JP2501492B2 - Ceramic substrate and manufacturing method thereof - Google Patents

Ceramic substrate and manufacturing method thereof

Info

Publication number
JP2501492B2
JP2501492B2 JP6763991A JP6763991A JP2501492B2 JP 2501492 B2 JP2501492 B2 JP 2501492B2 JP 6763991 A JP6763991 A JP 6763991A JP 6763991 A JP6763991 A JP 6763991A JP 2501492 B2 JP2501492 B2 JP 2501492B2
Authority
JP
Japan
Prior art keywords
alumina
substrate
multilayer substrate
purity
fired
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP6763991A
Other languages
Japanese (ja)
Other versions
JPH04280657A (en
Inventor
利樹 後藤
保 川上
権蔵 伊林
正孝 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP6763991A priority Critical patent/JP2501492B2/en
Publication of JPH04280657A publication Critical patent/JPH04280657A/en
Application granted granted Critical
Publication of JP2501492B2 publication Critical patent/JP2501492B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/4007Surface contacts, e.g. bumps
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/4038Through-connections; Vertical interconnect access [VIA] connections
    • H05K3/4053Through-connections; Vertical interconnect access [VIA] connections by thick-film techniques
    • H05K3/4061Through-connections; Vertical interconnect access [VIA] connections by thick-film techniques for via connections in inorganic insulating substrates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards
    • H05K3/4626Manufacturing multilayer circuits by laminating two or more circuit boards characterised by the insulating layers or materials
    • H05K3/4629Manufacturing multilayer circuits by laminating two or more circuit boards characterised by the insulating layers or materials laminating inorganic sheets comprising printed circuits, e.g. green ceramic sheets
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
    • H05K3/4673Application methods or materials of intermediate insulating layers not specially adapted to any one of the previous methods of adding a circuit layer
    • H05K3/4676Single layer compositions

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、配線基板に利用される
セラミックス基板およびその製造方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ceramic substrate used as a wiring substrate and a method for manufacturing the same.

【0002】[0002]

【従来の技術】電子部品の高密度化が進むにつれて、こ
れまで印刷法等により形成されてきたセラミックス配線
基板は、より配線の微細化と基板の多層化が要求されて
いる。すなわち、従来は例えばアルミナ焼成多層基板か
らなるセラミックス基板上にAg−Pd、Au、Cu、
Mo、W等の金属粉ペーストをスクリーン印刷法で印刷
し焼成することにより配線を形成してきた。これらの印
刷配線は、通常、アルミナ粉体に3〜10重量%の焼結
助剤を加えたアルミナグリーンシートと内部配線を交互
に多層設けた後焼成したアルミナ焼成多層基板上に形成
されるが、この方法では安定した歩留りで製造できる線
幅は100μm 程度が限界であった。そのため、近年微
細化に要求される25〜70μm 程度の微細配線を達成
するために薄膜法が利用されているが、薄膜法によりセ
ラミックス焼成多層基板上に微細配線を形成する場合に
は基板の表面状態が極めて重要な問題となっていた。
2. Description of the Related Art As the density of electronic parts has increased, ceramic wiring boards which have been formed by a printing method or the like have been required to have finer wiring and multilayer boards. That is, conventionally, Ag--Pd, Au, Cu,
Wiring has been formed by printing a metal powder paste such as Mo or W by a screen printing method and firing it. These printed wirings are usually formed on an alumina-fired multi-layer substrate which is obtained by alternately providing an alumina green sheet obtained by adding 3 to 10% by weight of a sintering aid to alumina powder and an internal wiring, and then firing. With this method, the line width that can be manufactured with a stable yield is limited to about 100 μm. Therefore, the thin film method is used to achieve the fine wiring of about 25 to 70 μm required for miniaturization in recent years. However, when the fine wiring is formed on the ceramics fired multilayer substrate by the thin film method, the surface of the substrate is State was a very important issue.

【0003】すなわち、図5(a)〜(d)に従来のア
ルミナ焼成多層基板の表面上に薄膜法により配線を形成
する場合を例にとって説明すると、以下のようになる。
図5(a)は、粒子径が2〜5μm 程度のアルミナ1と
3〜20重量%の焼結助剤2が混合したときの断面状態
を示す。図5(b)は、焼成後の状態を示す。焼結助剤
2はアルミナ1の粒界に存在するが、焼結助剤の効果で
アルミナ1が粒成長することにより粒子径は10〜50
μm にまで成長し、表面の凹凸は増加して表面粗さは増
加する。焼成体表面には、アルミナ1の粒成長に伴いポ
ア3も形成され、その径および深さは5〜30μm に達
する。また、セラミックス内部にも内部ポア4が形成さ
れる。図5(c)は、薄膜5を形成したときの断面状態
を示す。このように、図5(b)に示した基板上に薄膜
法により薄膜5を形成すると、ポア3上には薄膜5が堆
積できないため、薄膜層中にもポア6が形成され、これ
が配線形成後の断線の原因となる。さらに、図5(d)
に示すように、薄膜形成前に破線7の位置まで研磨する
ことも考えられるが、この場合でも内部ポア4が表面に
露出し、上述した例と同様に薄膜法で薄膜5を形成して
も配線の断線につながる。
That is, the case of forming wiring on the surface of a conventional alumina fired multilayer substrate by the thin film method will be described as an example with reference to FIGS.
FIG. 5 (a) shows a sectional state when alumina 1 having a particle diameter of about 2 to 5 μm and 3 to 20% by weight of sintering aid 2 are mixed. FIG. 5B shows a state after firing. The sintering aid 2 exists at the grain boundaries of the alumina 1, but the particle size of the alumina 1 is 10 to 50 due to the growth of the alumina 1 due to the effect of the sintering aid.
It grows up to μm, the surface roughness increases and the surface roughness increases. Pores 3 are also formed on the surface of the fired body along with the grain growth of alumina 1, and the diameter and depth thereof reach 5 to 30 μm. In addition, internal pores 4 are also formed inside the ceramics. FIG. 5C shows a cross-sectional state when the thin film 5 is formed. As described above, when the thin film 5 is formed on the substrate shown in FIG. 5B by the thin film method, the thin film 5 cannot be deposited on the pores 3, so that the pores 6 are also formed in the thin film layer, which forms the wiring. It will cause later disconnection. Further, FIG. 5 (d)
As shown in FIG. 4, it is possible to polish to the position of the broken line 7 before forming the thin film. However, even in this case, the internal pores 4 are exposed on the surface and even if the thin film 5 is formed by the thin film method as in the above example. It leads to disconnection of wiring.

【0004】以上の説明のように、薄膜法でアルミナ焼
成多層基板の表面上に配線を形成しようとするときは、
基板の表面状態が極めて重要な問題となる。その問題を
解決するために、従来、(1)焼結助剤が1重量%以下
の組成で、焼成することにより、基板表面のポアと表面
粗さをできるだけ低くしたアルミナ基板、(2)3〜2
0重量%焼結助剤を含むアルミナ基板表面をガラスによ
りグレーズド化し、ポアを封孔するとともに表面粗さを
平坦化したアルミナ基板が知られている。
As described above, when the wiring is to be formed on the surface of the alumina fired multilayer substrate by the thin film method,
The surface condition of the substrate becomes a very important issue. In order to solve the problem, conventionally, (1) an alumina substrate in which the pores and the surface roughness of the substrate surface are made as low as possible by firing with a composition of 1% by weight or less of a sintering aid, (2) 3 ~ 2
There is known an alumina substrate in which the surface of an alumina substrate containing 0% by weight of a sintering aid is glazed with glass to seal pores and flatten the surface roughness.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上述し
た(1)の方法のように焼成助剤を1重量%以下の組成
にした基板は、薄膜法に適したアルミナ焼成多層基板の
表面状態をえることができるが、焼結助剤が少ないた
め、焼成時にグリーンシート間の接着がうまく進行しな
いため、多層基板として得ることができず、実用上ほと
んど不可能であった。また、上述した(2)の方法のよ
うにガラスによりポアを封孔した場合は、価格は上述し
た方法に比べて廉価な基板を得ることができるが、この
ような基板は還元加熱雰囲気で熱処理されるとガラス成
分が還元され、グレーズド層が還元され、グレーズド層
の変色や劣化が起こる問題があった。そのため、このよ
うな基板は、薄膜パターン形成後還元加熱雰囲気で行わ
れるロー付けなどの処理がある場合使用することができ
ない問題もあった。
However, the substrate having the composition of 1% by weight or less of the firing aid as in the above-mentioned method (1) gives the surface state of the alumina-fired multilayer substrate suitable for the thin film method. However, since the amount of the sintering aid is small and the adhesion between the green sheets does not proceed well during firing, it cannot be obtained as a multilayer substrate, which is practically impossible. Further, when the pores are sealed with glass as in the method (2) described above, it is possible to obtain a substrate which is less expensive than the method described above, but such a substrate is heat-treated in a reducing heating atmosphere. Then, the glass component is reduced, the glaze layer is reduced, and there is a problem that discoloration or deterioration of the glaze layer occurs. Therefore, there is also a problem that such a substrate cannot be used when there is a process such as brazing performed in a reducing heating atmosphere after forming a thin film pattern.

【0006】本発明の目的は上述した課題を解消して、
表面のポアがなく、さらに表面粗さも良好なアルミナ焼
成多層基板の表面に表面層を設けるためのセラミックス
基板およびその製造方法を提供しようとするものであ
る。
The object of the present invention is to solve the above problems,
It is an object of the present invention to provide a ceramic substrate for providing a surface layer on the surface of an alumina-fired multilayer substrate which has no surface pores and has a good surface roughness, and a method for producing the same.

【0007】[0007]

【課題を解決するための手段】本発明のセラミックス基
板は、表面に導通ビア露出部を有するアルミナ焼成多層
基板と、このアルミナ焼成多層基板の表面の導通ビア露
出部以外の部分に設けた、このアルミナ焼成多層基板の
平均粒子径よりも小さい平均粒子径を有するアルミナ表
面層およびこのアルミナ焼成多層基板の表面の導通ビア
露出部上に設けた金属パッドからなる表面層との複合構
造からなることを特徴とするものである。
The ceramic substrate of the present invention is provided with an alumina fired multilayer substrate having a conductive via exposed portion on the surface, and a portion provided on the surface of this alumina fired multilayer substrate other than the exposed conductive via portion. A composite structure comprising an alumina surface layer having an average particle size smaller than that of the alumina fired multilayer substrate and a surface layer consisting of a metal pad provided on the exposed portion of the conductive via on the surface of the alumina fired multilayer substrate. It is a feature.

【0008】また、本発明のセラミックス基板の製造方
法は、表面に導通ビア露出部を有するアルミナ焼成多層
基板を準備しその表面を研磨した後、このアルミナ焼成
多層基板表面の導通ビア露出部上に、金属ペーストを印
刷し焼成することにより金属パッドを形成し、金属パッ
ドを有するアルミナ焼成多層基板表面に、このアルミナ
焼成多層基板の平均粒子径よりも小さい平均粒子径を有
する高純度易焼結性アルミナのペーストを塗布し焼成し
て高純度易焼結性アルミナ層を形成した後、金属パッド
上の高純度易焼結性アルミナ層を研磨して基板表面に金
属パッドを露出させたことを特徴とするものである。
Further, in the method for manufacturing a ceramic substrate of the present invention, an alumina fired multilayer substrate having a conductive via exposed portion on its surface is prepared, the surface is polished, and then the conductive via exposed portion on the surface of this alumina fired multilayer substrate is exposed. , A metal pad is formed by printing and firing a metal paste, and a high-purity and easy-sinterability having an average particle size smaller than the average particle size of this alumina-fired multilayer substrate is formed on the surface of the alumina-fired multilayer substrate having the metal pad. The feature is that a high-purity easy-sinterable alumina layer is formed by applying an alumina paste and baking it, and then the high-purity easy-sintering alumina layer on the metal pad is polished to expose the metal pad on the substrate surface. It is what

【0009】[0009]

【作用】上述した本発明のセラミックス基板の構成にお
いて、セラミックス基板のほとんどの部分を通常のアル
ミナ焼成多層基板から構成するとともに、表面のみを上
記アルミナ焼成多層基板よりも微粒のアルミナ層および
金属パッドからなる表面層としたため、ポアがなく良好
な表面粗さを有する廉価なセラミックス基板を得ること
ができる。そのため、本発明のセラミックス基板を使用
して薄膜法により薄膜を形成すれば、低い表面粗さでポ
ア欠陥の少ない表面状態の多層基板上に薄膜を形成でき
るため、パターン形成後に還元雰囲気で熱処理しても薄
膜の密着強度に影響を与えることはない。
In the above-mentioned structure of the ceramic substrate of the present invention, most of the ceramic substrate is composed of a normal alumina fired multilayer substrate, and only the surface is made of finer alumina layers and metal pads than the alumina fired multilayer substrate. Since the surface layer is composed of the above, it is possible to obtain an inexpensive ceramic substrate having no pores and having a good surface roughness. Therefore, if a thin film is formed by the thin film method using the ceramic substrate of the present invention, the thin film can be formed on a multilayer substrate having a surface state with low surface roughness and few pore defects. However, it does not affect the adhesion strength of the thin film.

【0010】また、上述したセラミックス基板の製造方
法の構成において、通常の導通ビア露出部を有するアル
ミナ焼成多層基板の表面上に、まず金属パッドを設け、
次にこのアルミナ焼成多層基板の平均粒子径より小さい
高純度易焼結性アルミナのペーストを塗布した後焼成し
ているため、低温度かつ低焼結助剤量で焼成でき、本発
明の複合構造からなるセラミックス基板を得ることがで
きる。ここで高純度易焼結性アルミナとは、好ましい性
質の一例として、純度99.99%以上、アルミナの平
均粒子径が0.2μm 以下、焼結温度が1350℃以下
のアルミナ粉末のことをいう。
In the structure of the method for manufacturing a ceramics substrate described above, first, a metal pad is provided on the surface of an alumina-fired multilayer substrate having a normal conductive via exposed portion,
Next, since the paste of high-purity easy-sinterable alumina smaller than the average particle size of this alumina fired multilayer substrate is applied and fired, it can be fired at a low temperature and a low amount of sintering aid, and the composite structure of the present invention can be used. It is possible to obtain a ceramic substrate made of. Here, the high-purity easily sinterable alumina refers to, as an example of preferable properties, an alumina powder having a purity of 99.99% or more, an average particle diameter of alumina of 0.2 μm or less, and a sintering temperature of 1350 ° C. or less. .

【0011】なお、高純度易焼結性アルミナペーストの
塗布厚は、焼結後の塗布厚が3〜30μm であると好ま
しい。厚みが3μm 未満であると、焼成多層基板中の焼
結助剤と高純度易焼結性アルミナが焼成中に溶融して良
好な表面状態が得られないことがあるとともに、厚みが
30μm を超えると、高純度易焼結性アルミナの焼結す
るときの収縮が著しくなり、焼結後クラックが発生する
ことがあるためである。さらに好ましい厚さは、5〜1
5μm である。また、焼結助剤を3〜20重量%含むア
ルミナ焼成多層基板を用いると好ましいのは、焼結助剤
が3重量%未満であると、高純度易焼結性アルミナペー
ストと焼成多層基板の表面との密着性が不十分の場合が
あるとともに、焼結助剤が20重量%を超えると、高純
度易焼結性アルミナを焼結させる際に、焼成多層基板中
の焼結助剤が高純度易焼結性アルミナ中に浸透し粒成長
が促進されるため良好な表面粗さとポアのない表面状態
が得られない場合があるためである。さらに好ましい焼
結助剤の量は、5〜15重量%である。
The coating thickness of the high-purity easily sinterable alumina paste is preferably 3 to 30 μm after sintering. If the thickness is less than 3 μm, the sintering aid and the high-purity easily sinterable alumina in the fired multilayer substrate may be melted during firing, and a good surface condition may not be obtained, and the thickness exceeds 30 μm. In addition, the contraction of the high-purity easily sinterable alumina during sintering becomes significant, and cracks may occur after sintering. More preferable thickness is 5 to 1
It is 5 μm. Further, it is preferable to use an alumina-fired multilayer substrate containing 3 to 20% by weight of a sintering aid. If the amount of the sintering aid is less than 3% by weight, the high-purity easily sinterable alumina paste and the fired multilayer substrate are preferably used. In some cases, the adhesion to the surface is insufficient, and when the sintering aid exceeds 20% by weight, the sintering aid in the fired multi-layer substrate will be This is because the high-purity and easily-sinterable alumina permeates and promotes grain growth, so that good surface roughness and a pore-free surface state may not be obtained in some cases. A more preferable amount of the sintering aid is 5 to 15% by weight.

【0012】また、高純度易焼結性アルミナの平均粒子
径が0.2μm 以下であり、焼成温度が1200〜13
00℃の範囲であると、後述する実施例からもわかるよ
うに、焼成後の基板表面のポアの数をより少なくするこ
とができるため好ましい。さらに、アルミナ焼成多層基
板の表面に塗布、焼成する材料としてアルミナを用いる
と好ましいのは、還元雰囲気での加熱処理中でも安定に
存在することのできる材料であるためである。これによ
り、従来のグレーズド基板のような還元雰囲気での加熱
処理によるガラスの劣化のような問題を防止することが
できる。
The high-purity and easily-sinterable alumina has an average particle diameter of 0.2 μm or less and a firing temperature of 1200 to 13
A temperature range of 00 ° C. is preferable because the number of pores on the surface of the substrate after firing can be further reduced, as will be understood from Examples described later. Further, it is preferable to use alumina as a material to be applied and fired on the surface of the alumina-fired multilayer substrate, because it is a material that can stably exist even during heat treatment in a reducing atmosphere. As a result, it is possible to prevent problems such as glass deterioration due to heat treatment in a reducing atmosphere such as that of a conventional glaze substrate.

【0013】[0013]

【実施例】図1(a)〜(d)はそれぞれ本発明のセラ
ミックス基板の製造方法における各工程を説明するため
の図である。まず、図1(a)に示すように、通常の方
法で内部に内層配線18を有するとともに表面に導通ビ
ア19の導通ビア露出部19aを有するアルミナ焼成多
層基板20を準備する。次に、えられたアルミナ焼成多
層基板20の表面を研磨した後、図1(b)に示すよう
に、アルミナ焼成多層基板20表面の導通ビア露出部1
9a上に、金属ペーストを印刷し1300℃程度の温度
で焼成することにより金属パッド21を形成する。次
に、図1(c)に示すように、金属パッド21を有する
アルミナ焼成多層基板20の表面をなすアルミナ焼成基
板9上に、所定の高純度易焼結性アルミナのペーストを
塗布し好ましくは1200〜1300℃の温度で焼成す
ることにより、高純度易焼結性アルミナ層10を形成す
る。最後に、図1(d)に示すように、金属パッド21
上の高純度易焼結性アルミナ層10を研磨して基板表面
に金属パッド21を露出させることにより、本発明の複
合構造からなるセラミックス基板を得ることができる。
1 (a) to 1 (d) are views for explaining each step in the method for manufacturing a ceramic substrate of the present invention. First, as shown in FIG. 1A, an alumina fired multilayer substrate 20 having an inner layer wiring 18 inside and a conductive via exposed portion 19a of a conductive via 19 on the surface is prepared by a normal method. Next, after polishing the surface of the obtained alumina-fired multilayer substrate 20, as shown in FIG. 1B, the conductive via exposed portion 1 on the surface of the alumina-fired multilayer substrate 20 is exposed.
The metal pad 21 is formed by printing a metal paste on 9a and baking it at a temperature of about 1300 ° C. Next, as shown in FIG. 1C, a predetermined high-purity and easily-sinterable alumina paste is applied onto the alumina fired substrate 9 forming the surface of the alumina fired multilayer substrate 20 having the metal pads 21, preferably. By firing at a temperature of 1200 to 1300 ° C., the high-purity easily-sinterable alumina layer 10 is formed. Finally, as shown in FIG. 1D, the metal pad 21
The ceramic substrate having the composite structure of the present invention can be obtained by polishing the upper high-purity easy-sinterable alumina layer 10 to expose the metal pad 21 on the substrate surface.

【0014】図2は本発明のセラミックス基板の表面状
態の金属パッド以外の一例の構成をさらに詳細に示す断
面図である。図2において、本発明のセラミックス基板
の表面の断面は、アルミナ焼成多層基板20の表面をな
すアルミナ焼成基板9と、その表面に設けられた高純度
易焼結性アルミナ層10との複合構造からなっている。
すでに焼成されている好ましくは3〜20重量%の焼結
助剤を含むアルミナ基板9は、粒径が10〜50μm 程
度のアルミナ1とアルミナ1の粒界に存在する焼結助剤
2から構成され、5〜30μm 程度のポア3を有してい
る。また、好ましくは平均粒子径が0.2μm 以下の高
純度易焼結性アルミナ8は、アルミナ基板9上に塗布、
焼成され、高純度易焼結性アルミナ層10を形成してい
る。高純度易焼結性アルミナ8の平均粒子径は好ましく
は0.2μm 以下と小さいため、アルミナ基板9表面の
ポア3を封孔することが容易にできる。
FIG. 2 is a sectional view showing in more detail the constitution of an example other than the metal pad in the surface state of the ceramic substrate of the present invention. In FIG. 2, the cross section of the surface of the ceramic substrate of the present invention has a composite structure of an alumina fired substrate 9 forming the surface of the alumina fired multilayer substrate 20 and a high-purity easily sinterable alumina layer 10 provided on the surface. Has become.
The alumina substrate 9, which has already been sintered and preferably contains 3 to 20% by weight of the sintering aid, is composed of alumina 1 having a particle size of about 10 to 50 μm and the sintering aid 2 existing at the grain boundary of alumina 1. And has pores 3 of about 5 to 30 μm. Further, preferably, the high-purity easy-sinterable alumina 8 having an average particle diameter of 0.2 μm or less is applied on an alumina substrate 9,
The high-purity and easily-sinterable alumina layer 10 is formed by firing. Since the high-purity and easily-sinterable alumina 8 has a small average particle size of 0.2 μm or less, it is easy to seal the pores 3 on the surface of the alumina substrate 9.

【0015】図3(a)〜(c)は本発明のセラミック
ス基板の焼成工程における表面状態の一例を説明するた
めの図である。図3(a)は、焼結助剤2を3〜20重
量%含むアルミナ焼成基板9上に高純度易焼結性アルミ
ナ8からなるペーストを塗布して高純度易焼結性アルミ
ナ層10を形成した状態を示している。ここで、焼結助
剤2としては通常のMgO、CaO、SiO2 、TiO
2、ZrO2 などが用いられる。また、高純度易焼結性
アルミナ8からなるペーストは、高純度易焼結性アルミ
ナ粉体と有機バインダー、有機溶媒とを混合して作製
し、塗布法に適した粘度に調整される。塗布方法は、印
刷、カレンダーロール、スプレー、静電塗装、ディッ
プ、ナイフコータなど、できるだけ塗布後の平滑性が良
い方法を選択すると好ましい。
3 (a) to 3 (c) are views for explaining an example of the surface condition in the firing process of the ceramic substrate of the present invention. FIG. 3A shows that a high-purity easy-sinterable alumina layer 10 is formed by coating a paste made of high-purity easy-sinterable alumina 8 on an alumina firing substrate 9 containing 3 to 20% by weight of a sintering aid 2. The formed state is shown. Here, as the sintering aid 2, ordinary MgO, CaO, SiO2, TiO is used.
2, ZrO2, etc. are used. The paste made of high-purity easy-sinterable alumina 8 is prepared by mixing high-purity easy-sinterable alumina powder with an organic binder and an organic solvent, and the viscosity is adjusted to be suitable for the coating method. As a coating method, it is preferable to select a method such as printing, calendar roll, spray, electrostatic coating, dip, knife coater, etc., which has as smooth a smoothness as possible after coating.

【0016】次に、塗布後の高純度易焼結性アルミナ8
からなるペーストを乾燥する。ペーストを乾燥した後の
表面状態が良好でないと、焼成後も望ましい表面状態に
ならないため、乾燥後、さらにペースト表面の研磨によ
り表面の仕上がり状態を向上させることもできる。次
に、乾燥後のペーストを好ましくは1200〜1300
℃の温度で焼成する。
Next, high-purity and easily-sinterable alumina 8 after coating
The paste consisting of is dried. If the surface condition after drying the paste is not good, the desired surface condition will not be obtained even after firing. Therefore, the surface finish condition can be improved by further polishing the paste surface after drying. Next, the paste after drying is preferably 1200 to 1300.
Bake at a temperature of ° C.

【0017】図3(b)は焼成時の断面の状態を示して
おり、適正な温度で焼成するとアルミナ基板9中の焼結
助剤2がアルミナ層10を構成する高純度易焼結性アル
ミナ8間に浸透する。図3(b)に示すような適正な焼
成状態では、焼結助剤2はアルミナ層10に浸透しただ
けの状態に留まっており、アルミナ層10とアルミナ焼
成基板9との間の高い密着強度を有する良好な密着状態
を達成することができるとともに、アルミナ層10表面
の低い表面粗さを有する良好な平滑性を達成することが
できる。なお、焼成温度が適正でなく高くなったような
場合は、図3(c)に示すようにアルミナ層10中に浸
透した焼結助剤2はアルミナ8と反応し、アルミナ8の
粒成長が促進される。その結果、アルミナ層10には、
ポアの形成が起こり、表面の凹凸も大きくなり、基板表
面の平滑性も失われる。このように、焼成温度は焼結助
剤2のアルミナ層10への浸透の程度に影響し、表面状
態を左右することになる。
FIG. 3 (b) shows the state of the cross section at the time of firing. When firing at an appropriate temperature, the sintering aid 2 in the alumina substrate 9 constitutes the alumina layer 10 and is a high-purity easily sinterable alumina. Penetrate between 8 In an appropriate firing state as shown in FIG. 3B, the sintering aid 2 remains only in a state of permeating the alumina layer 10, and the high adhesion strength between the alumina layer 10 and the alumina firing substrate 9 is high. It is possible to achieve a good adhesion state having the following, and also to achieve a good smoothness having a low surface roughness of the surface of the alumina layer 10. In addition, when the firing temperature is not appropriate and becomes high, the sintering aid 2 that has penetrated into the alumina layer 10 reacts with the alumina 8 as shown in FIG. Be promoted. As a result, the alumina layer 10 has
Pore formation occurs, surface irregularities become large, and the smoothness of the substrate surface is lost. As described above, the firing temperature affects the degree of permeation of the sintering aid 2 into the alumina layer 10, and affects the surface condition.

【0018】以下、各種条件の好ましい範囲を求めるた
め、高純度易焼結性アルミナの平均粒子径及び焼成温度
とポア個数の関係、焼成温度と表面粗さとの関係、密着
強度について、それぞれ実際に実験した結果について説
明する。 実施例1 高純度易焼結性アルミナの平均粒子径及び焼成温度とポ
ア個数の関係を調べるため、以下の実験を実施した。ま
ず、通例の方法に従い、アルミナスラリーをドクターブ
レード法によりスリップキャスティングしてグリーンシ
ートを作製し、このグリーンシートをパンチングし、M
o、W導体を印刷し、ビアに導体ペーストを充填してグ
リーンシートを積層し、所定の大きさに切断し焼成して
アルミナ焼成多層基板を得た。なお、原料セラミックス
中の焼結助剤の量は10重量%とした。また、焼成後の
アルミナ焼成多層基板の表面粗さは、中心線平均表面粗
さ(Raと表示)で0.4μm であった。
Hereinafter, in order to determine the preferable ranges of various conditions, the average particle diameter of the high-purity easily sinterable alumina, the relationship between the firing temperature and the number of pores, the relationship between the firing temperature and the surface roughness, and the adhesion strength were actually measured. The result of the experiment will be described. Example 1 The following experiment was conducted in order to investigate the relationship between the average particle size and the firing temperature of high-purity easily sinterable alumina and the number of pores. First, according to a usual method, an alumina slurry is slip-cast by a doctor blade method to prepare a green sheet, and the green sheet is punched.
o, W conductors were printed, vias were filled with a conductor paste, green sheets were laminated, cut into a predetermined size and fired to obtain an alumina fired multilayer substrate. The amount of sintering aid in the raw material ceramics was 10% by weight. The surface roughness of the alumina-fired multilayer substrate after firing was 0.4 μm in terms of center line average surface roughness (indicated by Ra).

【0019】次いで、得られたアルミナ焼成多層基板の
表面に、スクリーン印刷法で高純度易焼結性アルミナか
らなるペーストを20μm 塗布した。高純度易焼結性ア
ルミナは、平均粒子径が0.9μm 、0.2μm の2種
類の粒子径のものを用いて比較した。焼成温度は、11
00℃、1200℃、1300℃、1400℃、150
0℃の5種類とし、それぞれの温度で焼成を行ってセラ
ミックス基板を得た。その後、焼成後のセラミックス基
板の表面を走査型電子顕微鏡で500倍の倍率で観察し
た。このとき、見いだされるポア径を測長し、5μm 以
上の径のポアの数を計測した。この結果を図4に示す。
図4中、ポア数は1平方ミリメートル当たりに存在する
ポアの数として示した。
Next, 20 μm of a paste made of high-purity and easily-sinterable alumina was applied to the surface of the obtained alumina-fired multilayer substrate by a screen printing method. The high-purity easily sinterable alumina was compared by using two types of particles having an average particle size of 0.9 μm and 0.2 μm. The firing temperature is 11
00 ° C, 1200 ° C, 1300 ° C, 1400 ° C, 150
Five kinds of 0 ° C. were used, and firing was performed at each temperature to obtain a ceramic substrate. Then, the surface of the fired ceramics substrate was observed with a scanning electron microscope at a magnification of 500 times. At this time, the diameter of the pores found was measured, and the number of pores having a diameter of 5 μm or more was measured. The result is shown in FIG.
In FIG. 4, the number of pores is shown as the number of pores existing per square millimeter.

【0020】図4の結果から、0.9μm 、0.2μm
の2種類の平均粒子径のアルミナのいずれも、1300
℃近辺でポアの数が最小であることがわかる。また、平
均粒子径が小さくなるに従って、ポアの個数が減少する
ことがわかる。これにより、ポアの個数を少なくするに
は、平均粒子径が0.2μm 以下で、焼成温度が120
0〜1300℃が好ましいことがわかる。
From the results of FIG. 4, 0.9 μm and 0.2 μm
Each of the two types of alumina having an average particle size of 1300
It can be seen that the number of pores is minimum around ℃. Also, it can be seen that the number of pores decreases as the average particle size decreases. Therefore, in order to reduce the number of pores, the average particle size should be 0.2 μm or less and the firing temperature should be 120 μm.
It can be seen that 0 to 1300 ° C. is preferable.

【0021】実施例2 高純度易焼結性アルミナの焼成温度とポア個数の関係を
調べるため、以下の実験を行った。まず、実施例1と同
様に、アルミナスラリーをドクターブレード法によりス
リップキャスティングしてグリーンシートを作製し内部
配線により多層化後、1600℃焼成してアルミナ焼成
多層基板を得た。なお、原料セラミックス中の焼結助剤
の量は10重量%とした。また、焼成後のアルミナ焼成
多層基板の表面粗さは、中心線平均表面粗さ(Raと表
示)で0.7μm であった。さらに、得られた基板を表
面粗さRaが0.4μm になるまで研磨し、比較のため
に実施例1と同様にポア数を測定した。
Example 2 The following experiment was conducted in order to investigate the relationship between the firing temperature and the number of pores of high-purity easily sinterable alumina. First, similarly to Example 1, an alumina slurry was slip-cast by a doctor blade method to prepare a green sheet, and multilayered with internal wiring, followed by firing at 1600 ° C. to obtain an alumina-fired multilayer substrate. The amount of sintering aid in the raw material ceramics was 10% by weight. The surface roughness of the fired alumina-fired multilayer substrate was 0.7 μm in terms of center line average surface roughness (denoted by Ra). Further, the obtained substrate was polished until the surface roughness Ra became 0.4 μm, and the pore number was measured in the same manner as in Example 1 for comparison.

【0022】次いで、研磨後のアルミナ焼成多層基板の
表面に、スクリーン印刷法で平均粒子径が0.2μm の
高純度易焼結性アルミナからなるペーストを20μm 塗
布した。塗布後、1300℃、1400℃、1500℃
の温度で焼成してセラミックス基板を得た。その後、得
られたセラミックス基板の中心線平均表面粗さRaを求
めるとともに、実施例1と同様の方法で15μm 以上の
ポア数を計測、測定した。結果を表1に示す。
Then, 20 μm of a paste made of high-purity and easily-sinterable alumina having an average particle diameter of 0.2 μm was applied to the surface of the alumina-fired multilayer substrate after polishing by a screen printing method. After coating, 1300 ℃, 1400 ℃, 1500 ℃
A ceramic substrate was obtained by firing at a temperature of. Then, the center line average surface roughness Ra of the obtained ceramic substrate was obtained, and the number of pores of 15 μm or more was measured and measured by the same method as in Example 1. The results are shown in Table 1.

【0023】[0023]

【表1】 [Table 1]

【0024】表1の結果から、高純度易焼結性ア
ルミナペーストを1300℃で焼成することにより、表
面粗さは減少し、15μm 以上のポアも大幅に減少する
ことが確認された。
From the results shown in Table 1, it was confirmed that by firing the high-purity easily sinterable alumina paste at 1300 ° C., the surface roughness was reduced and the pores of 15 μm or more were also significantly reduced.

【0025】実施例3 本発明のセラミックス基板を利用して薄膜を形成した場
合の密着強度を調べるため、以下の実験を行った。ま
ず、実施例2で作製した高純度易焼結性アルミナペース
トを1300℃で焼成したセラミックス基板上に、薄膜
を形成してその密着強度を調べた。薄膜としては、T
i:500Å、Mo:7000Å、Cu:4μmを基板
上に形成した。密着強度は、形成した薄膜を1.4mm
×1.4mmの正方形にパターンニングし、0.8mm
径のスズめっき付き銅線を半田付けし、半田付けした銅
線を垂直に引っ張り引張強度を求めた。また、比較のた
め、薄膜パターンニング後、窒素雰囲気中に水素を30
%含む還元雰囲気中、750℃、10分間熱処理した基
板の密着強度も測定した。結果を表2に示す。
Example 3 The following experiment was conducted to investigate the adhesion strength when a thin film was formed using the ceramic substrate of the present invention. First, a thin film was formed on a ceramic substrate obtained by firing the high-purity easily sinterable alumina paste produced in Example 2 at 1300 ° C., and the adhesion strength was examined. As a thin film, T
i: 500Å, Mo: 7000Å, Cu: 4 μm were formed on the substrate. Adhesion strength is 1.4 mm for the formed thin film
0.8mm patterned to a 1.4mm square
The diameter of the tin-plated copper wire was soldered, and the soldered copper wire was pulled vertically to determine the tensile strength. Also, for comparison, after patterning the thin film, hydrogen was added in a nitrogen atmosphere at 30%.
%, The adhesion strength of the substrate that was heat-treated at 750 ° C. for 10 minutes was also measured. The results are shown in Table 2.

【0026】[0026]

【表2】 [Table 2]

【0027】表2の結果から、本発明のセラミックス基
板は還元雰囲気での熱処理を行っても基板表面の劣化は
起こらず、強い密着強度が得られることがわかった。
From the results shown in Table 2, it was found that the ceramic substrate of the present invention did not undergo deterioration of the substrate surface even when subjected to heat treatment in a reducing atmosphere, and strong adhesion strength was obtained.

【0028】[0028]

【発明の効果】以上説明したところから明らかなよう
に、本発明によれば、金属パッドを有するアルミナ焼成
多層基板上に、このアルミナ焼成多層基板の平均粒子径
より小さい高純度易焼結性アルミナのペーストを塗布し
た後焼成して、セラミックス基板のほとんどの部分を通
常のアルミナ焼成多層基板から構成するとともに、表面
のみを上記アルミナ焼成多層基板よりも微粒のアルミナ
層と金属パッド層とからなる表面層としたため、ポアが
なく良好な表面粗さを有する廉価なセラミックス基板を
得ることができる。そのため、本発明のセラミックス基
板を使用して薄膜法により薄膜を形成すれば、低い表面
粗さでポア欠陥の少ない表面状態の多層基板上に薄膜を
形成できるため、パターン形成後に還元雰囲気で熱処理
しても薄膜の密着強度に影響を与えることはない。
As is apparent from the above description, according to the present invention, a high-purity easily sinterable alumina having an average particle size smaller than the average particle diameter of the alumina fired multilayer substrate is provided on the alumina fired multilayer substrate having a metal pad. After the paste is applied and then fired, most of the ceramic substrate is composed of a normal alumina fired multilayer substrate, and only the surface is a surface composed of finer alumina layers and metal pad layers than the alumina fired multilayer substrate. Since it is a layer, it is possible to obtain an inexpensive ceramic substrate having no pores and a good surface roughness. Therefore, if a thin film is formed by the thin film method using the ceramic substrate of the present invention, the thin film can be formed on a multilayer substrate having a surface state with low surface roughness and few pore defects. However, it does not affect the adhesion strength of the thin film.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)は本発明のセラミックス基板の製造方法
の一工程を説明するための図、(b)は本発明のセラミ
ックス基板の製造方法の他の工程を説明するための図、
(c)は本発明のセラミックス基板の製造方法のさらに
他の工程を説明するための図、(d)は本発明のセラミ
ックス基板の製造方法のさらに他の工程を説明するため
の図である。
1A is a diagram for explaining one step of a method for producing a ceramic substrate of the present invention, and FIG. 1B is a diagram for explaining another step of a method for producing a ceramic substrate of the present invention;
(C) is a figure for demonstrating the other process of the manufacturing method of the ceramic substrate of this invention, (d) is a figure for demonstrating the other process of the manufacturing method of the ceramic substrate of this invention.

【図2】本発明のセラミックス基板の一例の表面の断面
構成を示す図である。
FIG. 2 is a diagram showing a cross-sectional structure of a surface of an example of a ceramic substrate of the present invention.

【図3】(a)は本発明においてアルミナ焼成多層基板
の表面上に高純度易焼結性アルミナ層を形成した場合の
一例の断面構成を示す図、(b)は本発明におけて適正
温度で焼成したときの断面の状態を示す図、(c)は本
発明において適正温度よりも高い温度で焼成したときの
断面の状態を示す図である。
FIG. 3 (a) is a diagram showing a cross-sectional structure of an example in which a high-purity and easily-sinterable alumina layer is formed on the surface of an alumina-fired multilayer substrate in the present invention, and FIG. 3 (b) is appropriate in the present invention. The figure which shows the state of the cross section when baking at temperature, (c) is a figure which shows the state of the cross section when baking at a temperature higher than a proper temperature in this invention.

【図4】本発明における高純度易焼結性アルミナの平均
粒子径及び焼成温度とポア個数の関係を示すグラフであ
る。
FIG. 4 is a graph showing the relationship between the average particle diameter and the firing temperature of the high-purity easily sinterable alumina of the present invention and the number of pores.

【図5】(a)は従来の製造工程においてアルミナと焼
結助剤とが混合した断面状態を示す図、(b)は従来の
製造工程において焼成後の断面状態を示す図、(c)は
従来の製造工程において薄膜を形成した時の断面状態を
示す図、(d)は従来の製造工程において薄膜形成面を
研磨したときの断面状態を示す図である。
5A is a diagram showing a cross-sectional state in which alumina and a sintering aid are mixed in a conventional manufacturing process, FIG. 5B is a diagram showing a cross-sectional condition after firing in the conventional manufacturing process, and FIG. FIG. 4A is a diagram showing a cross-sectional state when a thin film is formed in a conventional manufacturing process, and FIG. 7D is a diagram showing a cross-sectional state when a thin film forming surface is polished in a conventional manufacturing process.

【符号の説明】[Explanation of symbols]

8 高純度易焼結性アルミナ 9 アルミナ焼成基板 10 高純度易焼結性アルミナ層 20 アルミナ焼成多層基板 21 金属パッド 8 High Purity Sinterable Alumina 9 Alumina Sintered Substrate 10 High Purity Sinterable Alumina Layer 20 Alumina Sintered Multilayer Substrate 21 Metal Pad

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 表面に導通ビア露出部を有するアルミナ
焼成多層基板と、このアルミナ焼成多層基板の表面の導
通ビア露出部以外の部分に設けた、このアルミナ焼成多
層基板の平均粒子径よりも小さい平均粒子径を有するア
ルミナ表面層およびこのアルミナ焼成多層基板の表面の
導通ビア露出部上に設けた金属パッドからなる表面層と
の複合構造からなることを特徴とするセラミックス基
板。
1. An alumina-fired multilayer substrate having a conductive via exposed portion on its surface, and an average particle diameter of the alumina-fired multilayer substrate provided on a portion other than the exposed conductive via exposed portion on the surface of the alumina-fired multilayer substrate. A ceramic substrate having a composite structure of an alumina surface layer having an average particle diameter and a surface layer composed of a metal pad provided on an exposed portion of a conductive via on the surface of this alumina fired multilayer substrate.
【請求項2】 表面に導通ビア露出部を有するアルミナ
焼成多層基板を準備しその表面を研磨した後、このアル
ミナ焼成多層基板表面の導通ビア露出部上に、金属ペー
ストを印刷し焼成することにより金属パッドを形成し、
金属パッド層を有するアルミナ焼成多層基板表面に、こ
のアルミナ焼成多層基板の平均粒子径よりも小さい平均
粒子径を有する高純度易焼結性アルミナのペーストを塗
布し焼成して高純度易焼結性アルミナ層を形成した後、
金属パッド上の高純度易焼結性アルミナ層を研磨して基
板表面に金属パッドを露出させたことを特徴とするセラ
ミックス基板の製造方法。
2. An alumina fired multilayer substrate having a conductive via exposed portion on the surface is prepared, the surface is polished, and a metal paste is printed and fired on the exposed conductive via portion on the surface of the alumina fired multilayer substrate. Forming a metal pad,
A high-purity, easily-sinterable alumina paste with a metal pad layer is coated with a high-purity, easily-sinterable alumina paste having an average particle size smaller than the average particle size of this alumina-fired, multilayer substrate. After forming the alumina layer,
A method of manufacturing a ceramic substrate, comprising polishing a high-purity and easily-sinterable alumina layer on a metal pad to expose the metal pad on the surface of the substrate.
【請求項3】 前記アルミナペースト層の厚さが3〜3
0μm である請求項1記載のセラミックス基板の製造方
法。
3. The thickness of the alumina paste layer is 3 to 3
The method for producing a ceramic substrate according to claim 1, wherein the thickness is 0 μm.
【請求項4】 前記アルミナ焼成多層基板が、焼結助剤
を3〜20重量%含む請求項2または3記載のセラミッ
クス基板の製造方法。
4. The method for manufacturing a ceramic substrate according to claim 2, wherein the alumina-fired multilayer substrate contains a sintering aid in an amount of 3 to 20% by weight.
【請求項5】 前記高純度易焼結性アルミナの平均粒子
径が0.2μm 以下である請求項2〜4のいずれかに記
載のセラミックス基板の製造方法。
5. The method for producing a ceramic substrate according to claim 2, wherein the high-purity easily sinterable alumina has an average particle size of 0.2 μm or less.
【請求項6】 前記焼成時の温度が1200〜1300
℃である請求項2〜5のいずれかに記載のセラミックス
基板の製造方法。
6. The firing temperature is 1200 to 1300.
The method for producing a ceramic substrate according to claim 2, wherein the method is at a temperature of ° C.
JP6763991A 1991-03-08 1991-03-08 Ceramic substrate and manufacturing method thereof Expired - Fee Related JP2501492B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6763991A JP2501492B2 (en) 1991-03-08 1991-03-08 Ceramic substrate and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6763991A JP2501492B2 (en) 1991-03-08 1991-03-08 Ceramic substrate and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH04280657A JPH04280657A (en) 1992-10-06
JP2501492B2 true JP2501492B2 (en) 1996-05-29

Family

ID=13350772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6763991A Expired - Fee Related JP2501492B2 (en) 1991-03-08 1991-03-08 Ceramic substrate and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2501492B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3827447B2 (en) * 1998-06-29 2006-09-27 京セラ株式会社 Multilayer wiring board and manufacturing method thereof
US7323142B2 (en) 2001-09-07 2008-01-29 Medtronic Minimed, Inc. Sensor substrate and method of fabricating same
DE60234113D1 (en) * 2001-09-07 2009-12-03 Medtronic Minimed Inc METHOD FOR PRODUCING A SUBSTRATE
JP2005086056A (en) * 2003-09-10 2005-03-31 Tdk Corp Lamination chip forming member and method for manufacturing lamination chip electronic component
JP2005277385A (en) * 2004-02-27 2005-10-06 Tdk Corp Laminate chip inductor forming member and method of manufacturing laminate chip inductor comonent
CN110024498B (en) * 2016-12-08 2021-12-31 株式会社村田制作所 Multilayer ceramic substrate and electronic device

Also Published As

Publication number Publication date
JPH04280657A (en) 1992-10-06

Similar Documents

Publication Publication Date Title
US7089659B2 (en) Method of producing ceramic laminates
US5814366A (en) Method of manufacturing multilayered ceramic substrate
US20090272566A1 (en) Electrically conductive paste and multilayer ceramic substrate
JP3350949B2 (en) Conductive paste
JPH06232516A (en) Ceramic wiring board and manufacture thereof
JP2501492B2 (en) Ceramic substrate and manufacturing method thereof
US7332231B2 (en) Ceramic substrate for thin film electronic component, production method for the same and thin film electronic component using the same
JPH05190375A (en) Manufacture of copper multilayer ceramics substrate and copper paste used therefor
US7348069B2 (en) Ceramic substrate for thin-film electronic components, method for producing the substrate, and thin-film electronic component employing the substrate
JP2501491B2 (en) Ceramic substrate and manufacturing method thereof
JP2005501795A (en) Method for manufacturing ceramic substrate and ceramic substrate
JP2002299145A (en) Ceramic laminate and method of manufacturing the same
JP2006278453A (en) Ceramic multilayer wiring board and its manufacturing method
JPH081976B2 (en) Ceramic substrate manufacturing method
JP2003224338A (en) Glass ceramic wiring substrate
JP2000114724A (en) Multilayer wiring board
JP3537698B2 (en) Wiring board and method of manufacturing the same
JP2003273515A (en) Method for reducing contraction between low temperature sintering layers of ceramic
JP4693284B2 (en) Multilayer wiring board and manufacturing method thereof
JP2008078453A (en) Ceramic electronic component and its manufacturing method
JPH05129152A (en) Laminated porcelain capacitor and its manufacture
JP2676221B2 (en) Glaze-treated ceramic substrate and method of manufacturing the same
JP3359513B2 (en) Glass ceramic sintered body and method for producing the same
JP3426820B2 (en) Copper metallized composition and method for producing glass ceramic wiring board using the same
JP2001052950A (en) Laminated ceramic electronic part and manufacture thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees