JP2001096337A - Method of manufacturing copper tube - Google Patents

Method of manufacturing copper tube

Info

Publication number
JP2001096337A
JP2001096337A JP27283199A JP27283199A JP2001096337A JP 2001096337 A JP2001096337 A JP 2001096337A JP 27283199 A JP27283199 A JP 27283199A JP 27283199 A JP27283199 A JP 27283199A JP 2001096337 A JP2001096337 A JP 2001096337A
Authority
JP
Japan
Prior art keywords
copper tube
annealing
copper
tube
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP27283199A
Other languages
Japanese (ja)
Inventor
Masahiko Sasaki
正彦 佐々木
慶平 ▲冬▼
Kiyouhei Fuyu
Kiyoshi Oizumi
清 大泉
Hajime Sasaki
元 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Hitachi Cable Ltd
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd, Mitsui Engineering and Shipbuilding Co Ltd filed Critical Hitachi Cable Ltd
Priority to JP27283199A priority Critical patent/JP2001096337A/en
Publication of JP2001096337A publication Critical patent/JP2001096337A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)
  • Metal Extraction Processes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a copper tube which is inexpensive and stable in quality. SOLUTION: A material tube of copper is cast by a continuous casting process using a heated mold, and the resultant material tube having a directionally solidified structure is processed by applying at least twice of cold drawing and annealing to form the copper tube having a prescribed size.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、銅管の製造方法に
関し、特に、低コストで、品質的にも安定した銅管の製
造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a copper tube, and more particularly to a method for manufacturing a copper tube which is low in cost and stable in quality.

【0002】[0002]

【従来の技術】熱交換器、あるいは建築用給水給湯に使
用される銅管の従来の製造方法として、溶湯から鋳塊を
作り、この鋳塊を加熱した後、熱間押出により銅の素管
を製作し、これにチューブレデューサによる圧延および
引き抜き加工等を繰り返し施すことによって、所定のサ
イズの銅管を製造する方法が知られている。
2. Description of the Related Art As a conventional method of manufacturing a copper pipe used for a heat exchanger or a hot water supply for construction, an ingot is formed from a molten metal, and after heating the ingot, a copper pipe is formed by hot extrusion. There is known a method of manufacturing a copper tube of a predetermined size by repeatedly performing rolling and drawing with a tube reducer and the like.

【0003】また、従来の他の製造方法として、鋳塊に
熱間加工および冷間加工を施すことによって、一旦、所
望の厚さの金属板を製造した後、これを所定のサイズの
銅管の形状に曲げ加工し、合わせ目を溶接、あるいは鍛
接等によって接合する方法が知られている。
As another conventional manufacturing method, a metal plate having a desired thickness is once manufactured by subjecting an ingot to hot working and cold working, and then the metal plate is formed into a copper tube having a predetermined size. There is known a method in which the joint is bent by welding or forging.

【0004】[0004]

【発明が解決しようとする課題】しかし、これら従来の
製造方法によると、前者の場合、高価な熱間押出設備等
が必要となるだけでなく、工程が複雑であることからコ
スト的に問題があり、また、押出ビレットの容量に限界
があるために製作可能な素管の長さに制約があり、この
点もコスト高の要因となっていた。
However, according to these conventional manufacturing methods, in the former case, not only expensive hot extrusion equipment is required, but also the process is complicated, so that there is a problem in cost. In addition, since the capacity of the extruded billet is limited, the length of the raw tube that can be manufactured is limited, which also causes an increase in cost.

【0005】一方、後者の製造方法においては、金属板
を得るための熱間および冷間圧延、管体形状にするため
の曲げ加工、あるいはその後に続く溶接、鍛接加工と工
程数が多く、従って、より高コストになるとともに、さ
らに、この方法の場合には、溶接部、あるいは鍛接部に
腐食が発生しやすいことからくる品質上の問題がある。
On the other hand, in the latter manufacturing method, hot and cold rolling for obtaining a metal plate, bending for forming a tubular body, or subsequent welding and forging are performed in a large number of steps. In addition, the cost becomes higher, and furthermore, this method has a quality problem due to the fact that corrosion tends to occur in the welded portion or the forged portion.

【0006】従って、本発明の目的は、低コストで、品
質的にも安定した銅管の製造方法を提供することにあ
る。
Accordingly, an object of the present invention is to provide a method for manufacturing a copper tube which is low in cost and stable in quality.

【0007】[0007]

【課題を解決するための手段】本発明は、上記の目的を
達成するため、銅の素管を延伸加工することによって所
定のサイズの銅管を製造する銅管の製造方法において、
一方向凝固組織を有する前記銅の素管を加熱鋳型を使用
した連続鋳造により鋳造し、前記銅の素管に冷間延伸加
工と焼鈍処理を2回以上施すことにより、所定のサイズ
の銅管とすることを特徴とする銅管の製造方法を提供す
るものである。
Means for Solving the Problems To achieve the above object, the present invention provides a method for producing a copper tube of a predetermined size by stretching a copper tube.
The copper tube having a unidirectional solidification structure is cast by continuous casting using a heating mold, and the copper tube is subjected to a cold drawing process and an annealing process two or more times to form a copper tube having a predetermined size. And a method for manufacturing a copper tube.

【0008】上記の加熱鋳型を使用した連続鋳造とは、
溶湯を鋳型から連続的に排出させる鋳造方式を意味し、
鋳型として加熱型の鋳型を使用することによって、鋳型
の出口の内壁面の温度を鋳造材の凝固点以上に保ち、こ
れにより鋳造殻の生成を防止した鋳造方式をいう。
[0008] Continuous casting using the above-mentioned heating mold is as follows.
Means a casting method that continuously discharges the molten metal from the mold,
A casting method in which the temperature of the inner wall surface at the outlet of the mold is maintained at a temperature equal to or higher than the freezing point of the cast material by using a heating mold as a mold, thereby preventing the formation of a casting shell.

【0009】本発明において、2回以上にわたって行わ
れる冷間延伸と焼鈍処理における1回目の延伸と焼鈍
は、鋳造組織を再結晶させるために行われ、2回目以降
は、用途に応じた結晶組織、硬さ、および機械的特性を
調整するために行われる。
In the present invention, the first stretching and annealing in the cold stretching and annealing performed twice or more times are performed to recrystallize the cast structure, and the second and subsequent times are performed in accordance with the crystal structure according to the application. , Hardness, and mechanical properties.

【0010】毎回、あるいは適宜の回の冷間延伸加工を
一つのサイズへの1回のみの加工とせずに、数回に分け
ていくつかのサイズを経て所定のサイズに縮管する多段
式加工とすることは可能である。
[0010] Multistage processing in which a cold drawing process of each time or an appropriate time is not performed only once to one size, but is reduced to a predetermined size through several sizes in several times. Is possible.

【0011】最初の焼鈍処理の前に行う冷間延伸加工に
おける加工度は、35〜80%に設定することが好まし
い。35%未満では、加工によって銅の素管内に蓄積さ
れる歪みの密度が少なすぎるため、焼鈍処理を行っても
均一な再結晶組織が得られなくなる。また、逆に、加工
度を80%を超えて設定する場合には、加工中において
断管が発生するようになり好ましくない。
The working ratio in the cold stretching performed before the first annealing is preferably set to 35 to 80%. If it is less than 35%, the density of strain accumulated in the copper tube due to processing is too low, so that a uniform recrystallized structure cannot be obtained even if annealing treatment is performed. On the other hand, if the working ratio is set to be more than 80%, disconnection occurs during the working, which is not preferable.

【0012】1回目の焼鈍処理と2回目の焼鈍処理の
間、あるいはその後の焼鈍処理間における冷間延伸加工
の加工度は、50%以上に設定すべきであり、これを割
ると結晶組織、硬さ、および機械的特性において充分な
ものが得られなくなる。
[0012] The working ratio of the cold drawing between the first annealing and the second annealing or between the subsequent annealing should be set to 50% or more. Sufficient hardness and mechanical properties cannot be obtained.

【0013】最初の焼鈍処理は、650〜880℃の温
度範囲で行うことが好ましく、この温度範囲は、均質で
細密な再結晶組織の生成を保証する。処理温度が650
℃を下廻る場合には、均一な再結晶組織の確保が難しく
なる。
[0013] The first annealing treatment is preferably carried out in a temperature range of 650 to 880 ° C, which ensures the formation of a homogeneous and fine recrystallized structure. Processing temperature is 650
When the temperature is lower than ℃, it is difficult to secure a uniform recrystallized structure.

【0014】これは、加熱鋳型を使用した連続鋳造によ
り製造される銅の素管が、特有の一方向凝固組織を有し
ていることから、延伸加工後の焼鈍温度が低くなると、
再結晶しにくくなるためであり、一方、処理温度を88
0℃を超過して設定すると、再結晶組織が粗大化しやす
くなり、細密な結晶組織の確保が難しくなる。
[0014] This is because the copper raw tube manufactured by continuous casting using a heating mold has a unique unidirectional solidification structure.
This is because it is difficult to recrystallize.
If the temperature exceeds 0 ° C., the recrystallized structure is likely to be coarse, and it is difficult to secure a fine crystal structure.

【0015】また、2回目以降の焼鈍処理については、
300〜650℃の温度範囲に設定することが好まし
く、設定温度がこの範囲を下廻ると再結晶組織が得られ
ず、逆に、この範囲を超過すると、結晶組織が肥大化し
て引張強度と伸びに充分なものが得られなくなる。
For the second and subsequent annealing treatments,
It is preferable to set the temperature in the range of 300 to 650 ° C. If the set temperature is lower than this range, a recrystallized structure cannot be obtained. Conversely, if the temperature exceeds this range, the crystal structure is enlarged and the tensile strength and elongation are increased. Cannot be obtained.

【0016】本発明において必要とされる加工設備は、
連続鋳造装置とこれに取り付けられる加熱鋳型、および
延伸加工のための、たとえば、簡便なフローティングプ
ラグを使用した引き抜き加工装置等であり、いずれも広
く普及し、あるいは安価な設備であり、従来においてこ
の種の銅管を製造するのに必要とされてきた熱間押出装
置のような特別な設備は一切必要としない。
The processing equipment required in the present invention includes:
For example, a continuous casting apparatus and a heating mold attached to the apparatus, and a drawing apparatus using a simple floating plug for stretching, etc., all of which are widely spread or inexpensive equipment. No special equipment is required, such as the hot extrusion equipment that has been required to produce seed copper tubing.

【0017】[0017]

【発明の実施の形態】次に、本発明による銅管の製造方
法の実施の形態について説明する。
Next, an embodiment of a method for manufacturing a copper tube according to the present invention will be described.

【実施例1】1050℃に加熱されて上下に開口した黒
鉛の鋳型と、中子をこの鋳型の中心に位置させた縦型連
続鋳造装置を使用し、鋳造速度を250mm/分に設定
することにより、36mmの外径と2mmの肉厚を有し
た銅の素管(断面円形。以下同じ)を連続鋳造した。
EXAMPLE 1 Using a graphite mold heated to 1050 ° C. and opened vertically, and a vertical continuous casting apparatus with a core positioned at the center of the mold, the casting speed was set to 250 mm / min. In this manner, a copper tube (circular in section; the same applies hereinafter) having an outer diameter of 36 mm and a thickness of 2 mm was continuously cast.

【0018】次に、この銅の素管を加工度60%の条件
下で冷間延伸して外径21mm、肉厚1.4mmの銅管
に加工した後、1回目の焼鈍処理を800℃の温度で1
時間実施し、引き続きこれを延伸加工することにより外
径11mm、肉厚0.5mmの目標サイズまで加工し、
最後に、450℃で20分間の焼鈍処理を行うことによ
り所定の銅管を製造した。
Next, the copper tube was cold-drawn under the condition of a working degree of 60% to form a copper tube having an outer diameter of 21 mm and a wall thickness of 1.4 mm. At the temperature of 1
It is processed to the target size with an outer diameter of 11 mm and a wall thickness of 0.5 mm.
Finally, a predetermined copper tube was manufactured by performing an annealing treatment at 450 ° C. for 20 minutes.

【0019】[0019]

【実施例2】実施例1において、黒鉛鋳型の加熱温度を
1070℃、および鋳造速度を200mm/分に設定
し、さらに、銅材料として0.023重量%のPを含有
した銅材を使用することにより、外径51mm、肉厚
2.6mmのリン酸銅の素管を製造し、次いで、この素
管を、加工度を52.5%に設定した冷間延伸によって
外径35mm、肉厚1.8mmの銅管に加工し、さら
に、これに800℃で30分の焼鈍処理を施した後、再
び冷間延伸を行って外径12.5mm、肉厚0.6mm
の目標サイズまで加工し、最後に、450℃で30分間
焼鈍することにより所定の銅管を製造した。
Example 2 In Example 1, the heating temperature of the graphite mold was set at 1070 ° C., the casting speed was set at 200 mm / min, and a copper material containing 0.023% by weight of P was used as the copper material. In this way, a copper phosphate tube having an outer diameter of 51 mm and a wall thickness of 2.6 mm was manufactured, and then this tube was subjected to cold stretching with a working ratio of 52.5% to an outer diameter of 35 mm and a wall thickness of After processing into a 1.8 mm copper tube, and further performing an annealing process at 800 ° C. for 30 minutes, cold drawing was performed again to obtain an outer diameter of 12.5 mm and a wall thickness of 0.6 mm.
And finally annealed at 450 ° C. for 30 minutes to produce a predetermined copper tube.

【0020】[0020]

【実施例3】実施例1において、黒鉛鋳型の加熱温度を
1010℃、および鋳造速度を200mm/分に設定
し、さらに、銅材料として15重量%のNiを含有した
銅材を使用することにより、外径42mm、肉厚2.2
mmのキュープロニッケル素管を製造し、次いで、この
素管を加工度55.4%の冷間延伸によって外径26m
m、肉厚1.6mmの銅管に加工し、さらに、これに7
80℃で1時間の焼鈍処理を施した後、再度冷間延伸を
行って外径13mm、肉厚0.6mmまで縮管し、最後
に、500℃で10分間の焼鈍処理を施すことによって
所定の銅管を製造した。
Example 3 In Example 1, the heating temperature of the graphite mold was set at 1010 ° C., the casting speed was set at 200 mm / min, and a copper material containing 15% by weight of Ni was used as the copper material. , Outer diameter 42mm, wall thickness 2.2
mm cupronickel tube was manufactured, and then the tube was subjected to cold drawing at a working ratio of 55.4% to an outer diameter of 26 m.
m, processed into a 1.6 mm thick copper tube.
After performing an annealing treatment at 80 ° C. for 1 hour, cold drawing is performed again, the tube is reduced to an outer diameter of 13 mm and a wall thickness of 0.6 mm, and finally, an annealing treatment is performed at 500 ° C. for 10 minutes. Was manufactured.

【0021】[0021]

【参考例1】実施例1において、鋳造後の冷間延伸加工
における加工度を25%に設定するとともに、1回目の
焼鈍処理前の他の条件を実施例1と同じに設定し、1回
目の焼鈍処理を780℃で1時間実施したところ、2回
目の冷間延伸加工において断管が発生した。結晶組織を
確認した結果、混粒状態を呈していた。
Reference Example 1 In Example 1, the working ratio in the cold stretching after casting was set to 25%, and the other conditions before the first annealing were set to the same as those in Example 1; Was carried out at 780 ° C. for 1 hour, and a disconnection occurred in the second cold stretching. As a result of confirming the crystal structure, a mixed particle state was exhibited.

【0022】[0022]

【参考例2】1回目の焼鈍処理の前のすべての条件を実
施例1と同じ条件に設定し、1回目の焼鈍を640℃で
1時間実施したところ、2回目の冷間延伸加工において
断管が発生した。結晶組織を確認した結果、混粒状態を
呈していた。
Reference Example 2 All the conditions before the first annealing were set to the same conditions as in Example 1, and the first annealing was performed at 640 ° C. for 1 hour. A tube has developed. As a result of confirming the crystal structure, a mixed particle state was exhibited.

【0023】[0023]

【参考例3】1回目の焼鈍処理の前のすべての条件を実
施例1と同じ条件に設定し、1回目の焼鈍を900℃で
1時間実施したところ、2回目の延伸加工において断管
が発生した。結晶組織を確認した結果、結晶の肥大化が
認められた。
[Reference Example 3] All conditions before the first annealing were set to the same conditions as in Example 1, and the first annealing was performed at 900 ° C for 1 hour. Occurred. As a result of confirming the crystal structure, enlargement of the crystal was observed.

【0024】表1に、以上の実施例および参考例におけ
る主要点と、これら各例によって得られた銅管の結晶粒
径の観察結果と伸び特性を示す。
Table 1 shows the main points in the above Examples and Reference Examples, the results of observation of the crystal grain size of the copper tubes obtained in these Examples, and the elongation characteristics.

【0025】[0025]

【表1】 [Table 1]

【0026】表1によると、実施例により製造された銅
管が、いずれも50μm以下の細密な結晶組織と高い硬
度を示していることが認められ、熱交換器用配管材、あ
るいは建築用給水給湯用配管材などとして充分な特性を
有することが確認された。
According to Table 1, it was recognized that all of the copper tubes manufactured in the examples had a fine crystal structure of 50 μm or less and a high hardness, and were found to be piping materials for heat exchangers or hot and cold water for construction. It has been confirmed that the material has sufficient properties as a piping material for use.

【0027】参考例が、特性評価の段階にまで至ってい
ない理由は、参考例1が1回目の焼鈍処理前の冷間延伸
における加工度が低いこと、参考例2が1回目の焼鈍処
理が温度不足であること、参考例3が1回目の焼鈍処理
が高温に過ぎることによる。本発明の実施に当たって
は、1回目の焼鈍処理前の冷間延伸加工度と1回目の焼
鈍処理温度に配慮する必要がある。
The reason why the reference example did not reach the stage of property evaluation is that reference example 1 had a low workability in cold stretching before the first annealing treatment, and reference example 2 had a temperature reduction in the first annealing treatment. Insufficiency is caused by the fact that the first annealing treatment is too high in Reference Example 3. In carrying out the present invention, it is necessary to consider the degree of cold stretching before the first annealing and the temperature of the first annealing.

【0028】[0028]

【発明の効果】以上説明したように、本発明による銅管
の製造方法によれば、銅の素管を加熱鋳型を使用した連
続鋳造により鋳造し、これによって得られた銅の素管に
おける一方向凝固組織を考慮して、冷間延伸と焼鈍処理
を2回以上にわたって行い、これにより所定の特性を有
する銅管を製造するものであることから、鋳造から完成
銅管を得るまでの製造過程において、熱間押出装置のよ
うな特別な設備を一切必要とせず、従って、設備投資上
の経済的負担が少ない。
As described above, according to the method for manufacturing a copper tube according to the present invention, a copper tube is cast by continuous casting using a heating mold, and the copper tube obtained by this method is used. In consideration of the directionally solidified structure, cold drawing and annealing are performed twice or more to produce a copper tube having predetermined characteristics. Therefore, the production process from casting to obtaining a finished copper tube Does not require any special equipment such as a hot extrusion apparatus, and therefore has a small economic burden on equipment investment.

【0029】また、工程も簡潔であり、さらに、鋳造に
よって銅の素管を製造するものであることから、従来の
熱間押出方式におけるようなビレットの容量制限からく
る銅素管の長さの制約がなく、従って、この点からも低
コスト製造が可能となる。金属板を曲げ加工して、溶
接、あるいは鍛接する従来の方法におけるような品質上
の問題は、もちろんない。
Further, since the process is simple and the copper raw tube is manufactured by casting, the length of the copper raw tube due to the limitation of the billet capacity as in the conventional hot extrusion system is reduced. There are no restrictions, so low-cost manufacturing is possible from this point as well. Of course, there is no quality problem as in the conventional method of bending and welding or forging a metal plate.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B22D 11/059 120 B22D 11/059 120A 120B C22F 1/08 C22F 1/08 A // C22C 9/00 C22C 9/00 C22F 1/00 626 C22F 1/00 626 686 686B 691 691B 694 694A (72)発明者 ▲冬▼ 慶平 茨城県土浦市木田余町3550番地 日立電線 株式会社システムマテリアル研究所内 (72)発明者 大泉 清 茨城県土浦市木田余町3550番地 日立電線 株式会社土浦工場内 (72)発明者 佐々木 元 茨城県土浦市木田余町3550番地 日立電線 株式会社システムマテリアル研究所内 Fターム(参考) 4E004 CA00 MD05 NC07 4E096 EA04 EA16 HA22 KA02 KA04──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) B22D 11/059 120 B22D 11/059 120A 120B C22F 1/08 C22F 1/08 A // C22C 9/00 C22C 9/00 C22F 1/00 626 C22F 1/00 626 686 686 686B 691 691B 694 694A (72) Inventor ▲ Winter ▼ Keihei 3550 Kida Yomachi, Tsuchiura-shi, Ibaraki Pref. Person Kiyoshi Oizumi 3550 Kida Yomachi, Tsuchiura City, Ibaraki Prefecture Within the Tsuchiura Plant of Hitachi Cable Co., Ltd. (72) Inventor Gen Hajime 3550 Kida Yomachi, Tsuchiura City, Ibaraki Prefecture F-term within the Hitachi Cable, Ltd. System Materials Research Laboratory 4E004 CA00 MD05 NC07 4E096 EA04 EA16 HA22 KA02 KA04

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】銅の素管を延伸加工することによって所定
のサイズの銅管を製造する銅管の製造方法において、 一方向凝固組織を有する前記銅の素管を加熱鋳型を使用
した連続鋳造により鋳造し、 鋳造された前記銅の素管に冷間延伸加工と焼鈍処理を2
回以上施すことにより、所定のサイズの銅管とすること
を特徴とする銅管の製造方法。
1. A method for producing a copper tube having a predetermined size by stretching a copper tube, wherein said copper tube having a directionally solidified structure is continuously cast using a heating mold. Cold drawing and annealing are performed on the cast copper base tube in two steps.
A method for producing a copper tube, wherein the copper tube is formed into a copper tube of a predetermined size by performing the process more than once.
【請求項2】1回目の前記焼鈍処理の前に行う前記冷間
延伸加工は、前記銅の素管を35〜80%の加工度で加
工することを特徴とする請求項第1項記載の銅管の製造
方法。
2. The method according to claim 1, wherein the cold drawing performed before the first annealing is performed by processing the copper tube at a working ratio of 35 to 80%. Manufacturing method of copper tube.
【請求項3】2回目の前記焼鈍処理の前に行う前記冷間
延伸加工は、前記銅の素管を50%以上の加工度で加工
することを特徴とする請求項第1項あるいは第2項記載
の銅管の製造方法。
3. The method according to claim 1, wherein the cold drawing performed before the second annealing is performed by processing the copper tube at a working ratio of 50% or more. The method for producing a copper tube according to the above item.
【請求項4】前記焼鈍処理は、1回目の焼鈍処理時の焼
鈍温度を650〜880℃に設定し、2回目以降の焼鈍
処理時の焼鈍温度を300〜650℃に設定することを
特徴とする請求項第1項ないし第3項のいずれかに記載
の銅管の製造方法。
4. The annealing process is characterized in that the annealing temperature in the first annealing process is set to 650 to 880 ° C., and the annealing temperature in the second and subsequent annealing processes is set to 300 to 650 ° C. The method for producing a copper pipe according to any one of claims 1 to 3.
JP27283199A 1999-09-27 1999-09-27 Method of manufacturing copper tube Withdrawn JP2001096337A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27283199A JP2001096337A (en) 1999-09-27 1999-09-27 Method of manufacturing copper tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27283199A JP2001096337A (en) 1999-09-27 1999-09-27 Method of manufacturing copper tube

Publications (1)

Publication Number Publication Date
JP2001096337A true JP2001096337A (en) 2001-04-10

Family

ID=17519388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27283199A Withdrawn JP2001096337A (en) 1999-09-27 1999-09-27 Method of manufacturing copper tube

Country Status (1)

Country Link
JP (1) JP2001096337A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100445624C (en) * 2007-04-23 2008-12-24 中铝洛阳铜业有限公司 Method for preparing large-diameter white copper pipe
JP2009085468A (en) * 2007-09-28 2009-04-23 Mitsubishi Materials Corp Fin tube-type heat exchanger and its manufacturing method
CN103357696A (en) * 2013-07-18 2013-10-23 中铝洛阳铜业有限公司 Production manufacturing process of large-diameter copper-nickel alloy seamless pipe
CN103456385A (en) * 2013-09-04 2013-12-18 江西理工大学 High-strength and high-conductivity Cu-Cr-Ti alloy conductor and manufacturing method thereof
CN106269985A (en) * 2015-06-12 2017-01-04 河北欧通有色金属制品有限公司 The manufacture method of oval copper pipe in foreign side
CN108405820A (en) * 2018-03-23 2018-08-17 江西鸥迪铜业有限公司 A kind of horizontal casting Rolling Production brass tube technique
CN109175283A (en) * 2018-10-29 2019-01-11 福建紫金铜业有限公司 A kind of heat pipe material pipe processing technique
CN114101371A (en) * 2021-11-09 2022-03-01 中铝洛阳铜加工有限公司 Processing method of large-caliber thick-wall copper pipe for annular conduction band

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100445624C (en) * 2007-04-23 2008-12-24 中铝洛阳铜业有限公司 Method for preparing large-diameter white copper pipe
JP2009085468A (en) * 2007-09-28 2009-04-23 Mitsubishi Materials Corp Fin tube-type heat exchanger and its manufacturing method
CN103357696A (en) * 2013-07-18 2013-10-23 中铝洛阳铜业有限公司 Production manufacturing process of large-diameter copper-nickel alloy seamless pipe
CN103456385A (en) * 2013-09-04 2013-12-18 江西理工大学 High-strength and high-conductivity Cu-Cr-Ti alloy conductor and manufacturing method thereof
CN106269985A (en) * 2015-06-12 2017-01-04 河北欧通有色金属制品有限公司 The manufacture method of oval copper pipe in foreign side
CN108405820A (en) * 2018-03-23 2018-08-17 江西鸥迪铜业有限公司 A kind of horizontal casting Rolling Production brass tube technique
CN108405820B (en) * 2018-03-23 2019-11-26 江西鸥迪铜业有限公司 A kind of horizontal casting Rolling Production brass tube technique
CN109175283A (en) * 2018-10-29 2019-01-11 福建紫金铜业有限公司 A kind of heat pipe material pipe processing technique
CN109175283B (en) * 2018-10-29 2020-05-01 福建紫金铜业有限公司 Heat pipe material pipe processing technology
CN114101371A (en) * 2021-11-09 2022-03-01 中铝洛阳铜加工有限公司 Processing method of large-caliber thick-wall copper pipe for annular conduction band
CN114101371B (en) * 2021-11-09 2023-05-30 中铝洛阳铜加工有限公司 Processing method of large-caliber thick-wall copper pipe for annular conduction band

Similar Documents

Publication Publication Date Title
US4415374A (en) Fine grained metal composition
JP2540183B2 (en) Tube manufacturing method
CN109338187B (en) Low-cost high-strength and high-toughness wrought magnesium alloy capable of being extruded at high speed and preparation method thereof
IE43712B1 (en) Wires of an a1-mg-si-alloy
US10604828B2 (en) Al—Zn alloy comprising precipitates with improved strength and elongation and method of manufacturing the same
US20160228950A1 (en) Methods for relieving stress in an additively manufactured alloy body
JP2006506534A (en) Cold-worked steel with pocket-laser martensite / austenite microstructure
JP2001096337A (en) Method of manufacturing copper tube
US3827917A (en) Aluminum electrical conductor and process for making the same
JP2015525287A5 (en) Ultra-flexible and melt-resistant fin material with very high strength
US4659396A (en) Metal working method
JPH01272750A (en) Production of expanded material of alpha plus beta ti alloy
JPS6358907B2 (en)
JP4228166B2 (en) Seamless copper alloy tube with excellent fatigue strength
Chia et al. Application of subgrain control to aluminum wire products
JP2001096338A (en) Method of manufacturing copper tube for refrigerator or air-conditioner
JP2944907B2 (en) Method of manufacturing aluminum alloy wire for electric conduction
WO2000044944A2 (en) Processes for continuously producing fine grained metal compositions and for semi-solid forming of shaped articles
US4177085A (en) Method for solution heat treatment of 6201 aluminum alloy
CN110284025B (en) Aluminum bronze material and preparation method thereof
JPH0860313A (en) Production of aluminum alloy tube excellent in strength and form rollability
JP2004124154A (en) Rolled wire rod of magnesium based alloy, and production method therefor
JP2001181772A (en) EXTRUDED PRODUCT MADE OF Mg ALLOY AND PRODUCING METHOD THEREFOR
JPH10286602A (en) Seamless tube made of titanium and manufacture thereof
JP2018154916A (en) Production method of aluminum alloy wire, production method of wire therewith and production method of wire harness

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20061205