
Thus, the phenol resin according to the present invention can be obtained, and if necessary, it can be epoxidized to obtain the epoxy resin according to the present invention.

【0019】本発明の熱硬化性樹脂(フェノール樹脂、
エポキシ樹脂)は、熱硬化性樹脂組成物、特に半導体封
止用組成物の樹脂成分として用いられる。例えば、エポ
キシ樹脂組成物の場合であれば、エポキシ樹脂及びその
硬化剤としてのフェノール樹脂として本発明の熱硬化性
樹脂を使用することができる。この場合エポキシ樹脂、
フェノール樹脂の全部を本発明の熱硬化性樹脂にて構成
してもよく、その一部を本発明の熱硬化性樹脂としても
よく、またエポキシ樹脂、フェノール樹脂の双方又はい
ずれか一方のみを本発明の熱硬化性樹脂にて構成するこ
とができる。なお、本発明に係る熱硬化性樹脂を使用し
て熱硬化性樹脂組成物とする場合、その他の成分として
は、その種類、目的等に応じた常用成分が使用できる。
The thermosetting resin of the present invention (phenolic resin,
The epoxy resin) is used as a resin component of a thermosetting resin composition, particularly a semiconductor encapsulating composition. For example, in the case of an epoxy resin composition, the thermosetting resin of the present invention can be used as an epoxy resin and a phenol resin as a curing agent for the epoxy resin. In this case epoxy resin,
All of the phenolic resin may be composed of the thermosetting resin of the present invention, a part thereof may be the thermosetting resin of the present invention, and either or both of the epoxy resin and the phenolic resin may be used. The thermosetting resin of the present invention can be used. When the thermosetting resin according to the present invention is used to prepare a thermosetting resin composition, as other components, conventional components can be used depending on the type, purpose and the like.

【0020】[0020]

【実施例】以下、実施例と比較例を示し、本発明を具体
的に示すが、本発明は下記の実施例に制限されるもので
はない。
EXAMPLES Hereinafter, the present invention will be specifically shown by showing Examples and Comparative Examples, but the present invention is not limited to the following Examples.

【0021】〔実施例1〕コンデンサー、温度計、撹拌
機をつけた1リットルの四つ口フラスコにN2雰囲気下
で2,2,−ビス−(4−ヒドロキシフェニル)ヘキサ
フロロプロパン168g、37%ホルムアルデヒド水溶
液48.7g、水100gを入れた。撹拌しながら、水
酸化カリウム1.0gを入れて、還流下で6時間反応さ
せた。冷却後、シュウ酸3.3g、トルエン140g、
2,6−ジヒドロキシナフタレン80gを入れ、トルエ
ン還流下で2時間加熱脱水した。更に2時間反応させた
後、減圧下でトルエンを抜き出し、150℃で1時間反
応させた。その後冷却し、反応物をメチルイソブチルケ
トンで希釈し、水洗後溶媒を留去したところ、OH当量
131(理論量127)の下記化合物A218gが得ら
れた(収率85.9%)。なお、化合物Aの同定はNM
R、IRによって確認した。
Example 1 In a 1-liter four-necked flask equipped with a condenser, a thermometer and a stirrer under an N 2 atmosphere, 2,2, -bis- (4-hydroxyphenyl) hexafluoropropane 168 g, 37 % Formaldehyde aqueous solution 48.7 g and water 100 g were added. While stirring, 1.0 g of potassium hydroxide was added, and the mixture was reacted under reflux for 6 hours. After cooling, 3.3 g of oxalic acid, 140 g of toluene,
80 g of 2,6-dihydroxynaphthalene was added, and the mixture was heated and dehydrated for 2 hours under reflux of toluene. After reacting for further 2 hours, toluene was extracted under reduced pressure and reacted at 150 ° C. for 1 hour. After cooling, the reaction product was diluted with methyl isobutyl ketone, washed with water, and the solvent was distilled off to obtain 218 g of the following compound A having an OH equivalent of 131 (theoretical amount 127) (yield: 85.9%). The compound A was identified by NM
It was confirmed by R and IR.

【0022】[0022]

【化7】 [Chemical 7]

【0023】次に、コンデンサー、温度計、撹拌機をつ
けた1リットルの四つ口フラスコに化合物A197g、
エピクロルヒドリン800g、セチルトリメチルアンモ
ニウム1.5gを入れ、還流下で3時間撹拌した。その
後、水酸化ナトリウム水溶液(50%水溶液)120g
を減圧下(80〜90℃/100〜130mmHg)で
滴下した。滴下終了後、3時間熟成し、その後濾過、溶
媒除去し、更に水酸化ナトリウム水溶液(10%水溶
液)で加水分解性塩素を除き、水洗したところ、エポキ
シ当量189(理論量183g)の下記化合物B250
gが得られた(収率91%)。
Next, 197 g of Compound A was placed in a 1-liter four-necked flask equipped with a condenser, a thermometer and a stirrer.
800 g of epichlorohydrin and 1.5 g of cetyltrimethylammonium were added, and the mixture was stirred under reflux for 3 hours. After that, 120 g of sodium hydroxide aqueous solution (50% aqueous solution)
Was added dropwise under reduced pressure (80 to 90 ° C./100 to 130 mmHg). After completion of the dropping, the mixture was aged for 3 hours, then filtered, the solvent was removed, hydrolyzable chlorine was removed with an aqueous sodium hydroxide solution (10% aqueous solution), and the product was washed with water. As a result, epoxy equivalent 189 (theoretical amount 183 g) of the following compound B250 was obtained.
g was obtained (yield 91%).

【0024】[0024]

【化8】 Embedded image

【0025】〔実施例2〕コンデンサー、温度計、撹拌
機をつけた1リットルの四つ口フラスコにN2雰囲気下
で2,2,−ビス−(4−ヒドロキシフェニル)ヘキサ
フロロプロパン168g、37%ホルムアルデヒド水溶
液48.7g、水100gを入れた。撹拌しながら、水
酸化カリウム1.0gを入れて、還流下で6時間反応さ
せた。冷却後、シュウ酸3.3g、トルエン140g、
α−ナフトール72gを入れ、トルエン還流下で2時間
加熱脱水した。更に2時間反応させた後、減圧下でトル
エンを抜き出し、150℃で1時間反応させた。その後
冷却し、反応物をメチルイソブチルケトンで希釈し、水
洗後溶媒を留去したところ、OH当量169(理論量1
64)の下記化合物C214gが得られた(収率87.
0%)。なお、化合物Cの同定はNMR、IRによって
確認した。
Example 2 In a 1-liter four-necked flask equipped with a condenser, a thermometer and a stirrer, under N 2 atmosphere, 2,2, -bis- (4-hydroxyphenyl) hexafluoropropane 168 g, 37 % Formaldehyde aqueous solution 48.7 g and water 100 g were added. While stirring, 1.0 g of potassium hydroxide was added, and the mixture was reacted under reflux for 6 hours. After cooling, 3.3 g of oxalic acid, 140 g of toluene,
72 g of α-naphthol was added, and the mixture was heated and dehydrated for 2 hours under reflux of toluene. After reacting for further 2 hours, toluene was extracted under reduced pressure and reacted at 150 ° C. for 1 hour. After cooling, the reaction product was diluted with methyl isobutyl ketone, washed with water, and the solvent was distilled off. As a result, OH equivalent 169 (theoretical amount 1
64 g of the following compound C214 was obtained (yield 87.
0%). The identification of compound C was confirmed by NMR and IR.

【0026】[0026]

【化9】 [Chemical 9]

【0027】次に、コンデンサー、温度計、撹拌機をつ
けた1リットルの四つ口フラスコに化合物C177g、
エピクロルヒドリン800g、セチルトリメチルアンモ
ニウム1.5gを入れ、還流下で3時間撹拌した。その
後、水酸化ナトリウム水溶液(50%水溶液)120g
を減圧下(80〜90℃/100〜130mmHg)で
滴下した。滴下終了後、3時間熟成し、その後濾過、溶
媒除去し、更に水酸化ナトリウム水溶液(10%水溶
液)で加水分解性塩素を除き、水洗したところ、エポキ
シ当量228(理論量220g)の下記化合物D236
gが得られた(収率90.5%)。
Then, in a 1-liter four-necked flask equipped with a condenser, a thermometer and a stirrer, 177 g of Compound C,
800 g of epichlorohydrin and 1.5 g of cetyltrimethylammonium were added, and the mixture was stirred under reflux for 3 hours. After that, 120 g of sodium hydroxide aqueous solution (50% aqueous solution)
Was added dropwise under reduced pressure (80 to 90 ° C./100 to 130 mmHg). After the completion of the dropping, the mixture was aged for 3 hours, then filtered, the solvent was removed, hydrolyzable chlorine was removed with a sodium hydroxide aqueous solution (10% aqueous solution), and the mixture was washed with water. As a result, epoxy equivalent 228 (theoretical amount 220 g) of the following compound D236 was obtained.
g was obtained (yield 90.5%).

【0028】[0028]

【化10】 [Chemical 10]

【0029】上記化合物(A)〜(D)のIRをそれぞ
れ図1〜図4に示す。また、化合物(A)〜(D)のN
MRピークの帰属は以下の通りである。
The IR of the above compounds (A) to (D) are shown in FIGS. 1 to 4, respectively. In addition, N of the compounds (A) to (D)
The attribution of the MR peak is as follows.

【0030】[0030]

【化11】 [Chemical 11]

【0031】〔実施例3〕コンデンサー、温度計、撹拌
機をつけた1リットルの四つ口フラスコにN2雰囲気下
で2,2,−ビス−(4−ヒドロキシフェニル)ヘキサ
フロロプロパン168g、37%ホルムアルデヒド水溶
液48.7g、水100gを入れた。撹拌しながら、水
酸化カリウム1.0gを入れて、還流下で6時間反応さ
せた。これとは別に同じ方法で、2,2,−ビス−(4
−ヒドロキシフェニル)ヘキサフロロプロパン84g、
37%ホルムアルデヒド水溶液48.7g、水100
g、水酸化カリウム1.0gを反応させた。これらを冷
却後2リットルのフラスコに合わせ入れ、シュウ酸6.
6g、トルエン300g、2,6−ジヒドロキシナフタ
レン160gを入れ、トルエン還流下で2時間加熱脱水
した。更に2時間反応させた後、減圧下でトルエンを抜
き出し、150℃で1時間反応させた。その後冷却し、
反応物をメチルイソブチルケトンで希釈し、水洗後溶媒
を留去したところ、OH当量144(理論量138)の
下記化合物E395gが得られた(収率84.5%)。
なお、化合物Eの同定はNMR、IRによって確認し
た。
Example 3 A 1 liter four-necked flask equipped with a condenser, a thermometer and a stirrer was charged with 2,2, -bis- (4-hydroxyphenyl) hexafluoropropane (168 g, 37) under N 2 atmosphere. % Formaldehyde aqueous solution 48.7 g and water 100 g were added. While stirring, 1.0 g of potassium hydroxide was added, and the mixture was reacted under reflux for 6 hours. Apart from this, in the same way, 2,2, -bis- (4
-Hydroxyphenyl) hexafluoropropane 84 g,
37% formaldehyde aqueous solution 48.7 g, water 100
g and 1.0 g of potassium hydroxide were reacted. After cooling, these were put together in a 2 liter flask and oxalic acid 6.
6 g, 300 g of toluene and 160 g of 2,6-dihydroxynaphthalene were added, and the mixture was heated and dehydrated for 2 hours under reflux of toluene. After reacting for further 2 hours, toluene was extracted under reduced pressure and reacted at 150 ° C. for 1 hour. Then cool down,
The reaction product was diluted with methyl isobutyl ketone, washed with water and the solvent was distilled off to obtain 395 g of the following compound E having an OH equivalent of 144 (theoretical amount of 138) (yield: 84.5%).
The identification of compound E was confirmed by NMR and IR.

【0032】[0032]

【化12】 [Chemical 12]

【0033】次に、コンデンサー、温度計、撹拌機をつ
けた1リットルの四つ口フラスコに化合物E216g、
エピクロルヒドリン800g、セチルトリメチルアンモ
ニウム1.5gを入れ、還流下で3時間撹拌した。その
後、水酸化ナトリウム水溶液(50%水溶液)120g
を減圧下(80〜90℃/100〜130mmHg)で
滴下した。滴下終了後、3時間熟成し、その後濾過、溶
媒除去し、更に水酸化ナトリウム水溶液(10%水溶
液)で加水分解性塩素を除き、水洗したところ、エポキ
シ当量205(理論量194g)の下記化合物F265
gが得られた(収率88.5%)。
Next, in a one-liter four-necked flask equipped with a condenser, a thermometer, and a stirrer, compound E216g,
800 g of epichlorohydrin and 1.5 g of cetyltrimethylammonium were added, and the mixture was stirred under reflux for 3 hours. After that, 120 g of sodium hydroxide aqueous solution (50% aqueous solution)
Was added dropwise under reduced pressure (80 to 90 ° C./100 to 130 mmHg). After completion of the dropping, the mixture was aged for 3 hours, then filtered, the solvent was removed, hydrolyzable chlorine was removed with an aqueous sodium hydroxide solution (10% aqueous solution), and the product was washed with water. As a result, epoxy equivalent 205 (theoretical amount 194 g) of the following compound F265 was obtained.
g was obtained (yield 88.5%).

【0034】[0034]

【化13】 [Chemical 13]

【0035】〔実施例4〜6、比較例1〕実施例1〜3
において合成したフッ素変性エポキシ樹脂B,D,F、
フッ素変性フェノール樹脂A,C,E、硬化触媒、石英
粉末、難燃剤等を表1に示す配合量で使用し、得られた
配合物を熱2本ロールで均一に溶融混合し、3種類の熱
硬化性樹脂組成物を調製した。
[Examples 4 to 6, Comparative Example 1] Examples 1 to 3
Fluorine-modified epoxy resin B, D, F synthesized in
Fluorine-modified phenolic resins A, C, E, curing catalyst, quartz powder, flame retardant, etc. were used in the compounding amounts shown in Table 1, and the resulting compound was uniformly melt-mixed with a two-roll heat and three types were mixed. A thermosetting resin composition was prepared.

【0036】比較のため、下記に示すフェノールノボラ
ック樹脂(化合物G)、オルトクレゾールノボラック樹
脂のエポキシ化物(化合物H)を使用し、実施例と同様
に熱硬化性樹脂組成物を調製した。
For comparison, a thermosetting resin composition was prepared in the same manner as in Examples using the phenol novolac resin (Compound G) and the epoxidized orthocresol novolac resin (Compound H) shown below.

【0037】[0037]

【化14】 Embedded image

【0038】これらの熱硬化性樹脂組成物につき以下の
(イ)〜(ニ)の諸試験を行った。結果を表1に併記す
る。 (イ)スパイラルフロー値 EMMI規格に準じた金型を使用して、175℃、70
kg/cm2の条件で測定した。 (ロ)機械的強度(曲げ強度及び曲げ弾性率) JIS−K6911に準じて180℃、70kg/cm
2、成形時間2分の条件で10×4×100mmの抗折
棒を成形し、180℃、4時間ポストキュアーしたもの
について室温で測定した。 (ハ)膨張係数、ガラス転移温度 180℃、70kg/cm2、成形時間2分の条件で5
×5×15mmの試験片を成形し、180℃、4時間ポ
ストキュアーしたものを用いてディラトメーターにより
毎分5℃の速さで昇温した時の値を測定した。 (ニ)吸水率 180℃、70kg/cm2、成形時間2分の条件で5
0φ×3mmの円盤を成形し、180℃、4時間ポスト
キュアーしたものを121℃/100%RH雰囲気中に
24時間放置し、吸水率を測定した。
The following tests (a) to (d) were conducted on these thermosetting resin compositions. The results are also shown in Table 1. (A) Spiral flow value Using a mold conforming to the EMMI standard, 175 ° C, 70
It was measured under the condition of kg / cm 2 . (B) Mechanical strength (flexural strength and flexural modulus) 180 ° C., 70 kg / cm according to JIS-K6911
2. A bending rod of 10 × 4 × 100 mm was molded under the conditions of a molding time of 2 minutes, and post-cured at 180 ° C. for 4 hours. (C) 5 under the conditions of expansion coefficient, glass transition temperature 180 ° C., 70 kg / cm 2 , molding time 2 minutes
A test piece of × 5 × 15 mm was molded, post-cured at 180 ° C. for 4 hours, and the value when the temperature was raised at a rate of 5 ° C./min was measured by a dilatometer. (D) Water absorption rate: 180 ° C., 70 kg / cm 2 , molding time: 2 minutes 5
A disk of 0φ × 3 mm was molded, post-cured at 180 ° C. for 4 hours, left in an atmosphere of 121 ° C./100% RH for 24 hours, and the water absorption was measured.

【0039】[0039]

【表1】 * シランカップリング剤にはγ−グリシドキシプロピ
ルトリメトキシシランを用いた。 ** 離型剤にはカルナバワックスを用いた。
[Table 1] * Γ-glycidoxypropyltrimethoxysilane was used as the silane coupling agent. ** Carnauba wax was used as the release agent.

【0040】表1の結果より、本発明の熱硬化性樹脂を
使用した熱硬化性樹脂組成物は、従来のオルトクレゾー
ルノボラックエポキシ樹脂とフェノールノボラック樹脂
を使用したもの(比較例)に比較して、曲げ強度、曲げ
弾性率が高く、特にガラス転移温度が高く、しかも線膨
張係数が小さく、低吸水率の硬化物を与えることが認め
られる。
From the results shown in Table 1, the thermosetting resin composition using the thermosetting resin of the present invention is compared with the conventional one using orthocresol novolac epoxy resin and phenol novolac resin (comparative example). It is recognized that a cured product having high flexural strength and flexural modulus, particularly high glass transition temperature, low linear expansion coefficient, and low water absorption coefficient is obtained.

【0041】[0041]

【発明の効果】以上説明したように、本発明の熱硬化性
樹脂は、加工性に優れ、他のエポキシ樹脂、フェノール
樹脂等との反応性が高く、耐熱性が良好で、高温時の機
械特性、長期の耐熱特性に優れ、高硬度、低熱膨張率、
低吸水率で接着性に優れた硬化物を与える。従って、本
発明の熱硬化性樹脂は、各種樹脂組成物の成分、各種樹
脂の改質剤として有効に利用することができる。
As described above, the thermosetting resin of the present invention has excellent processability, high reactivity with other epoxy resins, phenolic resins, etc., good heat resistance, and high temperature mechanical properties. Excellent in characteristics and long-term heat resistance, high hardness, low coefficient of thermal expansion,
It gives a cured product with low water absorption and excellent adhesion. Therefore, the thermosetting resin of the present invention can be effectively used as a component of various resin compositions and a modifier of various resins.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1で得られた本発明に係るフェノール樹
脂のIRチャートである。
FIG. 1 is an IR chart of the phenol resin according to the present invention obtained in Example 1.

【図2】実施例1で得られた本発明に係るエポキシ樹脂
のIRチャートである。
2 is an IR chart of the epoxy resin according to the present invention obtained in Example 1. FIG.

【図3】実施例2で得られた本発明に係るフェノール樹
脂のIRチャートである。
FIG. 3 is an IR chart of the phenol resin according to the present invention obtained in Example 2.

【図4】実施例2で得られた本発明に係るエポキシ樹脂
のIRチャートである。
4 is an IR chart of the epoxy resin according to the present invention obtained in Example 2. FIG.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 23/31 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location H01L 23/31

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 下記一般式(1)又は(2)で示される
熱硬化性樹脂。 【化1】 【化2】
1. A thermosetting resin represented by the following general formula (1) or (2). Embedded image Embedded image
JP21467691A 1991-07-31 1991-07-31 Thermosetting resin Expired - Fee Related JP2513378B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP21467691A JP2513378B2 (en) 1991-07-31 1991-07-31 Thermosetting resin
US07/921,251 US5306748A (en) 1991-07-31 1992-07-29 Fluorine-modified thermosetting resin and thermosetting resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21467691A JP2513378B2 (en) 1991-07-31 1991-07-31 Thermosetting resin

Publications (2)

Publication Number Publication Date
JPH0532750A JPH0532750A (en) 1993-02-09
JP2513378B2 true JP2513378B2 (en) 1996-07-03

Family

ID=16659737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21467691A Expired - Fee Related JP2513378B2 (en) 1991-07-31 1991-07-31 Thermosetting resin

Country Status (1)

Country Link
JP (1) JP2513378B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6432539B1 (en) * 1999-11-01 2002-08-13 Chang Chun Plastics Co. Ltd. Phosphorus-containing polymer having phenolic units and uses thereof
US9920143B2 (en) 2012-06-06 2018-03-20 Nissan Chemical Industries, Ltd. Fluorine-containing highly branched polymer and epoxy resin composition containing the same

Also Published As

Publication number Publication date
JPH0532750A (en) 1993-02-09

Similar Documents

Publication Publication Date Title
JPS643217B2 (en)
JPH04217675A (en) Epoxy resin and its intermediate, production thereof and epoxy resin composition
KR20110109939A (en) Polyhydroxy resin, epoxy resin, method for manufacturing the same, epoxy resin composition and cured product using the same
JP2690825B2 (en) Low softening point naphthol aralkyl resin and epoxy resin composition using the resin
JP2513378B2 (en) Thermosetting resin
JP3196141B2 (en) Epoxy resin composition
JP4188022B2 (en) Polyvalent hydroxy resin, epoxy resin, production method thereof, epoxy resin composition and cured product using them
JPH0733430B2 (en) Epoxy resin composition
JP3451104B2 (en) Epoxy resin composition
JPH075697B2 (en) Propenyl group-containing phenol resin
JP3318870B2 (en) Epoxy resin composition
JP3236382B2 (en) Production method of phenolic resin
JP2780559B2 (en) Naphthalene derivatives having allyl or propenyl groups
JP2579405B2 (en) Epoxy resin curing agent
JPWO2006051731A1 (en) Epoxy resin composition
JP2823455B2 (en) New epoxy resin and method for producing the same
JPH07173235A (en) Allylnapththol cocondensate and epoxy resin composition
JPH08333428A (en) Low-softening phenylphenolaralkyl resin and epoxy resin composition containing the same
JP3325694B2 (en) Epoxy resin and epoxy resin composition
JPH0625393A (en) Phenol polymer, its production and use thereof
JPH06145306A (en) Epoxy resin composition
JPH0832695B2 (en) Epoxy resin containing propenyl group
JP2002294026A (en) Liquid phenol novolak resin composition
KR960015341B1 (en) Novel phenol/aralkyl resin and production thereof
JPH07173236A (en) Allylnaphthol cocondensate and epoxy resin composition

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees