JP2501819Y2 - Radiation applied measurement device - Google Patents

Radiation applied measurement device

Info

Publication number
JP2501819Y2
JP2501819Y2 JP1990052746U JP5274690U JP2501819Y2 JP 2501819 Y2 JP2501819 Y2 JP 2501819Y2 JP 1990052746 U JP1990052746 U JP 1990052746U JP 5274690 U JP5274690 U JP 5274690U JP 2501819 Y2 JP2501819 Y2 JP 2501819Y2
Authority
JP
Japan
Prior art keywords
radiation
detector
radiation source
output
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1990052746U
Other languages
Japanese (ja)
Other versions
JPH0411483U (en
Inventor
久子 菅
順一 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP1990052746U priority Critical patent/JP2501819Y2/en
Publication of JPH0411483U publication Critical patent/JPH0411483U/ja
Application granted granted Critical
Publication of JP2501819Y2 publication Critical patent/JP2501819Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【考案の詳細な説明】 〈産業上の利用分野〉 本考案は半導体放射線検出器を用いて紙,プラスチッ
ク,ゴムなどの物理量(坪量,水分等)を測定する放射
線応用測定装置の放射線検出器に関するものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention is a radiation detector of a radiation applied measuring device for measuring physical quantities (grammage, moisture, etc.) of paper, plastic, rubber, etc. using a semiconductor radiation detector. It is about.

〈従来の技術〉 放射線(例えばβ線)が物質層を通過すると,電離作
用や励起作用等によって次第にエネルギーを失って減衰
し,更にこの様な非弾性散乱を多数回受けて進行方向が
変化する。従って測定体の物理量(例えば厚さ)が増す
に伴い透過するβ線の数は減少する。この様な原理を応
用し,シート状の種々の物質の物理量を測定する装置が
知られている。
<Prior art> When radiation (eg, β-rays) passes through a material layer, it gradually loses energy due to ionization and excitation, and is attenuated. Further, it undergoes such inelastic scattering many times and the traveling direction changes. . Therefore, as the physical quantity (for example, thickness) of the measurement object increases, the number of β rays transmitted decreases. By applying such a principle, a device for measuring physical quantities of various sheet-like substances is known.

この様な放射線応用測定装置は第5図に示す様に放射
線源(以下,単に線源という)1と放射線検出器(以
下,単に検出器という)2を対向させて配置し,その間
に被測定体3を挟んで測定するように構成されている。
この線源からの放射線の空間強度分布は第6図に示す様
に正面が最も強く,正面から遠ざかる程弱いガウス分布
となる。従って線源1と検出器2がX,Y方向またはZ方
向に相対的に移動した場合には,検出器2に入射する放
射線量が変化して出力変動を生じるという問題がある。
As shown in FIG. 5, such a radiation applied measuring device has a radiation source (hereinafter, simply referred to as a radiation source) 1 and a radiation detector (hereinafter, simply referred to as a detector) 2 which are arranged to face each other and to be measured. It is configured to measure by sandwiching the body 3.
As shown in FIG. 6, the spatial intensity distribution of radiation from this radiation source has a strongest Gaussian distribution in the front and a weaker Gaussian distribution as it moves away from the front. Therefore, when the radiation source 1 and the detector 2 move relative to each other in the X, Y or Z directions, there is a problem that the amount of radiation incident on the detector 2 changes and the output fluctuates.

従来,この種の出力変動を除去する装置として第7図
(イ),(ロ),(ハ)に示すようなものが提案されて
いる。即ち,検出器の放射線を受ける部分2a(以下,単
に受光部という)に放射線の照射方向およびX方向に対
して直角に吸収板6を配置して,線源1と受光部2aとの
位置関係の変化に起因する出力変動を軽減したものであ
る。
Conventionally, as shown in FIGS. 7 (a), 7 (b) and 7 (c), there has been proposed a device for removing this type of output fluctuation. That is, the absorption plate 6 is arranged at a portion 2a of the detector that receives radiation (hereinafter, simply referred to as a light receiving portion) at a right angle to the radiation irradiation direction and the X direction, and the positional relationship between the radiation source 1 and the light receiving portion 2a. The output fluctuation caused by the change of is reduced.

第7図(イ)は線源1と受光部2aおよび吸収板6の関
係を平面図で示すもので,吸収板6は検出器の受光部の
中央部にX方向に対して直角に,線源は受光部の中央に
配置されている。吸収板6は長さlが受光部の直径より
も長く,幅Wが線源より広く受光窓の直径より小さいAl
板からなり,受光部2aの前面の中央部に取付けられて,
線源1の放射線ビームの最も強い部分の一部を遮って受
光部2aに入射する放射線量を減少させている。線源1は
通常安全対策として金属箱等で包まれており,更に線源
箱の出口が薄い金属板等で覆われているので,線源1か
ら放射された放射線は直進しにくく散乱線となる。この
ため,放射線ビームの強さは線源1の正面が最も強く正
面から遠ざかる程弱くなる。
FIG. 7 (a) is a plan view showing the relationship between the radiation source 1, the light receiving portion 2a, and the absorbing plate 6. The absorbing plate 6 is located at the center of the light receiving portion of the detector at a right angle to the X direction. The source is located in the center of the light receiver. The absorption plate 6 has a length l that is longer than the diameter of the light receiving portion and a width W that is wider than the radiation source and smaller than the diameter of the light receiving window.
It consists of a plate and is attached to the center of the front surface of the light receiving part 2a.
A part of the strongest part of the radiation beam of the radiation source 1 is blocked to reduce the amount of radiation incident on the light receiving part 2a. The radiation source 1 is usually wrapped in a metal box or the like as a safety measure, and since the exit of the radiation source box is covered with a thin metal plate or the like, the radiation emitted from the radiation source 1 is hard to go straight and is scattered. Become. Therefore, the intensity of the radiation beam is strongest at the front of the radiation source 1 and becomes weaker as it goes away from the front.

第7図(ロ)は検出器2がX方向(向かって左側)に
X1ずれた状態を示す側面図で,Rは放射線の等価線量を示
している。この様なずれが発生した場合,向かって左側
は線源から遠ざかるので出力は弱くなるが,向かって右
側は吸収板6に遮られていた放射線の最も強い部分が受
光面を照射する様になるので出力は強くなる。従って受
光部が受ける放射線の総量は変化せず,ずれによる出力
変動は発生しない。
In Fig. 7 (b), the detector 2 is in the X direction (to the left).
In the side view showing the state shifted by X 1 , R represents the equivalent dose of radiation. When such a shift occurs, the output is weakened because the left side moves away from the radiation source, but the strongest part of the radiation blocked by the absorption plate 6 irradiates the light receiving surface on the right side. Therefore, the output becomes stronger. Therefore, the total amount of radiation received by the light receiving unit does not change, and output fluctuations due to deviation do not occur.

第7図(ハ)は検出器がZ方向(図では上方向)にZ1
ずれた状態を示す側面図で,この例では受光面が線源に
近付くので吸収板6で覆われていない部分は出力が増加
する様に作用し,同時に放射線の強い部分がより広く吸
収板6で覆われることになるので放射線の総量は変化せ
ず,ずれによる出力変動は発生しない。
In Fig. 7 (c), the detector is Z 1 in the Z direction (upward in the figure).
In the side view showing the shifted state, in this example, the light receiving surface approaches the radiation source, so that the portion not covered with the absorption plate 6 acts to increase the output, and at the same time, the portion with strong radiation spreads wider. Therefore, the total amount of radiation does not change and the output fluctuation due to the deviation does not occur.

上記構成によれば,線源と検出器の関係がX,Z方向に
移動しても放射線量の総量をほぼ同一にすることが可能
である。なお,Y方向のずれに対しては図示した吸収板で
は対応できない。
According to the above configuration, even if the relationship between the radiation source and the detector moves in the X and Z directions, the total amount of radiation can be made almost the same. It should be noted that the illustrated absorbing plate cannot deal with the deviation in the Y direction.

〈考案が解決しようとする課題〉 しかしながら,上記従来の放射線応用測定装置におい
ては,検出器の前面に吸収板を用いて放射感度を調整し
ている為検出器の感度が1/2〜1/5に低下してしまうとい
う問題があった。また,吸収板を用いた場合,その配置
場所は被測定体の性質に合わせて試行錯誤しながら決定
する必要があった。
<Problems to be solved by the device> However, in the above-mentioned conventional radiation applied measurement device, since the radiation sensitivity is adjusted by using the absorption plate in front of the detector, the sensitivity of the detector is 1/2 to 1 /. There was a problem that it would drop to 5. In addition, when an absorbing plate is used, its location must be determined by trial and error according to the properties of the object to be measured.

本考案は上記従来技術の課題に鑑みて成されたもの
で,検出感度を低下させることなくXおよびZ方向のず
れに対して出力変動のない放射線応用測定装置を実現す
ることを目的とする。
The present invention has been made in view of the above problems of the prior art, and an object of the present invention is to realize a radiation applied measuring apparatus that does not vary in output with respect to deviations in the X and Z directions without lowering detection sensitivity.

〈課題を解決するための手段〉 上記課題を解決するための本考案の構成は,空間強度
がガウス分布となる放射線源から放射され,被測定体を
透過してくる放射線を半導体放射線検出器により検出
し,前記被測定体の物理量の測定を行う放射線応用測定
装置において,前記放射線源から半導体放射線検出器ま
での距離を検出する距離検出器と, 感度の同様な短冊状の複数個の検出素子を1ブロック
として階段状に配置するとともに前記ブロックを複数個
並列に並べて固定された半導体放射線検出器と, 前記距離検出器で検出された距離信号に基づいてこの
距離信号に対応した前記ブロックの各検出素子の一つを
選択する検出素子選択手段からなり, 前記各検出素子からの出力の合計を前記物理量に対応
する信号として出力することを特徴するものである。
<Means for Solving the Problems> The configuration of the present invention for solving the above problems is that a semiconductor radiation detector emits radiation that is emitted from a radiation source whose spatial intensity has a Gaussian distribution and that passes through an object to be measured. In a radiation applied measuring device for detecting and measuring the physical quantity of the object to be measured, a distance detector for detecting the distance from the radiation source to the semiconductor radiation detector, and a plurality of strip-shaped detecting elements having the same sensitivity. Each of the blocks corresponding to the distance signal based on the distance signal detected by the distance detector. It is composed of detection element selection means for selecting one of the detection elements, and outputs the sum of the outputs from each of the detection elements as a signal corresponding to the physical quantity. Things.

〈作用〉 各検出素子のそれぞれの出力は検出装置により監視さ
れている。そして,検出装置は各ブロックのうち最大出
力のブロックを中心として左右同数のブロックを検出器
として選択し,その各ブロックの素子の一つを選び,そ
れらの素子からの出力を集めて検出器の出力とする。
<Operation> Each output of each detection element is monitored by the detection device. Then, the detection device selects the same number of blocks as the detector centering on the block with the maximum output among the blocks, selects one of the elements of each block, collects the outputs from those elements, and Output.

X方向にずれが生じた場合,最大出力を出力するブロ
ックがずれるが,新たな最大出力のブロックを中心とし
て選択した左右同数のブロックを検出器として選択す
る。
When a shift occurs in the X direction, the block that outputs the maximum output shifts, but the same number of blocks on the left and right selected centering on the block with the new maximum output is selected as the detector.

Z方向にずれが生じた場合は距離検出器の出力に基づ
いて各ブロックの階段を構成する素子の一つを選択す
る。
When a shift occurs in the Z direction, one of the elements forming the steps of each block is selected based on the output of the distance detector.

〈実施例〉 第1図(a),(b)に示す2-は本考案の一実施例の
要部を示す検出器で(a)は正面図(b)は平面図であ
る。なお,図では省略するがこの検出器は第5図と同
様,被測定物3を挟んで検出器2-と放射線源1が対向し
て配置されるものとする。第1図において,20,21,〜221
は短冊状の複数の半導体検出素子で紺鵜製されており,
例えば検出ブロック20は検出素子201〜20nが階段状に形
成されている。これら各ブロックの検出素子は例えば40
×0.1×0.1mmのウエハが0.1mmのピッチで10個階段状に
配置されている。従って本実施例では高さ1mmで幅1mmの
階段状の検出ブロックが201個並列に配置されているこ
とになる。
<Example> FIG. 1 (a), 2 shown in (b) - a detector showing a main portion of an embodiment of the present invention (a) is a front view (b) is a plan view. Although not in the figure this detector similar to Figure 5, the detector 2 across the object to be measured 3 - shall the radiation source 1 is arranged to face. In Figure 1, 20, 21, ~ 221
Is made of navy blue cormorant with a plurality of strip-shaped semiconductor detectors.
For example, in the detection block 20, the detection elements 20 1 to 20 n are formed in a step shape. The detection element of each of these blocks is, for example, 40
Wafers of × 0.1 × 0.1 mm are arranged in a staircase pattern with a pitch of 0.1 mm. Therefore, in this embodiment, 201 stair-like detection blocks having a height of 1 mm and a width of 1 mm are arranged in parallel.

各素子からの出力は図示しない検出装置に出力されて
加算されブロックごとの出力が監視されている。
The output from each element is output to a detection device (not shown) and added, and the output for each block is monitored.

第2図は上記構成の検出器2-の中心を線源(図示せ
ず)に対向させた状態を示すもので,曲線aは放射線の
強度分布を示している。なお,図では理解を容易にする
ために線源の中心に対向するブロックを0とし,その両
側に100個のブロックを配置している。
Figure 2 is a detector 2 of the structure - show a state where the center was allowed to face the radiation source (not shown) of, curve a shows the intensity distribution of the radiation. In the figure, for easy understanding, the block facing the center of the radiation source is set to 0, and 100 blocks are arranged on both sides of the block.

検出器2-と線源のずれがない場合,0のブロックからの
合計出力が強くなるので検出器はこの0のブロックを中
心として例えば左右90個のブロックを選択しそれぞれの
ブロックの1つの素子(実施例では1ブロックを10の素
子で構成しており,図では下端から6番目の素子)から
の各出力を合計して出力する。
If there is no deviation between the detector 2 - and the radiation source, the total output from the 0 block becomes strong, so the detector selects, for example, 90 left and right blocks centering on this 0 block, and selects one element of each block. (In the embodiment, one block is composed of 10 elements, and the sixth element from the bottom in the figure) is summed up and output.

次に第3図に示すように検出器の位置が相対的にX方
向にΔaずれて1のブロックの合計出力が最大となった
場合は,その1のブロックを中心として左右90個のブロ
ックを選択しそれぞれのブロックの1つの素子(図では
下端から6番目の素子)からの各出力を合計して出力す
る。従って各素子の性能が同一であればX方向のずれに
よる出力変動は生じない。
Next, as shown in FIG. 3, when the detector position is relatively deviated in the X direction by Δa and the total output of one block becomes maximum, 90 blocks on the left and right of the one block are centered. The respective outputs from one element (the sixth element from the bottom in the figure) of each selected block are summed and output. Therefore, if the performance of each element is the same, the output fluctuation due to the deviation in the X direction does not occur.

第4図は線源と検出器2-がZ方向にずれた場合の説明
である。この場合,ずれそのものは別に設けた距離測定
手段(図示せず)により測定する。その結果,線源と検
出器2-が0.3mm離れたとすると,検出装置はその距離を
実質的に0にする素子,即ち,各ブロックの下端から9
番目の素子からの信号の合計を出力する。従ってこの場
合も各素子の性能が同一であればZ方向のずれによる出
力変動は生じない。
FIG. 4 illustrates the case where the radiation source and the detector 2 are displaced in the Z direction. In this case, the deviation itself is measured by a distance measuring means (not shown) provided separately. As a result, if the radiation source and the detector 2 are separated by 0.3 mm, the detecting device is an element that makes the distance substantially 0, that is, 9 from the lower end of each block.
Output the sum of the signals from the th element. Therefore, also in this case, if the performance of each element is the same, the output fluctuation due to the deviation in the Z direction does not occur.

なお,この実施例ではブロックの数やブロックを構成
する素子数を数値をあげて説明したが,この数字は予想
ずれ量等に応じて適宜増減可能である。
In this embodiment, the number of blocks and the number of elements forming the block are described by giving numerical values, but this number can be appropriately increased or decreased according to the expected deviation amount or the like.

また,ここでは線源と検出器のY方向のずれに対する
誤差については論じないがY方向のずれは他の方法によ
り補正するものとする。
Further, here, the error with respect to the deviation of the radiation source and the detector in the Y direction will not be discussed, but the deviation in the Y direction will be corrected by another method.

〈考案の効果〉 以上,実施例とともに具体的に説明したように本考案
によれば,吸収板を用いないので感度の低下がなく,Xお
よびZ方向のずれに対する出力変動が少なく感度低下の
割合いの少ない放射線応用測定装置を実現することが出
来る。
<Advantage of Device> As described above in detail with the embodiments, according to the present invention, since the absorption plate is not used, the sensitivity does not decrease, the output fluctuation due to the deviation in the X and Z directions is small, and the ratio of the sensitivity decrease. It is possible to realize a radiation application measuring device with less waste.

【図面の簡単な説明】[Brief description of drawings]

第1図は本考案の放射線検出装置の検出器の一実施例を
示す要部説明図,第2図は線源の中心に検出器の中央が
位置した場合の説明図,第3図は線源と検出器にX方向
のずれが生じた場合を示す説明図,第4図は線源と検出
器にZ方向のずれが生じた場合を示す説明図,第5図は
放射線源と検出器の一般的な位置関係の説明図,第6図
は放射線の強度分布を示す図,第7図は従来例の説明図
である。 1…放射線源,2,2-…放射線検出器,3…被測定体,20,21,
〜221…検出ブロック,201〜20n…検出素子。
FIG. 1 is an explanatory view of an essential part showing an embodiment of a detector of the radiation detecting apparatus of the present invention, FIG. 2 is an explanatory view when the center of the detector is located at the center of the radiation source, and FIG. 3 is a line. Fig. 4 is an explanatory view showing a case where the source and the detector are displaced in the X direction, Fig. 4 is an explanatory view showing a case where the source and the detector are displaced in the Z direction, and Fig. 5 is a radiation source and the detector. FIG. 6 is an explanatory view of the general positional relationship of FIG. 6, FIG. 6 is a view showing the intensity distribution of radiation, and FIG. 7 is an explanatory view of a conventional example. 1 ... radiation source, 2,2 - ... radiation detector, 3 ... object to be measured, 20, 21,
To 221 ... detection block, 20 1 to 20 n ... detecting element.

Claims (1)

(57)【実用新案登録請求の範囲】(57) [Scope of utility model registration request] 【請求項1】空間強度がガウス分布となる放射線源から
放射され,被測定体を透過してくる放射線を半導体放射
線検出器により検出し,前記被測定体の物理量の測定を
行う放射線応用測定装置において, 前記放射線源から半導体放射線検出器までの距離を検出
する距離検出器と, 感度の同様な短冊状の複数個の検出素子を1ブロックと
して階段状に配置するとともに前記ブロックを複数個並
列に並べて固定された半導体放射線検出器と, 前記距離検出器で検出された距離信号に基づいてこの距
離信号に対応した前記ブロックの各検出素子の一つを選
択する検出素子選択手段からなり, 前記各検出素子からの出力の合計を前記物理量に対応す
る信号として出力する ことを特徴とする放射線応用測定装置。
1. A radiation applied measuring device for detecting a radiation emitted from a radiation source whose spatial intensity has a Gaussian distribution and passing through an object to be measured by a semiconductor radiation detector to measure a physical quantity of the object to be measured. In, a distance detector for detecting the distance from the radiation source to the semiconductor radiation detector and a plurality of strip-shaped detection elements having similar sensitivity are arranged in a stepwise manner and the blocks are arranged in parallel. A semiconductor radiation detector fixed side by side, and a detection element selecting means for selecting one of the detection elements of the block corresponding to the distance signal based on the distance signal detected by the distance detector, A radiation applied measurement apparatus, wherein the total output from the detection elements is output as a signal corresponding to the physical quantity.
JP1990052746U 1990-05-21 1990-05-21 Radiation applied measurement device Expired - Lifetime JP2501819Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1990052746U JP2501819Y2 (en) 1990-05-21 1990-05-21 Radiation applied measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1990052746U JP2501819Y2 (en) 1990-05-21 1990-05-21 Radiation applied measurement device

Publications (2)

Publication Number Publication Date
JPH0411483U JPH0411483U (en) 1992-01-30
JP2501819Y2 true JP2501819Y2 (en) 1996-06-19

Family

ID=31573316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1990052746U Expired - Lifetime JP2501819Y2 (en) 1990-05-21 1990-05-21 Radiation applied measurement device

Country Status (1)

Country Link
JP (1) JP2501819Y2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56151377A (en) * 1980-04-26 1981-11-24 Toshiba Corp Semiconductor radiation detector

Also Published As

Publication number Publication date
JPH0411483U (en) 1992-01-30

Similar Documents

Publication Publication Date Title
US3936638A (en) Radiology
EP0257849B1 (en) Measurement of moisture stratified sheet material
US4377869A (en) Procedure for measuring coating rates
CA1122725A (en) Trapezoidal scintillator for radiation detectors
JP2501819Y2 (en) Radiation applied measurement device
CA1257408A (en) System for determining the basis weight of cord reinforced tire fabric
US5118940A (en) Paper basis weight detector
US4980902A (en) Aperture measuring system for cord reinforced tire fabric
JPH0329410B2 (en)
JP2905895B2 (en) Radiation measurement equipment
JP2722672B2 (en) Radiation measurement equipment
JPH0219753A (en) Radiation application measuring device
JPH0799395B2 (en) Radiation applied measurement device
JPH0348188A (en) Autoradiography apparatus
JP2780324B2 (en) X-ray thickness gauge
JPS5582006A (en) Measuring method for thickness
RU1768970C (en) Method of measuring thickness of layers of double-layer material
JPH04353707A (en) Measuring apparatus utilizing radiation
US6995372B2 (en) Nuclear gauge for measuring a characteristic of a sheet material with sheet position and alignment compensation
JP2000258146A (en) Radiation thickness measurement device
JP2002333409A (en) X-ray stress measuring device
JPH02266208A (en) Film thickness measuring method
JPH0481684A (en) Apparatus for measuring radioactivity
JPH01153905A (en) Radiation applied measuring instrument
RU2119643C1 (en) Method determining planeness of moving strip of material