JP2000092603A - Battery output controller - Google Patents

Battery output controller

Info

Publication number
JP2000092603A
JP2000092603A JP10265024A JP26502498A JP2000092603A JP 2000092603 A JP2000092603 A JP 2000092603A JP 10265024 A JP10265024 A JP 10265024A JP 26502498 A JP26502498 A JP 26502498A JP 2000092603 A JP2000092603 A JP 2000092603A
Authority
JP
Japan
Prior art keywords
battery
output
degree
present
decrease
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10265024A
Other languages
Japanese (ja)
Inventor
Tsutomu Matsuki
務 松木
Hirotaka Kamijiyou
弘貴 上條
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP10265024A priority Critical patent/JP2000092603A/en
Publication of JP2000092603A publication Critical patent/JP2000092603A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To avoid the decline of the life of a battery under a low temperature or a low SOC while the output limit of the battery is suppressed to be as little as possible. SOLUTION: A DC power from a battery 10 is converted into an AC power by an inverter 14 and supplied to a motor 16. The larger the rate of the decline of the power, the larger the rate of the output limitation of the battery 10 is made by an EV-ECU 12. With this constitution, as the motor 16 is driven with a high output in a starting stage and the output limit value is increased with a lapse of time, the decline of the life of the battery 10 can be avoided while the output limit is suppressed to be as little as possible and the driving characteristics of the motor 16 are maintained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はバッテリ出力制御装
置、特に低温時あるいは低SOC(State of Charge:充
電状態)時におけるバッテリの出力制限に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a battery output control device, and more particularly to a battery output control at a low temperature or a low SOC (State of Charge).

【0002】[0002]

【従来の技術】従来より、低温時あるいは低SOC時に
おいてバッテリの寿命低下を防止すべく、バッテリの出
力を制限する技術が知られている。
2. Description of the Related Art Conventionally, there has been known a technique for limiting the output of a battery in order to prevent a reduction in the life of the battery at a low temperature or a low SOC.

【0003】例えば、特開平5−111111号公報に
は、バッテリの温度を検出し、バッテリ温度が所定温度
(30℃)以下の場合には通常の出力よりもバッテリの
出力を制限する技術が記載されている。この技術によれ
ば、例えばバッテリの温度が30℃のときのバッテリか
らモータへの出力を1.0とした場合、バッテリの温度
が10℃と低温の場合にはバッテリからモータへの出力
を0.8に制限する。
For example, Japanese Patent Application Laid-Open No. 5-111111 discloses a technique for detecting the temperature of a battery and, when the battery temperature is equal to or lower than a predetermined temperature (30 ° C.), limiting the output of the battery more than the normal output. Have been. According to this technique, for example, when the output from the battery to the motor when the temperature of the battery is 30 ° C. is 1.0, when the temperature of the battery is as low as 10 ° C., the output from the battery to the motor is 0. .8.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記従
来技術においてはバッテリ低温時にバッテリの出力制限
値あるいは出力制限度合いを一義的に決定しているた
め、たとえ低温時であっても短時間であればバッテリは
高出力可能であるにもかかわらず低出力に制限してしま
い、例えば電気自動車等に応用した場合に走行特性の低
下を招く(車両応答性が低下する)問題があった。
However, in the above-mentioned prior art, the output limit value or the output limit degree of the battery is uniquely determined at a low battery temperature. Although the battery is capable of high output, it is limited to low output. For example, when applied to an electric vehicle or the like, there is a problem in that running characteristics are reduced (vehicle responsiveness is reduced).

【0005】本発明は、上記従来技術の有する課題に鑑
みなされたものであり、その目的は、従来のように一義
的に出力制限値あるいは出力制限度合いを設けるのでは
なく、出力制限を適応的に変化させることによりバッテ
リの能力を最大限利用することができるバッテリ出力制
御装置を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems of the prior art, and an object of the present invention is not to provide an output limit value or an output limit degree uniquely as in the prior art, but to apply an output limit adaptively. It is an object of the present invention to provide a battery output control device capable of maximizing the use of the capacity of the battery by changing the battery output control device to the following.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、第1の発明は、バッテリ電圧の低下度合いを検出す
る検出手段と、前記バッテリ電圧の低下度合いが大きい
ほど、前記バッテリの出力制限の度合いを大きくする制
御手段とを有することを特徴とする。
In order to achieve the above object, a first aspect of the present invention is a detecting means for detecting a degree of decrease in battery voltage, and an output limit of the battery as the degree of decrease in battery voltage increases. And control means for increasing the degree of occurrence.

【0007】また、第2の発明は、バッテリの充電状態
を検出する検出手段と、前記充電状態が低下するほど、
前記バッテリの出力制限の度合いを大きくする制御手段
とを有することを特徴とする。
According to a second aspect of the present invention, there is provided a detecting means for detecting a state of charge of a battery, wherein the lower the state of charge,
Control means for increasing the degree of output limitation of the battery.

【0008】[0008]

【発明の実施の形態】以下、図面に基づき本発明の実施
形態について、電気自動車のモータを駆動する場合を例
にとり説明する。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram showing an embodiment of the present invention;

【0009】<第1実施形態>図1には、本実施形態の
構成ブロック図が示されている。バッテリ10はインバ
ータ14に接続されており、インバータ14はバッテリ
10からの直流電力を交流電力に変換してモータ16に
供給し、モータ16を回転駆動する。
<First Embodiment> FIG. 1 is a block diagram showing the configuration of the first embodiment. The battery 10 is connected to an inverter 14. The inverter 14 converts DC power from the battery 10 into AC power, supplies the AC power to the motor 16, and drives the motor 16 to rotate.

【0010】また、インバータ14にはEV(電気自動
車用)ECU12が接続されており、EVECU12は
バッテリ10の端子電圧VBを常時監視し、インバータ
14に対して出力値、具体的には出力制限の度合いを指
令する。EVECU12は、具体的にはマイクロコンピ
ュータで構成され、本実施形態においてはバッテリ10
の端子間電圧VBの低下度合いに基づいて出力制限の度
合いを決定する。
An inverter (EV) ECU 12 is connected to the inverter 14. The EV ECU 12 constantly monitors the terminal voltage VB of the battery 10, and outputs an output value, specifically, an output limit to the inverter 14. Command the degree. The EV ECU 12 is specifically configured by a microcomputer, and in the present embodiment, the battery 10
Is determined based on the degree of decrease in the inter-terminal voltage VB.

【0011】図2には、本実施形態におけるEVECU
12の処理フローチャートが示されている。まず、EV
ECU12は、検出されたバッテリ10の端子間電圧V
Bが所定値α(例えば260V)より低下したか否かを
判定する(S101)。バッテリ10の端子間電圧VB
が低温などの影響で所定値αより低下した場合には、次
にEVECU12は端子間電圧VBの低下度合いを評価
する。具体的には、バッテリ電圧VBの低下度合いとし
てdVB/dtを計算し、この低下度合い(時間変化
率)が所定値βより小さいか否かを判定する(S10
2)。そして、バッテリ電圧VBの低下度合いdVB/
dtが所定値βより小さい場合には、出力制限値ΔPを
ΔPβに設定する(S103)。
FIG. 2 shows an EVECU according to the present embodiment.
12 shows a processing flowchart. First, EV
The ECU 12 calculates the detected voltage V between terminals of the battery 10.
It is determined whether B has dropped below a predetermined value α (for example, 260 V) (S101). Voltage VB between terminals of battery 10
Is lower than the predetermined value α due to a low temperature or the like, the EV ECU 12 evaluates the degree of reduction of the inter-terminal voltage VB. Specifically, dVB / dt is calculated as the degree of decrease in battery voltage VB, and it is determined whether this degree of decrease (time rate of change) is smaller than a predetermined value β (S10).
2). Then, the degree of decrease dVB /
If dt is smaller than the predetermined value β, the output limit value ΔP is set to ΔPβ (S103).

【0012】一方、バッテリ電圧VBの低下度合いdV
B/dtが所定値β以上である場合には、次に低下度合
いがγ(γ>β)より小さいか否かを判定する(S10
4)。バッテリ電圧VBの低下度合いdVB/dtがβ
以上でありかつγより小さい場合には、バッテリの出力
制限値ΔPをΔPγ(ΔPγ>ΔPβ)に設定する(S
105)。
On the other hand, the degree of decrease dV of the battery voltage VB
If B / dt is equal to or greater than the predetermined value β, it is next determined whether the degree of decrease is smaller than γ (γ> β) (S10).
4). The degree of decrease dVB / dt of the battery voltage VB is β
If this is the case and is smaller than γ, the battery output limit value ΔP is set to ΔPγ (ΔPγ> ΔPβ) (S
105).

【0013】更に、バッテリ電圧VBの低下度合いdV
B/dtがγ以上である場合には、出力制限値ΔPをΔ
Pδ(ΔPδ>ΔPγ)に設定する(S106)。
Further, the degree of decrease dV of the battery voltage VB
If B / dt is greater than or equal to γ, the output limit value ΔP is set to Δ
Pδ (ΔPδ> ΔPγ) is set (S106).

【0014】以上のようにしてバッテリ電圧VBの低下
度合いdVB/dtの大きさに応じて、すなわち低下度
合いが大きいほど出力制限値ΔPを大きくして出力制限
の度合いを増大させた後、インバータ14に与える出力
値PとしてP=P(前回の値)−ΔPとしてインバータ
14に供給する(S107)。従って、インバータ14
がモータ16に供給する電力は、前回の電力よりもΔP
だけその出力が制限された値となる。
As described above, according to the degree of decrease dVB / dt of the battery voltage VB, that is, as the degree of decrease increases, the output limit value ΔP is increased to increase the degree of output limitation. Is supplied to the inverter 14 as P = P (previous value) −ΔP (S107). Therefore, the inverter 14
Supplied to the motor 16 is ΔP
Only its output will be a restricted value.

【0015】以上のようにして出力値が決定された後、
次の制御周期で再び端子電圧の低下度合いdVB/dt
に応じてΔPが決定され、P=P(前回の値)−ΔPと
してインバータ14に供給される。従って、例えば初期
出力がP0であり、2制御周期にわたって低下度合いが
dVB/dt<βであった場合、2制御周期後の出力P
はP=P0−2ΔPβとなり、時間とともに出力制限は
増大していく。
After the output value is determined as described above,
In the next control cycle, the terminal voltage decrease degree dVB / dt again
Is determined in accordance with the equation (1), and is supplied to the inverter 14 as P = P (previous value) -ΔP. Therefore, for example, if the initial output is P0 and the degree of decrease is dVB / dt <β over two control cycles, the output P after two control cycles
Becomes P = P0−2ΔPβ, and the output limit increases with time.

【0016】図3には、本実施形態におけるバッテリ出
力の時間変化が示されている。図において、横軸は時
間、縦軸がバッテリ10の出力である。なお、同図には
比較のため従来技術によるバッテリ出力の時間変化も示
されている。従来においては、バッテリ温度が所定値以
下の場合にはバッテリ出力を一義的に制限(例えば最大
出力の80%)しており、時間が経過しても(温度が変
化しない限り)その値は一定であるが、本実施形態にお
いてはバッテリ出力は図に示すように当初は従来以上の
高い出力(最大出力)に設定され、時間とともにその出
力制限の度合いを大きくして出力値を小さくしていく。
図中、本実施形態のグラフが折線となっているのは、屈
曲点で出力制限値ΔPがΔPβ→ΔPγ→ΔPδと変化
したことを示している。
FIG. 3 shows a time change of the battery output in this embodiment. In the figure, the horizontal axis represents time, and the vertical axis represents the output of the battery 10. FIG. 3 also shows a time change of the battery output according to the conventional technique for comparison. Conventionally, when the battery temperature is equal to or lower than a predetermined value, the battery output is uniquely limited (for example, 80% of the maximum output), and the value is constant over time (unless the temperature changes). However, in the present embodiment, the battery output is initially set to a higher output (maximum output) than the conventional one as shown in the figure, and the output value is reduced by increasing the degree of the output limitation with time. .
In the drawing, the broken line in the graph of the present embodiment indicates that the output limit value ΔP has changed from ΔPβ → ΔPγ → ΔPδ at the inflection point.

【0017】このように、本実施形態では、当初は最大
出力とするためバッテリ出力の制限を必要最小限に抑え
ることができ電気自動車の走行特性(あるいはドライバ
の運転フィーリング低下)を抑制するとともに、時間と
ともにバッテリの端子電圧が低下した場合にはその低下
度合いの大きさに応じて出力制限を増大させていくため
バッテリの寿命低下も抑制することが可能となる。
As described above, in the present embodiment, since the output is initially set to the maximum, the limitation of the battery output can be suppressed to a necessary minimum, and the running characteristics of the electric vehicle (or the driving feeling of the driver is reduced) can be suppressed. When the terminal voltage of the battery decreases with time, the output limit is increased in accordance with the degree of the decrease, so that a reduction in the life of the battery can be suppressed.

【0018】なお、本実施形態においては図3に示され
るようにバッテリの端子電圧VBが低温により所定値以
下となっている場合でも当初は高い出力に設定して駆動
するため、従来以上にバッテリ10の温度を速やかに上
昇させることができ、迅速にバッテリ容量を増大させる
ことができる効果もある。この点からも、本実施形態で
はバッテリ10の効率的利用が図られている。
In this embodiment, as shown in FIG. 3, even when the terminal voltage VB of the battery is lower than a predetermined value due to a low temperature, the battery is initially set to a high output and driven. There is also an effect that the temperature of the battery 10 can be quickly increased and the battery capacity can be quickly increased. From this point as well, in the present embodiment, efficient use of the battery 10 is achieved.

【0019】また、本実施形態では当初はバッテリ出力
を最大としたが、例えば当初は従来技術では最大出力の
80%に制限していたところを最大出力の90%に設定
し、図2の処理に従って出力制限の度合いを変化させる
ことも可能である。
Further, in the present embodiment, the battery output is initially set to the maximum. For example, in the prior art, the limit was set to 80% of the maximum output in the prior art, but set to 90% of the maximum output. It is also possible to change the degree of output restriction according to

【0020】<第2実施形態>図4には、本実施形態に
おけるEVECU12の処理フローチャートが示されて
いる。なお、本実施形態における構成ブロック図は図1
に示された第1実施形態の構成ブロック図とほぼ同様で
あるが、EVECU12はバッテリ10の端子電圧では
なくSOC(充電状態)を監視する点が異なる。すなわ
ち、図4において、EVECU12はバッテリ10のS
OCを検出し、低温等でSOCが所定値αより小さいか
否かを判定する(S201)。なお、SOCはバッテリ
10の電流量(アンペア・時間)を検出することにより
測定できる。そして、SOCが所定値αより小さい場合
には、次にSOCが所定値β(α>β)より小さいか否
かを判定する(S202)。バッテリ10のSOCがβ
より小さい場合には、出力制限値ΔPとしてΔPβ’に
設定する(S203)。
<Second Embodiment> FIG. 4 shows a processing flowchart of the EV ECU 12 in the present embodiment. The configuration block diagram in the present embodiment is shown in FIG.
1 is substantially the same as the configuration block diagram of the first embodiment, except that the EV ECU 12 monitors not the terminal voltage of the battery 10 but the SOC (state of charge). That is, in FIG.
OC is detected, and it is determined whether the SOC is smaller than a predetermined value α at a low temperature or the like (S201). The SOC can be measured by detecting the amount of current (ampere / time) of the battery 10. If the SOC is smaller than the predetermined value α, it is determined whether the SOC is smaller than a predetermined value β (α> β) (S202). The SOC of the battery 10 is β
If smaller, the output limit value ΔP is set to ΔPβ ′ (S203).

【0021】一方、SOCが所定値β以上である場合に
は、次にSOCが所定値γ(γ>β)より小さいか否か
を判定する(S204)。そして、SOCがβ以上であ
るがγより小さい場合には、出力制限値ΔPをΔPγ’
(ΔPβ’>ΔPγ’)に設定する(S205)。一
方、SOCがγ以上である場合には、出力制限値ΔPを
ΔPδ’(ΔPγ’>ΔPδ’)に設定する(S20
6)。
On the other hand, if the SOC is equal to or larger than the predetermined value β, it is determined whether the SOC is smaller than a predetermined value γ (γ> β) (S204). If the SOC is equal to or larger than β but smaller than γ, the output limit value ΔP is set to ΔPγ ′
(ΔPβ ′> ΔPγ ′) is set (S205). On the other hand, if the SOC is equal to or more than γ, the output limit value ΔP is set to ΔPδ ′ (ΔPγ ′> ΔPδ ′) (S20).
6).

【0022】このように、SOCの大きさに応じて出力
制限値ΔPを決定、すなわちSOCが低いほど出力制限
値を大きくして出力制限の度合いを増大した後、EVE
CU12はインバータ14に与える出力値としてP=P
(前回の出力値)−ΔPを与える(S207)。
As described above, the output limit value ΔP is determined in accordance with the magnitude of the SOC, that is, the lower the SOC, the larger the output limit value to increase the degree of output limit, and then EVE
The CU 12 outputs P = P as an output value given to the inverter 14.
(Previous output value) -ΔP is given (S207).

【0023】図5には、SOCの値に関わらず出力制限
度合いを一定(例えば最大出力の80%)とした従来の
バッテリ10の電圧変化と本実施形態におけるバッテリ
10の電圧変化が示されている。(A)は出力制限度合
いを一定とした場合の電圧変化であり、出力制限値を一
定にするとSOCが低い場合には高い場合に比べて電圧
低下の度合いが大きいため、特に低SOC時には短時間
にバッテリ電圧値が低下してしまう。一方、(B)には
本実施形態における電圧変化が示されており、図4のS
203、S205、S206に示されるように出力制限
の度合いは一定ではなくSOCが低いほど出力制限の度
合いが大きく設定されるため、SOCが低い場合にはS
OCが高い場合に比べて出力がより大きく制限されてバ
ッテリ10の電圧低下の度合いも抑制され、結果として
SOCの高低によらずほぼ一定の時間変化を示すことと
なる。
FIG. 5 shows a voltage change of the conventional battery 10 and a voltage change of the battery 10 according to the present embodiment in which the degree of output limitation is constant (for example, 80% of the maximum output) regardless of the SOC value. I have. (A) is a voltage change when the degree of output restriction is constant. When the output restriction value is constant, the degree of voltage drop is larger when the SOC is low than when it is high. The battery voltage value is reduced. On the other hand, FIG. 4B shows a voltage change according to the present embodiment.
As shown in 203, S205, and S206, the degree of output restriction is not constant, and the lower the SOC is, the greater the degree of output restriction is set.
As compared with the case where the OC is high, the output is more greatly limited, and the degree of the voltage drop of the battery 10 is also suppressed, and as a result, the change over time is almost constant regardless of the level of the SOC.

【0024】従って、本実施形態によっても、走行性能
の低下を招くことなくバッテリの寿命低下を抑制するこ
とができる。
Therefore, according to the present embodiment as well, it is possible to suppress a decrease in the life of the battery without causing a decrease in running performance.

【0025】以上、本発明の実施形態について説明した
が、第1実施形態においてバッテリ10の端子電圧VB
の低下度合いdVB/dtを所定値と比較するのではな
く、バッテリ10の端子電圧VB自体を所定値と比較
し、バッテリ電圧VBの大きさに応じて出力制限度合い
を決定することも可能である。具体的には、端子電圧V
Bを所定値VBminと比較し、VBがVBmin以下
となった場合に端子電圧VBの値に応じた出力制限の度
合いで出力を制限し、端子電圧VBが所定値VBmi
n’(VBmin’>VBmin)以上となった場合に
出力制限を中止すればよい。
Although the embodiment of the present invention has been described above, the terminal voltage VB of the battery 10 in the first embodiment is described.
Instead of comparing the degree of decrease dVB / dt with a predetermined value, it is also possible to compare the terminal voltage VB of the battery 10 with a predetermined value and determine the degree of output limitation according to the magnitude of the battery voltage VB. . Specifically, the terminal voltage V
B is compared with a predetermined value VBmin, and when VB becomes equal to or less than VBmin, the output is limited by a degree of output restriction according to the value of the terminal voltage VB.
The output limitation may be stopped when n ′ (VBmin ′> VBmin) or more.

【0026】さらに、第2実施形態において、SOCと
所定値を比較するのみならず、更にバッテリ10の充電
サイクル数に応じて出力制限の度合いを決定することも
可能である。
Further, in the second embodiment, it is possible to not only compare the SOC with a predetermined value but also determine the degree of the output limitation according to the number of charging cycles of the battery 10.

【0027】[0027]

【発明の効果】以上説明したように、本発明によればバ
ッテリの出力制限を最小限に抑制しつつバッテリの寿命
低下を防止することができる。
As described above, according to the present invention, it is possible to prevent the battery life from shortening while minimizing the output limitation of the battery.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の第1実施形態の構成ブロック図であ
る。
FIG. 1 is a configuration block diagram of a first embodiment of the present invention.

【図2】 本発明の第1実施形態の処理フローチャート
である。
FIG. 2 is a processing flowchart according to the first embodiment of the present invention.

【図3】 本発明の第1実施形態と従来技術の出力変化
を示すグラフ図である。
FIG. 3 is a graph showing an output change of the first embodiment of the present invention and a conventional technique.

【図4】 本発明の第2実施形態の処理フローチャート
である。
FIG. 4 is a processing flowchart according to a second embodiment of the present invention.

【図5】 本発明の第2実施形態と従来技術の電圧変化
を示すグラフ図である。
FIG. 5 is a graph showing voltage changes according to a second embodiment of the present invention and a conventional technique.

【符号の説明】[Explanation of symbols]

10 バッテリ、12 EVECU、14 インバー
タ、16 モータ。
10 batteries, 12 EV ECUs, 14 inverters, 16 motors.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H02J 7/00 302 H02J 7/00 302D ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H02J 7/00 302 H02J 7/00 302D

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 バッテリ電圧の低下度合いを検出する検
出手段と、 前記バッテリ電圧の低下度合いが大きいほど、前記バッ
テリの出力制限の度合いを大きくする制御手段と、 を有することを特徴とするバッテリ出力制御装置。
1. A battery output comprising: detecting means for detecting the degree of decrease in battery voltage; and control means for increasing the degree of output limitation of the battery as the degree of decrease in battery voltage increases. Control device.
【請求項2】 バッテリの充電状態を検出する検出手段
と、 前記充電状態が低下するほど、前記バッテリの出力制限
の度合いを大きくする制御手段と、 を有することを特徴とするバッテリ出力制御装置。
2. A battery output control device comprising: a detection unit that detects a state of charge of a battery; and a control unit that increases the degree of output limitation of the battery as the state of charge decreases.
JP10265024A 1998-09-18 1998-09-18 Battery output controller Pending JP2000092603A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10265024A JP2000092603A (en) 1998-09-18 1998-09-18 Battery output controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10265024A JP2000092603A (en) 1998-09-18 1998-09-18 Battery output controller

Publications (1)

Publication Number Publication Date
JP2000092603A true JP2000092603A (en) 2000-03-31

Family

ID=17411530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10265024A Pending JP2000092603A (en) 1998-09-18 1998-09-18 Battery output controller

Country Status (1)

Country Link
JP (1) JP2000092603A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007082375A (en) * 2005-09-16 2007-03-29 Toyota Motor Corp Power supply device for vehicles
JP2010178515A (en) * 2009-01-29 2010-08-12 Equos Research Co Ltd Battery hybrid system and method for using the same
CN102064573A (en) * 2009-11-12 2011-05-18 丰田自动车株式会社 Charge and discharge control apparatus and charge and discharge control method for a secondary battery
EP2380768A1 (en) * 2010-04-26 2011-10-26 Honda Motor Co., Ltd. Power supply source switching apparatus for hybrid engine generator
JP2011239646A (en) * 2010-05-13 2011-11-24 Toyota Motor Corp Controller of power storage device and vehicle including the same
JP2012098866A (en) * 2010-11-01 2012-05-24 Nec Access Technica Ltd Battery control system, battery control method and battery control program
JP2016078750A (en) * 2014-10-21 2016-05-16 株式会社豊田自動織機 Vehicle control device
CN107458233A (en) * 2017-07-27 2017-12-12 奇瑞汽车股份有限公司 A kind of electric automobile low battery based reminding method and system

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007082375A (en) * 2005-09-16 2007-03-29 Toyota Motor Corp Power supply device for vehicles
JP2010178515A (en) * 2009-01-29 2010-08-12 Equos Research Co Ltd Battery hybrid system and method for using the same
CN102064573A (en) * 2009-11-12 2011-05-18 丰田自动车株式会社 Charge and discharge control apparatus and charge and discharge control method for a secondary battery
DE102010043801A1 (en) 2009-11-12 2011-09-29 Toyota Jidosha Kabushiki Kaisha Charge and discharge control apparatus and charging and discharging control method for a secondary battery
US8704490B2 (en) 2009-11-12 2014-04-22 Toyota Jidosha Kabushiki Kaisha Charge and discharge control apparatus and charge and discharge control method for secondary battery
DE102010043801B4 (en) 2009-11-12 2018-05-24 Toyota Jidosha Kabushiki Kaisha Charge and discharge control apparatus and charging and discharging control method for a secondary battery
EP2380768A1 (en) * 2010-04-26 2011-10-26 Honda Motor Co., Ltd. Power supply source switching apparatus for hybrid engine generator
JP2011239646A (en) * 2010-05-13 2011-11-24 Toyota Motor Corp Controller of power storage device and vehicle including the same
JP2012098866A (en) * 2010-11-01 2012-05-24 Nec Access Technica Ltd Battery control system, battery control method and battery control program
JP2016078750A (en) * 2014-10-21 2016-05-16 株式会社豊田自動織機 Vehicle control device
CN107458233A (en) * 2017-07-27 2017-12-12 奇瑞汽车股份有限公司 A kind of electric automobile low battery based reminding method and system

Similar Documents

Publication Publication Date Title
JP3711380B2 (en) Method for calculating maximum charge and maximum discharge current of hybrid electric vehicle battery
EP2481624B1 (en) Vehicle charging system and electrically powered vehicle provided with the same
JP2018137220A (en) Fuel cell control device, control method thereof, and fuel cell vehicle
JP6711221B2 (en) Battery system
JP2002142379A (en) Charging method for battery
JP4433752B2 (en) Charge / discharge control device for battery pack
JP2000092603A (en) Battery output controller
JP2006338995A (en) Capacity adjustment device of battery pack and capacity adjustment method of battery pack
JP2005278249A (en) Capacity adjustment device and adjusting method of battery pack
JP2002369402A (en) Charging controller
WO2011155051A1 (en) Charge control system
KR102435344B1 (en) Battery system of eco-friendly vehicle and method for controlling the same
WO2020203453A1 (en) Control device
JP7111044B2 (en) Control device
JP7498625B2 (en) Vehicle control device, program, and vehicle control method
JP6530334B2 (en) Vehicle charge control device
CN110198059B (en) Method for charging an energy store
JP3986975B2 (en) Multistage charger
JP2002191136A (en) Battery charger
JP4258995B2 (en) Battery capacity control device and battery capacity control method
US7102330B2 (en) Apparatus and method for controlling charging and discharging of an energy storage device
JP2006187117A (en) Device and method for controlling charge/discharge for battery pack
JPH05137275A (en) Power supply equipment for vehicle
JP7183922B2 (en) Control device
WO2020203456A1 (en) Control device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050208

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050614