JP2504366Y2 - Automatic charger - Google Patents

Automatic charger

Info

Publication number
JP2504366Y2
JP2504366Y2 JP21091U JP21091U JP2504366Y2 JP 2504366 Y2 JP2504366 Y2 JP 2504366Y2 JP 21091 U JP21091 U JP 21091U JP 21091 U JP21091 U JP 21091U JP 2504366 Y2 JP2504366 Y2 JP 2504366Y2
Authority
JP
Japan
Prior art keywords
charging
charging current
storage battery
current
initial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP21091U
Other languages
Japanese (ja)
Other versions
JPH0493454U (en
Inventor
嘉洋 仲村
誠 野田
Original Assignee
株式会社三陽電機製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社三陽電機製作所 filed Critical 株式会社三陽電機製作所
Priority to JP21091U priority Critical patent/JP2504366Y2/en
Publication of JPH0493454U publication Critical patent/JPH0493454U/ja
Application granted granted Critical
Publication of JP2504366Y2 publication Critical patent/JP2504366Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【考案の詳細な説明】[Detailed description of the device]

【0001】[0001]

【産業上の利用分野】この考案は例えば電気車に搭載さ
れる蓄電池の充電に用いられ、一定の初期充電電流で充
電を行い、充電電圧が変曲点に達すると、初期充電電流
よりも小さい後期充電電流で充電する、いわゆる二段定
電流式の自動充電器に関する。
This invention is used, for example, to charge a storage battery mounted on an electric vehicle. When the charging voltage reaches an inflection point by charging with a constant initial charging current, the charging current becomes smaller than the initial charging current. The present invention relates to a so-called two-stage constant current type automatic charger that charges with a late charging current.

【0002】[0002]

【従来の技術】電気車などにおいては、稼動率を向上さ
せるため、充電時間も短くすべく、充電を急速に行うこ
とが望まれている。急速に充電するため、従来において
は、図4に示すように比較的大きな一定の初期充電電流
0 で充電を開始し、充電電圧Vが変曲点、つまり一定
電圧Vc になると、蓄電池の液の化学反応が活発になり
ガス(主として水素)の発生が多くなる充電後期の充電
電流I1 を初期充電電流I0 の3分の1程度に減少し、
この後期充電電流I1 で充電し、充電電圧が所定値にな
ったこと、つまり充電完了を検出して充電を終了する二
段定電流方式が多く用いられていた。
2. Description of the Related Art In an electric vehicle or the like, it is desired to charge the battery rapidly in order to shorten the charging time in order to improve the operating rate. In order to charge the battery rapidly, conventionally, as shown in FIG. 4, charging is started with a relatively large constant initial charging current I 0 , and when the charging voltage V reaches an inflection point, that is, a constant voltage V c , the storage battery The charging current I 1 in the latter stage of charging, where the chemical reaction of the liquid becomes active and the amount of gas (mainly hydrogen) generated increases, is reduced to about one third of the initial charging current I 0 ,
A two-stage constant current method has been widely used in which charging is performed with the latter charging current I 1 and the charging voltage reaches a predetermined value, that is, the completion of charging is detected and the charging is terminated.

【0003】[0003]

【考案が解決しようとする課題】従来の二段定電流方式
の充電では、充電対象の蓄電池から取り出せる電流の最
大値が、充電器の初期充電電流I0 よりも大きい場合
は、特に後期充電期間(変曲点電圧以後の充電時間)T
2 が長くなり、全体としての充電時間TA が長くなるた
め、それだけその蓄電池を利用するもの、例えば電気車
の稼働率が低下する。
In the conventional two-stage constant current charging, when the maximum value of the current that can be taken out from the storage battery to be charged is larger than the initial charging current I 0 of the charger, especially in the latter charging period. (Charging time after inflection point voltage) T
2 becomes longer and the charging time T A as a whole becomes longer, so that the utilization rate of the storage battery, for example, an electric vehicle, is reduced accordingly.

【0004】逆に蓄電池の最大電流が小さい場合は、後
期充電期間T2 に、多量のガスが発生し、電池液が不足
する問題があった。いずれでもガス発生が少ないように
するには後期充電電流I1 を十分小さくしておく必要が
あり、このため後期充電時間がかなり長い欠点があっ
た。
On the contrary, when the maximum current of the storage battery is small, there is a problem that a large amount of gas is generated during the latter charging period T 2 and the battery liquid becomes insufficient. In either case, it is necessary to make the late charging current I 1 sufficiently small in order to reduce the amount of gas generation, and there is a drawback that the latter charging time is considerably long.

【0005】[0005]

【課題を解決するための手段】請求項1の考案によれ
ば、充電開始から充電電圧が変曲点になるまでの時間
(初期充電時間T1 )が計測され、この時間T1 と比例
関係で後期充電電流が設定される。請求項2の考案によ
れば、請求項1の考案において、更に蓄電池の液温が測
定され、この測定された液温と逆比例関係で後期充電電
流が変更される。
According to the invention of claim 1, the time from the start of charging until the charging voltage reaches the inflection point (initial charging time T 1 ) is measured and is proportional to this time T 1. The latter charging current is set with. According to the second aspect of the invention, in the first aspect of the invention, the liquid temperature of the storage battery is further measured, and the late charging current is changed in inverse proportion to the measured liquid temperature.

【0006】請求項3の考案によれば、一定の初期充電
電流で蓄電池を充電し、充電電圧が変曲点に達すると、
初期充電電流より小さい後期充電電流で充電する充電器
において、蓄電池の液温が計測され、その計測した液温
と逆比例関係で後期充電電流が変更される。
According to the invention of claim 3, when the storage battery is charged with a constant initial charging current and the charging voltage reaches the inflection point,
The battery temperature of the storage battery is measured by the charger that charges with the latter charging current smaller than the initial charging current, and the latter charging current is changed in inverse proportion to the measured liquid temperature.

【0007】[0007]

【実施例】図1に請求項2の考案の実施例における制御
器の処理動作の要部を示し、図2に充電器の全体の構成
を示す。充電器の入力端子11は、商用電源のような充
電電源12が接続されるべきものであり、この端子11
は、電磁接触器の接点13−過電流検出用サーマルリレ
ー14−変圧器15−整流器16−平滑回路17−制御
トランジスタ18−電流検出用ホール素子19を通じて
出力端子21に接続される。出力端子21に充電すべき
蓄電池22が接続される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows the main part of the processing operation of a controller in the embodiment of the invention of claim 2, and FIG. The charging power source 12 such as a commercial power source is connected to the input terminal 11 of the charger.
Is connected to the output terminal 21 through the contact 13 of the electromagnetic contactor, the overcurrent detection thermal relay 14, the transformer 15, the rectifier 16, the smoothing circuit 17, the control transistor 18, and the current detection Hall element 19. A storage battery 22 to be charged is connected to the output terminal 21.

【0008】制御器23はワンチップマイクロコンピュ
ータ(MPU)24を備え、普通・均等切換スイッチ2
5をオンするごとに充電方式が普通充電方式と均等充電
方式とに交互に切換わり、普通充電表示灯26または均
等充電表示灯27のいずれかが点灯する。まず、この表
示を見てスイッチ25を制御して充電方式を選択する
(S1)。次に充電ON/OFFスイッチ28をオンにす
る(S2)。そうするとワンチップMPU24は駆動回路
29を介して個体リレー(SSR)31を制御して電磁
接触器コイル32を制御し、その接点13を閉とし、ワ
ンチップMPU24内の充電タイマ33,充電初期タイ
マ34を起動する。また、ワンチップMPU24は電圧
電流制御回路35に制御開始信号を与え、電圧制御回路
35はその信号によりトランジスタ18のベース電流を
制御してそのコレクタに与えられた直流電力を、充電初
期電圧、充電初期電流I0 で蓄電池22に供給してこれ
を充電し始める。更に蓄電池22の液内にサーミスタ3
6が設けられ、サーミスタ36は制御器23内の電源回
路37に抵抗器38を通じて接続されてサーミスタ36
に電流が流され、サーミスタ36、抵抗器38の接続点
に生じる蓄電池22の液温に応じた電圧を、ワンチップ
MPU24内のA/D変換器に取り込み、ワンチップM
PU24は充電開始直後の蓄電池22の液温X1 をRA
M39に記憶する(S3)。
The controller 23 includes a one-chip microcomputer (MPU) 24, and the normal / equal changeover switch 2
Every time the switch 5 is turned on, the charging system is switched alternately between the normal charging system and the uniform charging system, and either the normal charging indicator light 26 or the uniform charging indicator light 27 is turned on. First, looking at this display, the switch 25 is controlled to select the charging system (S 1 ). Next, the charging ON / OFF switch 28 is turned on (S 2 ). Then, the one-chip MPU 24 controls the solid-state relay (SSR) 31 via the drive circuit 29 to control the electromagnetic contactor coil 32, and closes the contact 13 of the one-chip MPU 24. To start. Further, the one-chip MPU 24 gives a control start signal to the voltage / current control circuit 35, and the voltage control circuit 35 controls the base current of the transistor 18 by the signal to supply the DC power given to its collector to the initial charging voltage, charging The initial current I 0 is supplied to the storage battery 22 to start charging it. Further, in the liquid of the storage battery 22, the thermistor 3
6 is provided, the thermistor 36 is connected to the power supply circuit 37 in the controller 23 through the resistor 38, and
A current corresponding to the liquid temperature of the storage battery 22 generated at the connection point of the thermistor 36 and the resistor 38 is taken into the A / D converter in the one-chip MPU 24, and the one-chip M
The PU 24 sets the liquid temperature X 1 of the storage battery 22 immediately after the start of charging to RA
Stored in the M39 (S 3).

【0009】ワンチップMPU24はトランジスタ18
のエミッタ電圧、つまり充電電圧Vを監視し、図4に示
したように充電が進むにつれて充電電圧Vが次第に上昇
し、充電電圧が蓄電池電圧の変曲点(飽和点)VC に達
したか否かをチェックしている(S4)。変曲点電圧に達
すると、充電初期タイマ24を停止させ、この時のタイ
マ24の値から、充電開始より変曲点までの充電初期時
間T1 を得る。普通充電か均等充電かを判定し(S5),
あらかじめワンチップMPU24内のROM41に定数
として設定された全充電時間TA ,充電初期の充電率K
1 ,充電後期の充電率K2 (普通充電),K3 (均等充
電)およびタイマ34で測定した充電初期時間T1 ,初
期充電電流I0 とを用いて後期充電電流I1 を次式によ
り求める。
The one-chip MPU 24 is a transistor 18
Of the emitter voltage, that is, the charging voltage V, is monitored, and as shown in FIG. 4, the charging voltage V gradually increases as the charging progresses, and the charging voltage reaches the inflection point (saturation point) V C of the storage battery voltage. It is checked whether or not (S 4 ). When the inflection point voltage is reached, the charging initial timer 24 is stopped, and the charging initial time T 1 from the start of charging to the inflection point is obtained from the value of the timer 24 at this time. It is judged whether it is normal charge or equal charge (S 5 ),
The total charging time T A , which is preset as a constant in the ROM 41 in the one-chip MPU 24, and the charging rate K at the initial charging stage.
1 , the late charging current K 1 (normal charging), K 3 (uniform charging), the initial charging time T 1 measured by the timer 34, and the initial charging current I 0 are used to calculate the latter charging current I 1 by the following equation. Ask.

【0010】普通充電の場合(S6), I1 =K2 0 1 /K1 (TA −T1 ) 均等充電の場合(S7), I1 =K3 0 1 /K1 (TA −T1 ) なお、K1 は放電量に対する初期充電の充電の比率であ
り、K2 ,K3 は後期充電で必要とする残りの充電量の
放電量に対する比率であり、K1 ,K2 ,K3はそれぞ
れ実験的に求める。放電量は蓄電池の定格容量に対する
放電した面分率である。TA は例えば平均的な放電量に
対する充電開始から理想的な充電完了までの時間で決め
る。普通充電は放電量に対し、約110〜115%の充
電であり、均等充電は放電量に対し、約125%の充電
である。要するに後期充電電流I1 は測定した初期充電
時間T1 と比例関係で設定している。
[0010] When the normal charging (S 6), I 1 = K 2 I 0 T 1 / K 1 (T A -T 1) For equalizing charge (S 7), I 1 = K 3 I 0 T 1 / K 1 (T a -T 1) Incidentally, K 1 is the ratio of the charge in the initial charge to the discharge amount, K 2, K 3 is the ratio of discharge amount of the remaining charge amount required in the later charging, K 1 , K 2 and K 3 are experimentally obtained. The discharge amount is the ratio of the discharged surface area to the rated capacity of the storage battery. T A is determined by, for example, the time from the start of charging to the ideal completion of charging with respect to the average discharge amount. Normal charge is about 110 to 115% of the discharge amount, and uniform charge is about 125% of the discharge amount. In short, the late charging current I 1 is set in proportion to the measured initial charging time T 1 .

【0011】これら演算した後期充電電流I1 と充電電
圧とをワンチップMPU24のD/A変換器から電圧電
流制御回路35へ出力してトランジスタ18のベース電
流を絞り、充電後期の充電を開始する。この充電後期に
おいてはサーミスタ36によって蓄電池の液温X2 が常
時、測定され、この液温X2 と充電開始直後の液温X1
とから求めた温度上昇ΔX1 (=X2 −X1 )を求め、
この温度上昇が所定値以上になったか否かを常時監視す
る(S8)。温度上昇が所定値以上になると、蓄電池22
における化学反応が活発でガス発生が多いと判断して充
電電流I1 を減少する(S9)。つまり、I1 を液温と逆
比例関係で変更する。充電タイマ33の計数時間が、全
充電時間TA と等しくなったか否かを監視し(S10),
全充電時間TA になっていない場合はステップS8 に戻
り、全充電時間TA になると、電圧電流制御回路35へ
の信号を停止し、電圧電流制御回路35はトランジスタ
18を不導通とする。その後、ワンチップMPU24は
駆動回路29を介してSSRリレー31を制御し、これ
により更に電磁接触器のコイル32を制御してその接点
13を開にし交流入力を断ち充電を終了する(S11)。
なお、充電途中で充電ON/OFFスイッチ28を再び
オンにするとワンチップMPU24は充電終了動作を行
う。
The calculated late charging current I 1 and charging voltage are output from the D / A converter of the one-chip MPU 24 to the voltage / current control circuit 35 to throttle the base current of the transistor 18 to start the latter charging. . In the latter half of charging, the liquid temperature X 2 of the storage battery is constantly measured by the thermistor 36, and the liquid temperature X 2 and the liquid temperature X 1 immediately after the start of charging are measured.
The temperature rise ΔX 1 (= X 2 −X 1 ) obtained from
This rise in temperature constantly monitors whether or not it is above a predetermined value (S 8). When the temperature rise exceeds a predetermined value, the storage battery 22
It is determined that the chemical reaction in ( 1 ) is active and a large amount of gas is generated, and the charging current I 1 is reduced (S 9 ). That is, I 1 is changed in inverse proportion to the liquid temperature. It is monitored whether or not the count time of the charge timer 33 becomes equal to the total charge time T A (S 10 ),
If it is not full charge time T A returns to the step S 8 is, at the full charge time T A, stop signal to the voltage-current control circuit 35, the voltage-current control circuit 35 is nonconductive transistor 18 . After that, the one-chip MPU 24 controls the SSR relay 31 via the drive circuit 29, thereby further controlling the coil 32 of the electromagnetic contactor to open its contact 13 and disconnect the AC input to terminate the charging (S 11 ). .
When the charging ON / OFF switch 28 is turned on again during charging, the one-chip MPU 24 performs the charging end operation.

【0012】請求項1の考案の実施例は、図1に示した
請求項2の考案の実施例における制御において、充電後
期における蓄電池22の液温上昇の監視を省略したもの
である。つまりステップS8 ,S9 が省略され、ステッ
プS6 またはS7 の次にステップS10となる。またステ
ップS3 で蓄電池液温測定が省略され、図2においてサ
ーミスタ36,抵抗器38が省略される。
In the embodiment of the invention of claim 1, the control of the embodiment of the invention of claim 2 shown in FIG. 1 omits the monitoring of the liquid temperature rise of the storage battery 22 in the latter stage of charging. That is, steps S 8 and S 9 are omitted, and step S 6 or S 7 is followed by step S 10 . Further, in step S 3 , the measurement of the storage battery liquid temperature is omitted, and in FIG. 2, the thermistor 36 and the resistor 38 are omitted.

【0013】請求項3の考案の実施例も図2と同様の構
成とされ、その制御器23における処理例を図3に図1
と対応する部分に同一ステップ符号を付けて示す。ただ
し、この請求項3の考案ではステップS3 において充電
初期タイマの起動は行わない。またステップS6 では後
期充電電流I1 を単に初期充電電流I0 の例えば2/5
とする。つまり、従来はI1 を一般にI0 の1/3とし
ていたが、この実施例ではI0 の1/3以上とする。ス
テップS7 も従来の均等充電におけるI1 の値よりも大
きな値を、I0 に対し一定の比率を掛算して決める。そ
の他は図1と同様である。つまり、請求項1,2の考案
では充電初期の期間T1 を測定し、これに応じて適切な
後期充電電流I1 を設定して後期充電時間T2 を短くし
たが、請求項3の考案では後期充電電流I1 を従来より
も大として、後期充電時間T2 を短くし、このため蓄電
池22の化学反応が活発となり過ぎる場合は、これを液
温上昇で検出し、後期充電電流I1 を下げている。
The embodiment of the invention of claim 3 has the same configuration as that of FIG. 2, and an example of processing in the controller 23 thereof is shown in FIG.
The same step numbers are given to the parts corresponding to. However, in the invention of claim 3 , the charging initial timer is not started in step S 3 . Further, in step S 6 , the late charging current I 1 is simply set to, for example, 2/5 of the initial charging current I 0 .
And In other words, conventionally, I 1 was generally set to 1/3 of I 0 , but in this embodiment, it is set to 1/3 or more of I 0 . Step S 7 also a value greater than the value of I 1 in the conventional equalizing charge, determined by multiplying the constant ratio with respect to I 0. Others are the same as in FIG. That is, in the inventions of claims 1 and 2, the period T 1 at the initial stage of charging is measured, and an appropriate late-stage charging current I 1 is set accordingly to shorten the late-stage charging time T 2. Then, the latter charging current I 1 is set to be larger than that in the conventional case, and the latter charging time T 2 is shortened. Therefore, when the chemical reaction of the storage battery 22 becomes too active, this is detected by the liquid temperature rise, and the latter charging current I 1 is detected. Is lowered.

【0014】[0014]

【考案の効果】以上述べたように、請求項1の考案によ
れば初期充電時間T1 を測定し、この時間T1 に比例的
関係で後期充電電流I1 を決定し、常に適切なI1 が得
られ、多くのガス発生を伴うことなく、後期充電時間T
2 を短くすることができる。請求項2の考案では更に後
期充電期間T2 において、蓄電池の液温上昇に応じて後
期充電電流I1 を減少させるようにしているから、請求
項1における後期充電電流I1 よりも大きめに後期充電
電流I1 を設定することができ、後期充電期間T2 を一
層短くすることができる。
As described above, according to the first aspect of the invention, the initial charging time T 1 is measured, and the late charging current I 1 is determined in proportion to this time T 1 , and the appropriate charging current I 1 is always maintained. 1 is obtained, and the late charging time T is generated without generating much gas.
2 can be shortened. In the second aspect of the invention, the late charging current I 1 is further decreased in accordance with the rise in the liquid temperature of the storage battery in the late charging period T 2 , so that the latter charging current I 1 is set to be larger than the latter charging current I 1 in claim 1. The charging current I 1 can be set, and the late charging period T 2 can be further shortened.

【0015】請求項3の考案によれば後期充電期間T2
において、蓄電池の液温の上昇を監視し、液温が上昇す
ると、蓄電池内の化学反応が活発になったと判定して後
期充電電流I1 を減少するようにしているため、従来よ
りも後期充電電流I1 を大きくすることができ、それだ
け後期充電期間T2 を短くすることができ、多量のガス
発生もさせないで済む。
According to the invention of claim 3, the latter charging period T 2
In the above, the increase in the liquid temperature of the storage battery is monitored, and when the liquid temperature rises, it is determined that the chemical reaction in the storage battery has become active, and the second-stage charging current I 1 is decreased. The current I 1 can be increased, the latter charging period T 2 can be shortened accordingly, and a large amount of gas is not generated.

【0016】以上のように、いずれも後期充電期間T2
が従来より短くなり、全体の充電時間TA が短くなり、
かつガス発生を抑えることができ、この蓄電池を使用す
る機器(電気車など)の稼働率を上げることができ、し
かも蓄電池の液不足を生じさせるおそれがない。また大
きな容量の蓄電池に対しても充電不足を防止することが
できる。
As described above, in each case, the latter charging period T 2
Becomes shorter than before, and the total charging time T A becomes shorter,
In addition, gas generation can be suppressed, the operating rate of devices (electric vehicles, etc.) that use this storage battery can be increased, and there is no risk of running out of liquid in the storage battery. Further, it is possible to prevent insufficient charging even for a storage battery having a large capacity.

【図面の簡単な説明】[Brief description of drawings]

【図1】請求項1の考案の実施例における制御器の処理
動作例を示す流れ図。
FIG. 1 is a flow chart showing an example of processing operation of a controller in the embodiment of the invention of claim 1.

【図2】請求項2の考案の実施例の構成を示す図。FIG. 2 is a diagram showing a configuration of an embodiment of the invention of claim 2;

【図3】請求項3の考案の実施例における制御器の処理
動作例を示す流れ図。
FIG. 3 is a flowchart showing an example of processing operation of a controller in the embodiment of the invention of claim 3;

【図4】充電電圧、充電電流の時間経過を示す図。FIG. 4 is a diagram showing a charging voltage and a charging current with time.

【符号の説明】[Explanation of symbols]

11 入力端子 12 交流電源 21 出力端子 22 蓄電池 23 制御器 24 ワンチップマイクロコンピュータ 33 充電タイマ 34 初期充電タイマ 36 サーミスタ 11 Input Terminal 12 AC Power Supply 21 Output Terminal 22 Storage Battery 23 Controller 24 One-chip Microcomputer 33 Charging Timer 34 Initial Charging Timer 36 Thermistor

Claims (3)

(57)【実用新案登録請求の範囲】(57) [Scope of utility model registration request] 【請求項1】 一定の初期充電電流で蓄電池を充電し、
充電電圧が変曲点に達すると、上記初期充電電流よりも
小さい後期充電電流で充電する自動充電器において、充
電開始から上記充電電圧が変曲点になるまでの初期充電
時間を計測する手段と、上記後期充電電流を、上記測定
した初期充電時間と比例関係で設定する手段と、を有す
る自動充電器。
1. A storage battery is charged with a constant initial charging current,
When the charging voltage reaches the inflection point, a means for measuring the initial charging time from the start of charging to the inflection point of the charging voltage in an automatic charger that charges with a late charging current smaller than the initial charging current. And a means for setting the latter charging current in a proportional relationship with the measured initial charging time.
【請求項2】 上記蓄電池の液温を計測する手段と、そ
の計測した液温と逆比例関係で上記後期充電電流を変更
する手段とを有することを特徴とする請求項1記載の自
動充電器。
2. The automatic charger according to claim 1, further comprising means for measuring the liquid temperature of the storage battery and means for changing the latter charging current in an inversely proportional relationship with the measured liquid temperature. .
【請求項3】 一定の初期充電電流で蓄電池を充電し、
充電電圧が変曲点に達すると、上記初期充電電流よりも
小さい後期充電電流で充電する自動充電器において、上
記蓄電池の液温を計測する手段と、その計測した液温と
逆比例関係で上記後期充電電流を変更する手段と、を設
けたことを特徴とする自動充電器。
3. A storage battery is charged with a constant initial charging current,
When the charging voltage reaches an inflection point, in an automatic charger that charges with a later charging current smaller than the initial charging current, a means for measuring the liquid temperature of the storage battery, and the inversely proportional relationship with the measured liquid temperature An automatic charger characterized in that it is provided with means for changing the latter charging current.
JP21091U 1991-01-09 1991-01-09 Automatic charger Expired - Lifetime JP2504366Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21091U JP2504366Y2 (en) 1991-01-09 1991-01-09 Automatic charger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21091U JP2504366Y2 (en) 1991-01-09 1991-01-09 Automatic charger

Publications (2)

Publication Number Publication Date
JPH0493454U JPH0493454U (en) 1992-08-13
JP2504366Y2 true JP2504366Y2 (en) 1996-07-10

Family

ID=31726901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21091U Expired - Lifetime JP2504366Y2 (en) 1991-01-09 1991-01-09 Automatic charger

Country Status (1)

Country Link
JP (1) JP2504366Y2 (en)

Also Published As

Publication number Publication date
JPH0493454U (en) 1992-08-13

Similar Documents

Publication Publication Date Title
KR0180390B1 (en) Battery charging control of electric vehicle and its method
JP3161272B2 (en) Battery charger
JP2000023383A (en) Battery charger
JP3232912B2 (en) Charging device
JPH10174297A (en) Discharge control method for storage battery, and its device
JP2002142379A (en) Charging method for battery
CN114069792A (en) Method and system for starting intelligent charging of battery of electric vehicle
JP2005312224A (en) Battery charging apparatus
JP2504366Y2 (en) Automatic charger
JPH08205418A (en) Charging method for secondary cell
JPH10210675A (en) Charge control method and charge controller
JP2002191136A (en) Battery charger
JPH08106921A (en) Charging method for automobile battery, and device therefor
JP3213399B2 (en) Charging method
JP3707636B2 (en) Charge control method and charge control device
JP4565771B2 (en) Battery charge control device
JPH10201117A (en) Charger control method and charge control device
JP2000092603A (en) Battery output controller
JP3691360B2 (en) Secondary battery charging method and charger
JP4064580B2 (en) Charging system
JP2001074279A (en) Method and apparatus for controlling charge/discharge of secondary battery in battery driven air conditioning system
JP4345290B2 (en) Charger
JP2009044851A (en) Power supply controller and power supply system for electric vehicle
JPH1032020A (en) Charge and discharge control method for sealed type lead-acid battery
JP3438656B2 (en) Battery car charge control device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term