JP2511287B2 - Optical adhesive and optical component using the same - Google Patents

Optical adhesive and optical component using the same

Info

Publication number
JP2511287B2
JP2511287B2 JP5837788A JP5837788A JP2511287B2 JP 2511287 B2 JP2511287 B2 JP 2511287B2 JP 5837788 A JP5837788 A JP 5837788A JP 5837788 A JP5837788 A JP 5837788A JP 2511287 B2 JP2511287 B2 JP 2511287B2
Authority
JP
Japan
Prior art keywords
optical
refractive index
adhesive
present
optical adhesive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5837788A
Other languages
Japanese (ja)
Other versions
JPH01234486A (en
Inventor
孔三郎 中村
則夫 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP5837788A priority Critical patent/JP2511287B2/en
Publication of JPH01234486A publication Critical patent/JPH01234486A/en
Application granted granted Critical
Publication of JP2511287B2 publication Critical patent/JP2511287B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Optical Couplings Of Light Guides (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光学部品を作製する上で不可欠の光学接着剤
及びこれを用いる光学部品に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to an optical adhesive which is indispensable for producing an optical component and an optical component using the same.

〔従来の技術〕[Conventional technology]

従来、この種の光学接着剤としては、下記一般式IIで
表わされる化合物 を用いる方法が知られていたが、フツ素含量が少なく屈
折率調節範囲も大幅に変えることが困難であつた。
Conventionally, as this kind of optical adhesive, a compound represented by the following general formula II However, it was difficult to drastically change the refractive index control range because of the low fluorine content.

また、従来の光学接着剤としてシリコーン樹脂がある
が、シリコーン樹脂は接着性に劣り、機械的特性に劣る
などの欠点があるため、光学部材の張り合わせによる光
学部品の製造には使用できなかつた。
Further, there has been a silicone resin as a conventional optical adhesive, but since the silicone resin has drawbacks such as poor adhesiveness and poor mechanical properties, it cannot be used for manufacturing an optical component by laminating optical members.

また、屈折率の調節が可能な樹脂にはフツ素原子を導
入したポリメチルメタクリレートがあるが、粘度が高
く、接着性に劣り、光学部材の張り合わせによる光学部
品の製造には使用できなかつた。
Further, as a resin whose refractive index can be adjusted, there is polymethylmethacrylate introduced with a fluorine atom, but it has a high viscosity and is inferior in adhesiveness and cannot be used for manufacturing an optical component by laminating optical members.

〔発明が解決しようとする課題〕 本発明はこれらの欠点を解決するため、幅広い範囲で
屈折率が調節可能で、室温、短時間で光学部材の張り合
わせのできる新しい光学接着剤を提供し、かつこれを用
いて光学部品を製造することを特徴とし、その目的は
接着剤として用いて反射減衰量を小さくでき、コーテ
イング剤として用いて導波路損失が小さく、高性能で生
産性に優れた各種光学部品を安価に提供することにあ
る。
[Problems to be Solved by the Invention] In order to solve these drawbacks, the present invention provides a new optical adhesive capable of adjusting the refractive index in a wide range, bonding the optical members at room temperature in a short time, and It is characterized by manufacturing optical parts using this, and its purpose is to use it as an adhesive to reduce the return loss, and to use it as a coating agent to reduce the waveguide loss and to achieve high performance and high productivity of various optical components. It is to provide parts at low cost.

〔課題を解決するための手段〕[Means for solving the problem]

本発明を概説すれば、本発明の第1の発明は光学接着
剤に関する発明であつて、下記一般式I: 〔式中、Zは (YはH又はCH3基)、Mは 又は nは0又は任意の正数を示す〕で表わされる化合物を含
有していることを特徴とする。
Briefly describing the present invention, the first invention of the present invention relates to an optical adhesive, which is represented by the following general formula I: [In the formula, Z is (Y is H or CH 3 group), M is Or n represents 0 or any positive number].

また、本発明の第2の発明は光学部品に関する発明で
あつて、第1の発明の光学接着剤を透明な光学部材の張
り合わせに用いてなることを特徴とする。
A second invention of the present invention is an invention relating to an optical component, characterized in that the optical adhesive of the first invention is used for bonding transparent optical members.

そして、本発明の第3の発明は他の光学部品に関する
発明であつて、第1の発明の光学接着剤を透明な光学部
材上に被覆してなることを特徴とする。
A third invention of the present invention relates to another optical component, which is characterized in that a transparent optical member is coated with the optical adhesive of the first invention.

屈折率調節のできる接着剤は光学部材の張り合わせに
用いて反射減衰量の低減に有効である。反射量が大きい
と、反射光は光源に戻り光源にじよう乱を起こして、ノ
イズを発生させるため、光通信の信頼度の上で問題とな
る。そのため光通信の信頼性を確保する上で反射減衰量
は30dB以上が望ましく、従来は光フアイバの端面を斜研
磨した光学ガラスを張り合わせて端面反射を少なくして
いた。このため端面の損失は避けられなかつたが、本発
明の光学接着剤を用いると、斜研磨の必要がなく光反射
量を小さくすることができる。屈折率がn0とn2の光学部
材を屈折率がn1で厚さdの接着剤で張り合わせたときの
反射率rはフレネルの公式で求められる。
An adhesive whose refractive index can be adjusted is effective in reducing reflection attenuation when used for bonding optical members. When the amount of reflection is large, the reflected light returns to the light source, disturbs the light source, and causes noise, which causes a problem in reliability of optical communication. Therefore, in order to ensure the reliability of optical communication, it is desirable that the return loss is 30 dB or more, and conventionally, the end facet reflection was reduced by laminating optical glass whose end face was obliquely polished. For this reason, loss of the end face is unavoidable, but the use of the optical adhesive of the present invention can reduce the amount of light reflection without the need for oblique polishing. The reflectance r when an optical member having a refractive index of n 0 and an optical member having a refractive index of n 2 are bonded together with an adhesive having a refractive index of n 1 and a thickness of d can be obtained by Fresnel's formula.

ここで、反射率rは接着剤の厚さにより異なる。接着
剤の厚さを波長のオーダーで制御することは困難であ
り、生産性にも劣るので、接着剤の厚さdにかかわらず
(1)式が最大となる条件を求めておけば、それ以上反
射が大きくなることはない。そこで反射減衰量RLは、 RL=10log(rmax)〔dB〕 …(2) と定義する。この反射減衰量は光通信で使用する波長
(例えば1.3μm)での値であり、通常用いられている
ナトリウムD線(λ=0.589μm)での屈折率nDと異な
る。光フアイバ(1.3μmでの屈折率1.462)端面を種々
の屈折率nDを持つ接着剤で終端し、波長1.3μmにおい
て反射が最小となる接着剤の屈折率nDを求めたところ、 nD=n(λ=1.3μm)+0.016 …(3) の関係を得た。したがつて、n(λ=1.3μm)とnD
値の換算には(3)式を用いることができる。以下の実
施例においてはλ=1.3μmでの屈折率と反射減衰量と
の関係を求め、(3)式から実測したnDの値を用いてn
(λ=1.3μm)の値を求めている。
Here, the reflectance r differs depending on the thickness of the adhesive. It is difficult to control the thickness of the adhesive on the order of wavelength, and the productivity is also poor. Therefore, if the condition that maximizes the formula (1) is sought regardless of the thickness d of the adhesive, The reflection does not become larger than the above. Therefore, the return loss RL is defined as RL = 10log (r max ) [dB] (2). This return loss is a value at a wavelength used in optical communication (for example, 1.3 μm), and is different from the refractive index n D for the normally used sodium D line (λ = 0.589 μm). When the end surface (refractive index 1.462 at 1.3 .mu.m) optical fiber terminates in an adhesive having various refractive index n D, to determine the refractive index n D of the adhesive reflection is minimized at a wavelength of 1.3 .mu.m, n D = N (λ = 1.3 μm) +0.016 (3) Therefore, the equation (3) can be used to convert the values of n (λ = 1.3 μm) and n D. In the following examples, the relationship between the refractive index and the return loss at λ = 1.3 μm was obtained, and the value of n D actually measured from the equation (3) was used to calculate n.
The value of (λ = 1.3 μm) is calculated.

〔実施例〕〔Example〕

以下、本発明を実施例により更に具体的に説明する
が、本発明はこれら実施例に限定されない。
Hereinafter, the present invention will be described more specifically with reference to Examples, but the present invention is not limited to these Examples.

実施例1 第1図は本発明の1実施例の効果を示すグラフであつ
て、下記一般式A: で表わされる化合物(以下CHEPと省略する)とその他の
化合物とを以下に示すとおり混合してなる光学接着剤
(A1)を室温においてメタルハライドランプを用いて1
分間(10mW)照射して、光硬化した後の屈折率のCHEP
量依存性をADEP/CHEP(重量部、横軸)と屈折率▲n25 D
▼(縦軸)との関係で示したものである。
Example 1 FIG. 1 is a graph showing the effect of one example of the present invention, in which the following general formula A: A compound represented by (hereinafter CHE P abbreviated) with other compounds and by mixing as shown below optical adhesive (A1) using a metal halide lamp at room temperature for 1
After irradiating for 10 minutes (10mW), the CHE P content dependence of the refractive index after photo-curing is shown as ADE P / CHE P (part by weight, horizontal axis) and refractive index ▲ n 25 D
▼ (vertical axis).

第1図から明らかなように少なくとも上記一般式Aで
表わされる化合物を含む光学接着剤を用いることにより
屈折率▲n25 D▼を1.450から1.590まで調節することがで
きた。
As is apparent from FIG. 1, it was possible to adjust the refractive index (n 25 D ) from 1.450 to 1.590 by using an optical adhesive containing at least the compound represented by the general formula A.

実施例2 第2図は本発明の1実施例の効果を示すグラフであつ
て、CHEPとその他の化合物とを以下に示すとおり混合し
てなる光学接着剤(A2)を室温においてメタルハライド
ランプを用いて1分間(10mW)照射して、光硬化した後
の屈折率のCHEP含量依存性をAFEP/CHEP(重量部、横
軸)と屈折率▲n25 D▼(縦軸)との関係で示したもので
ある。
Example 2 Figure 2 an alien a graph showing the effect of an embodiment of the present invention, CHE P and other compounds and a mixture thereof comprising an optical adhesive as shown below a metal halide lamp at room temperature (A2) After irradiating for 1 minute (10 mW), the CHE P content dependence of the refractive index after photocuring was calculated as AFE P / CHE P (part by weight, horizontal axis) and refractive index ▲ n 25 D ▼ (vertical axis). It is shown in the relationship of.

第2図から明らかなように少なくとも上記一般式Aで
表わされる化合物を含む光学接着剤を用いることにより
屈折率を1.447から1.529まで調節することができた。
As is apparent from FIG. 2, the refractive index could be adjusted from 1.447 to 1.529 by using the optical adhesive containing at least the compound represented by the above general formula A.

実施例3 第3図は本発明の1実施例の効果を示すグラフであつ
て、下記一般式B: で表わされる化合物(以下CHEPAと省略する)とその他
の化合物とを以下に示すとおり混合してなる光学接着剤
(B1)を室温においてメタルハライドランプを用いて1
分間(10mW)照射して、光硬化した後の屈折率のCHEPA
含量依存性をAFEPA/CHEPA(重量部、横軸)と屈折率▲
n25 D▼(縦軸)との関係で示したものである。
Example 3 FIG. 3 is a graph showing the effect of one example of the present invention, in which the following general formula B: A compound represented by (hereinafter CHE P A abbreviated) with other compounds and by mixing as shown below optical adhesive (B1) using a metal halide lamp at room temperature for 1
Minutes (10 mW) is irradiated, the refractive index after the photocured CHE P A
The content dependent AFE P A / CHE P A (parts by weight, the horizontal axis) and refractive index ▲
n 25 D ▼ (vertical axis).

第3図から明らかなように少なくとも上記一般式Bで
表わされる化合物を含む光学接着剤は屈折率▲n25 D▼を
1.467から1.522まで調節することができた。
As is clear from FIG. 3, the optical adhesive containing at least the compound represented by the general formula B has a refractive index ▲ n 25 D ▼.
I was able to adjust from 1.467 to 1.522.

実施例4 下記一般式C: で表わされる化合物(以下DPEPと省略する)とその他の
化合物とを以下の通り混合してなる光学接着剤を室温に
おいてメタルハライドランプを用いて1分間(10mW)照
射して、光硬化した後の屈折率の範囲の測定を行つた。
Example 4 The following general formula C: After the photo-curing was performed by irradiating an optical adhesive obtained by mixing the compound represented by (1) (hereinafter abbreviated as DPE P ) and other compounds as follows with a metal halide lamp at room temperature for 1 minute (10 mW). The refractive index range was measured.

その結果、上記一般式Cで表わされる化合物を含む光
学接着剤を用いることにより屈折率▲n25 D▼を1.489か
ら1.513まで調節することができた。
As a result, it was possible to adjust the refractive index (n 25 D ) from 1.489 to 1.513 by using the optical adhesive containing the compound represented by the general formula C.

実施例5 下記一般式D: で表わされる化合物(以下DPEPAと省略する。)とその
他の化合物とを以下の通り混合してなる光学接着剤を室
温においてメタルハライドランプを用いて1分間(10m
W)照射して、光硬化した後の屈折率の測定を行つた。
Example 5 The following general formula D: An optical adhesive prepared by mixing the compound represented by (hereinafter abbreviated as DPE P A) and other compounds as follows at room temperature with a metal halide lamp for 1 minute (10 m
W) Irradiation was performed and the refractive index after photocuring was measured.

その結果、上記一般式Dで表わされる化合物を含む光
学接着剤を用いることにより屈折率▲n25 D▼を1.494か
ら1.497まで調節することができた。
As a result, the refractive index (n 25 D) could be adjusted from 1.494 to 1.497 by using the optical adhesive containing the compound represented by the general formula D.

実施例6 第4図は本発明の光学部品の1例の断面概略図であ
り、符号1は光フアイバをフエルールに接着固定し、端
面研磨したもの、2は光学接着剤、3は反射防止膜付き
光学ガラスである。第5図は上記1としてシングルモー
ド光フアイバ、3として反射防止膜付きBK−7ガラスを
用い本発明の光学接着剤を用いて張り合わせて、光硬化
させ1.3μmでの反射減衰量の最大値(光学接着剤の厚
さを変化させて反射光強度が最も大きくなる値、以下同
様)を求めた結果を光学接着剤の屈折率n(横軸)と反
射減衰量(dB、縦軸)との関係で示すグラフである。
Example 6 FIG. 4 is a schematic cross-sectional view of an example of an optical component of the present invention. Reference numeral 1 is an optical fiber adhered and fixed to a ferrule and the end surface is ground, 2 is an optical adhesive, and 3 is an antireflection film. Attached optical glass. FIG. 5 shows that the above-mentioned 1 is a single mode optical fiber, 3 is a BK-7 glass with an antireflection film, and the optical adhesive of the present invention is used to bond them together, followed by photocuring to obtain the maximum value of the return loss at 1.3 μm ( The value obtained by changing the thickness of the optical adhesive to obtain the maximum reflected light intensity (the same applies below) is the result of the refractive index n (horizontal axis) and the return loss (dB, vertical axis) of the optical adhesive. It is a graph shown by a relation.

光学接着剤の屈折率範囲(λ=1.3μm)を、 1.450≦n≦1.524 すなわち、(3)式により通常用いられている屈折率nD
に換算して、 1.466≦▲n25 D▼≦1.540 とすることにより反射減衰量30dB以上を確保できる。
The refractive index range (λ = 1.3 μm) of the optical adhesive is 1.450 ≦ n ≦ 1.524, that is, the refractive index n D normally used according to the formula (3).
When converted to 1.466 ≦ ▲ n 25 D ▼ ≦ 1.540, a return loss of 30 dB or more can be secured.

実施例7 第6図は本発明の光学部品の1例の断面概略図であ
り、符号4は光フイルタ、2は光学接着剤、5は光学ガ
ラスである。第7図は上記4としてBK−7ガラス製光フ
イルタ、5としてBK−7ガラスを用い、本発明の光学接
着剤を用いて張り合わせて光硬化させ、1.3μmでの反
射減衰量の最大値を求めた結果を光学接着剤の屈折率n
(横軸)と反射減衰量(dB、縦軸)との関係で示すグラ
フである。光学接着剤の屈折率範囲(λ=1.3μm)
を、 1.456≦n≦1.552 すなわち、(3)式によりnDに換算して、 1.472≦▲n25 D▼≦1.568 とすることにより反射減衰量30dB以上を確保できる。
Example 7 FIG. 6 is a schematic sectional view of an example of an optical component of the present invention, in which reference numeral 4 is an optical filter, 2 is an optical adhesive, and 5 is an optical glass. FIG. 7 shows that the optical filter made of BK-7 glass is used as 4 above, and BK-7 glass is used as 5 and the optical adhesive of the present invention is used for bonding and photocuring. The maximum value of the return loss at 1.3 μm is shown in FIG. The obtained result is the refractive index n of the optical adhesive.
6 is a graph showing the relationship between (horizontal axis) and return loss (dB, vertical axis). Refractive index range of optical adhesive (λ = 1.3 μm)
That is, 1.456 ≦ n ≦ 1.552, that is, it is converted to n D by the equation (3), and 1.472 ≦ ▲ n 25 D ▼ ≦ 1.568, so that the return loss of 30 dB or more can be secured.

実施例8 第8図は本発明の光学部品の1例の断面概略図であ
り、符号6はシングルモード光フアイバ、2は光学接着
剤、7はフエルールである。第9図は上記2として本発
明の光学接着剤を用い、シングルモード光フアイバとシ
ングルモード光フアイバとを張り合わせて光硬化させ、
1.3μmでの反射減衰量の最大値を求めた結果を光学接
着剤の屈折率n(横軸)と反射減衰量(dB、縦軸)との
関係で示すグラフである。光学接着剤の屈折率範囲(λ
=1.3μm)を、 1.450≦n≦1.496 すなわち、(3)式によりnDに換算して、 1.466≦▲n25 D▼≦1.512 とすることにより反射減衰量30dB以上を確保できる。
Example 8 FIG. 8 is a schematic sectional view of an example of an optical component of the present invention, in which reference numeral 6 is a single mode optical fiber, 2 is an optical adhesive, and 7 is a ferrule. In FIG. 9, the optical adhesive of the present invention is used as the above item 2, and the single mode optical fiber and the single mode optical fiber are bonded and photocured,
6 is a graph showing the result of obtaining the maximum reflection attenuation amount at 1.3 μm as a relationship between the refractive index n (horizontal axis) of the optical adhesive and the reflection attenuation amount (dB, vertical axis). Refractive index range of optical adhesive (λ
= 1.3 μm) is 1.450 ≦ n ≦ 1.496, that is, it is converted to n D by the equation (3), and 1.466 ≦ ▲ n 25 D ▼ ≦ 1.512, so that a return loss of 30 dB or more can be secured.

実施例9 第10図は本発明の光学部品の1例の断面概略図であ
り、符号8はマルチモード光フアイバ、2は光学接着
剤、7はフエルールである。第11図は上記2として本発
明の光学接着剤を用い、マルチモード光フアイバとマル
チモード光フアイバとをつき合わせて光硬化させ、1.3
μmでの反射減衰量の最大値を求めた結果を光学接着剤
の屈折率n(横軸)と反射減衰量(dB、縦軸)との関係
で示すグラフである。光学接着剤の屈折率範囲(λ=1.
3μm)を、 1.450≦n≦1.508 すなわち、(3)式によりnDに換算して、 1.466≦▲n25 D▼≦1.524 とすることにより反射減衰量30dB以上を確保できる。
Example 9 FIG. 10 is a schematic sectional view of an example of an optical component of the present invention, in which reference numeral 8 is a multimode optical fiber, 2 is an optical adhesive, and 7 is a ferrule. FIG. 11 shows that the optical adhesive of the present invention is used as the above 2 and the multimode optical fiber and the multimode optical fiber are brought into contact with each other and photocured.
It is a graph which shows the result of having calculated | required the maximum value of the return loss in (micrometer) with the refractive index n (horizontal axis) of an optical adhesive, and the return loss (dB, vertical axis). Refractive index range of optical adhesive (λ = 1.
3 μm) is 1.450 ≦ n ≦ 1.508, that is, it is converted to n D according to the equation (3), and by 1.466 ≦ ▲ n 25 D ▼ ≦ 1.524, a return loss of 30 dB or more can be secured.

実施例10 第12図は本発明の光学部品の1例の斜視図であり、符
号9は透明な光フアイバ、2は9の透明な光フアイバよ
り屈折率の小さな光学接着剤である。
Example 10 FIG. 12 is a perspective view of an example of the optical component of the present invention, in which reference numeral 9 is a transparent optical fiber, and 2 is an optical adhesive having a refractive index smaller than that of the transparent optical fiber 9.

9の光フアイバ上に2の光学接着剤を塗布し、光照射
することにより2の光学接着剤を硬化させ、光フアイバ
を製造できる。透明な光フアイバとしてはポリメチルメ
タクリレート(PMMA)(λ=0.663μmでの屈折率1.4
9)、ポリカーボネート(λ=0.663μmでの屈折率1.5
9)、石英(屈折率nD1.463)等、種々の屈折率をもつ透
明なフアイバに対し、本発明の光学接着剤の適用が可能
である。
The optical fiber 2 can be manufactured by applying the optical adhesive 2 on the optical fiber 9 and irradiating it with light to cure the optical adhesive 2. As a transparent optical fiber, polymethylmethacrylate (PMMA) (refractive index 1.4 at λ = 0.663 μm)
9), polycarbonate (refractive index 1.5 at λ = 0.663μm)
The optical adhesive of the present invention can be applied to transparent fibers having various refractive indexes such as 9) and quartz (refractive index n D 1.463).

実施例11 第13図は本発明の光学部品の1例の斜視図であり、符
号11は光フアイバ、12は光フアイバを束ねてよじつた
後、溶融してなる光結合部、2は光学接着剤である。本
発明の光学接着剤の屈折率を光フアイバの屈折率より小
さくすることにより導波損失の小さなスターカツプラを
形成することができる。
Example 11 FIG. 13 is a perspective view of an example of an optical component of the present invention. Reference numeral 11 is an optical fiber, 12 is an optical coupling portion formed by bundling and twisting optical fibers, and 2 is an optical adhesive. It is an agent. By making the refractive index of the optical adhesive of the present invention smaller than that of the optical fiber, it is possible to form a star cutler having a small waveguide loss.

実施例12 第14図は本発明の光学部品の1例の作製の工程図であ
り、符号13はガラス基板、14は光導波路コア層、15はク
ラツド層である。第14図(a)はガラス基板(屈折率
n)13上にガラス基板より屈折率の大きな光導波路コア
層14を本発明の光学接着剤を用いて所定の厚さに塗布し
硬化した状態を示す。第14図(b)は第14図(a)の14
の光導波路コア層を所定のパターン形状にエツチングし
て光導波路コアを形成した状態を示す。第14図(c)は
光導波路コアの屈折率より小さな屈折率をもつクラツド
層15を本発明の光学接着剤を用いて塗布し、硬化した状
態を示す。このような手順で光導波路を形成することが
容易にできる。
Example 12 FIG. 14 is a process drawing of the production of an example of the optical component of the present invention, in which reference numeral 13 is a glass substrate, 14 is an optical waveguide core layer, and 15 is a cladding layer. FIG. 14 (a) shows a state in which an optical waveguide core layer 14 having a refractive index larger than that of the glass substrate 13 is applied on the glass substrate (refractive index n) 13 to a predetermined thickness using the optical adhesive of the present invention and cured. Show. FIG. 14 (b) is 14 of FIG. 14 (a).
The optical waveguide core layer is etched into a predetermined pattern to form an optical waveguide core. FIG. 14 (c) shows a state in which the cladding layer 15 having a refractive index smaller than that of the optical waveguide core is applied and cured using the optical adhesive of the present invention. The optical waveguide can be easily formed by such a procedure.

実施例13 第15図は本発明の光学部品の1例の作製の工程図であ
り、符号2、11、13、14は前記のとおり、16はバツフア
層、17は光フアイバガイドである。第15図(a)はガラ
ス基板13上にコア用光学接着剤より屈折率の小さな光学
接着剤を所定の厚さに塗布した後硬化しバツフア層16を
形成し、次にバツフア層よりも屈折率の大きな光導波路
コア層14を本発明の光学接着剤を用いて所定の厚さに塗
布し硬化した状態を示す。第15図(b)は第15図(a)
の16及び14のバツフア層及び光導波路コア層を所定のパ
ターン形状にエツチングして光導波路コアの形成と同時
に光フアイバガイド17を形成した状態を示す。第15図
(c)は光フアイバガイドにそわせて光フアイバ11端面
を光導波路につき合わせた状態を示す。第15図(d)は
光導波路コア層14の屈折率よりも小さな屈折率をもつ本
発明の光学接着剤2を用いて塗布し、硬化した状態を示
す。これにより光導波路のクラツド層の形成と同時に光
導波路と光フアイバの接続を行うことができる。
Example 13 FIG. 15 is a process drawing of the production of an example of the optical component of the present invention, wherein reference numerals 2, 11, 13, and 14 are as described above, 16 is a buffer layer, and 17 is an optical fiber guide. In FIG. 15 (a), an optical adhesive having a smaller refractive index than the core optical adhesive is applied on the glass substrate 13 to a predetermined thickness and then cured to form a buffer layer 16, and then the refractive index is set higher than that of the buffer layer. The optical waveguide core layer 14 having a large rate is applied to a predetermined thickness using the optical adhesive of the present invention and cured. Figure 15 (b) is Figure 15 (a).
16 shows a state in which the optical fiber guide 17 is formed simultaneously with the formation of the optical waveguide core by etching the buffer layer and the optical waveguide core layer of 14 in a predetermined pattern shape. FIG. 15 (c) shows a state in which the end face of the optical fiber 11 is aligned with the optical waveguide along the optical fiber guide. FIG. 15 (d) shows a state in which the optical adhesive 2 of the present invention having a refractive index smaller than that of the optical waveguide core layer 14 is applied and cured. As a result, the optical waveguide and the optical fiber can be connected at the same time when the cladding layer of the optical waveguide is formed.

実施例14 第16図は本発明の1実施例である2段分岐回路の斜視
図であつて、第14図に示した工程図に従つて作製した。
第14図(a)はガラス基板(屈折率n)13上にガラス基
板より屈折率の大きな光導波路コア層14をGeをドープし
たすす状堆積ガラスを溶融して所定の厚さに形成した状
態を示す。第14図(b)は第14図(a)の14の光導波路
コア層を所定の形状にエツチングして光導波路コアを形
成した状態を示す。第14図(c)は光導波路コアの屈折
率より小さな屈折率をもつクラツド層15を本発明の光学
接着剤を用いて塗布し、硬化した状態を示す。このよう
な手順で光導波路を形成することが容易にできる。
Example 14 FIG. 16 is a perspective view of a two-stage branch circuit which is one example of the present invention, and was manufactured according to the process chart shown in FIG.
FIG. 14 (a) shows a state in which an optical waveguide core layer 14 having a refractive index larger than that of the glass substrate 13 is formed on a glass substrate (refractive index n) 13 by melting Ge-doped soot-shaped deposited glass to a predetermined thickness. Indicates. FIG. 14 (b) shows a state in which the optical waveguide core layer of FIG. 14 (a) is etched into a predetermined shape to form an optical waveguide core. FIG. 14 (c) shows a state in which the cladding layer 15 having a refractive index smaller than that of the optical waveguide core is applied and cured using the optical adhesive of the present invention. The optical waveguide can be easily formed by such a procedure.

上記の方法により第16図に示す2段分岐回路を作製
し、本発明の光学接着剤の屈折率nD(硬化後)を1.452
に調節しこれをコートし硬化したところ、波長1.3μm
で損失10dBを得て、損失低下効果は極めて大きいことが
わかつた。
The two-stage branch circuit shown in FIG. 16 was produced by the above method, and the refractive index n D (after curing) of the optical adhesive of the present invention was 1.452.
The coating was then adjusted to a wavelength of 1.3 μm.
It was found that a loss of 10 dB was obtained and that the loss reduction effect was extremely large.

実施例15 本発明の光学部品の1例を第15図に示した工程図に従
つて作製した。第15図(a)はガラス基板13上に光導波
路コア層より屈折率の小さなバツフア層を所定の厚さに
形成した上に、バツフア層より屈折率の大きなGeをドー
プしたすす状堆積ガラスを溶融して光導波路コア層14を
所定の厚さに形成した状態を示す。第15図(b)は第15
図(a)の16及び14のバツフア層及び光導波路コア層を
所定のパターン形状にエツチングして光導波路の形成と
同時に光フアイバガイド17を形成した状態を示す。第15
図(c)は光フアイバガイドにそわせて光フアイバ11の
端面を光導波路につき合わせた状態を示す。第15図
(d)は光導波路コア層14の屈折率よりも小さな屈折率
をもつ本発明の光学接着剤2を用いて塗布し、硬化した
状態を示す。これにより、光導波路のクラツド層の形成
と同時に光導波路と光フアイバの接続を行うことができ
る。
Example 15 One example of the optical component of the present invention was produced according to the process chart shown in FIG. FIG. 15 (a) shows a glass substrate 13 on which a buffer layer having a smaller refractive index than the optical waveguide core layer is formed to a predetermined thickness, and a soot-shaped deposited glass doped with Ge having a larger refractive index than the buffer layer. A state in which the optical waveguide core layer 14 is melted to have a predetermined thickness is shown. Figure 15 (b) shows the number 15
FIG. 16A shows a state in which the buffer layers 16 and 14 and the optical waveguide core layer 16 are etched into a predetermined pattern shape to form an optical waveguide and an optical fiber guide 17 at the same time. 15th
FIG. 6C shows a state in which the end face of the optical fiber 11 is aligned with the optical waveguide along the optical fiber guide. FIG. 15 (d) shows a state in which the optical adhesive 2 of the present invention having a refractive index smaller than that of the optical waveguide core layer 14 is applied and cured. As a result, the optical waveguide and the optical fiber can be connected at the same time when the cladding layer of the optical waveguide is formed.

〔発明の効果〕〔The invention's effect〕

以上説明したように本発明の光学接着剤は屈折率調節
範囲が極めて広く、種々の光学部材の張り合わせ及びコ
ーテイングが可能であり、光学特性に優れた光学部品を
室温、短時間に容易に作製できるという利点がある。
As described above, the optical adhesive of the present invention has an extremely wide range of refractive index adjustment, enables bonding and coating of various optical members, and easily manufactures an optical component having excellent optical characteristics at room temperature in a short time. There is an advantage.

【図面の簡単な説明】[Brief description of drawings]

第1図、第2図及び第3図は本発明の光学接着剤の屈折
率に与える効果を示すグラフ、第4図、第6図、第8図
及び第10図は本発明の光学部品の1例の断面概略図、第
5図、第7図、第9図及び第11図はそれぞれその前図に
示した光学部品の効果を示すグラフ、第12図、第13図及
び第16図は本発明の光学部品の1例の斜視図、第14図及
び第15図は本発明の光学部品の1例の作製の工程図であ
る。 1:端面研磨した光フアイバ、2:光学接着剤、3:反射防止
膜付き光学ガラス、4:光フイルタ、5:光学ガラス、6:シ
ングルモード光フアイバ、7:フエルール、8:マルチモー
ド光フアイバ、9:透明な光フアイバ、11:光フアイバ、1
2:光結合部、13:ガラス基板、14:光導波路コア層、15:
クラツド層、16:バツフア層、17:光フアイバガイド
1, 2, and 3 are graphs showing the effect of the optical adhesive of the present invention on the refractive index, and FIGS. 4, 6, 8, and 10 show the optical components of the present invention. Schematic sectional views of one example, FIG. 5, FIG. 7, FIG. 9 and FIG. 11 are graphs showing the effects of the optical components shown in the preceding figures, respectively, and FIG. 12, FIG. 13, FIG. FIG. 14 is a perspective view of an example of the optical component of the present invention, and FIGS. 14 and 15 are process diagrams for manufacturing the example of the optical component of the present invention. 1: Optical fiber with edge polished, 2: Optical adhesive, 3: Optical glass with antireflection film, 4: Optical filter, 5: Optical glass, 6: Single mode optical fiber, 7: Ferrule, 8: Multimode optical fiber , 9: transparent optical fiber, 11: optical fiber, 1
2: Optical coupling part, 13: Glass substrate, 14: Optical waveguide core layer, 15:
Cladded layer, 16: buffer layer, 17: optical fiber guide

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 G02B 6/30 G02B 6/30 G03F 7/004 521 G03F 7/004 521 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location G02B 6/30 G02B 6/30 G03F 7/004 521 G03F 7/004 521

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】下記一般式I: 〔式中、Zは 基(YはH又はCH3基)、Mは 又は nは0又は任意の正数を示す〕で表わされる化合物を含
有していることを特徴とする光学接着剤。
(1) The following general formula (I): [In the formula, Z is Group (Y is H or CH 3 group), M is Or n represents 0 or an arbitrary positive number]. An optical adhesive comprising a compound represented by the formula:
【請求項2】請求項1記載の光学接着剤を透明な光学部
材の張り合わせに用いてなることを特徴とする光学部
品。
2. An optical component using the optical adhesive according to claim 1 for bonding transparent optical members.
【請求項3】請求項1記載の光学接着剤を透明な光学部
材上に被覆してなることを特徴とする光学部品。
3. An optical component comprising a transparent optical member coated with the optical adhesive according to claim 1.
JP5837788A 1988-03-14 1988-03-14 Optical adhesive and optical component using the same Expired - Lifetime JP2511287B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5837788A JP2511287B2 (en) 1988-03-14 1988-03-14 Optical adhesive and optical component using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5837788A JP2511287B2 (en) 1988-03-14 1988-03-14 Optical adhesive and optical component using the same

Publications (2)

Publication Number Publication Date
JPH01234486A JPH01234486A (en) 1989-09-19
JP2511287B2 true JP2511287B2 (en) 1996-06-26

Family

ID=13082636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5837788A Expired - Lifetime JP2511287B2 (en) 1988-03-14 1988-03-14 Optical adhesive and optical component using the same

Country Status (1)

Country Link
JP (1) JP2511287B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03277676A (en) * 1990-03-27 1991-12-09 Daikin Ind Ltd Adhesive for optical member made of transparent plastics
JPH06202086A (en) * 1992-09-28 1994-07-22 Nec Corp High polymer-dispersion type liquid crystal optical element

Also Published As

Publication number Publication date
JPH01234486A (en) 1989-09-19

Similar Documents

Publication Publication Date Title
CA1253371A (en) Glass integrated optical component
EP0634679B1 (en) Coupling structure of optical fibers and optical waveguides
US6886996B2 (en) Optical waveguide, optical module, and method for producing the same module
US6445857B1 (en) Optical waveguide part, its manufacturing method, connection member, optical part, method for connecting optical waveguide part, and optical element
US4398794A (en) Dual directional tap coupler
JP2511287B2 (en) Optical adhesive and optical component using the same
JP7372578B2 (en) optical module
CA2029411A1 (en) Connecting method between waveguide substrate and optical fiber
JPH05107428A (en) End structure of optic fiber and manufacture thereof
JP3057161B2 (en) Organic optical waveguide
JPH0926525A (en) Optical module
CN211826608U (en) Film filter piece type non-uniform splitting optical splitter
CN210270270U (en) Reflection end wavelength division multiplexer
JP3450068B2 (en) Optical waveguide coupling structure
JP3266424B2 (en) Optical waveguide module
JP3645108B2 (en) Manufacturing method of multiplexing / demultiplexing device
JP2812469B2 (en) Optical fiber type wavelength filter
JPS62297369A (en) Production of optical element
US20050041918A1 (en) Optical waveguide and optical multiplexer-demultiplexer
JP3747382B2 (en) Ferrule, optical waveguide module using the ferrule, and manufacturing method thereof
JP3329951B2 (en) Connection structure between optical element and optical component for connection
JPH0429104A (en) Fine optical fiber collimator
JPH02240607A (en) Light incident/exit structure of light guide
JPH0829637A (en) Optical waveguide citcuit, connector of optical fiber and optical waveguide circuit and connecting method
KR100420958B1 (en) Method for manufacturing a mold having curved structure and fabrication method of an optical waveguide device using the same

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term