JP2501341Y2 - Gravity restoration type dynamic vibration absorber - Google Patents

Gravity restoration type dynamic vibration absorber

Info

Publication number
JP2501341Y2
JP2501341Y2 JP1990070835U JP7083590U JP2501341Y2 JP 2501341 Y2 JP2501341 Y2 JP 2501341Y2 JP 1990070835 U JP1990070835 U JP 1990070835U JP 7083590 U JP7083590 U JP 7083590U JP 2501341 Y2 JP2501341 Y2 JP 2501341Y2
Authority
JP
Japan
Prior art keywords
weight
dynamic vibration
pendulum
vibration absorber
rear direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1990070835U
Other languages
Japanese (ja)
Other versions
JPH0428247U (en
Inventor
明士 小池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Kumagai Gumi Co Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Kumagai Gumi Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd, Kumagai Gumi Co Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP1990070835U priority Critical patent/JP2501341Y2/en
Publication of JPH0428247U publication Critical patent/JPH0428247U/ja
Application granted granted Critical
Publication of JP2501341Y2 publication Critical patent/JP2501341Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Vibration Prevention Devices (AREA)
  • Bridges Or Land Bridges (AREA)

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案は建築構造物,橋梁,タワー等の制振に使用さ
れる重力復元式動吸振器に関する。
[Detailed Description of the Invention] [Industrial field of application] The present invention relates to a gravity-restoring dynamic vibration absorber used for vibration control of building structures, bridges, towers, and the like.

〔従来の技術〕[Conventional technology]

建築物の高層化及びインテリジエント化が進んでいる
現在、地震や風に対する振動防止が、建築物の強度及び
その装備機器の性能向上のために、さらにはより良い居
住環境を提供するために従来にも増して重要視されてい
る。特に、高層ビルの制振では、長周期振動が対象とな
り、従来の技術としては、振り子式の動吸振器が知られ
ている。
At present, as buildings are becoming taller and more intelligent, vibration prevention against earthquakes and winds has been used to improve the strength of buildings and the performance of their equipment, and to provide a better living environment. It is more important than ever. In particular, in vibration control of a high-rise building, long-period vibration is targeted, and as a conventional technique, a pendulum type dynamic vibration reducer is known.

振り子式動吸振器は、第6図縦断面図に示すように、
高層建築物に採用されて受動的制振を行うもので、振り
子を駆動する駆動装置を必要としないのに対して、第7
図に示すように上記振り子式をアクテイブ制振として利
用したものは振り子の往復運動をアクチユエーターを使
用して発生させ、その慣性反力を制振力として建物に伝
えて制振を行う。
The pendulum type dynamic vibration reducer, as shown in FIG.
It is used for high-rise buildings to perform passive vibration control, and it does not require a drive device to drive the pendulum.
As shown in the figure, the above-mentioned pendulum type which is used for active vibration control reciprocates a pendulum by using an actuator, and the inertial reaction force is transmitted to a building as a vibration control force for vibration control.

〔考案が解決しようとする課題〕[Problems to be solved by the device]

振り子を動吸振器として用いる原理は、建物が地震や
風から受ける外力エネルギを振り子の運動エネルギとし
て吸収することで建物自体の振動を抑制するものであ
り、建物の固有周期と振り子の固有周期を一致させるこ
とで実現する。しかしながら高層ビルとなると、その固
有周期は長く、振り子長さも長くする必要があり、装置
としての高さが高くなり、かつ大きさも大きくなるとい
う問題がある。また、アクチユエーターを用いるアクテ
イブ方式の場合も振り子式を利用している点で、上記の
問題点を有する。
The principle of using a pendulum as a dynamic vibration absorber is to suppress the vibration of the building itself by absorbing the external force energy that the building receives from an earthquake or wind as the kinetic energy of the pendulum. It is realized by matching. However, in the case of a high-rise building, its natural period is long and the pendulum length needs to be long, which raises the problem that the height of the device becomes high and the size becomes large. Further, in the case of the active system using the actuator, the pendulum system is also used, which has the above problem.

本考案はこのような事情に鑑みて提案されたもので、
コンパクトな構造で長周期かつ大きな制振力を発揮する
重力復元式動吸振器を提供することを目的とする。
The present invention has been proposed in view of such circumstances,
An object of the present invention is to provide a gravitational restoration type dynamic vibration absorber having a compact structure and exhibiting a long period and a large damping force.

〔課題を解決するための手段〕[Means for solving the problem]

そのために本考案は、前後方向の一定間隔で同一構造
物の床上にそれぞれ固着され、左右端が左右対称的にそ
れぞれ高く央部が低く上方に滑らかに凹曲し、適宜間隔
の前後1対の平行凹曲円弧状ガイド面を有する平行ガイ
ドレール部材と、軸方向の長さが上記平行凹曲円弧状ガ
イド面の前後方向のすきまより若干短い前後方向の大径
円胴体であってその前後端にそれぞれ同軸的に突設され
た比較的小径の等径軸頸により上記前後1対の平行凹曲
円弧状ガイド面に沿って転動自在に支持された可動回転
重錘とを具えたことを特徴とする。
To this end, the present invention is fixed on the floor of the same structure at regular intervals in the front-rear direction, the left and right ends are symmetrically high, the central part is low, and the upper part is smoothly curved upward. A parallel guide rail member having a parallel concave curved arc guide surface, and a large-diameter cylindrical body in the front-rear direction whose axial length is slightly shorter than the front-rear clearance of the parallel concave curved arc-shaped guide surface, and its front and rear ends. And a movable rotary weight supported rotatably along the pair of front and rear parallel concave arc-shaped guide surfaces by relatively small diameter equal-diameter shaft necks coaxially protruding from each other. Characterize.

〔作用〕 このような構成によれば、円弧状ガイドレール上で可
動重錘を往復的に転動させる方式故、振り子のように吊
下支持部を必要とせず、装置高さを低く、コンパクトに
することができる。従来の振り子式の場合、重錘の運動
エネルギは並進運動エネルギのみであるが、本考案の場
合、同一重量の重錘を用いても回転時の回転エネルギが
並進運動エネルギに加わるので、従来の振り子方式に比
べ、動吸振器としてのエネルギ吸収能力が大きく向上す
る。
[Operation] According to such a configuration, since the movable weight is reciprocally rolled on the arc-shaped guide rail, a suspension support portion is not required unlike a pendulum, the device height is low, and the device is compact. Can be In the case of the conventional pendulum type, the kinetic energy of the weight is only the translational kinetic energy, but in the case of the present invention, the rotational energy at the time of rotation is added to the translational kinetic energy even if the weight of the same weight is used. Compared with the pendulum method, the energy absorption capability of the dynamic vibration absorber is greatly improved.

〔実施例〕〔Example〕

本考案の一実施例を図面について説明すると、第1図
は原理を示す側面図、第2図は第1図のII−II断面図、
第3図は第1図の回転体が回転振動状態にある場合を示
す同じく側面図、第4図は振り子長さR−rの振り子を
示す側面図、第5図は第3図の構造にアクチユエーター
を付設した場合を示す同じく側面図である。
An embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a side view showing the principle, FIG. 2 is a sectional view taken along line II-II of FIG.
FIG. 3 is a side view of the rotary body of FIG. 1 in a rotational vibration state, FIG. 4 is a side view of a pendulum having a pendulum length R-r, and FIG. 5 is of the structure of FIG. It is a side view similarly showing the case where an actuator is attached.

まず、第1〜3図において、重量がWで、その回転軸
18まわりの慣性モーメントがIなる横置短円柱状重錘
(以下可転重錘という)2の両端rなる軸頸3をそれぞ
れ同一曲率半径Rで上方へ凹曲した平行円弧状ガイドレ
ール1上に置く。
First, in FIGS. 1 to 3, the weight is W and the rotation axis thereof is
On a parallel arc-shaped guide rail 1 in which a shaft neck 3 having both ends r of a laterally placed short cylindrical weight (hereinafter referred to as a rotatable weight) 2 having an inertia moment around 18 is concavely curved upward with the same radius of curvature R. Put on.

いま、可転重錘2はガイドレール1に対して滑りがな
いとすると、第3図に示すように、可転重錘2の重心19
の揺動角度をθとすると、運動エネルギの最大値Tmax
(1)式により表わされる。
Now, assuming that the rotatable weight 2 does not slip with respect to the guide rail 1, as shown in FIG.
The maximum value T max of the kinetic energy is represented by the equation (1), where θ is the swing angle of.

ここで、(1)式の右辺の第1項は回転体2の並進運
動エネルギ、第2項は回転体2の回転エネルギであり、
gは重力加速度を示す。
Here, the first term on the right side of the equation (1) is the translational kinetic energy of the rotor 2, the second term is the rotational energy of the rotor 2,
g indicates gravitational acceleration.

同式から明らかなように、第4図に示す通常の振り子
運動の場合(重錘の重さ=W,振り子長さ=R−r)と比
べて、本装置では回転エネルギ分だけ運動エネルギが大
なることが判る。
As is clear from the equation, compared with the case of the normal pendulum motion shown in FIG. 4 (weight of weight = W, pendulum length = R-r), the kinetic energy is equivalent to the rotational energy in this device. It turns out to be great.

往復運動の角振動数ωoの近似式は(2)式で表わせ
る。
An approximate expression of the reciprocating angular frequency ωo can be expressed by Expression (2).

いま、慣性モーメントIをゼロとすると(2)式は
(3)式となる。
Now, assuming that the inertia moment I is zero, equation (2) becomes equation (3).

それ故、可転重錘2は第4図に示した、振り子長さが
R−rの通常の振り子運動の角振動数と一致する角振動
数でガイドレール上を振動することになる。
Therefore, the rotatable weight 2 vibrates on the guide rail at an angular frequency that matches the angular frequency of the normal pendulum motion with the pendulum length R-r shown in FIG.

また、(2)式から判るように、慣性モーメントIを
大きくすることで、(4)式に示すように、ωoを小さ
くし、すなわち、長周期化が図れることも理解できる。
Further, as can be seen from the equation (2), it can be understood that by increasing the inertia moment I, the ωo can be reduced as shown in the equation (4), that is, the period can be lengthened.

ここで、Dは可転重錘2の直径であり、(4)式より
Wは一定であっても、Dを大にすることで、Iを大きく
するとともに、ωoを小さくすることができることが判
る。
Here, D is the diameter of the rotatable weight 2, and even if W is constant according to the equation (4), it is possible to increase I and decrease ωo by increasing D. I understand.

前記仮定として可転重錘2には滑りがないこととした
が、これは、可転重錘2の軸頸3と円弧状ガイドレール
1とをピニオンとラツクの関係のように、歯切りをして
おくことで実現できる。
Assuming that there is no slippage in the rotatable weight 2 as the above-mentioned assumption, this is because the shaft neck 3 of the rotatable weight 2 and the arc-shaped guide rail 1 are gear-cut like the relationship between the pinion and the rack. It can be realized by doing so.

なお、第3図の制振器は第5図に示すように、可転重
錘2の軸頸3の揺動運動に伴う上下方向の動きを摺動ガ
イドするためにガイド溝8を有するガイド装置9を設
け、このガイド装置9が左右方向に運動可能なるように
支承面10を設け、このガイド装置9を左右方向に往復運
動させるアクチユエーター11を設けることができる。
It should be noted that, as shown in FIG. 5, the vibration damper shown in FIG. 3 has a guide groove 8 for slidingly guiding the vertical movement of the rotatable weight 2 associated with the swing movement of the shaft neck 3. A device 9 may be provided, a support surface 10 may be provided so that the guide device 9 can move in the left-right direction, and an actuator 11 that reciprocates the guide device 9 in the left-right direction can be provided.

ここで、アクチユエーター11は建物13の固定支持部12
に取付けられ、アクチユエーター11を左右方向に往復駆
動させることにより、可転重錘2はガイド装置9を介し
て円弧状ガイドレール1に沿って転動しながら揺動運動
を行い、その際、慣性反力としてアクチユエーター11は
固定支持部12を通して建物13に制振力を伝えることがで
きる。
Here, the actuator 11 is a fixed support portion 12 of the building 13.
When the actuator 11 is reciprocally driven in the left-right direction, the rollable weight 2 makes a swinging motion while rolling along the arc-shaped guide rail 1 via the guide device 9. As an inertial reaction force, actuator 11 can transmit damping force to building 13 through fixed support 12.

〔考案の効果〕[Effect of device]

このような装置によれば、下記の効果が奏せられる。 According to such a device, the following effects can be obtained.

(1)円弧状ガイドレール1上で可転重錘を転動及び往
復運動させる方式故、振り子のような吊下支持部を必要
とせず、装置がコンパクトになる。
(1) Since the method of rolling and reciprocating the rollable weight on the arc-shaped guide rail 1, a suspension supporting portion such as a pendulum is not required, and the device becomes compact.

(2)可転重錘の運動エネルギとして並進運動エネルギ
に回転エネルギが加わるので、振り子式と比べた場合、
重錘重量当たりのエネルギ吸収能力が増し、ひいては制
振装置としての重量を軽減できる。
(2) Since the rotational energy is added to the translational kinetic energy as the kinetic energy of the rotatable weight, when compared with the pendulum type,
The energy absorption capacity per weight of the weight increases, and the weight of the vibration damping device can be reduced.

(3)可転重錘の慣性モーメントIを大きくすること
で、動吸振器としての長周期振動に対する制振能力が向
上する。
(3) By increasing the moment of inertia I of the rotatable weight, the vibration damping ability of the dynamic vibration absorber against long-period vibration is improved.

要するに本考案によれば、前後方向の一定間隔で同一
構造物の床上にそれぞれ固着され、左右端が左右対称的
にそれぞれ高く央部が低く上方に滑らかに凹曲し、適宜
間隔の前後1対の平行凹曲円弧状ガイド面を有する平行
ガイドレール部材と、軸方向の長さが上記平行凹曲円弧
状ガイド面の前後方向のすきまより若干短い前後方向の
大径円胴体であってその前後端にそれぞれ同軸的に突設
された比較的小径の等径軸頸により上記前後1対の平行
凹曲円弧状ガイド面に沿って転動自在に支持された可動
回転重錘とを具えたことにより、コンパクトな構造で長
周期かつ大きな制振力を発揮する重力復元式動吸振器を
得るから、本考案は産業上極めて有益なものである。
In short, according to the present invention, fixed to the floor of the same structure at regular intervals in the front-rear direction, the left and right ends are symmetrically high, the central part is low and the upper part is smoothly curved upward, and a pair of front and rear parts are appropriately spaced. A parallel guide rail member having a parallel concave curved arc-shaped guide surface, and a large-diameter cylindrical body in the front-back direction whose axial length is slightly shorter than the front-rear clearance of the parallel concave curved arc-shaped guide surface. And a movable rotary weight supported rotatably along the pair of front and rear parallel concave curved arc-shaped guide surfaces by means of relatively small-diameter equal-diameter shaft necks that are coaxially projected at the ends. As a result, a gravity restoring type dynamic vibration absorber that exhibits a long period and a large damping force with a compact structure is obtained. Therefore, the present invention is extremely useful industrially.

【図面の簡単な説明】[Brief description of drawings]

第1図は本考案の制振装置の原理を示す側面図、第2図
は第1図のII−II断面図、第3図は第1図の回転体が回
転振動状態にある場合を示す同じく側面図、第4図は振
り子長さR−rの振り子を示す側面図、第5図は第3図
の構造にアクチユエーターを付設した場合を示す同じく
側面図である。 第6図は公知の振り子式動吸振器を装備した建物を示す
縦断面図、第7図は第6図の振り子をアクテイブ制振と
した場合を示す同じく側面図である。 1……円弧状のガイドレール、2……短円柱状重錘(可
転重錘)、3……軸頸、4……曲率半径Rの中心、8…
…ガイド溝、9……ガイド装置、10……支承面、11……
アクチユエーター、12……固定支持部、13……建物、18
……回転軸、19……可転重錘の重心、
1 is a side view showing the principle of the vibration damping device of the present invention, FIG. 2 is a sectional view taken along line II-II of FIG. 1, and FIG. 3 shows a case where the rotating body of FIG. 1 is in a rotational vibration state. Similarly, FIG. 4 is a side view showing a pendulum having a pendulum length R-r, and FIG. 5 is a side view showing a case where an actuator is added to the structure of FIG. FIG. 6 is a vertical cross-sectional view showing a building equipped with a known pendulum type dynamic vibration absorber, and FIG. 7 is a side view showing a case where the pendulum of FIG. 6 is subjected to active vibration control. 1 ... Arc-shaped guide rail, 2 ... Short cylindrical weight (rotatable weight), 3 ... Shaft neck, 4 ... Center of radius of curvature R, 8 ...
… Guide groove, 9 …… Guide device, 10 …… Bearing surface, 11 ……
Actuator, 12 …… Fixed support, 13 …… Building, 18
…… Rotary axis, 19 …… Center of gravity of the rotatable weight,

Claims (1)

(57)【実用新案登録請求の範囲】(57) [Scope of utility model registration request] 【請求項1】前後方向の一定間隔で同一構造物の床上に
それぞれ固着され、左右端が左右対称的にそれぞれ高く
央部が低く上方に滑らかに凹曲し、適宜間隔の前後1対
の平行凹曲円弧状ガイド面を有する平行ガイドレール部
材と、軸方向の長さが上記平行凹曲円弧状ガイド面の前
後方向のすきまより若干短い前後方向の大径円胴体であ
ってその前後端にそれぞれ同軸的に突設された比較的小
径の等径軸頸により上記前後1対の平行凹曲円弧状ガイ
ド面に沿って転動自在に支持された可動回転重錘とを具
えたことを特徴とする重力復元式動吸振器。
1. A pair of front and rear parallels, which are fixed to the floor of the same structure at regular intervals in the front-rear direction, have left and right ends symmetrically high, and have a low center and are smoothly concave upwards. A parallel guide rail member having a concave curved arc guide surface, and a large-diameter cylindrical body in the front-rear direction whose axial length is slightly shorter than the clearance in the front-rear direction of the parallel concave arc-shaped guide surface at the front and rear ends thereof. A movable rotary weight supported by a pair of front and rear parallel concave curved arc-shaped guide surfaces rotatably supported by relatively small-diameter equal-diameter shaft necks coaxially protruding from each other. A gravitational restoration type dynamic vibration absorber.
JP1990070835U 1990-07-03 1990-07-03 Gravity restoration type dynamic vibration absorber Expired - Lifetime JP2501341Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1990070835U JP2501341Y2 (en) 1990-07-03 1990-07-03 Gravity restoration type dynamic vibration absorber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1990070835U JP2501341Y2 (en) 1990-07-03 1990-07-03 Gravity restoration type dynamic vibration absorber

Publications (2)

Publication Number Publication Date
JPH0428247U JPH0428247U (en) 1992-03-06
JP2501341Y2 true JP2501341Y2 (en) 1996-06-19

Family

ID=31607335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1990070835U Expired - Lifetime JP2501341Y2 (en) 1990-07-03 1990-07-03 Gravity restoration type dynamic vibration absorber

Country Status (1)

Country Link
JP (1) JP2501341Y2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61256036A (en) * 1985-05-08 1986-11-13 Mitsubishi Heavy Ind Ltd Dynamic vibration absorber

Also Published As

Publication number Publication date
JPH0428247U (en) 1992-03-06

Similar Documents

Publication Publication Date Title
JP3064733B2 (en) Dynamic vibration absorber of pendulum type structure
CN101832358B (en) Peg-top vibration-reducing damper for controlling structure to vibrate in multiple dimensions and manufacturing method thereof
AU2019101723A4 (en) Active rotary inertia driver control system
WO2020155644A1 (en) Control system employing mechanical driving device to realize adaptive adjustment of rotational inertia
JP2501341Y2 (en) Gravity restoration type dynamic vibration absorber
JPH03169984A (en) Vibration controller of building
JP3207258B2 (en) Elevator damping device
CN209509216U (en) Active rotational inertia drive control system
JPH11200660A (en) Vibration control structure for construction
CN209568566U (en) Self-propelled omnidirectional rotational inertia drive control system
JPH0432161B2 (en)
JP2001074093A (en) Base isolation device
WO2020155639A1 (en) Self-propelled omnidirectional rotational inertia drive control system
赵勃 Design of a spherical robot based on novel double ballast masses principle
JP2592499Y2 (en) Damping device
JPH04120379A (en) Dynamic vibration absorber of gravitation restring type
JP3605176B2 (en) Vertical active damping device
JP3082408B2 (en) Damping device
JP3202314B2 (en) Gravity restoration type two-way vibration damper
JPH10280726A (en) Vibration control mechanism
CN216766343U (en) Novel steel construction with anti-seismic performance
JPH09133180A (en) Weight supporting structure for structure vibration damping device
JPH02204581A (en) Damping device for building
JP2553181Y2 (en) Pendulum damping device
JP3612573B2 (en) Suspended floor structure