JP2500754B2 - Phase difference measuring device - Google Patents
Phase difference measuring deviceInfo
- Publication number
- JP2500754B2 JP2500754B2 JP13634593A JP13634593A JP2500754B2 JP 2500754 B2 JP2500754 B2 JP 2500754B2 JP 13634593 A JP13634593 A JP 13634593A JP 13634593 A JP13634593 A JP 13634593A JP 2500754 B2 JP2500754 B2 JP 2500754B2
- Authority
- JP
- Japan
- Prior art keywords
- optical path
- light
- phase difference
- path length
- optical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Mechanical Light Control Or Optical Switches (AREA)
- Preparing Plates And Mask In Photomechanical Process (AREA)
- Instruments For Measurement Of Length By Optical Means (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は位相差測定装置に関する
ものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a phase difference measuring device.
【0002】[0002]
【従来の技術】位相シフトマスクは超解像露光の一方式
としてメモリ等の高集積化に有望視されている。位相シ
フト量はシフタとなる薄膜の屈折率と膜厚の積で算出さ
れるため両者を正確に測定することが必要である。しか
しながら露光波長によっては膜厚、屈折率を正確に測定
することが容易でないため、直接位相差を測定すること
が望ましい。位相差を測定する方法として最も簡易なも
のは、マッハツェンダ等の干渉光学系を組み、光路に試
料を挿入した場合と、参照試料を挿入した場合とのそれ
ぞれ生じる干渉フリンジのずれ量から位相差を換算する
方法である。この方法は明線と暗線との境界が必ずしも
明確でないため、読み取りに誤差を生じ易く精度が低
い。フリンジが1本になるまで厳密に光軸を調整し、干
渉部分の明暗強度を測定する方法は、先の方法より原理
的には精度が高いが、調整に時間がかかる上、露光の大
部分をなす空気の擾乱の影響を受け易く測定が困難であ
る。調整、測定を容易にした方法としては、ビームをダ
ブルイメージプリズムを用いて分岐し、両者の位相を電
気光学素子によって逐次変化させながら、位相差を測定
すべき試料と参照部分とに同時に照射し、その後合波し
て偏光を一致させた後、干渉強度をみる方法が、A.
P.Ghosh(エー.ピー.ゴーシュ)により199
2年(SPIE(エス.ピー.アイ.イー),Vol1
673,242頁から254頁)に報告されている。こ
の方法は光学部品に適合した波長で測定する場合は高精
度の測定結果が得られるが、方解石などの複屈折結晶を
多数用いる必要があり、露光で用いる紫外光での直接測
定は難しい。2. Description of the Related Art A phase shift mask is considered promising for high integration of memories and the like as one method of super-resolution exposure. Since the amount of phase shift is calculated by the product of the refractive index and the film thickness of the thin film that becomes the shifter, it is necessary to measure both accurately. However, depending on the exposure wavelength, it is not easy to measure the film thickness and refractive index accurately, so it is desirable to directly measure the phase difference. The simplest method to measure the phase difference is to construct the interference optical system such as Mach-Zehnder and insert the sample into the optical path, and the phase difference from the amount of interference fringe deviation that occurs when the reference sample is inserted. It is a method of conversion. In this method, since the boundary between the bright line and the dark line is not always clear, an error is likely to occur in reading and the accuracy is low. The method of adjusting the optical axis strictly until there is only one fringe and measuring the intensity of dark and light at the interference part is more accurate in principle than the previous method, but it takes time to adjust and most of the exposure The measurement is difficult because it is easily affected by the air turbulence. As a method for facilitating the adjustment and measurement, the beam is split using a double image prism, and the phase difference between both is sequentially changed by an electro-optical element, and the sample to be measured and the reference portion are simultaneously irradiated with the phase difference. After that, the method of observing the interference intensity after multiplexing and matching the polarizations is described in A.
P. 199 by Ghosh
2 years (SPIE, Vol1)
673, 242 to 254). This method can obtain highly accurate measurement results when measuring at wavelengths suitable for optical parts, but it is necessary to use a large number of birefringent crystals such as calcite, and direct measurement with ultraviolet light used for exposure is difficult.
【0003】[0003]
【発明が解決しようとする課題】このように従来の方法
では露光に用いる波長と同一の波長で、位相シフトマス
クの位相差を、高精度で直接測定することは困難であ
る。本発明の目的はこのような従来方法の問題点を解決
した位相差測定装置を得ることにある。As described above, according to the conventional method, it is difficult to directly measure the phase difference of the phase shift mask with high accuracy at the same wavelength as that used for exposure. An object of the present invention is to obtain a phase difference measuring device that solves the problems of the conventional method.
【0004】本発明の位相差測定装置は、光源からの光
束を2つの光路へと分割する第1面と、前記2つの光路
の各々の光束を重ね合わせる第2面と、前記第1面から
の光束を前記第2面へ導く反射手段と、一方の光路に被
測定試料を、他方の光路には光路長微調整手段を有し、
前記被測定試料、光路長微調整手段以外の光路の全ては
紫外線の透過率が高い固体からなることを特徴とする。
また、光源からの光束を2つの光路へと分割する第1面
と、前記2つの光路の各々の光束を重ね合わせる第2面
と、前記第1面からの光束を前記第2面へ導く反射手段
と、一方の光路に被測定試料及び光路長微調整手段を有
し、前記被測定試料、光路長微調整手段以外の光路の全
ては紫外線の透過率が高い固体からなることを特徴とす
る。また、前記第1面と第2面が同一面上にあることを
特徴とする。The phase difference measuring device of the present invention is designed to detect light from a light source.
A first surface for splitting the bundle into two light paths, said two light paths
From the first surface and the second surface that superimposes the respective luminous fluxes of
Of the luminous flux of the light to the second surface and one of the optical paths
The measurement sample has an optical path length fine adjustment means in the other optical path,
All the optical paths except the sample to be measured and the optical path length fine adjustment means
It is characterized by being made of a solid having a high transmittance of ultraviolet rays.
The first surface that splits the light flux from the light source into two optical paths
And a second surface that superimposes the light fluxes of the two optical paths
And a reflection means for guiding the light flux from the first surface to the second surface
And the sample to be measured and the optical path length fine adjustment
However, all of the optical path except the sample to be measured and the optical path length fine adjustment means
Is characterized by being made of a solid with a high UV transmittance.
It Further, the first surface and the second surface are on the same surface.
【0005】[0005]
【作用】本発明による位相差測定装置は、最も平易な例
としては直角二等辺三角柱の直角の頂角部分を二等辺三
角形の斜辺面に平行に切落とし切落とした面に反射膜を
蒸着した四角柱2つを、その斜辺面同志を接着すること
により1体化したもので構成される。この形状はプリズ
ムの直角部分を接着面に平行に切り落としたものに等し
い。材料として合成石英を用いれば紫外光による測定も
可能となる。光を反射させる測定の接着面には誘電体多
層膜等を蒸着し、屈折率が合成石英に近く、紫外光を十
分に透過するカナダバルサム等で接着すれば、反射光量
と透過光量をほぼ等しくうることが可能である。この接
着面に対して45度の角度で入射した光は斜面で反射す
るものと直進するものとの2つにほぼ等分の光量で分割
される。In the phase difference measuring device according to the present invention, as the simplest example, the right apex portion of an isosceles right triangular prism is cut off in parallel with the hypotenuse surface of an isosceles triangle, and a reflection film is deposited on the cut surface. It is composed of two quadrangular prisms that are bonded together by bonding their hypotenuses. This shape is equal to a prism in which the right-angled portion is cut parallel to the bonding surface. If synthetic quartz is used as the material, it is possible to measure with ultraviolet light. If a dielectric multilayer film or the like is deposited on the adhesive surface of the measurement that reflects light, and if it is bonded with Canadian balsam or the like, which has a refractive index close to that of synthetic quartz and sufficiently transmits ultraviolet light, the reflected light amount and the transmitted light amount are almost equal It is possible to obtain. The light incident on the adhesive surface at an angle of 45 degrees is divided into two light rays, one reflected by the inclined surface and the other traveling straight, with a substantially equal amount of light.
【0006】分割された光はそれぞれ反射膜蒸着面で反
射されて再び斜面で合流し、それぞれの反射光と透過光
とが干渉し合う。上記四角柱の光路の2箇所に溝を切
り、その一方に光透過率が十分に高い材料で作られたく
さびを挿入し、これを摺動することによって、光路長を
制御する。また他方の溝に、位相量を測定しようとする
試料を挿入する。くさびの摺動により干渉光の強度は周
期的に変化し両光路の光路長差が半波長の偶数倍となっ
た時に最大となり、半波長の奇数倍となったときに最小
となる。くさびの摺動により光路長は連続的に可変であ
るので、摺動距離を変数とする強度変化の周期パターン
が個々に試料で得られる。したがって最大値、あるいは
最小値を目安として、これらのパターンの摺動距離方向
のシフト両を測定すれば、異なる物質間の位相差を測定
することが可能となる。The split lights are reflected by the reflecting film vapor deposition surface and merge again on the slope, and the respective reflected lights and transmitted lights interfere with each other. The optical path length is controlled by cutting a groove at two points in the optical path of the quadrangular prism, inserting a wedge made of a material having a sufficiently high light transmittance into one of the grooves, and sliding the wedge. Further, the sample whose phase amount is to be measured is inserted into the other groove. The intensity of the interference light periodically changes due to the sliding of the wedge, and becomes maximum when the optical path length difference between both optical paths becomes an even multiple of a half wavelength, and becomes minimum when an odd multiple of a half wavelength. Since the optical path length is continuously variable due to the sliding of the wedge, a periodic pattern of intensity change with the sliding distance as a variable can be individually obtained for the sample. Therefore, the phase difference between different substances can be measured by measuring both the shifts of these patterns in the sliding distance direction with the maximum value or the minimum value as a guide.
【0007】この測定系の光路において溝の部分は試料
挿入部とくさび挿入部のごくわずかな隙間だけなので、
気圧変動、温度変動などが空気の屈折率を変化させ光路
長を変化させるおそれはほとんどない。紫外線の透過率
の高い固体は露光で用いる波長に対して吸収が小さい。
したがって干渉強度の測定が可能な程度に十分強度を下
げることによって損傷を最小限に抑えることで長期間の
使用が可能である。In the optical path of this measuring system, the groove portion is only a very small gap between the sample insertion portion and the wedge insertion portion.
There is almost no risk that atmospheric pressure fluctuations, temperature fluctuations, etc. will change the refractive index of air and change the optical path length. A solid having a high transmittance of ultraviolet rays has a small absorption with respect to the wavelength used for exposure.
Therefore, it is possible to use it for a long period of time by minimizing the damage by lowering the strength sufficiently so that the interference strength can be measured.
【0008】最も平易な例について説明したが、形状は
必ずしもこれに限定されるものではなく、干渉光が取り
出せる向きに反射膜をつけられ、試料を挿入する溝とく
さびを挿入する溝が切られていれば、いかなる形状でも
構わない。Although the simplest example has been described, the shape is not necessarily limited to this, and a reflection film is provided in a direction in which interference light can be taken out, and a groove for inserting a sample and a groove for inserting a wedge are cut. Any shape may be used as long as it is.
【0009】[0009]
【実施例】以下KrF露光用の位相シフトマスクの位相
シフト量測定に本発明による装置を適用した実施例を図
面を参照して詳細に説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment in which the apparatus according to the present invention is applied to the phase shift amount measurement of a phase shift mask for KrF exposure will be described in detail below with reference to the drawings.
【0010】図1は本発明の装置を表す模式図である。FIG. 1 is a schematic diagram showing the device of the present invention.
【0011】合成石英光路1の位相シフトマスク挿入部
7に位相シフトマスク5を挿入し、KrFレーザ2の出
射光を合成石英光路1の左側面に適当な位置から入射さ
せる。光線は貼合わせ面9で2つに分岐し、1つは誘電
体多層膜8で反射させて位相シフトマスクを挿入した光
路に、1つは光路長可変素子3を挿入した光路に進ませ
る。光路長可変素子3を駆動回路4を用い矢印方向に摺
動することによって光路長可変素子3の挿入された光路
の光路長は連続的に変化する。2つの光線は貼合わせ面
9で再び合流してSiフォトディテクタ6に入る。干渉
強度に比例したSiフォトディテクタ6の出力をXYレ
コーダ7のY端子に入力する。XYレコーダ7のX端子
には駆動回路4から出力された、光路長可変素子3の移
動量に比例した電圧を入力する。XYレコーダ7には2
つの光路の光路長差が半波長の偶数倍となった場合を最
大値とし、半波長の奇数倍となった時を最小値とする干
渉強度パターンが描かれる。図2(a)、(b)はそれ
ぞれ位相シフトマスク5のシフト部分とシフトのない基
板部分を測定した際に得られた干渉強度パターンであ
る。パターンのシフト量は位相シフト量に対応してお
り、この測定から位相差を測定することができた。貼合
わせ面9の反射面には誘電体多層膜を蒸着しカナダバル
サムで接着したので、反射光と透過光はほぼ等分に得ら
れ、干渉の明暗コントラストは十分に高かった。本発明
は複雑な光軸合わせがほとんど必要ないので極めて短い
時間に測定準備を完了することができる。本装置は空気
による光路が短いので空気の擾乱の影響をうけにくく、
高精度の測定が可能である。本実施例では紫外線の透過
率が高い合成石英を用いているので、透過光強度の測定
を極めて容易に行うことができ、材料劣化がみられなか
った。The phase shift mask 5 is inserted into the phase shift mask insertion portion 7 of the synthetic quartz optical path 1, and the emitted light of the KrF laser 2 is made incident on the left side surface of the synthetic quartz optical path 1 from an appropriate position. The light beam is branched into two at the bonding surface 9, one of which is reflected by the dielectric multilayer film 8 and advances to the optical path in which the phase shift mask is inserted, and one to the optical path in which the variable optical path length element 3 is inserted. By sliding the optical path length variable element 3 in the direction of the arrow using the drive circuit 4, the optical path length of the optical path in which the optical path length variable element 3 is inserted continuously changes. The two light rays merge again at the bonding surface 9 and enter the Si photodetector 6. The output of the Si photodetector 6 proportional to the interference intensity is input to the Y terminal of the XY recorder 7. To the X terminal of the XY recorder 7, the voltage output from the drive circuit 4 and proportional to the moving amount of the optical path length variable element 3 is input. 2 for XY recorder 7
An interference intensity pattern having a maximum value when the optical path length difference between two optical paths is an even multiple of a half wavelength and a minimum value when an optical path length difference is an odd multiple of a half wavelength is drawn. FIGS. 2A and 2B are interference intensity patterns obtained when the shifted portion of the phase shift mask 5 and the substrate portion without the shift are measured, respectively. The pattern shift amount corresponds to the phase shift amount, and the phase difference could be measured from this measurement. Since a dielectric multilayer film was deposited on the reflection surface of the bonding surface 9 and adhered with Canadian balsam, the reflected light and the transmitted light were obtained almost equally, and the light-dark contrast of interference was sufficiently high. Since the present invention requires almost no complicated optical axis alignment, measurement preparation can be completed in an extremely short time. Since this device has a short optical path due to air, it is less susceptible to air disturbances,
Highly accurate measurement is possible. In this example, since synthetic quartz having a high transmittance of ultraviolet rays was used, the transmitted light intensity could be measured very easily and no material deterioration was observed.
【0012】本装置は必ずしもKrFに対してのみ有効
なものではない。ArFレーザでも同様に用いることが
できる。The device is not necessarily only valid for KrF. An ArF laser can be used as well.
【0013】本発明は必ずしも図1に説明した装置と同
一形状である必要はない。図3に示した形状でも本発明
の趣旨を活かすことが可能である。また、光を分割する
面と重ね合わせる面が図1、図3のように同一面上でな
ければならいということはなく、同一面上になくとも同
様な効果を得ることができる。また位相シフトマスク挿
入部と光路長可変素子は必ずしも別々の光路にある必要
なく、同一の光路にあってもかまわない。The present invention need not necessarily have the same shape as the device described in FIG. The shape shown in FIG. 3 can also be used for the purpose of the present invention. Further, it is not necessary that the surface for splitting the light and the surface to be overlapped are on the same surface as in FIGS. 1 and 3, and similar effects can be obtained even if they are not on the same surface. Further, the phase shift mask insertion portion and the variable optical path length element do not necessarily have to be in separate optical paths, and may be in the same optical path.
【0014】[0014]
【発明の効果】以上説明したように本発明の装置によれ
ば、露光に用いる波長で位相シフトマスクの位相差を、
高精度で直接測定することができる。As described above, according to the apparatus of the present invention, the phase difference of the phase shift mask at the wavelength used for exposure is
It can be directly measured with high accuracy.
【図1】本発明を適用した実施例を示す模式図である。FIG. 1 is a schematic view showing an embodiment to which the present invention is applied.
【図2】位相差の測定を示す模式図である。FIG. 2 is a schematic diagram showing measurement of phase difference.
【図3】本発明を適用した他の実施例を示す模式図であ
る。FIG. 3 is a schematic view showing another embodiment to which the present invention is applied.
1 合成石英光路 2 KrFレーザ 3 光路長可変素子 4 駆動回路 5 位相シフトマスク 6 Siフォトディテクタ 7 位相シフトマスク挿入部 8 誘電体多層膜 9 貼合わせ面 1 Synthetic Quartz Optical Path 2 KrF Laser 3 Optical Path Length Variable Element 4 Driving Circuit 5 Phase Shift Mask 6 Si Photodetector 7 Phase Shift Mask Insertion Section 8 Dielectric Multilayer 9 Bonding Surface
Claims (3)
る第1面と、前記2つの光路の各々の光束を重ね合わせ
る第2面と、前記第1面からの光束を前記第2面へ導く
反射手段と、一方の光路に被測定試料を、他方の光路に
は光路長微調整手段を有し、前記被測定試料、光路長微
調整手段以外の光路の全ては紫外線の透過率が高い固体
からなることを特徴とする位相差測定装置。 1. A light beam from a light source is split into two optical paths.
The 1st surface that overlaps with the light flux of each of the two optical paths
The second surface and the light flux from the first surface to the second surface
The reflection means and the sample to be measured in one optical path, and the other in the other optical path.
Has a means for finely adjusting the optical path length.
All optical paths except the adjustment means are solids with high UV transmittance
A phase difference measuring device comprising:
る第1面と、前記2つの光路の各々の光束を重ね合わせ
る第2面と、前記第1面からの光束を前記第2面へ導く
反射手段と、一方の光路に被測定試料及び光路長微調整
手段を有し、前記被測定試料、光路長微調整手段以外の
光路の全ては紫外線の透過率が高い固体からなることを
特徴とする位相差測定装置。 2. A light beam from a light source is split into two optical paths.
The 1st surface that overlaps with the light flux of each of the two optical paths
The second surface and the light flux from the first surface to the second surface
Reflection means and sample to be measured in one optical path and fine adjustment of optical path length
Means other than the sample to be measured and the optical path length fine adjustment means.
All of the optical path consists of solids with high UV transmittance.
Characteristic phase difference measuring device.
とを特徴とする請求項1または請求項2記載の位相差測
定装置。 3. The first surface and the second surface are on the same surface.
And the phase difference measurement according to claim 1 or 2.
Stationary device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13634593A JP2500754B2 (en) | 1993-06-08 | 1993-06-08 | Phase difference measuring device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13634593A JP2500754B2 (en) | 1993-06-08 | 1993-06-08 | Phase difference measuring device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06347335A JPH06347335A (en) | 1994-12-22 |
JP2500754B2 true JP2500754B2 (en) | 1996-05-29 |
Family
ID=15173031
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13634593A Expired - Lifetime JP2500754B2 (en) | 1993-06-08 | 1993-06-08 | Phase difference measuring device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2500754B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6510259B1 (en) * | 1999-11-23 | 2003-01-21 | Lnl Technologies, Inc. | Optical switch using an integrated Mach-Zehnder interferometer having a movable phase shifter and asymmetric arms |
AU1799501A (en) * | 1999-11-23 | 2001-06-04 | Nanovation Technologies, Inc. | Optical mach-zehnder switch having a movable phase shifter |
CA2403689A1 (en) * | 1999-11-23 | 2001-05-31 | Nanovation Technologies, Inc. | Waveguide optical phase shifter |
CA2392404A1 (en) * | 1999-11-23 | 2001-05-31 | Nanovation Technologies, Inc. | Analog optical switch using an integrated mach-zehnder interferometer having a movable phase shifter |
-
1993
- 1993-06-08 JP JP13634593A patent/JP2500754B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH06347335A (en) | 1994-12-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5712705A (en) | Arrangement for analysis of substances at the surface of an optical sensor | |
US5818988A (en) | Method of forming a grating in an optical waveguide | |
JP4151159B2 (en) | Medium measuring device | |
JPS63311121A (en) | Encoder | |
EP0632256A1 (en) | Micropolarimeter, microsensor system and method of characterizing thin films | |
JP2755757B2 (en) | Measuring method of displacement and angle | |
GB2046432A (en) | Apparatus for determining the thickness moisture content or other parameter of a film or coating | |
US5329354A (en) | Alignment apparatus for use in exposure system for optically transferring pattern onto object | |
US4072422A (en) | Apparatus for interferometrically measuring the physical properties of test object | |
JP2500754B2 (en) | Phase difference measuring device | |
KR20180103850A (en) | Phase shift amount measuring device | |
US4932780A (en) | Interferometer | |
JP2655097B2 (en) | Phase difference measuring method and apparatus | |
US5164789A (en) | Method and apparatus for measuring minute displacement by subject light diffracted and reflected from a grating to heterodyne interference | |
KR20020011373A (en) | Method and apparatus for measuring internal transmittance | |
Hosoe | Highly precise and stable laser displacement measurement interferometer with differential optical passes in practical use | |
JP3067697B2 (en) | Phase difference measuring device | |
JPH04130220A (en) | Encoder | |
JPH01143906A (en) | Measuring instrument for parallelism between front and rear surfaces of opaque body | |
JP3006260B2 (en) | Photomask inspection method and apparatus | |
JP2603956B2 (en) | Optical IC interferometer | |
JP3315231B2 (en) | Position detection device | |
SU1327037A1 (en) | Method of recording metrologic holographic gratings | |
JP2654366B2 (en) | Micro polarimeter and micro polarimeter system | |
KR0136213B1 (en) | Photomask inspecting method and apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19960130 |