JP2506910Y2 - Optical recording medium and optical recording apparatus for performing optical recording on the same - Google Patents

Optical recording medium and optical recording apparatus for performing optical recording on the same

Info

Publication number
JP2506910Y2
JP2506910Y2 JP3351188U JP3351188U JP2506910Y2 JP 2506910 Y2 JP2506910 Y2 JP 2506910Y2 JP 3351188 U JP3351188 U JP 3351188U JP 3351188 U JP3351188 U JP 3351188U JP 2506910 Y2 JP2506910 Y2 JP 2506910Y2
Authority
JP
Japan
Prior art keywords
optical recording
recording medium
master
beam spot
spot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3351188U
Other languages
Japanese (ja)
Other versions
JPH01138220U (en
Inventor
清二 土肥
Original Assignee
日本コロムビア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本コロムビア株式会社 filed Critical 日本コロムビア株式会社
Priority to JP3351188U priority Critical patent/JP2506910Y2/en
Publication of JPH01138220U publication Critical patent/JPH01138220U/ja
Application granted granted Critical
Publication of JP2506910Y2 publication Critical patent/JP2506910Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Optical Recording Or Reproduction (AREA)
  • Manufacturing Optical Record Carriers (AREA)
  • Optical Head (AREA)

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案は光記録を行なう光記録媒体及びこの光記録媒
体に情報を記録するための光記録装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial application] The present invention relates to an optical recording medium for optical recording and an optical recording device for recording information on the optical recording medium.

〔従来の技術〕[Conventional technology]

従来のCD或は光ビデオディスク等を得るための記録用
原盤或は消去,記録可能なディスク等の光記録媒体とし
ては種々のものが提案されている。例えばCDを得るため
の原盤は硝子基板にフォトレジスト等の感光剤が塗布さ
れていて、変調レーザービーム照射後に現像処理を行う
ことでスパイラル状の微小なピット列が形成される。
Various optical recording media such as a recording master or an erasable and recordable disk for obtaining a conventional CD or optical video disk have been proposed. For example, a master for obtaining a CD has a glass substrate coated with a photosensitizer such as a photoresist, and a spiral fine pit row is formed by performing a development process after irradiation with a modulated laser beam.

この様な原盤にオーデオ或はビデオ情報を記録するた
めの構成を第7図で説明する。
A configuration for recording audio or video information on such a master will be described with reference to FIG.

第7図でレーザ光源(1)より出射されたレーザ光
(1a)は光変調器(2)によって入力端子T1に供給され
るオーディオ,ビデオ等の情報信号(2a)に対応し「接
断」され第1のビームスプリッタ(10)及び対物レンズ
(3)によってターンテーブル(13)に載置した原盤
(4)のフォトレジスト表面上に集光される。またター
ンテーブル(13)上の原盤(4)は回転モータ(5)に
よって回転駆動される。回転モータ(5)は移動台(1
2)上に固定され、水平方向移動モータ(6)によって
移動台(12)を含む原盤(4)は矢印H方向に移動する
様に成されている。
In FIG. 7, the laser light (1a) emitted from the laser light source (1) corresponds to the information signal (2a) of the audio, video, etc. supplied to the input terminal T 1 by the optical modulator (2), and the “connection / disconnection” is performed. The first beam splitter (10) and the objective lens (3) focus the light on the photoresist surface of the master (4) mounted on the turntable (13). Further, the master (4) on the turntable (13) is rotationally driven by the rotary motor (5). The rotary motor (5) is mounted on the moving table (1
2) The master (4), which is fixed on top and which includes the moving base (12), is moved in the direction of arrow H by the horizontal movement motor (6).

ところで対物レンズ(3)で集光されるスポット径及
び焦点深度はそれぞれλ/NA,λ/(NA)2(λ:記録レー
ザ波長,NA:対物レンズの開口数)なる値で近似される。
例えばNAが0.9、λが457.9nmとするとビームスポット径
は約0.5μm,焦点深度は0.57μmと非常に小さな寸法と
なる。従って原盤(4)上に安定した記録を行うには対
物レンズ(3)は原盤(4)に対し正確な焦点距離にあ
り、かつ焦点深度以内に配設されている必要があり、精
度の高いフォーカス制御が必要となる。一般にこの様な
フォーカス制御では原盤(4)上に塗布したフォトレジ
ストを感光しないHe−Neレーザ等の補助ビームが用いら
れる第7図で補助光源(7)から出射した補助レーザビ
ームは第1のビームスプリット(10)→対物レンズ
(3)を介し原盤(4)に照射されており、原盤(4)
で反射し補助レーザビームは反射ミラー(11)で反射さ
れ2分割光検出器(8)に導かれる。原盤(4)の位置
変動に対し光検出器(8)で誤差信号出力が得られ、こ
の誤差出力を差動アンプ(9)によって増幅し駆動コイ
ル(14)に供給して対物レンズ(3)を上下に駆動させ
フォーカス制御を行っている。
By the way, the spot diameter and the focal depth condensed by the objective lens (3) are approximated by the values λ / NA and λ / (NA) 2 (λ: recording laser wavelength, NA: numerical aperture of objective lens), respectively.
For example, when NA is 0.9 and λ is 457.9 nm, the beam spot diameter is about 0.5 μm and the focal depth is 0.57 μm, which are very small dimensions. Therefore, in order to perform stable recording on the master (4), the objective lens (3) needs to have an accurate focal length with respect to the master (4) and be arranged within the depth of focus, which is highly accurate. Focus control is required. Generally, in such focus control, an auxiliary beam such as a He-Ne laser that does not expose the photoresist coated on the master (4) is used. In FIG. 7, the auxiliary laser beam emitted from the auxiliary light source (7) is the first beam. Beam split (10) → The master (4) is irradiated through the objective lens (3), and the master (4)
The auxiliary laser beam is reflected by the reflection mirror (11) and guided to the two-division photodetector (8). An error signal output is obtained by the photodetector (8) with respect to the position change of the master (4), and this error output is amplified by the differential amplifier (9) and supplied to the drive coil (14) to supply the objective lens (3). Is driven up and down to perform focus control.

〔考案が解決しようとする課題〕[Problems to be solved by the device]

ところで上述のフォーカス制御が行なわれた場合にお
いても、対物レンズ(3)に入射する記録用のレーザ光
(1a)が対物レンズ(3)の光軸線よりずれていた場合
や、あるいは最適な焦点位置で対物レンズ(3)が保持
されていない時には原盤(4)上に集束されたスポット
形状が楕円形になったり、強度分布に非対称性が生じ記
録されたピットは変形したものとなり、オーディオ,ビ
デオ等の情報信号に対し忠実なピットを形成することが
できない。この様に光記録を行う場合、原盤(4)上の
正確なビームスポット形状をモニタすることが必要不可
欠である。
By the way, even when the above-mentioned focus control is performed, the recording laser beam (1a) incident on the objective lens (3) is displaced from the optical axis of the objective lens (3), or the optimum focus position is obtained. When the objective lens (3) is not held at, the spot shape focused on the master (4) becomes elliptical, or the recorded pit is deformed due to asymmetry in the intensity distribution. It is impossible to form pits that are faithful to the information signal such as. When performing optical recording in this way, it is essential to monitor the accurate beam spot shape on the master (4).

第8図はこの種の目的を達成するためのモニタ方法の
一例を示す光学系の概念図である。
FIG. 8 is a conceptual diagram of an optical system showing an example of a monitoring method for achieving this kind of purpose.

第8図でレーザ光源(1)から照射されたレーザ光
(1a)は第2のビームスプリッタ(15)を介して第1の
ビームスプリッタ(10)で反射し、対物レンズ(3)で
原盤(4)の表面上に焦点距離f1で焦点を結ぶ。原盤
(4)で反射した反射ビームは対物レンズ(3)→第1
のビームスプリッタ(10)→第2のビームスプリッタ
(15)で反射され焦点距離f2の集光レンズ(16)により
集光される。集光されたスポット像を倍率Mなる顕微鏡
(17)によって観察する。従って顕微鏡(17)の視野内
で観察されるスポット像の大きさは、原盤上のスポット
像に対しf2・M/f1なる倍率で拡大される。しかしながら
この様なモニタ方法においても、顕微鏡(17)本体に光
学的収差を有すること、あるいはモニタ光路系における
集光レンズ(16)の光軸からのずれによって観察される
スポット強度分布に変化が生じる等、原盤(4)上の集
光スポット形状を正確にモニタすることができない問題
があった。
In FIG. 8, the laser light (1a) emitted from the laser light source (1) is reflected by the first beam splitter (10) through the second beam splitter (15) and is reflected by the objective lens (3) at the master ( Focus on the surface of 4) at focal length f 1 . The reflected beam reflected by the master (4) is the objective lens (3) → first
The beam splitter (10) is reflected by the second beam splitter (15) and is condensed by the condenser lens (16) having the focal length f 2 . The focused spot image is observed with a microscope (17) having a magnification of M. Therefore, the size of the spot image observed in the visual field of the microscope (17) is magnified by f 2 · M / f 1 with respect to the spot image on the master. However, even in such a monitoring method, the observed spot intensity distribution changes due to the microscope (17) main body having optical aberrations or the deviation of the condenser lens (16) from the optical axis in the monitor optical path system. However, there is a problem that the shape of the focused spot on the master (4) cannot be accurately monitored.

本考案は叙上の点に鑑み成されたものでその目的とす
るところは原盤上におけるスポット形状を正確に監視,
計測し得る様にした光記録媒体及び光記録装置を得んと
するものである。
The present invention was made in view of the above points, and its purpose is to accurately monitor the spot shape on the master.
It is intended to obtain an optical recording medium and an optical recording device that can be measured.

〔課題を解決するための手段〕[Means for solving the problem]

本考案の光記録媒体はその1例を第1図に示す様に円
盤状の光記録媒体面に照射されるビームスポット(20)
に対し、透過率の異なる交差部分(4c)を光記録媒体
(4)の外周接線方向に対して略45度の相反する角度に
設けた光記録媒体(4)と、光記録媒体(4)の交差部
分(4c)を透過又は反射した光量を検出する検出手段
(18a)(18b)と、この検出手段(18a)(18b)の検出
出力を計測する計測手段(24)とを有し、光記録媒体面
に集束されたビームスポット(20)の光強度分布を計測
手段(24)により2次元方向で計測する様に成したもの
である。
An example of the optical recording medium of the present invention is a beam spot (20) irradiated on the surface of a disc-shaped optical recording medium as shown in FIG.
On the other hand, an optical recording medium (4) in which intersecting portions (4c) having different transmittances are provided at an opposite angle of approximately 45 degrees with respect to the tangential direction of the outer periphery of the optical recording medium (4), and the optical recording medium (4). The detection means (18a) (18b) for detecting the amount of light transmitted or reflected through the intersection part (4c) of the, and the measurement means (24) for measuring the detection output of the detection means (18a) (18b), The light intensity distribution of the beam spot (20) focused on the surface of the optical recording medium is measured in a two-dimensional direction by the measuring means (24).

〔作用〕[Action]

上記の様に構成された原盤(4)は記録領域以外の外
周領域に透過率の異なる交差部分、即ちナイフエッジパ
ターンを直接形成したのでナイフエッジを必要とせず原
盤上のスポット形状を正確にモニタし得る。また記録装
置としては円盤に形成したナイフエッジパターンをレー
ザ光のビームスポットが透過又は反射する際のレーザ光
量変化を検出し、その検出出力の微分波形から2次元方
向のスポット強度分布を計測出来るのでスポット形状ず
れを正確にモニタすることが出来る。
Since the master disk (4) having the above-described structure is directly formed with a crossing portion having a different transmittance, that is, a knife edge pattern, in the outer peripheral area other than the recording area, it does not need a knife edge and accurately monitors the spot shape on the master disk. You can Further, as a recording device, it is possible to detect a change in laser light amount when a beam spot of laser light passes through or is reflected by a knife edge pattern formed on a disk, and to measure a spot intensity distribution in a two-dimensional direction from a differential waveform of the detected output. The spot shape deviation can be accurately monitored.

〔実施例〕〔Example〕

以下、本考案の光記録媒体及びこの光記録媒体に光記
録を行うための光記録装置の一実施例を第1図乃至第6
図について説明する。
An embodiment of an optical recording medium of the present invention and an optical recording device for performing optical recording on the optical recording medium will be described with reference to FIGS.
The figure will be described.

本考案の光記録媒体及び光記録装置を説明するに先だ
ち一般に知られているナイフエッジ法によるビームスポ
ットの一次元の強度分布測定方法を第5図及び第6図A,
Bによって説明する。
Prior to explaining the optical recording medium and the optical recording apparatus of the present invention, a generally known method of measuring a one-dimensional intensity distribution of a beam spot by a knife edge method is shown in FIGS. 5 and 6A,
Explain by B.

第5図でレーザ光(1a)を対物レンズ(3)によって
集光させたビームスポット(20)に対してナイフエッジ
(25)をx′方向に走査した場合、対物レンズに対向し
て配置された光検出器(18)で得られるx位置での透過
光出力は P(x)=▲∫ ▼I(x′)dx′で表わされる。こ
こでI(x)はビームスポット(20)の強度分布を示
す。従ってスポット強度分布 なる値として求めることが出来る。光検出器(18)の出
力を増幅器(21)で増幅して得られた出力を縦軸に光透
過出力P(x)としてとり、横軸にナイフエッジ(25)
移動距離x′をとって表した出力曲線図(26)を第6図
Aに示す。又、第6図Aの出力曲線(26)を微分回路
(22)に通して、ビームスポット(20)の強度分布I
(x)を縦軸にとり、横軸にナイフエッジ(25)の移動
距離x′をとって表した強度分布曲線(27)を第6図B
に示してある。
In FIG. 5, when the knife edge (25) is scanned in the x'direction with respect to the beam spot (20) where the laser light (1a) is focused by the objective lens (3), it is arranged so as to face the objective lens. transmitted light output at x position obtained by the photodetector (18) has is expressed by P (x) = ▲ ∫ ∞ x ▼ I (x ') dx'. Here, I (x) represents the intensity distribution of the beam spot (20). Therefore spot intensity distribution Can be obtained as The output obtained by amplifying the output of the photodetector (18) by the amplifier (21) is taken as the light transmission output P (x) on the vertical axis, and the knife edge (25) on the horizontal axis.
An output curve diagram (26) showing the movement distance x'is shown in FIG. 6A. Further, the intensity distribution I of the beam spot (20) is passed through the differentiating circuit (22) through the output curve (26) of FIG. 6A.
FIG. 6B shows an intensity distribution curve (27) in which (x) is plotted on the vertical axis and the moving distance x ′ of the knife edge (25) is plotted on the horizontal axis.
It is shown in.

本考案は基本的に第5図及び第6図A,Bで説明した原
理が用いられる。
The present invention basically uses the principle described in FIGS. 5 and 6A and B.

上述の原理に基づく本考案の1例を第1図乃至第4図
で説明する。第1図は本例の硝子原盤と原盤に集光され
たビームスポット並にナイフエッジパターンを示すもの
で、原盤(4)の構成は第7図で述べたと略同様に硝子
基板上に記録領域(4d)となる部分にフォトレジストが
塗布され、記録領域(4a)の外周部には透過(反射)率
の異なる領域(4b),(4c)が設けられており領域(4
c)はナイフエッジパターン(4c)を構成し、回転する
原盤(4)の接線方向に対し45°の相反する角度で交差
するパターンとなっている。この様なナイフエッジパタ
ーン(4c)を作製する方法には種々のものが考えられる
が、例えば原盤(4)上の一方の領域(4b)をマスキン
グし領域(4c)にクロム等の金属を真空蒸着法等により
付着すればよい。尚Oは原盤(4)の中心で中心Oから
半径Rの点にビームスポット(20)を集光させる様にす
る。
An example of the present invention based on the above principle will be described with reference to FIGS. FIG. 1 shows a glass master disk of this example, a beam spot focused on the master disk, and a knife edge pattern. The master disk (4) has a structure similar to that described in FIG. Photoresist is applied to a portion to be (4d), and areas (4b) and (4c) having different transmission (reflection) rates are provided on the outer peripheral portion of the recording area (4a).
c) constitutes a knife edge pattern (4c), which is a pattern which intersects the tangential direction of the rotating master (4) at an opposite angle of 45 °. There are various possible methods for producing such a knife edge pattern (4c). For example, one area (4b) on the master (4) is masked and a metal such as chromium is vacuumed on the area (4c). It may be attached by a vapor deposition method or the like. Incidentally, O is such that the beam spot (20) is focused on the center of the master (4) from the center O to a point of radius R.

第2図はこの様な硝子原盤(4)上にオーディオ・ビ
デオ等の情報信号を記録する光記録装置を示すもので第
7図との対応部分には同一符号を付している。先ず移動
台(12)は水平方向駆動モータ(6)によって矢印Hで
示す水平方向に回転モータ(5),ターンテーブル(1
3),並に原盤(4)を一体に移動させ、回転モータ
(5)はターンテーブル(13)を回転させて原盤(4)
を例えば時計方向に回転させる。原盤(4)の上面に対
向して対物レンズ(3)が配され下面には外光を遮光
し、原盤(4)を透過するレーザ光(1a)のみを透過さ
せる光学フィルタ(19a)と透過光量を検出する光検出
器(16a)が対向配置されている。レーザ光源(1)か
ら出射したレーザ光(1a)は光変調器(2)で情報信号
(2a)に対応して光変調されて、第2のビームスプリッ
タ(15)→第1のビームスプリッタ(10)→対物レンズ
(3)の光路を通じて原盤(4)表面で焦点を結び、原
盤(4)を透過したビームスポットは光学フィルタ(19
a)を通して光検出器(18a)上に拡散する。
FIG. 2 shows an optical recording device for recording information signals such as audio and video on such a glass master disk (4), and the parts corresponding to those in FIG. 7 are designated by the same reference numerals. First, the movable table (12) is rotated horizontally by the horizontal drive motor (6) as indicated by an arrow H, and the turntable (1).
3), the master (4) is moved in parallel, and the rotary motor (5) rotates the turntable (13) to rotate the master (4).
Is rotated clockwise, for example. The objective lens (3) is arranged to face the upper surface of the master (4), the lower surface shields external light, and the optical filter (19a) that transmits only the laser light (1a) transmitted through the master (4) is transmitted. A photodetector (16a) for detecting the amount of light is arranged opposite to each other. The laser light (1a) emitted from the laser light source (1) is optically modulated by the optical modulator (2) in accordance with the information signal (2a), and the second beam splitter (15) → the first beam splitter ( 10) → The beam spot focused through the optical path of the objective lens (3) on the surface of the master (4) and transmitted through the master (4) is an optical filter (19).
Diffuse through a) onto the photodetector (18a).

He−Ne等のフォトレジストに不感の補助レーザビーム
は第1のビームスプリッタ(10)を透過して対物レンズ
(3)で焦点を結んでその反射ビームは第1のビームス
プリッタ(10)を透過し反射ミラー(11)で反射されて
2分割光検出器(8)で誤差信号が得られ、この誤差信
号は差動アンプ(9)で増幅し、対物レンズ(3)を上
下に駆動するコイル(14)に供給される。2分割光検出
器(8)には位置調整手段(30)が設けられている。光
変調器(20)と第1のビームスプリッタ(10)間に配設
された第2のビームスプリッタ(15)は原盤(4)上で
の反射ビームを光検出器(18b)に導くためのもので第
2のビームスプリッタ(15)で反射された反射ビームは
外光を遮断し反射ビームのみ透過させる光学フィルタ
(19b)を通じて反射光量を検出する光検出器(18b)上
に導かれる。
The auxiliary laser beam, which is insensitive to the photoresist such as He-Ne, passes through the first beam splitter (10) and is focused by the objective lens (3), and the reflected beam passes through the first beam splitter (10). A coil that is reflected by the reflection mirror (11) and an error signal is obtained by the two-division photodetector (8), and this error signal is amplified by the differential amplifier (9) to drive the objective lens (3) up and down. Supplied to (14). The two-division photodetector (8) is provided with a position adjusting means (30). The second beam splitter (15) arranged between the optical modulator (20) and the first beam splitter (10) is for guiding the reflected beam on the master (4) to the photodetector (18b). The reflected beam reflected by the second beam splitter (15) is guided to a photodetector (18b) that detects the amount of reflected light through an optical filter (19b) that blocks external light and transmits only the reflected beam.

光検出器(18a),(18b)の検出出力信号はスイッチ
(29)の固定接点a,bに供給され、可動接片cの切換に
よって光検出器(18a),(18b)の一方の出力が増幅器
(21)で増幅され、増幅器(21)の増幅出力信号は微分
回路(22)で微分され、絶対値回路(23)を通じて計測
手段である例えばモニタ用オシロスコープ(24)等でビ
ームスポット強度曲線の観測が行なわれる。
The detection output signals of the photodetectors (18a) and (18b) are supplied to the fixed contacts a and b of the switch (29), and one of the outputs of the photodetectors (18a) and (18b) is output by switching the movable contact c. Is amplified by the amplifier (21), the amplified output signal of the amplifier (21) is differentiated by the differentiating circuit (22), and the beam spot intensity is measured through the absolute value circuit (23) by a measuring means such as a monitor oscilloscope (24). Curve observations are made.

上述の構成で第1図に示した原盤(4)のナイフエッ
ジ(4a)部分にビームスポット(20)を原盤中心Oから
半径Rの位置に集光させたとすると、集光させたビーム
スポット(20)の径に対し半径Rは非常に大きな値とな
るのでモニタしようとする位置においては、原盤回転時
の半径Rの軌跡A−A′は第3図のA−A′に示す様に
略直線上を移動することと等価と考えられ、原盤(4)
に形成したナイフエッジパターン(4c)は軌跡A−A′
を略直線で移動するからナイフエッジパターン(4c)が
(4c)→(4c′)→(4c″)→(4c)と移動されたと
するとナイフエッジa部によってdy,ナイフエッジb部
によってdxを走査したことになるので、夫々直交した2
次元方向のビームスポットの強度分布曲線(第4図参
照)をモニタすることが出来る。
When the beam spot (20) is focused on the knife edge (4a) portion of the master (4) shown in FIG. 1 in the above-described configuration at a position of radius R from the master center O, the focused beam spot ( Since the radius R has a very large value with respect to the diameter of 20), the locus A-A 'of the radius R when the master is rotating is approximately as shown in A-A' of FIG. 3 at the position to be monitored. It is considered to be equivalent to moving on a straight line.
The knife edge pattern (4c) formed on the locus is the locus A-A '.
Since the knife edge pattern (4c) is moved in the order of (4c) → (4c ′) → (4c ″) → (4c), dy is caused by the knife edge a part and dx is caused by the knife edge b part. Since they have been scanned, they are 2
The intensity distribution curve of the beam spot in the dimension (see FIG. 4) can be monitored.

本例で最良の記録状態を得るモニタ手法について以下
説明する。
A monitoring method for obtaining the best recording state in this example will be described below.

原盤(4)上にナイフエッジパターン(4c)が形成さ
れたモニタ領域においてフォーカス制御を施して、光検
出器(18a)→スイッチ(29)の固定接点b→可動接片
c→増幅器(21)→微分回路(22)→絶対値回路(23)
の経路でモニタ(24)でナイフエッジパターン部分のビ
ームスポット(20)を観測すると第4図に示す様なビー
ムスポット強度分布曲線(31),(32)が得られる。こ
の強度分布曲線は第6図Bと同様に縦軸がビームスポッ
ト強度を表し、横軸がナイフエッジパターン(4c)の移
動距離を表していて、曲線(31)はナイフエッジaが走
査された結果得られるdyに対応し、曲線(32)はナイフ
エッジbが走査された結果得られたdxに対応している。
Focus control is performed in the monitor area where the knife edge pattern (4c) is formed on the master (4), and the photodetector (18a) → fixed contact b of the switch (29) → movable contact c → amplifier (21). → Differentiation circuit (22) → Absolute value circuit (23)
When the beam spot (20) in the knife edge pattern portion is observed by the monitor (24) along the path (2), beam spot intensity distribution curves (31), (32) as shown in FIG. 4 are obtained. Similar to FIG. 6B, in this intensity distribution curve, the vertical axis represents the beam spot intensity, the horizontal axis represents the movement distance of the knife edge pattern (4c), and the curve (31) was scanned with the knife edge a. Corresponding to the resulting dy, curve (32) corresponds to the dx resulting from scanning the knife edge b.

第4図の曲線(31),(32)の波形に差異が無い場合
には、最適なビーム集光が行われていることを示し両者
の波形に差異がある場合、集光スポットが楕円形もしく
は強度分布に非対称性を有したことになり、光路系に光
軸ずれが生じていることを察知できる。また2分割光検
出器用位置調整手段である移動ネジ(30)の微調整によ
ってフォーカス位置を変えた場合の波形変化から、最小
スポット径において最大強度となる合焦位置の設定が容
易に実現できる。
If there is no difference between the waveforms of the curves (31) and (32) in Fig. 4, it indicates that the optimum beam focusing is performed, and if there is a difference between the two waveforms, the focused spot is elliptical. Alternatively, the intensity distribution has asymmetry, and it can be detected that the optical axis is deviated in the optical path system. Further, from the waveform change when the focus position is changed by finely adjusting the moving screw (30) which is the position adjusting means for the two-divided photodetector, it is possible to easily realize the setting of the focus position where the maximum intensity is obtained at the minimum spot diameter.

尚上述ではビームスポット(20)を透過型の光検出器
(18a)で検出した例を説明したがビームスポット(2
0)が原盤(4)の表面で焦点を結びその反射ビームが
対物レンズ(3)を通して第1及び第2のビームスプリ
ッタ(10),(15)で反射された反射ビームを反射型の
光検出器(18b)で受光し、その検出出力信号をスイッ
チ(29)の固定接点a→可動接片c→増幅器(21)→微
分回路(22)→絶対値回路(23)→モニタ(24)の経路
を通じて観測しても第4図と同様の強度分布曲線を観測
し得るので本例の効果を得るためには検出器(18a),
(18b)のいずれか一方のみを用いればよい。
In the above description, the beam spot (20) is detected by the transmissive photodetector (18a), but the beam spot (2
0) is focused on the surface of the master (4), and the reflected beam is reflected by the first and second beam splitters (10) and (15) through the objective lens (3), and the reflected beam is detected. The detector (18b) receives the light, and the detection output signal of the fixed contact a of the switch (29) → moving contact c → amplifier (21) → differential circuit (22) → absolute value circuit (23) → monitor (24) Even if it is observed through the route, the intensity distribution curve similar to that in Fig. 4 can be observed. Therefore, in order to obtain the effect of this example, the detector (18a),
Only one of (18b) may be used.

本例によればレーザビーム光軸ずれ、フォーカス時の
位置ずれに伴うスポット形状変化を2次元方向での強度
分布曲線をモニタすることで正確に認識出来、且つ最良
のスポット状態を得ることが出来る。
According to this example, the spot shape change due to the laser beam optical axis shift and the position shift during focusing can be accurately recognized by monitoring the intensity distribution curve in the two-dimensional direction, and the best spot state can be obtained. .

尚、本考案は叙上の実施例に限定されることなく本考
案の要旨を逸脱しない範囲で種々の変形が可能である。
The present invention is not limited to the above embodiments, and various modifications can be made without departing from the gist of the present invention.

〔考案の効果〕[Effect of device]

本考案によれば回転する原盤上に集光された微小なビ
ームスポットの2次元方向での強度分布を直接モニタで
きる上、対物レンズに入射するレーザビームの光軸ずれ
及びフォーカス時の位置ずれに伴うスポット形状変化を
正確に確認でき、最良のスポット状態を容易に維持する
ことが可能であり、安定した光記録が実施できる。
According to the present invention, it is possible to directly monitor the intensity distribution in a two-dimensional direction of a minute beam spot focused on a rotating master disc, and to detect the optical axis deviation of a laser beam incident on an objective lens and the positional deviation during focusing. It is possible to accurately check the accompanying change in spot shape, easily maintain the best spot state, and perform stable optical recording.

【図面の簡単な説明】[Brief description of drawings]

第1図は本考案の光記録媒体としての原盤の一実施例を
示す平面図、第2図は本考案の光記録装置の一実施例を
示す光学系の模式図と検出系の系統図、第3図は本考案
のナイフエッジ法の動作説明図、第4図は本考案のビー
ムスポット強度分布曲線図、第5図はナイフエッジ法を
説明する模式図、第6図はナイフエッジ法のビームスポ
ット透過出力曲線図と強度分布曲線図、第7図は従来の
光記録装置の概念図、第8図は従来のビームスポットを
モニタする方法を説明する光学系の概念図である。 (1)はレーザ光源、(2)は光変調器、(3)は対物
レンズ、(4)は原盤、(18),(18a),(18b)は光
検出器、(19a),(19b)は光学フィルタである。
FIG. 1 is a plan view showing an embodiment of a master as an optical recording medium of the present invention, and FIG. 2 is a schematic diagram of an optical system showing an embodiment of an optical recording apparatus of the present invention and a system diagram of a detection system, FIG. 3 is an operation explanatory diagram of the knife edge method of the present invention, FIG. 4 is a beam spot intensity distribution curve diagram of the present invention, FIG. 5 is a schematic diagram for explaining the knife edge method, and FIG. 6 is a knife edge method. FIG. 7 is a conceptual diagram of a conventional optical recording device, and FIG. 8 is a conceptual diagram of an optical system for explaining a conventional beam spot monitoring method. (1) is a laser light source, (2) is a light modulator, (3) is an objective lens, (4) is a master, (18), (18a) and (18b) are photodetectors, and (19a) and (19b). ) Is an optical filter.

Claims (2)

(57)【実用新案登録請求の範囲】(57) [Scope of utility model registration request] 【請求項1】円盤状の光記録媒体面に照射されるビーム
スポットに対し、透過率の異なる交差部分を光記録媒体
の外周接線方向に対して略45度の相反する角度に設けて
成ることを特徴とする光記録媒体。
1. A cross section having different transmittances is provided at an opposite angle of about 45 degrees with respect to a tangential direction of an outer periphery of the optical recording medium with respect to a beam spot irradiated on the surface of the optical recording medium. An optical recording medium characterized by:
【請求項2】円盤状の記録媒体面に照射されるビームス
ポットに対し、透過率の異なる交差部分を光記録媒体の
外周接線方向に対して略45度の相反する角度に設けた光
記録媒体と、 該光記録媒体の交差部分を透過又は反射した光量を検出
する検出手段と、 該検出手段の検出出力を計測す計測手段とを有し、 上記光記録媒体面に集束されたビームスポットの光強度
分布を上記計測手段により2次元方向で計測する様に成
したことを特徴とする光記録装置。
2. An optical recording medium having intersecting portions having different transmittances with respect to a beam spot irradiated on the surface of a disk-shaped recording medium at an opposite angle of about 45 degrees with respect to a tangential direction of an outer periphery of the optical recording medium. And a detecting means for detecting the amount of light transmitted or reflected at the intersection of the optical recording medium, and a measuring means for measuring the detection output of the detecting means, the beam spot of the beam spot focused on the surface of the optical recording medium. An optical recording apparatus characterized in that the light intensity distribution is measured in two-dimensional directions by the measuring means.
JP3351188U 1988-03-14 1988-03-14 Optical recording medium and optical recording apparatus for performing optical recording on the same Expired - Lifetime JP2506910Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3351188U JP2506910Y2 (en) 1988-03-14 1988-03-14 Optical recording medium and optical recording apparatus for performing optical recording on the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3351188U JP2506910Y2 (en) 1988-03-14 1988-03-14 Optical recording medium and optical recording apparatus for performing optical recording on the same

Publications (2)

Publication Number Publication Date
JPH01138220U JPH01138220U (en) 1989-09-21
JP2506910Y2 true JP2506910Y2 (en) 1996-08-14

Family

ID=31260195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3351188U Expired - Lifetime JP2506910Y2 (en) 1988-03-14 1988-03-14 Optical recording medium and optical recording apparatus for performing optical recording on the same

Country Status (1)

Country Link
JP (1) JP2506910Y2 (en)

Also Published As

Publication number Publication date
JPH01138220U (en) 1989-09-21

Similar Documents

Publication Publication Date Title
JPS5918771B2 (en) Device for reproducing pulse time modulated waves recorded along a diffraction track
US6721262B1 (en) Aperture stop for a flying optical head
JPH10255304A (en) Method and device of adjusting objective lens for optical pickup
JP2506910Y2 (en) Optical recording medium and optical recording apparatus for performing optical recording on the same
US7933189B2 (en) Focus optical system and optical disc master exposure apparatus
JPS62222440A (en) Optical head for optical disk device
JPS6250774B2 (en)
JPH0370859B2 (en)
JP2738543B2 (en) Optical pickup
JP2000030306A (en) Information recording medium and information reproduction device
JPH0528507A (en) Optical information recording medium and reproducing device thereof
JPH0245247B2 (en)
JPS61228332A (en) Apparatus for optical inspection of flaw
JPS6245614B2 (en)
JP2733072B2 (en) Separable optical pickup
JPH02294944A (en) Optical head adjusting device
JPS6142327B2 (en)
JP2001517851A (en) Optical head and method of configuring the optical head
JPS5828653B2 (en) Interval detection device for optical recorder/player
JP2002342974A (en) Laser exposure device, laser exposure method, master disk producing device
JPH0729214A (en) Disk for evaluating recording spot diameter
JPS6030014B2 (en) Recording plate setting position detection method in optical recording/reproducing device and recording plate used therein
JPH0214429A (en) Optical information recorder and track interval measuring device
JPS62284221A (en) Measuring method for beam spot diameter of optical head for optical disk
JPS5958635A (en) Focus controller