JP2506771B2 - Optical information recording medium - Google Patents

Optical information recording medium

Info

Publication number
JP2506771B2
JP2506771B2 JP62135224A JP13522487A JP2506771B2 JP 2506771 B2 JP2506771 B2 JP 2506771B2 JP 62135224 A JP62135224 A JP 62135224A JP 13522487 A JP13522487 A JP 13522487A JP 2506771 B2 JP2506771 B2 JP 2506771B2
Authority
JP
Japan
Prior art keywords
layer
address signal
recording medium
optical information
recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62135224A
Other languages
Japanese (ja)
Other versions
JPS63300435A (en
Inventor
憲一 長田
邦夫 木村
昇 山田
健一 西内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62135224A priority Critical patent/JP2506771B2/en
Publication of JPS63300435A publication Critical patent/JPS63300435A/en
Application granted granted Critical
Publication of JP2506771B2 publication Critical patent/JP2506771B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、レーザ光線を用いた情報記録再生装置に用
いる記録媒体として、書き換え可能な光ディスクに関
し、その書き換え特性を向上させる構成を提供する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rewritable optical disc as a recording medium used in an information recording / reproducing apparatus using a laser beam, and provides a configuration for improving the rewriting characteristics thereof.

従来の技術 信号を記録,再生,及び消去可能な光ディスクとして
相変化型の光ディスク及び光磁気ディスクが知られてい
る。相変化型の光ディスクの場合、記録材料が結晶状態
の場合を未記録状態とし、レーザスポットの照射で急熱
急冷して非晶質状態にすることで信号を記録する。次に
急熱徐冷することで再び結晶状態となり、記録信号は消
去される。又、記録層を酸素や水などの周囲成分から保
護し、かつ光の行路長を調整し、記録前後の反射光の変
化量を大きくする目的で、記録層に隣接して透明体層を
設けることがある。更に、記録層への光吸収効率を高め
る目的で反射層を設けることがある。
2. Description of the Related Art Phase change type optical disks and magneto-optical disks are known as optical disks capable of recording, reproducing and erasing signals. In the case of a phase change type optical disk, a signal is recorded by setting the crystalline state of the recording material to an unrecorded state and rapidly heating and chilling by irradiation of a laser spot to an amorphous state. Then, by rapid heating and slow cooling, the crystalline state is restored again and the recorded signal is erased. In addition, a transparent layer is provided adjacent to the recording layer for the purpose of protecting the recording layer from ambient components such as oxygen and water, adjusting the path length of light, and increasing the amount of change in reflected light before and after recording. Sometimes. Further, a reflective layer may be provided for the purpose of increasing the light absorption efficiency of the recording layer.

発明が解決しようとする問題点 上記光学情報記録媒体における記録信号の消去は、回
転する記録媒体上に連続的に消去ビームを照射すること
によってなされる。この時、基板上に凹凸状に設けられ
た番地信号の上を消去ビームが通過する際に、記録媒体
がダメージを受けることがある。例えば消去ビームのレ
ーザパワーが偶発的に変動した場合にダメージを受け、
その結果番地信号の認識が不可能になることがある。こ
れは、ビーム照射による昇温に伴って生ずる局部的応力
に対して凹凸状の部分が最も破壊されやすいことによ
る。このため、十分な記録・消去の繰り返しを得ること
ができない。
Problems to be Solved by the Invention Erasure of a recording signal in the above optical information recording medium is performed by continuously irradiating an erasing beam on a rotating recording medium. At this time, the recording medium may be damaged when the erasing beam passes over the address signals provided on the substrate in an uneven shape. For example, if the laser power of the erase beam changes accidentally, it will be damaged,
As a result, the address signal may not be recognized. This is because the concavo-convex portion is most likely to be destroyed due to the local stress caused by the temperature rise due to the beam irradiation. Therefore, it is not possible to obtain sufficient repetition of recording and erasing.

問題点を解決するための手段 本発明は、上述の問題を解決するための手段として、
光を吸収して物理的又は化学的変化を生ずる記録層を番
地信号を有する基板上に備え、光ビームを照射して情報
をスパイラル又は同心円状に記録・消去・再生する円盤
状の光学情報記録媒体において、番地信号が存在する領
域の記録層における消去ビームの吸収効率が、番地信号
が存在しない領域の記録層における消去ビームの光吸収
効率よりも小さくしたものである。
Means for Solving the Problems The present invention provides, as means for solving the above-mentioned problems,
A disk-shaped optical information recording that has a recording layer that absorbs light and causes a physical or chemical change on a substrate that has an address signal, and that irradiates a light beam to record / erase / reproduce information spirally or concentrically. In the medium, the absorption efficiency of the erase beam in the recording layer in the area where the address signal exists is made smaller than the light absorption efficiency of the erase beam in the recording layer in the area where the address signal does not exist.

作用 円盤状の光学情報記録媒体において、光吸収効率を記
録媒体の周方向で異なるようにし、番地信号の設けられ
た部分を光吸収効率の低い部分とすることにより、従来
構造で番地信号部において存在した局部的な応力集中が
なくなる。その結果、記録・消去の繰り返しに伴う番地
信号の破損がなくなり繰り返し寿命が著しく改善され
る。
Function In the disc-shaped optical information recording medium, the light absorption efficiency is made different in the circumferential direction of the recording medium, and the portion where the address signal is provided is the portion having the low light absorption efficiency. The existing local stress concentration disappears. As a result, the address signal is not damaged due to repeated recording / erasing, and the repeated life is remarkably improved.

実施例 以下図面に基づいて本発明を説明する。EXAMPLES The present invention will be described below with reference to the drawings.

第1図に本発明の光学情報記録媒体の構成図を示す。
第1−(b)〜(d)図は第1−(a)図に示す同心同
上のA−A′部の拡大断面図である。第1−(b)図は
記録層の膜厚が記録媒体の周方向の特定の場所で選択的
に異なる例、第1−(c)図は透明体層の膜厚が記録媒
体の周方向の特定の場所で選択的に異なる例、第1−
(d)図は反射層の膜厚が記録媒体の周方向の特定の場
所で選択的に異なる例である。
FIG. 1 shows a block diagram of the optical information recording medium of the present invention.
FIGS. 1- (b) to (d) are enlarged cross-sectional views of the concentric AA 'portion shown in FIG. 1- (a). FIG. 1- (b) shows an example in which the film thickness of the recording layer is selectively different at a specific position in the circumferential direction of the recording medium, and FIG. 1- (c) shows the film thickness of the transparent layer in the circumferential direction of the recording medium. Example of selectively different in a specific place of
FIG. 9D shows an example in which the film thickness of the reflective layer is selectively different at a specific location in the circumferential direction of the recording medium.

基板1として、PMMA,ポリカーボネート等の樹脂或い
はガラス等、表面の平滑なものを用いる。光ディスクの
場合、通常基板平面8はレーザ光を導くためにスパイラ
ル又は同心円状のトラックで覆われている。
As the substrate 1, a resin having a smooth surface such as resin such as PMMA or polycarbonate or glass is used. In the case of an optical disc, the substrate plane 8 is usually covered with spiral or concentric tracks to guide the laser light.

記録層3の材料としては、例えばGe.Te,Se等をベース
とするカルコゲン化物合金のように、結晶状態とアモル
ファス状態との間で熱的プロセスに基づき可逆的な構造
変化をおこす物質を用いることができる。結晶状態とア
モルファス状態との間で熱的プロセスに基づき可逆的な
構造変化をおこす物質を記録材料として用いた場合には
記録材料が結晶状態にある時が未記録状態で、レーザス
ポットの照射で急熱急冷して非晶質状態にすることで信
号を記録する。次に急熱急冷することで結晶状態とな
り、記録信号は消去される。記録材料を非晶質化し信号
を書き込むレーザ光を記録ビーム,結晶化し信号を消去
するレーザ光を消去ビームと呼ぶ。
As the material of the recording layer 3, a substance such as a chalcogenide alloy based on Ge.Te, Se or the like that causes a reversible structural change between a crystalline state and an amorphous state based on a thermal process is used. be able to. When a substance that causes a reversible structural change between a crystalline state and an amorphous state based on a thermal process is used as the recording material, the recording material is in the unrecorded state when it is in the crystalline state, and when the laser spot is irradiated. A signal is recorded by rapidly quenching to an amorphous state. Next, rapid heating and rapid cooling results in a crystalline state, and the recorded signal is erased. Laser light for amorphizing the recording material and writing a signal is called a recording beam, and laser light for crystallizing and erasing a signal is called an erasing beam.

透明体層2,4の材料としてはAl2O3,SiO,SiO2,TeO2,M
oO3,WO3,BiF3,PbF2,MgF2,ZnS,SiN等の誘電体或いは
これらの適当な組合せを選ぶ。これらの層の働きは、1
つには記録層3が記録・消去を繰り返した時に破壊され
るのを防止することであり、1つには多重干渉効果を利
用して記録層3への光吸収効率を高めることであり、同
時に記録前後の反射光又は透過光の変化量を大きくして
高いS/Nを得ることである。
The materials for the transparent layers 2 and 4 are Al 2 O 3 , SiO, SiO 2 , TeO 2 and M.
oO 3, WO 3, BiF 3 , PbF 2, MgF 2, ZnS, choosing a dielectric or their suitable combination of SiN or the like. The function of these layers is 1
One is to prevent the recording layer 3 from being destroyed when recording and erasing are repeated, and one is to enhance the light absorption efficiency to the recording layer 3 by utilizing the multiple interference effect. At the same time, the amount of change in reflected light or transmitted light before and after recording is increased to obtain a high S / N.

反射層5は、Au,Ni,Fe,Cr等の金属元素、或いはこれ
らの合金からなり、記録層3への光吸収効率を高める働
きをする。保護基板7は、樹脂をスピンコートしたり、
基材と同様の樹脂板,ガラス板或いは金属板等を接着剤
6を用いて貼り合わせることによって形成する。
The reflective layer 5 is made of a metal element such as Au, Ni, Fe, Cr, or an alloy thereof, and has a function of increasing the light absorption efficiency of the recording layer 3. The protective substrate 7 is formed by spin coating a resin,
A resin plate, a glass plate, a metal plate, or the like similar to the base material is formed by adhering it with the adhesive 6.

さらには、2組の記録媒体を中間基板或いは反射層を
内側にして接着剤を用いて貼り合わせることにより、両
面から記録,再生,消去可能な構造としてもよい。
Furthermore, a structure capable of recording, reproducing, and erasing from both sides may be realized by bonding two sets of recording media with the intermediate substrate or the reflective layer inside, using an adhesive.

各層は電子ビーム蒸着法,スパッタリング法,イオン
プレイディング法,CVD法等によって成膜される。第2図
に成膜時の概要を示す。基板1を基板支持治具9に固定
し、回転させながら蒸着源10から蒸着を行い、基板1上
に所望の膜を得る。この時、基板支持治具の形状を工夫
することにより、蒸着膜の膜厚を周方向の特定の場所で
選択的に変えることができる。例えば第3図に示すよう
な基板支持治具11を用いる。基板上でマスク12の影にな
る部分には成膜されず、又、多数の穴13をもつマスク14
の影になる部分にはマスクの影にならない部分よりも薄
く成膜される。
Each layer is formed by an electron beam evaporation method, a sputtering method, an ion plating method, a CVD method, or the like. FIG. 2 shows an outline of film formation. The substrate 1 is fixed to the substrate supporting jig 9, and vapor deposition is performed from the vapor deposition source 10 while rotating to obtain a desired film on the substrate 1. At this time, the film thickness of the vapor deposition film can be selectively changed at a specific location in the circumferential direction by devising the shape of the substrate supporting jig. For example, a substrate supporting jig 11 as shown in FIG. 3 is used. No film is formed on a portion of the substrate which is in the shadow of the mask 12, and a mask 14 having a large number of holes 13 is formed.
A film is formed in a shadowed area of the mask thinner than in a shadowed area of the mask.

上述のマスク付き基板支持治具を用いて、記録層にお
ける光吸収効率が周方向の特定の場所で選択的に異なる
円盤状の光学情報記録媒体を作成し、記録・消去の繰り
返し試験を行ったところ、番地信号の設けられた部分の
記録層における光吸収効率を他の領域より低くすること
により、記録・消去の繰り返しに伴う番表信号の破損が
生じなくなり、繰り返し寿命が著しく向上することが実
験的に確かめられた。
Using the above-mentioned substrate supporting jig with a mask, a disc-shaped optical information recording medium having different light absorption efficiencies in the recording layer at a specific position in the circumferential direction was prepared, and repeated recording / erasing tests were conducted. However, by lowering the light absorption efficiency in the recording layer where the address signal is provided compared to other areas, damage to the address signal due to repeated recording and erasing does not occur, and the repeated life can be significantly improved. It was confirmed experimentally.

以下に具体的な例をもって本発明を詳述する。 The present invention will be described in detail below with reference to specific examples.

(実施例1) 第4−(a),(b)図に示すように周方向の特定の
場所で記録層17の膜厚の異なる記録媒体を用意した。基
板15として1.2mm厚のポリカーボネート樹脂、第1の透
明体層16,及び第2の透明体層18の材料としてZnS,記録
層17の材料として(Te65Ge25Se10)70Sb30,反射層19の材
料としてNi-40%Crを用いる。
Example 1 As shown in FIGS. 4- (a) and (b), recording media having different recording layer 17 film thicknesses were prepared at specific circumferential positions. 1.2 mm thick polycarbonate resin as the substrate 15, ZnS as the material of the first transparent body layer 16 and the second transparent body layer 18, (Te 65 Ge 25 Se 10 ) 70 Sb 30 as the material of the recording layer 17, reflection Ni-40% Cr is used as the material of the layer 19.

基板上に、第1の透明体層,記録層,第2の透明体
層,反射層を順次電子ビーム蒸着法により形成する。各
層の膜厚は、記録・消去に用いるレーザ光の波長λ(83
0nm)と各層の屈折率nとを基準に選ぶ。第1の透明体
層の膜厚を5λ/16n,第2の透明体層の膜厚をλ/2n,反
射層の膜厚を40nmとする。記録層の厚さは第4−(b)
図に示す番地信号領域Iの部分のみ30nm,番地信号領域I
Iを含むその他の場所では40nmとした。得られた記録媒
体の記録・消去の繰り返しを100万回ずつ場所を変えて5
0箇所で行った。その結果、領域Iでは50箇所とも100万
回の繰り返しで番地信号部の破損が生じなかったのに対
して、領域IIでは50箇所中7箇所で番地信号部に破損を
生じ、番地認識が不可能となり、100万回まで記録・消
去を繰り返すことができなかった。
A first transparent layer, a recording layer, a second transparent layer, and a reflective layer are sequentially formed on a substrate by an electron beam evaporation method. The film thickness of each layer depends on the wavelength λ (83
0 nm) and the refractive index n of each layer. The film thickness of the first transparent body layer is 5λ / 16n, the film thickness of the second transparent body layer is λ / 2n, and the film thickness of the reflective layer is 40 nm. The thickness of the recording layer is 4- (b)
Only the part of the address signal area I shown in the figure is 30 nm, the address signal area I
At other locations including I, the thickness was 40 nm. Repeat the recording and erasing of the obtained recording medium by changing the location one million times 5
I went to 0 places. As a result, in the area I, the damage of the address signal part did not occur after repeating 1 million times in all 50 places, whereas in the region II, the address signal part was damaged in 7 places out of 50, and the address recognition was unsuccessful. It became possible, and recording / erasing could not be repeated up to 1 million times.

次に光学特性について述べる。あらかじめ各層の屈折
率n及び消衰係数kを実験的手法により求めておき、こ
れらの値と各層の膜厚を与えることにより、前述した構
成の記録媒体の記録層における波長830nmのレーザ光の
光吸収効率を算出した。表1に計算に用いた各層のn,
k、表2に計算結果を示す。
Next, the optical characteristics will be described. The refractive index n and the extinction coefficient k of each layer are obtained in advance by an experimental method, and by giving these values and the film thickness of each layer, the light of the laser beam having a wavelength of 830 nm in the recording layer of the recording medium having the above-described structure is obtained. The absorption efficiency was calculated. In Table 1, n of each layer used for calculation,
k, Table 2 shows the calculation results.

以上の結果から、番地信号の設けられた部分を記録層
の薄い部分−すなわち記録層における光吸収効率の低い
部分−とした場合には100万回繰り返しで信号部の破損
が見られないのに対し、番地信号の設けられた部分も記
録層における光吸収効率が十分高い場合には100万回繰
り返しで番地信号に破損が見られることがわかる。すな
わち、番地信号の設けられた部分を光吸収効率の低い部
分とすることにより、従来構造で番地信号部において存
在した局部的な応力集中がなくなり、その結果、記録・
消去の繰り返しに伴う歪の番地信号部の破損がなくなり
繰り返し寿命、及び信頼性が著しく向上する。
From the above results, when the portion where the address signal is provided is the thin portion of the recording layer-that is, the portion where the light absorption efficiency in the recording layer is low-there is no damage to the signal portion after 1 million repetitions. On the other hand, when the light absorption efficiency in the recording layer is sufficiently high even in the area where the address signal is provided, it can be seen that the address signal is damaged after 1 million repetitions. That is, by making the portion where the address signal is provided a portion having a low light absorption efficiency, the local stress concentration existing in the address signal portion in the conventional structure is eliminated, and as a result,
Distortion of the address signal portion due to repeated erasing is eliminated, and repeated life and reliability are significantly improved.

(実施例2) 第4−(a),(c)図に示すように周方向の特定の
場所で透明体層18の膜厚の異なる記録媒体を用意した。
基板15として1.2mm厚のポリカーボネート樹脂、第1の
透明体層16,及び第2の透明体層18の材料としてZnS,記
録層17の材料として(Te65Ge25Se10)70Sb30,反射層19の
材料としてNi-40%Crを用いる。
Example 2 As shown in FIGS. 4- (a) and (c), recording media having different transparent layer 18 film thicknesses were prepared at specific circumferential positions.
1.2 mm thick polycarbonate resin as the substrate 15, ZnS as the material of the first transparent body layer 16 and the second transparent body layer 18, (Te 65 Ge 25 Se 10 ) 70 Sb 30 as the material of the recording layer 17, reflection Ni-40% Cr is used as the material of the layer 19.

基板上に、第1の透明体層,記録層,第2の透明体
層,反射層を順次電子ビーム蒸着法により形成する。各
層の膜厚は、記録・消去に用いるレーザ光の波長λ(83
0nm)と各層の屈折率nとを基準に選ぶ。第1の透明体
層の膜厚を5λ/16n,記録層の膜厚を40nm,反射層の膜厚
を40nmとする。第2の透明体層の厚さは第4−(c)図
に示す番地信号領域Iの部分のみλ/4n,番地信号領域II
を含むその他の場所ではλ/2nとした。得られた記録媒
体の記録・消去を100万回ずつ場所をかえて50箇所で行
った。記録ビームの形状は円形でパワーは8mW,消去ビー
ムの形状は楕円形でパワーは18mWとした。その結果、領
域Iでは50箇所とも100万回の繰り返しで番地信号の破
損が生じなかったのに対して、領域IIでは50箇所中11箇
所で番地信号部に破損を生じ、番地認識が不可能とな
り、100万回まで記録・消去を繰り返すことができなか
った。
A first transparent layer, a recording layer, a second transparent layer, and a reflective layer are sequentially formed on a substrate by an electron beam evaporation method. The film thickness of each layer depends on the wavelength λ (83
0 nm) and the refractive index n of each layer. The thickness of the first transparent layer is 5λ / 16n, the thickness of the recording layer is 40 nm, and the thickness of the reflective layer is 40 nm. The thickness of the second transparent layer is λ / 4n only in the address signal area I shown in FIG. 4- (c), and the address signal area II.
In other places including, it was set to λ / 2n. Recording and erasing of the obtained recording medium were performed 1 million times at 50 locations by changing locations. The shape of the recording beam was circular and the power was 8 mW, and the shape of the erasing beam was elliptical and the power was 18 mW. As a result, in the area I, the damage of the address signal did not occur after repeating 1 million times at 50 points, but in the area II, the address signal part was damaged at 11 points of the 50 points and the address recognition was impossible. Therefore, recording / erasing could not be repeated up to 1 million times.

以上の結果から、番地信号の設けられた部分を第2の
透明体層の薄い部分−すなわち記録層における光吸収効
率の低い部分−とした場合には100万回繰り返しで信号
部の破損が見られないのに対し、番地信号の設けられた
部分も記録層における光吸収効率が十分高い場合には10
0万回繰り返しで番地信号に破損が見られることがわか
る。すなわち、番地信号の設けられた部分を光吸収効率
の低い部分とすることにより、従来構造で番地信号部に
おいて存在した局部的な応力集中がなくなり、その結
果、記録・消去の繰り返しに伴う歪の番地信号部の破損
がなくなり繰り返し寿命、及び信頼性が著しく向上す
る。
From the above results, when the part where the address signal is provided is the thin part of the second transparent body layer-that is, the part where the light absorption efficiency in the recording layer is low-the damage of the signal part is seen after 1 million repetitions. On the other hand, if the light absorption efficiency in the recording layer is sufficiently high, the area where the address signal is provided is 10
It can be seen that the address signal is damaged after repeating 0,000 times. That is, by making the portion where the address signal is provided a portion having low light absorption efficiency, the local stress concentration existing in the address signal portion in the conventional structure is eliminated, and as a result, the distortion due to repeated recording and erasing is eliminated. The address signal part is not damaged, and the life and reliability are remarkably improved.

(実施例3) 第4−(a),(d)図に示すように周方向の特定の
場所で反射層19の膜層の異なる記録媒体を用意した。基
板15として1.2mm厚のポリカーボネート樹脂、第1の透
明体層16,及び第2の透明体層18の材料としてZnS,記録
層17の材料として(Te65Ge25Se10)70Sb30,反射層19の材
料としてNi-40%Crを用いる。
Example 3 As shown in FIGS. 4- (a) and (d), recording media having different film layers of the reflective layer 19 were prepared at specific locations in the circumferential direction. 1.2 mm thick polycarbonate resin as the substrate 15, ZnS as the material of the first transparent body layer 16 and the second transparent body layer 18, (Te 65 Ge 25 Se 10 ) 70 Sb 30 as the material of the recording layer 17, reflection Ni-40% Cr is used as the material of the layer 19.

基板上に、第1の透明体層,記録層,第2の透明体
層,反射層を順次電子ビーム蒸着法により形成する。各
層の膜厚は、記録・消去に用いるレーザ光の波長λ(83
0nm)と各層の屈折率nとを基準に選ぶ。第1の透明体
層の膜厚を5λ/16n,記録層の膜厚を40nm,第2の透明体
層の膜厚をλ/2nとする。反射層の厚さは第4−(d)
図に示す番地信号領域Iの部分のみ0nm,番地信号領域II
を含むその他の場所では40nmとした。得られた記録媒体
の記録・消去の繰り返しを100万回ずつ場所を変えて50
箇所で行った。記録ビームの形状は円形でパワーは8mW,
消去ビームの形状は楕円形でパワーは18mWとした。その
結果、領域Iでは50箇所とも100万回の繰り返しで番地
信号部の破損が生じなかったのに対して、領域IIでは50
箇所中11箇所で番地信号部に破損を生じ、番地認識が不
可能となり、100万回まで記録・消去を繰り返すことが
できなかった。以上の結果から、番地信号の設けられた
部分を反射層の薄い部分−すなわち記録層における光吸
収効率の低い部分−とした場合には100万回繰り返しで
信号部の破損が見られないのに対し、番地信号の設けら
れた部分も記録層における光吸収効率が十分高い場合に
は100万回繰り返しで番地信号に破損が見られることが
わかる。すなわち、番地信号の設けられた部分を光吸収
効率の低い部分とすることにより、従来構造で番地信号
部において存在した局部的な応力集中がなくなり、その
結果、記録・消去の繰り返しに伴う歪の番地信号部の破
損がなくなり繰り返し寿命、及び信頼性が著しく向上す
る。
A first transparent layer, a recording layer, a second transparent layer, and a reflective layer are sequentially formed on a substrate by an electron beam evaporation method. The film thickness of each layer depends on the wavelength λ (83
0 nm) and the refractive index n of each layer. The film thickness of the first transparent body layer is 5λ / 16n, the film thickness of the recording layer is 40 nm, and the film thickness of the second transparent body layer is λ / 2n. The thickness of the reflective layer is 4- (d)
Only the address signal area I shown in the figure is 0 nm, address signal area II
In other places including, it was set to 40 nm. Repeat the recording and erasing of the obtained recording medium by changing the location by 1 million times 50
Went in places. The recording beam has a circular shape with a power of 8 mW,
The shape of the erase beam was elliptical and the power was 18 mW. As a result, in the area I, the damage of the address signal part did not occur after repeating 1 million times in 50 locations, whereas in the area II,
The address signal part was damaged at 11 of the locations, making it impossible to recognize the address, and recording / erasing could not be repeated up to 1 million times. From the above results, when the part where the address signal is provided is the thin part of the reflection layer-that is, the part where the light absorption efficiency in the recording layer is low-there is no damage to the signal part after 1 million repetitions. On the other hand, when the light absorption efficiency in the recording layer is sufficiently high even in the area where the address signal is provided, it can be seen that the address signal is damaged after 1 million repetitions. That is, by making the portion provided with the address signal a portion having low light absorption efficiency, the local stress concentration existing in the address signal portion in the conventional structure is eliminated, and as a result, distortion due to repeated recording and erasing is eliminated. The address signal part is not damaged, and the life and reliability are remarkably improved.

発明の効果 以上述べたように、本発明によって従来の光学情報記
録媒体よりも記録・消去の繰り返し寿命に優れた記録媒
体が提供された。
EFFECTS OF THE INVENTION As described above, according to the present invention, a recording medium having an excellent repeated life of recording / erasing as compared with the conventional optical information recording medium is provided.

この効果に基づき、例えば画像処理用のコンピュータ
ー用ファイル・メモリー等への応用が可能となる。
Based on this effect, it can be applied to, for example, a computer file / memory for image processing.

【図面の簡単な説明】[Brief description of drawings]

第1図(a)は本発明の光学情報記録媒体の平面図、同
図(b),(c),(d)は同媒体の断面図、第2図は
本発明の光学情報記録媒体を製造するための装置の概略
図、第3図は本発明の光学情報記録媒体を製造する際に
用いる基板支持治具の平面図、第4図(a)は記録・消
去の繰り返し試験に供した種々の構成の記録媒体を示す
図、同図(b),(c),(d)は同媒体の断面図であ
る。 20……接着剤、21……保護基板、22……情報記録信号、
23……ベルジャー、24……排気装置、25……番地信号。
FIG. 1 (a) is a plan view of the optical information recording medium of the present invention, FIGS. 1 (b), (c) and (d) are sectional views of the same medium, and FIG. 2 is an optical information recording medium of the present invention. FIG. 3 is a schematic view of an apparatus for manufacturing, FIG. 3 is a plan view of a substrate supporting jig used in manufacturing the optical information recording medium of the present invention, and FIG. 4 (a) is subjected to repeated recording / erasing test. FIGS. 3A and 3B are views showing recording media having various configurations, and FIGS. 6B, 6C, and 6D are cross-sectional views of the media. 20: adhesive, 21: protective substrate, 22: information recording signal,
23 …… Bell jar, 24 …… Exhaust device, 25 …… Address signal.

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】光を吸収して物理的又は化学的変化を生ず
る記録層を番地信号を有する基板上に備え、光ビームを
照射して情報をスパイラル又は同心円状に記録・消去・
再生する円盤状の光学情報記録媒体において、前記番地
信号が存在する領域の記録層における消去ビームの吸収
効率が、前記番地信号が存在しない領域の記録層におけ
る消去ビームの光吸収効率よりも小さいことを特徴とす
る光学情報記録媒体。
1. A recording layer which absorbs light and causes a physical or chemical change is provided on a substrate having an address signal, and a light beam is irradiated to record / erase information in a spiral or concentric pattern.
In the disc-shaped optical information recording medium to be reproduced, the absorption efficiency of the erasing beam in the recording layer in the area where the address signal exists is smaller than the light absorption efficiency of the erasing beam in the recording layer in the area where the address signal does not exist. An optical information recording medium characterized by:
【請求項2】記録層の膜厚が、番地信号が存在する領域
で選択的に異なることを特徴とする特許請求の範囲第1
項記載の光学情報記録媒体。
2. The film thickness of the recording layer is selectively different in the area where the address signal is present.
An optical information recording medium according to the item.
【請求項3】光の光路長を調整し、記録前後の反射光の
変化量を大きくするための透明体層をもつ光学情報記録
媒体において、前記透明体層の膜厚が、番地信号が存在
する領域で選択的に異なることを特徴とする特許請求の
範囲第1項記載の光学情報記録媒体。
3. An optical information recording medium having a transparent body layer for adjusting the optical path length of light so as to increase the amount of change in reflected light before and after recording, wherein the transparent body layer has a film thickness and an address signal exists. The optical information recording medium according to claim 1, wherein the optical information recording medium is selectively different in the area.
【請求項4】記録層への光吸収効率を高めるための反射
層をもつ光学情報記録媒体において、前記反射層の膜厚
が、番地信号が存在する領域で選択的に異なることを特
徴とする特許請求の範囲第1項記載の光学情報記録媒
体。
4. An optical information recording medium having a reflective layer for increasing the light absorption efficiency to the recording layer, wherein the thickness of the reflective layer is selectively different in the area where the address signal exists. The optical information recording medium according to claim 1.
JP62135224A 1987-05-29 1987-05-29 Optical information recording medium Expired - Lifetime JP2506771B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62135224A JP2506771B2 (en) 1987-05-29 1987-05-29 Optical information recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62135224A JP2506771B2 (en) 1987-05-29 1987-05-29 Optical information recording medium

Publications (2)

Publication Number Publication Date
JPS63300435A JPS63300435A (en) 1988-12-07
JP2506771B2 true JP2506771B2 (en) 1996-06-12

Family

ID=15146719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62135224A Expired - Lifetime JP2506771B2 (en) 1987-05-29 1987-05-29 Optical information recording medium

Country Status (1)

Country Link
JP (1) JP2506771B2 (en)

Also Published As

Publication number Publication date
JPS63300435A (en) 1988-12-07

Similar Documents

Publication Publication Date Title
JPH0671828B2 (en) Information recording thin film
WO1998038636A1 (en) Phase-changeable optical recording medium, method of manufacturing the same, and method of recording information on the same
JP2506771B2 (en) Optical information recording medium
JPS61190734A (en) Information recording medium
JP3078823B2 (en) Optical recording medium and manufacturing method thereof
JP3687264B2 (en) Optical information recording medium and manufacturing method thereof
JP2900862B2 (en) Phase change optical disk
JPH01100748A (en) Information recording medium
JPH083912B2 (en) Novel optical recording medium and manufacturing method thereof
JP4085300B2 (en) Phase change optical disk medium and method for initializing the medium
JPH03224791A (en) Data recording medium
JPH10326434A (en) Optical recording medium
JPH06274941A (en) Optical recording medium
JPH113538A (en) Phase change type optical disk and its production
JP2592239B2 (en) Information recording medium and information recording and erasing method
JPH03181029A (en) Information carrier disk
JPH05303772A (en) Optical information recording medium
JPH02178086A (en) Optical recording medium
JPH08124213A (en) Optical recording medium
JPH0737273A (en) Optical recording medium
JPH10269630A (en) Optical recording medium
JPH01100746A (en) Information recording medium
JPH05274717A (en) Optical information recording medium and its recording and reproducing method
JPS60234254A (en) Heat magnetic recording medium
JPH05342635A (en) Optical information medium