JP2508504B2 - Method for manufacturing thick cylindrical hollow body made of copper-based memory alloy - Google Patents
Method for manufacturing thick cylindrical hollow body made of copper-based memory alloyInfo
- Publication number
- JP2508504B2 JP2508504B2 JP61070549A JP7054986A JP2508504B2 JP 2508504 B2 JP2508504 B2 JP 2508504B2 JP 61070549 A JP61070549 A JP 61070549A JP 7054986 A JP7054986 A JP 7054986A JP 2508504 B2 JP2508504 B2 JP 2508504B2
- Authority
- JP
- Japan
- Prior art keywords
- memory alloy
- die
- based memory
- copper
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Shaping Metal By Deep-Drawing, Or The Like (AREA)
Description
【発明の詳細な説明】 (産業分野) 本発明はパイプ継手等に利用される銅系記憶合金製厚
肉円筒中空体の製造方法に関する。TECHNICAL FIELD The present invention relates to a method for manufacturing a thick hollow cylindrical hollow body made of a copper-based memory alloy used for pipe joints and the like.
(従来技術とその問題点) 従来、継手等に利用される形状記憶合金製厚肉円筒中
空体は、その難加工性のために、通常の塑性加工によつ
て継目無しのパイプを得ることができず、鋳造丸棒ある
いは熱間押出し丸棒を切削加工することによつて製造さ
れてきた。(Prior Art and Problems Thereof) Conventionally, a thick-walled cylindrical hollow body made of a shape memory alloy used for a joint or the like is difficult to work, so that a seamless pipe can be obtained by ordinary plastic working. No, it has been manufactured by cutting a cast round bar or a hot extruded round bar.
従つて、このような従来技術には次のような問題点が
あつた。Therefore, such a conventional technique has the following problems.
(1)材料歩留りが悪い。(1) The material yield is poor.
(2)丸棒の加工コストに切削コストが大きく加わり全
体の加工コストが高くなる。(2) The cutting cost is greatly added to the processing cost of the round bar, which increases the overall processing cost.
(3)熱間鋳造では結晶粒が粗大化し易く、また熱間押
出しでは丸棒の全長にわたつて組織制御が困難であるた
め、形状記憶特性が劣り、かつ均一な特性を得るための
管理が困難でバラツキが大きくなる。(3) In hot casting, crystal grains tend to become coarse, and in hot extrusion, it is difficult to control the structure over the entire length of the round bar. Difficult and large variations.
(発明の目的) 本発明の目的は、上記の従来技術の問題点を解決し、
結晶粒が微細かつ均一であり、形状記憶特性が優れ、良
好な加工性を有しかつ材料歩留りがよい銅系記憶合金製
厚肉円筒中空体の製造方法の提供にある。(Object of the Invention) An object of the present invention is to solve the above-mentioned problems of the prior art,
It is an object of the present invention to provide a method for producing a thick hollow cylindrical hollow body made of a copper-based memory alloy having fine and uniform crystal grains, excellent shape memory characteristics, good workability, and good material yield.
(発明の構成) すなわち、本発明によれば以下の構成からなる銅系記
憶合金製厚肉円筒中空体の製造方法が提供される。(Structure of the Invention) That is, according to the present invention, there is provided a method for manufacturing a thick cylindrical hollow body made of a copper-based memory alloy having the following structure.
(1)銅系記憶合金からなる円形素材に円錐ダイスある
いは流線形ダイスと平底ポンチによって深絞りとしごき
加工とを同時に施して厚肉円筒中空体を製造する方法で
あって、ダイス温度を350℃から600℃、ポンチ温度を20
℃から100℃未満の範囲に保持し、かつ上記円形素材の
温度を350℃から600℃の範囲に加熱して加工することを
特徴とする厚肉円筒中空体の製造方法。(1) A method for producing a thick-walled cylindrical hollow body by simultaneously subjecting a circular material made of a copper-based memory alloy to deep-drawing and ironing with a conical die or streamline die and a flat bottom punch, and a die temperature of 350 ° C. To 600 ℃, punch temperature 20
A method for producing a thick-walled hollow cylindrical body, which is characterized in that the temperature of the circular raw material is maintained in the range of 350 ° C to 600 ° C while the temperature is maintained in the range of ℃ to less than 100 ° C.
(2)ダイス円錐角が20〜40°であって、しごき率が最
大20%である上記(1)の製造方法。(2) The manufacturing method according to (1) above, wherein the die cone angle is 20 to 40 ° and the ironing rate is 20% at maximum.
(3)上記銅系記憶合金がCu−Zn−Al系記憶合金である
上記(1)または(2)の製造方法。(3) The manufacturing method according to (1) or (2) above, wherein the copper-based memory alloy is a Cu-Zn-Al-based memory alloy.
本発明では以上のように銅系記憶合金製の円形素材
に、円錐ダイスあるいは流線形ダイスと平底ポンチとを
用い、深絞りとしごき加工を同時に施し、厚肉円筒中空
体を製造することにより、材料歩留りを向上させること
ができ、また、本発明では比較的低い温度で成形が可能
であるので、結晶粒が微細で均一になり、組織制御が容
易で、形状記憶特性に優れたものが製造可能となる。In the present invention, the circular material made of copper-based memory alloy as described above, using a conical die or a streamline die and a flat bottom punch, simultaneously subjected to deep drawing and ironing, by producing a thick cylindrical hollow body, It is possible to improve the material yield, and in the present invention, it is possible to mold at a relatively low temperature, so the crystal grains become fine and uniform, the structure control is easy, and the one with excellent shape memory characteristics is manufactured. It will be possible.
上記深絞り及びしごきによる加工に際して、ダイス、
ポンチ及び円形素材の各温度は重要であり、ダイス温度
は350〜600℃の範囲、ポンチ温度は20℃から100℃未
満、かつ円形素材温度は350〜600℃の範囲の温度域で良
好な加工性が得られる。更に、ダイス円錐角が20°〜40
°の範囲、しごき率最大20%の条件により、加工性が向
上する。When processing with the above deep drawing and ironing, dies,
Each temperature of punch and circular material is important, die temperature is in the range of 350-600 ℃, punch temperature is between 20 ℃ and less than 100 ℃, and circular material temperature is good in the temperature range of 350-600 ℃. Sex is obtained. Furthermore, the dice cone angle is 20 ° -40
The workability is improved under the conditions of the range of ° and the maximum ironing rate of 20%.
本発明では銅系記憶合金としてCu−Zn−Al系記憶合金
が使用できる。In the present invention, a Cu-Zn-Al-based memory alloy can be used as the copper-based memory alloy.
次に、本発明を実施例によつて具体的に説明するが、
これらの実施例によつて本発明の範囲が限定されるもの
ではない。Next, the present invention will be specifically described with reference to Examples.
The scope of the invention is not limited by these examples.
実施例1 高周派誘導加熱、大気溶解により下記組成の試料を溶
製した。Example 1 A sample having the following composition was melted by high frequency induction heating and air melting.
Cu:残部,Zn:26.0%,Al:4.1%(重量%)得られたイン
ゴツトを面削後、熱間圧延(650℃)により、厚さ2mmの
板材を作成し、これを機械加工により円形素材として試
験に供した。金型温度の成形性に及ぼす影響をみるため
に、ダイス温度,ポンチ温度および円形素材の温度を変
えて深絞り試験を行つた。Cu: balance, Zn: 26.0%, Al: 4.1% (wt%) After the obtained ingot was face-cut, hot rolled (650 ° C) to make a plate material with a thickness of 2 mm, which was circularly machined. The material was used for the test. In order to see the effect of mold temperature on formability, deep drawing tests were conducted by changing the die temperature, punch temperature and temperature of circular material.
(1)試験条件 金型形状:ダイス円錐角30°,ダイス径φ19.6,ポンチ
径φ15.6 円形素材寸法:φ28.0,2.0t ポンチスピード:10mm/sec (2)試験結果 実施例2 実施例1で作成したのと同一の円形素材を用いてダイ
ス円錐面の影響をみるため、角度を変えて深絞り試験を
行つた。(1) Test conditions Mold shape: Die cone angle 30 °, Die diameter φ19.6, Punch diameter φ15.6 Circular material size: φ28.0, 2.0 t Punch speed: 10mm / sec (2) Test result Example 2 In order to examine the influence of the conical surface of the die using the same circular material as that prepared in Example 1, a deep drawing test was conducted at different angles.
(1)金型形状:ダイス径φ19.6,ダイス円錐角15°〜4
5°,ポンチ径φ15.6 円形素材寸法:φ52.8,2.0t ダイス加熱温度:450℃,ポンチ温度:20℃, 円形素材:450℃ ポンチスピード:20mm/sec (2)試験結果 この結果から、ダイス円錐角は20°〜40°の範囲が適
当であることが判明した。(1) Mold shape: Die diameter φ19.6, Die cone angle 15 ° ~ 4
5 °, punch diameter φ15.6 Circular material size: φ52.8, 2.0 t Die heating temperature: 450 ℃, Punch temperature: 20 ℃, Circular material: 450 ℃ Punch speed: 20mm / sec (2) Test result From this result, it was found that the die cone angle of 20 ° to 40 ° is suitable.
実施例3 実施例1で作成したものと同一の円形素材を用い、板
厚を変えることにより、しごき率を変え、絞り及びしご
き加工を行なつた。Example 3 The same circular material as that prepared in Example 1 was used, and the ironing ratio was changed by changing the plate thickness, and drawing and ironing were performed.
(1)試験条件 金型形状 :ダイス円錐角30°,ダイス径φ19.6,
ポンチ径φ15.6 円形素材寸法 :φ35.0,板厚2.0〜2.6mm ダイス加熱温度:450℃,ポンチ温度:20℃, 円形素材温度 :450℃ ポンチスピード:10mm/sec (2)試験結果 この結果から明らかであるように、最大しごき率が最
大約20%の範囲内で良好な円筒中空体が得られることが
判明した。(1) Test conditions Mold shape: Die cone angle 30 °, Die diameter φ19.6,
Punch diameter φ15.6 Circular material size: φ35.0, Plate thickness 2.0 to 2.6mm Die heating temperature: 450 ℃, Punch temperature: 20 ℃, Circular material temperature: 450 ℃ Punch speed: 10mm / sec (2) Test result As is clear from this result, it was found that a good cylindrical hollow body can be obtained when the maximum ironing ratio is within the range of about 20% at maximum.
なお、しごき率は{板厚−(ダイス径−ポンチ径)÷
2}÷板厚なる式により計算した。The ironing rate is {plate thickness- (die diameter-punch diameter) /
2} ÷ plate thickness.
実施例4 実施例1と同様にZn:20.6%,Al:6.1%,Fe:0.3%,Ti:
0.08%,Cu:残部なる組成のインゴツトを作成し、熱間圧
延と機械加工とにより、53φ×2.2tの円形素材とし、ダ
イス円錐角:30°,ダイス径:15.6φ,金型と円形素材の
温度:450℃の条件で熱間絞り,しごき加工を行つたの
ち、端部を機械加工により、仕上げて内径:15.6φ,肉
厚:2t,長25mmの継手素材とした。さらに、これを650
℃で20分間加熱後0℃の水中に急冷したのち、100℃で2
0分間加熱することにより熱処理を施した。Example 4 Similar to Example 1, Zn: 20.6%, Al: 6.1%, Fe: 0.3%, Ti:
0.08%, Cu: create a Ingotsuto balance a composition, by the hot rolling and machining a circular material 53φ × 2.2 t, die cone angle: 30 °, die diameter: 15.6Fai, mold and the circular material After hot drawing and ironing at a temperature of 450 ℃, the ends were machined to give a joint material with an inner diameter of 15.6φ, a wall thickness of 2 t and a length of 25 mm. In addition, this 650
After heating at 0 ° C for 20 minutes, quenching in 0 ° C water, and then at 100 ° C for 2 minutes
Heat treatment was performed by heating for 0 minutes.
次に、−38℃(本合金の変態温度は−33℃である)で
内径にマンドレスを挿入することにより、径で4%だけ
拡管した。さらに、15.90mmの芯金治具を挿入した状態
で17℃に昇温し芯金治具の引抜力を測定した。比較のた
め、同様のインゴツトから熱間鍛造により25φ丸棒を得
て同様の寸法に機械加工して得た管を同様の熱処置、拡
管により同様の引抜試験に供した。Next, by inserting a mandless into the inner diameter at -38 ° C (the transformation temperature of the present alloy is -33 ° C), the diameter was expanded by 4%. Furthermore, with the core metal jig of 15.90 mm inserted, the temperature was raised to 17 ° C. and the pull-out force of the core metal jig was measured. For comparison, a pipe obtained by obtaining a 25φ round bar from the same ingot by hot forging and machining it to the same size was subjected to the same heat treatment and pipe expansion for the same drawing test.
なお、両者の熱処理後の結晶粒度を測定した結果従来
方法のものでは平均粒径3.5mmで、本発明方法によるも
のは平均粒径0.2mmであつた。また、引抜試験の結果は
従来方法によるものでは650kgであつたのに対し、本発
明方法によるものは870kgで30%程度の改良が達成され
た。As a result of measuring the crystal grain size after heat treatment of both, the average grain size of the conventional method was 3.5 mm, and the average grain size of the method of the present invention was 0.2 mm. Further, the result of the pull-out test was 650 kg by the conventional method, whereas the improvement by 870 kg by the method of the present invention was about 30%.
第1図は、以上の実施例において使用された金型の一
部断面を含む正面図である。FIG. 1 is a front view including a partial cross section of a mold used in the above embodiments.
(発明の効果) 本発明は上記構成をとることによつて、次の利点を有
する銅系記憶合金製厚肉円筒中空体を提供することがで
きる。(Effects of the Invention) With the above-described configuration, the present invention can provide a thick hollow cylindrical hollow body made of a copper-based memory alloy having the following advantages.
(1)材料歩留りがよく加工コストが低い。(1) Good material yield and low processing cost.
(2)結晶粒度は微細かつ均一で形状記憶性能が勝れて
いる。(2) The crystal grain size is fine and uniform, and the shape memory performance is excellent.
第1図は本発明の一実施例に使用される金型の一部断面
を含む正面図である。 図において、 1……円形素材、3……ダイス 2……ポンチ、3a……ダイス径 2a……ポンチ径、4……ダイス円錐角の角度FIG. 1 is a front view including a partial cross section of a mold used in one embodiment of the present invention. In the figure, 1 ... Circular material, 3 ... Die, 2 ... Punch, 3a ... Die diameter 2a ... Punch diameter, 4 ... Die cone angle
Claims (3)
スあるいは流線形ダイスと平底ポンチによって深絞りと
しごき加工とを同時に施して厚肉円筒中空体を製造する
方法であって、ダイス温度を350℃から600℃、ポンチ温
度を20℃から100℃未満の範囲に保持し、かつ上記円形
素材の温度を350℃から600℃の範囲に加熱して加工する
ことを特徴とする厚肉円筒中空体の製造方法。1. A method for producing a thick-walled cylindrical hollow body by simultaneously subjecting a circular material made of a copper-based memory alloy to deep-drawing and ironing with a conical die or a streamline die and a flat-bottom punch. Thick cylindrical hollow, characterized by holding the punch temperature from 350 ° C to 600 ° C, the punch temperature in the range from 20 ° C to less than 100 ° C, and heating the circular material temperature in the range from 350 ° C to 600 ° C. Body manufacturing method.
率が最大20%である特許請求の範囲第1項の製造方法。2. The manufacturing method according to claim 1, wherein the die cone angle is 20 to 40 ° and the ironing ratio is 20% at maximum.
である特許請求の範囲第1項または第2項の製造方法。3. The method according to claim 1 or 2, wherein the copper-based memory alloy is a Cu-Zn-Al-based memory alloy.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61070549A JP2508504B2 (en) | 1986-03-28 | 1986-03-28 | Method for manufacturing thick cylindrical hollow body made of copper-based memory alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61070549A JP2508504B2 (en) | 1986-03-28 | 1986-03-28 | Method for manufacturing thick cylindrical hollow body made of copper-based memory alloy |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62227531A JPS62227531A (en) | 1987-10-06 |
JP2508504B2 true JP2508504B2 (en) | 1996-06-19 |
Family
ID=13434709
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61070549A Expired - Lifetime JP2508504B2 (en) | 1986-03-28 | 1986-03-28 | Method for manufacturing thick cylindrical hollow body made of copper-based memory alloy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2508504B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2790072B2 (en) * | 1994-02-15 | 1998-08-27 | 東洋製罐株式会社 | Manufacturing method of seamless cans |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE7810891L (en) * | 1977-11-09 | 1979-05-10 | Aluminum Co Of America | PROCEDURE FOR SHAPING A CUP FORM SHALL |
-
1986
- 1986-03-28 JP JP61070549A patent/JP2508504B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS62227531A (en) | 1987-10-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7601232B2 (en) | α-β titanium alloy tubes and methods of flowforming the same | |
JP2540183B2 (en) | Tube manufacturing method | |
JP2003311317A (en) | Method for manufacturing seamless tube | |
US2249349A (en) | Method of hot working an aluminum base alloy and product thereof | |
CN109772922A (en) | A kind of crowded upsetting mold squeezes upsetting processing method and magnesium alloy center collet | |
CN102345035A (en) | Production process for titanium and nickel shape memory alloy material | |
US4043023A (en) | Method for making seamless pipe | |
CN112718910A (en) | Manufacturing method of large-caliber TC4 titanium alloy thick-wall pipe | |
JP3853214B2 (en) | Method and related apparatus for manufacturing industrial tubes or shaped bars from metal | |
JP2508504B2 (en) | Method for manufacturing thick cylindrical hollow body made of copper-based memory alloy | |
CN112170519A (en) | Production method of L80-9Cr martensitic stainless steel pipe | |
JPS6233009B2 (en) | ||
CN115138707A (en) | Forming method of stainless steel square tube | |
JP2001096337A (en) | Method of manufacturing copper tube | |
JPH03294036A (en) | Manufacture of high strength magnesium alloy material | |
EP0805724B1 (en) | Machining of a memory metal | |
JPS6233008B2 (en) | ||
RU2110600C1 (en) | Method for producing articles from zirconium alloys | |
JP2001096338A (en) | Method of manufacturing copper tube for refrigerator or air-conditioner | |
CN114260314B (en) | Manufacturing method of titanium alloy seamless tube blank with diameter-thickness ratio larger than 20 | |
JPS60149751A (en) | Metal composition | |
Es-Said et al. | Effect of processing parameters on the earing and mechanical properties of strip cast type 3004 Al alloy | |
JPS59185724A (en) | Manufacture of heat resistant cast steel pipe | |
JPS6233010B2 (en) | ||
CN102553926A (en) | Method for manufacturing large-caliber seamless alloy steel pipes |