JP2024512489A - 電極組立体、二次電池、それを含むバッテリーパック及び自動車 - Google Patents

電極組立体、二次電池、それを含むバッテリーパック及び自動車 Download PDF

Info

Publication number
JP2024512489A
JP2024512489A JP2023557212A JP2023557212A JP2024512489A JP 2024512489 A JP2024512489 A JP 2024512489A JP 2023557212 A JP2023557212 A JP 2023557212A JP 2023557212 A JP2023557212 A JP 2023557212A JP 2024512489 A JP2024512489 A JP 2024512489A
Authority
JP
Japan
Prior art keywords
electrode
electrode assembly
current collector
length
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023557212A
Other languages
English (en)
Inventor
クワン-ヒ・イ
ドゥク-ヒュン・リュ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Energy Solution Ltd
Original Assignee
LG Energy Solution Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020220089230A external-priority patent/KR20230021584A/ko
Application filed by LG Energy Solution Ltd filed Critical LG Energy Solution Ltd
Publication of JP2024512489A publication Critical patent/JP2024512489A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0431Cells with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/107Primary casings; Jackets or wrappings characterised by their shape or physical structure having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/534Electrode connections inside a battery casing characterised by the material of the leads or tabs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/538Connection of several leads or tabs of wound or folded electrode stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/564Terminals characterised by their manufacturing process
    • H01M50/566Terminals characterised by their manufacturing process by welding, soldering or brazing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/536Electrode connections inside a battery casing characterised by the method of fixing the leads to the electrodes, e.g. by welding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Secondary Cells (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

本発明の電極組立体は、正極、負極及び前記正極と前記負極との間に介在された分離膜が巻取軸を中心にして巻き取られることでコアと外周面を定義した電極組立体であって、前記正極または負極である電極は、長辺と短辺を有するシート状の集電体であって、長辺の端部に非コーティング部を含む集電体を含み、前記非コーティング部は、電極タブとして使用される電極タブ定義区間及び電極タブとして使用されない少なくとも一つ以上の電極タブ未定義区間を含み、前記少なくとも一つ以上の電極タブ未定義区間に対する最大電流経路は、前記集電体の短辺に沿う幅方向の電流経路及び前記集電体の長辺に沿う長手方向の電流経路を含み、前記幅方向の電流経路の長さ及び前記長手方向の電流経路の長さを各々L1及びL2とする場合、電流経路の割合L2/L1は、11以下である。

Description

本発明は、電極組立体、二次電池、それを含むバッテリーパック及び自動車に関し、より詳しくは、低抵抗を具現可能にするゼリーロール形態の電極組立体、それを含む円筒形二次電池、それを含むバッテリーパック及び自動車に関する。
本出願は、2021年8月5日出願の韓国特許出願第10-2021-0103378号及び2022年7月19日出願の韓国特許出願第10-2022-0089230号に基づく優先権を主張し、当該出願の明細書及び図面に開示された内容は、すべて本出願に組み込まれる。
製品群に応じた適用が容易であり、且つ、高いエネルギー密度などの電気的特性を有する二次電池は、携帯用機器だけでなく、電気的駆動源によって駆動する電気自動車(Electric Vehicle;EV)またはハイブリッド自動車(Hybrid Electric Vehicle;HEV)などに普遍的に適用されている。このような二次電池は、化石燃料の使用を画期的に減少できるという一次的な長所だけでなく、エネルギーの使用に伴う副産物が全く生じないという点で、環境にやさしく、エネルギー効率が向上できることから、新しいエネルギー源として注目を浴びている。
二次電池の種類として、円筒形、角形及びパウチ型二次電池が知られている。円筒形二次電池の場合、正極と負極との間に絶縁体である分離膜を介在し、それを巻き取ってゼリーロール形態の電極組立体を形成し、それを電池缶の内部に挿入して電池を構成する。そして、正極及び負極の各々の非コーティング部には、ストリップ形態の電極タブが接続されてもよく、電極タブは電極組立体と外部に露出する電極端子とを電気的に接続させる。
円筒形二次電池は、セルの大きさを増加させて容量を増加させ得る。この際、高い電流密度にもエネルギー損失、発熱などの面で優秀な品質を示し得る低抵抗セルの設計が求められる。このような低抵抗セルの設計は、結局、電流経路(current path)を最小化することが重要となる。
図1は、従来の円筒形二次電池に適用される正極及び負極を広げた状態を示す図である。
図1を参照すると、従来の円筒形二次電池に適用される電極として、正極1及び負極2が示されている。正極1の長手方向の中間部に形成された非コーティング部1aには、ストリップ形態の正極タブ1bが幅方向に沿って上方へ突出するように接続しており、負極2の長手方向の両端に形成された非コーティング部2aには、ストリップ形態の負極タブ2bが幅方向に沿って下方へ突出するように接続されている。図1の(a)は、正極タブ1b及び負極タブ2bが各々一つである場合を示し、(b)は、正極タブ1bが一つであり、負極タブ2bが二つである場合を示す。
図2は、従来の円筒形二次電池において、二次電池の外部における電流または電子の流れを概略的に示す図である。図3は、従来の円筒形二次電池において、電極組立体を構成する正極及び負極における電流または電子の流れを概略的に示す図である。
図2及び図3を参照すると、電流経路は、大きく、モジュールバスバー溶接位置から各電極1、2の電極タブ1b、2bに至る経路(以下、「第1経路」とする。)と、各電極1、2の電極タブ1b、2bから電極の端部地点に至る経路との二つに分けられ得る。
図2には、第1経路が示されており、図2において電流開始点(●で表示した。)は、正極端子1c及び負極端子2cに位置する。正極端子1cは、電池缶3の開放部を封止する封止体のキャップであり、負極端子2cは、電池缶3である。モジュールバスバーの溶接位置が円筒形二次電池の上端に位置する場合を例に挙げた。正極端子1cから始まって正極タブ1bに連結される電流経路が形成され、負極端子2cから始まって負極タブ2bに連結される電流経路が形成される(連結位置は、▲で表示した。)。このように第1経路は、セルの外観によって決められる。
電極の活物質層で電気化学的な酸化反応が起こると、活物質層の全領域で金属原子(Li)が金属陽イオン(Li+)へ転換されながら電子が生成される。電子は、電極を構成する集電体(ホイル)を通して電極タブまで移動した後、第1経路を通して外部へ流れる。この際、電流は、電子の流れとは反対方向へ流れる。一方、電極で電気化学的な還元反応が起こると、電子が第1経路から電極タブを通して電極を構成する集電体(ホイル)へ流入し、電極の活物質層の全領域へ移動して陽イオン(例えば、Li+)と結合し、金属陽イオンが金属に転換される。この際、電流は、電子の流れとは反対方向へ流れる。
一方、電極で酸化または還元反応が起こるとき、電子の移動する経路は電流経路に対応する。電極の最大電流経路は、電極を構成している集電体(ホイル)の幾何学的構造と電極タブの位置及び個数に依存して決められる。電極の最大電流経路は、電極タブから最も遠く離れた電極地点と電極タブとの間の最長距離に定義され得る。電極タブから最も遠く離れた電極地点で電気化学的な酸化還元反応が起こると、電子は、当該電極地点と電極タブとを連結する複数の経路を通して移動し、電子の一部は最大電流経路に通しても移動する。これによって、電極の最大電流経路が長くなると、全体電極の観点で電子の平均移動距離が増加するようになり、電極の抵抗も増加する。
以下では、説明の便宜のために電極の幾何学的構造と電極タブの個数及び位置によって固有に決められる最大電流経路を電極の第2経路と称する。図3には、電極の最大電流経路である第2経路が示されており、電極タブ1b、2bの形成位置及び個数によって第2経路の長さが変わることを示している。
図3の(a)を参照すると、正極1の第2経路(最大電流経路)は、図2の正極端子1cから円筒形二次電池の内部の正極タブ1bに沿ってつながる幅方向の電流経路と、正極1の長手方向へ横切って正極1の右側下端で終わる長手方向の電流経路と、を含む(電極タブから最も遠く離れた電極地点を、■で示した)。負極2の第2経路(最大電流経路)は、図2の負極端子2cから始まり、円筒形二次電池の内部の負極タブ2bに沿ってつながる幅方向の電流経路と、負極2の長手方向へ横切って負極2の左側上端で終わる長手方向の電流経路と、を含む。
図3の(b)を参照すると、正極1の第2経路は、図3の(a)と同一である。負極2の場合、二つの負極タブ2bを含むため、負極2の第2経路(最大電流経路)は、長手方向の電流経路が1/2に減少するので、図3の(a)よりも短くなる。このように第2経路は、電極タブの個数が増加すると、長手方向の電流経路の減少によってそれだけ減少するようになる。
現在、使用される1865(直径18mm、高さ65mm)及び/または2170(直径21mm、高さ70mm)のフォームファクターを有する小型の円筒形二次電池の場合、第2経路による抵抗が非常に大きく示される。ここで、フォームファクターとは、円筒形二次電池の直径及び高さを示す値を意味する。フォームファクターを示す数値において、最初の数字二つはセルの直径を示し、残りの数字はセルの高さを示す。
図3に示したように、従来の円筒形二次電池は、幅方向の電流経路に対する長手方向の電流経路が非常に長い。電池の抵抗は、電流経路が長いほど増加する。図3の(a)よりも(b)のように負極タブ2bの個数を増やしたことも、負極の長手方向の電流経路を減らして抵抗を低めるためである。
円筒形二次電池の抵抗は、セルの外部における第1経路による抵抗とセル内部における第2経路による抵抗に影響を受け、このうち、特に、第2経路による抵抗によって支配的に影響を受ける。これは、電極組立体の構造による電流(または電子)の流れ経路の長さと関連性がある。これによって、抵抗上昇の主な原因を考慮して、円筒形二次電池において低抵抗を具現できる方案が求められる。抵抗が小さいほど実際の使用環境で発熱が少なく発生し、急速充電や高率放電時にも有利である。
一方、従来の円筒形二次電池によれば、非コーティング部1a、2aと結合するストリップ形態の電極タブ1b、2bに電流が集中するため、抵抗が大きくて多量の熱が発生し、集電効率が良くないという問題点がある。小型の円筒形二次電池は、抵抗と発熱が大きいイシューとならない。しかし、円筒形二次電池を電気自動車に適用するためにフォームファクターを増加させる場合、抵抗と発熱は発火事故を起こし得るため、大きい問題になる。このような問題を解決するために、ゼリーロールタイプの電極組立体の上端及び下端に各々正極非コーティング部及び負極非コーティング部が位置するように設計し、このような非コーティング部に集電板を溶接させて集電効率が改善された構造を有する円筒形二次電池(例えば、タブレス(Tab-less)円筒形二次電池)が提示された。
図4~図6は、タブレス円筒形二次電池の製造過程を示す図である。図4は、電極の構造を示し、図5は、電極の巻取工程を示し、図6は、非コーティング部の折曲表面領域に集電板が溶接される工程を示す。
図4~図6を参照すると、正極10と負極11は、シート状の集電体20に活物質21がコーティングされた構造を有し、巻取方向Xに沿って一方の長辺側に非コーティング部22を含む。長辺は、X軸方向と平行な方向であって、長さが相対的に長い辺を意味する。
電極組立体Aは、正極10と負極11を、図5に示したように、二枚の分離膜12と共に順次に積層した後、一方向(X方向)へ巻き取って製作する。この際、正極10と負極11の非コーティング部は、互いに反対方向に配置される。電極組立体Aの上部に全体的に正極非コーティング部10aが形成されており、電極組立体Aの下部に全体的に負極非コーティング部11aが形成されている。
巻取工程の後、正極10の非コーティング部10a及び負極11の非コーティング部11aは、コア側へ折り曲げられる。その後、非コーティング部10a、11aに集電板30、31を各々溶接して結合する。
正極非コーティング部10a及び負極非コーティング部11aには、別の電極タブが結合しておらず、集電板30、31が外部の電極端子と接続し、電流経路が電極組立体Aの巻取軸方向(矢印参照)に沿って大きい断面積に形成されるため、二次電池の抵抗を低めることができるという長所がある。抵抗は、電流が流れる通路の断面積に反比例するためである。
タブレス円筒形二次電池において、非コーティング部10a、11aと集電板30、31の溶接特性を向上させるためには、非コーティング部10a、11aの溶接領域に強い圧力を加えて最大限に扁平に非コーティング部10a、11aを折り曲げる必要がある。ところが、非コーティング部10a、11aの溶接領域を折り曲げるとき、非コーティング部10a、11aの模様が不規則に歪みながら変形され得る。この場合、変形された部位が反対極性の電極と接触して内部短絡を起こすか、または非コーティング部10a、11aに微細なクラックを誘発し得る。また、電極組立体Aのコア33に隣接する非コーティング部32が折り曲げられながら電極組立体Aのコアにある空洞の全部または相当部分を閉塞する。この場合、電解液注液工程で問題を起こす。即ち、電極組立体Aのコア33にある空洞は、電解液が注入される通路として使用される。ところが、当該通路が閉塞されると、電解液の注入が難しい。また、電解液注入器がコア33にある空洞に挿入される過程でコア33の近くの非コーティング部32と干渉を起こして非コーティング部32の破れる問題が発生し得る。
また、集電板30、31が溶接される非コーティング部10a、11aの折曲部位は、多重に重畳される必要があり、空間(隙間)が存在してはいけない。そうすればこそ、十分な溶接強度が得られ、レーザー溶接などの最新技術を使用してもレーザーが電極組立体Aの内部に浸透して分離膜12や活物質21を溶発させる問題を防止することができるためである。
また、従来のタブレス円筒形二次電池は、電極組立体Aの上部に全体的に正極非コーティング部10aが形成されているため、電池缶の上端の外周面を内部へ圧入してビーディング部を形成するに際し、電極組立体Aの上端の周縁領域34が電池缶による圧迫を受けるようになる。このような圧迫は、電極組立体Aの部分的な変形を起こすことがあり、この際、分離膜12が破れて内部短絡が発生し得る。二次電池の内部で短絡が発生すると、発熱や爆発が起こり得る。
このような点を考慮すると、非コーティング部10a、11aがこのように電極組立体Aの上部と下部に全体的に形成されてはならず、一部の区間では省略される必要がある。非コーティング部10a、11aを一部区間で省略する場合、前述した電極組立体の内部における長手方向の電流経路による抵抗が増加するため、電流経路を最小化する低抵抗セルの設計がタブレス円筒形二次電池においても考慮される必要がある。特に、円筒形二次電池を電気自動車に適用するためにフォームファクターを増加させる場合、急速充電過程で多量の熱が発生して円筒形二次電池の発火する問題が発生する恐れがあるため、電流経路を最小化する低抵抗セルの設計はさらに重要となる。
本発明は、上記のような従来技術の背景下で創案されたものであり、本発明は、円筒形二次電池において、電流経路、特に、長手方向の電流経路を最小化して低抵抗を具現し、これによって円筒形二次電池が高容量及び/または高出力を有しながらも、それによる高い電流密度による発熱程度などの面で優秀な品質を示すようにする電極組立体を提供することを目的とする。
また、本発明は、電流経路が最小化するように改善された構造の電極組立体を含む二次電池とそれを含むバッテリーパック、並びにそのバッテリーパックを含む自動車を提供することを他の目的とする。
本発明が解決しようとする技術的課題は、前述の課題に制限されず、言及していないさらに他の課題は、下記する発明の説明から当業者にとって明確に理解されるであろう。
上記の課題を達成するための本発明による電極組立体は、正極、負極及び前記正極と前記負極との間に介在された分離膜が巻取軸を中心にして巻き取られることでコアと外周面を定義した電極組立体であって、前記正極または前記負極である電極は、長辺と短辺を有するシート状の集電体であって、長辺の端部に非コーティング部を含む集電体を含み、前記非コーティング部は、電極タブとして用いられる電極タブ定義区間及び電極タブとして用いられない少なくとも一つ以上の電極タブ未定義区間を含み、前記少なくとも一つ以上の電極タブ未定義区間に対する最大電流経路は、前記集電体の短辺に沿う幅方向の電流経路及び前記集電体の長辺に沿う長手方向の電流経路を含み、前記幅方向の電流経路の長さ及び前記長手方向の電流経路の長さを各々L1及びL2とする場合、電流経路の割合L2/L1が11以下であることを特徴とする。
望ましくは、前記電流経路の割合L2/L1は10.15以下であり得る。
前記電流経路の割合L2/L1は8.5以下であってもよく、2~5であってもよい。
前記電極タブ未定義区間は、前記電極タブ定義区間よりも非コーティング部の高さが小さいものであり得る。
前記電極タブ未定義区間の長さの最大値は、前記正極及び前記負極の長さの4%~23%であり得る。
前記電極タブ未定義区間の長さの最大値は、前記正極及び前記負極の幅の2.5倍~11倍であり得る。
本発明の一面によれば、前記非コーティング部は、前記コアに隣接する第1部分と、前記外周面に隣接する第2部分と、前記第1部分と前記第2部分との間の第3部分と、を含み、巻取軸方向へ前記第1部分が前記第3部分よりも小さい高さを有し得る。
そして、前記第3部分が、前記電極組立体の半径方向に沿って折り曲げられた状態で電極タブとして定義され得る。
前記第2部分は、前記巻取軸方向へ前記第3部分と同一であるか、または小さい高さを有し得る。
そうすれば、前記第2部分及び前記第3部分が前記電極組立体の半径方向に沿って折り曲げられた状態で電極タブとして定義され得る。
前記集電体の短辺の長さは60mm~85mmであり、前記集電体の長辺の長さは3m~5mであり得る。
ここで、前記第1部分において前記集電体の長辺に沿う長さの最大値は、前記集電体の長辺の長さの4%~23%であり得る。
前記第1部分において前記集電体の長辺に沿う長さが660mm以下であり得る。
前記第1部分は、前記電極タブ未定義区間に対応し得る。
前記第1部分は、前記電極組立体の半径方向に沿って折り曲げられなくてもよい。
前記第2部分は、前記電極組立体の半径方向に沿って折り曲げられなくてもよい。
前記電極組立体の巻取方向へ、前記第3部分の長さが前記第1部分の長さ及び前記第2部分の長さよりも長くてもよい。
前記第1部分が前記集電体のコア側の短辺から始まり、前記第1部分の高さが巻取方向に沿って一定であり、前記第1部分が前記電極組立体の半径方向に沿って折り曲げられなくてもよい。
本発明の他面によれば、前記第3部分の少なくとも一部領域が独立的に折曲可能な複数の分節片に分割されていてもよい。
前記分節片は、折り曲げられて前記巻取軸方向へ重ねられる。
望ましくは、前記集電体の短辺の長さが60mm~85mmであり、前記集電体の長辺の長さが3m~5mであり、前記集電体の厚さが5μm~25μmであり、前記分節片の幅が10mm以下であり、前記分節片の高さが10mm以下である。
ここで、前記第1部分において、前記集電体の長辺に沿う長さは660mm以下である。
前記電極組立体は、前記巻取軸方向による断面を基準にして、半径方向に沿って順次に、分節片の存在しない分節片省略区間と、分節片の高さが均一な高さ均一区間と、を含み、前記複数の分節片は、前記高さ均一区間に配置され、前記電極組立体の半径方向に沿って折り曲げられることで折曲表面領域を形成する。
他の例で、前記電極組立体は、前記分節片省略区間と前記高さ均一区間との間に分節片の高さが可変する高さ可変区間をさらに含み、前記複数の分節片が、前記高さ可変区間及び前記高さ均一区間に配置され、前記電極組立体の半径方向に沿って折り曲げられることで折曲表面領域を形成し得る。
前記分節片省略区間は、前記電極タブ未定義区間に対応し得る。
前記第2部分は分節片に分割されておらず、前記第1部分の高さと前記第2部分の高さが同一であり得る。
前記第3部分は、前記電極組立体の巻取方向に沿って分節片の存在しない分節片省略区間を一つ以上含み得る。
ここで、前記分節片省略区間における非コーティング部の高さが、前記第1部分の高さと同一であり得る。
前記分節片は、前記コアを基準にして円周方向に配置されている二つ以上の扇形領域または多角形領域に位置し得る。
前記分節片省略区間は、前記電極タブ未定義区間に対応し得る。
前記コアに空洞が備えられており、前記第3部分が前記電極組立体の半径方向に沿って折り曲げられた状態で電極タブとして定義され、前記第3部分が独立的に折曲可能な複数の分節片に分割されており、折り曲げられた前記分節片が前記空洞を遮らないものであり得る。
そのような場合、前記第1部分において、前記集電体の長辺に沿う長さの最大値が、前記集電体の長辺の長さの4%~23%であり得る。
上記の他の課題を達成するための本発明による二次電池は、本発明による電極組立体と、一側に形成された開放部から前記電極組立体を収容し、負極の非コーティング部と接続された円筒形電池ハウジングと、前記円筒形電池ハウジングから絶縁可能に前記円筒形電池ハウジングの開放部を封止する封止体と、前記円筒形電池ハウジングの前記開放部の反対側に位置する前記円筒形電池ハウジングの底部に形成された貫通孔を通してリベットされ、正極の非コーティング部と接続された正極端子と、を含む。
望ましくは、本発明の二次電池は、前記正極の非コーティング部が分離膜の外部に露出し、前記負極の非コーティング部が前記正極の非コーティング部と反対方向に前記分離膜の外部に露出し、前記正極の非コーティング部と電気的に接続された正極集電板及び前記負極の非コーティング部と電気的に接続された負極集電板をさらに含む。
前記二次電池のDC抵抗は4mΩ以下であり、AC抵抗は3mΩ以下であり得る。
望ましくは、前記二次電池のAC抵抗が2mΩ以下であり得る。
前記二次電池は、高さに対する直径の割合が0.4よりも大きくてもよい。
前記封止体は、無極性のキャッププレートと、前記キャッププレートの周縁部と前記円筒形電池ハウジングの開放部との間に介在された封止ガスケットと、を含み得る。
前記正極端子は、前記貫通孔に挿入された本体部と、前記円筒形電池ハウジングの底部の外面に露出した前記本体部の一側の周縁から前記外面に沿って延びた外部フランジ部と、前記円筒形電池ハウジングの底部の内面に露出した前記本体部の他側の周縁から前記内面に向かって延びた内部フランジ部と、前記内部フランジ部の内側に備えられた平坦部と、を含み得る。
前記二次電池は、前記正極の非コーティング部と電気的に接続された正極集電板及び前記負極の非コーティング部と電気的に接続された負極集電板をさらに含み、前記平坦部において前記正極端子が、前記正極集電板とレーザー溶接によって結合し得る。
電極タブ未定義区間は、前記負極集電板及び正極集電板と接続しないことによって電流経路が形成されない部分であり得る。
本発明の他の課題は、複数の上述した二次電池を含むバッテリーパックによって達成可能である。
望ましくは、複数の二次電池は、所定の数の列に配列され、各二次電池の正極端子と電池ハウジングの底部の外面が上方に向かうように配置される。
本発明の他の課題は、上記バッテリーパックを少なくとも一つ含む自動車によっても達成可能である。
本発明の一面によれば、最大電流経路における電流経路の割合L2/L1の上限を提示する。このような電流経路の割合L2/L1が有する範囲は、電極組立体が高容量を有しながらも、内部抵抗を最小化できる範囲である。そのため、このような電極組立体を含む二次電池は、高容量及び/または高出力を有しながらも、それによる高い電流密度による発熱程度などの面で優秀な品質を示すようになる。
本発明の他面によれば、電極組立体の上方及び下方へ突出した非コーティング部を電極タブとして使用することで二次電池の内部抵抗を減少させ、エネルギー密度を増加させることができる。
本発明のさらに他面によれば、電極組立体の非コーティング部の構造を改善して非コーティング部が折り曲げられるときに非コーティング部が破れる現象を防止し、非コーティング部の重畳数を充分に増加させて集電板の溶接強度を向上させることができる。
本発明のさらに他面によれば、電極の非コーティング部に分節片構造を適用し、分節片のディメンション(幅、高さ、離隔ピッチ)を最適化して溶接ターゲット領域として用いられる領域の分節片の積層数を充分に増加させることによって集電板が溶接される領域の物性を改善することができる。
本発明のさらに他面によれば、分節片の折曲げによって形成された折曲表面領域に集電板を広い面積で溶接した構造を適用することで、エネルギー密度が向上し、かつ抵抗が減少した電極組立体が提供される。
本発明のさらに他面によれば、上部で電気的配線を行うようにデザインが改善された円筒形二次電池を提供することができる。
本発明のさらに他面によれば、円筒形二次電池の正極端子構造を改善して電流経路の断面積を拡大することで、急速充電時に発生する内部発熱の問題を改善することができる。
本発明のさらに他面によれば、電極組立体のコアに隣接する非コーティング部の構造を改善して非コーティング部が折り曲げられるときに電極組立体のコアにある空洞が閉塞することを防止することで、電解液の注入工程及び電池ハウジング(または正極端子)と集電板との溶接工程を容易に行うことができる。
本発明のさらに他面によれば、内部抵抗が低く、内部短絡が防止され、かつ集電板と非コーティング部の溶接強度が向上した構造を有する円筒形二次電池、それを含むバッテリーパック及び自動車を提供することができる。
特に、本発明のDC抵抗が4mΩ以下であり、AC抵抗が3mΩ以下であり、高さに対する直径の割合が0.4以上である円筒形二次電池とそれを含むバッテリーパック及び自動車を提供することができる。
その他にも本発明は、様々な他の効果を奏し、それについては各実施構成で説明し、通常の技術者が容易に類推可能な効果などについては、当該説明を省略する。
本明細書に添付される次の図面は、本発明の望ましい実施例を例示するものであり、発明の詳細な説明とともに本発明の技術的な思想をさらに理解させる役割をするため、本発明は図面に記載された事項だけに限定されて解釈されてはならない。
従来の円筒形二次電池に適用される正極及び負極を広げた状態を示す図である。 従来の円筒形二次電池において、二次電池の外部における電流または電子の流れを概略的に示す図である。 従来の円筒形二次電池において、電極組立体を構成する正極及び負極における電流または電子の流れを概略的に示す図である。 従来のタブレス円筒形二次電池の製造に使用される電極の構造を示す平面図である。 従来のタブレス円筒形二次電池の電極の巻取工程を示す図である。 従来のタブレス円筒形二次電池において非コーティング部の絶曲面に集電板が溶接される工程を示す。 本発明の一実施例による電極組立体を説明するための図である。 図7の電極組立体に含まれる電極における最大電流経路に対する電流経路の割合を一定の範囲以内に設定するようになった背景を説明するための図であって、仮想の電極組立体を構成する正極及び負極における電流または電子の流れを概略的に示す図である。 図7の電極組立体に含まれる第1実施例の電極構造を示す平面図である。 シミュレーションに使用された電極タブ未定義区間を含む電極の模式図である。 シミュレーションによって確認した溶接ポイント数による抵抗グラフである。 本発明の他の実施例による電極組立体に含まれる第2実施例の電極構造を示した平面図である。 本発明の他の実施例による電極組立体に含まれる第3実施例の電極構造を示した平面図である。 本発明の他の実施例による電極組立体に含まれる第4実施例の電極構造を示す平面図である。 本発明の他の実施例による電極組立体に含まれる第5実施例の電極構造を示す平面図である。 本発明の実施例による分節片の幅、高さ及び離隔ピッチの定義を示す図である。 本発明の第5実施例による電極の変形構造を示す平面図である。 本発明の変形例による電極が電極組立体に巻き取られたとき、複数の分節片が位置し得る独立領域を示す上面図である。 本発明の第6実施例による電極の構造を示す平面図である。 本発明の第6実施例による電極に含まれた分節片の幅、高さ及び離隔ピッチの定義を示す図である。 折曲表面領域が形成された電極組立体を概略的に示す上部斜視図である。 第5実施例及び第6実施例(これらの変形例)の電極のうちいずれか一つを正極及び負極に適用したゼリーロールタイプの電極組立体をY軸方向(巻取軸方向)に沿って切った断面図である。 本発明の第5実施例による電極の変形構造を示す平面図である。 本発明の一実施例による円筒形二次電池の断面図である。 本発明の実施例によるバッテリーパックの構成を概略的に示す図である。 図25のバッテリーパックを含む自動車を説明するための図である。
以下、添付された図面を参照して本発明の望ましい実施例を詳しく説明する。これに先立ち、本明細書及び特許請求の範囲に使われた用語や単語は通常的または辞書的な意味に限定して解釈されてはならず、発明者自らは発明を最善の方法で説明するために用語の概念を適切に定義できるという原則に則して本発明の技術的な思想に応じた意味及び概念で解釈されねばならない。したがって、本明細書に記載された実施例及び図面に示された構成は、本発明のもっとも望ましい一実施例に過ぎず、本発明の技術的な思想のすべてを代弁するものではないため、本出願の時点においてこれらに代替できる多様な均等物及び変形例があり得ることを理解せねばならない。
なお、発明の理解を助けるために、添付の図面は、実際の縮尺ではなく一部構成要素が誇張して示され得る。なお、相異なる実施例で同じ構成要素に対しては同じ参照番号が付与され得る。
二つの比較対象が「同一」であるということは、「実質的に同一」であることを意味する。したがって、「実質的に同一」とは、当業界で低い水準として看做される偏差、例えば、5%以内の偏差を有する場合を含み得る。また、所定の領域で如何なるパラメータが均一であるということは、平均的観点で均一であるということを意味し得る。
明細書全体において、特に明記しない限り、各構成要素は単数または複数であり得る。
構成要素の「上部(または下部)」または構成要素の「上(または下)」に任意の構成が配置されるということは、任意の構成が前記構成要素の上面(または下面)に直接配置される場合だけでなく、前記構成要素と前記構成要素の上に(または下に)配置された任意の構成との間に他の構成が介在されることがあることを意味し得る。
また、ある構成要素が他の構成要素に「連結」、「結合」または「接続」されると記載された場合、前記構成要素は互いに直接的に連結または接続され得るが、各構成要素の間に他の構成要素が「介在」されるか、または各構成要素が他の構成要素によって「連結」、「結合」または「接続」されることもあることを理解すべきである。また、「連結」は、電気的接続または物理的連結を含み得る。
説明の便宜上、本明細書において、ゼリーロール形態で巻き取られる電極組立体の巻取軸の長手方向に沿う方向を巻取軸方向(Y軸方向)と称する。そして、前記巻取軸を囲む方向を円周方向または周り方向(X軸方向)と称する。そして、前記巻取軸に近づくかまたは巻取軸から遠ざかる方向を半径方向と称する。
本発明の特徴の一つは、円筒形二次電池において抵抗を最小化するために、ゼリーロールタイプの電極組立体を構成する正極及び/または負極における最大電流経路を設定することにある。特に、本発明の最大電流経路において、集電体の短辺に沿う幅方向の電流経路の長さL1と前記集電体の長辺に沿う長手方向の電流経路の長さL2に対し、電流経路の割合L2/L1の上限を提示する。このような電流経路の割合を有する範囲は、電極組立体が高容量を有しながらも、内部抵抗を最小化できる範囲であり、前記電流経路の割合L2/L1の上限を超えると、二次電池の最小抵抗の要求条件(例えば、DC抵抗が4mΩ以下であり、かつAC抵抗が3mΩ以下である。)が満たさない。
先ず、本発明の電極組立体について説明する。図7は、本発明の一実施例による電極組立体を説明するための図である。
図7を参照すると、電極組立体100は、正極40と、負極50と、これらの間に介在された分離膜60と、を含む。電極組立体100は、正極40、負極50及び分離膜60が一方向へ巻き取られた構造を有するゼリーロールタイプの電極組立体であり得る。このような電極組立体100は、正極40、分離膜60、負極50、分離膜60の順に少なくとも一回積層して形成された積層体を巻取軸Bを中心にして一方向(図面においてX軸方向)へ巻き取ることで製造され得る。電極組立体100の最内側はコア、最外側は外周面として定義される。X軸方向が巻取方向となる。
前記コアには空洞が備えられ得る。前記空洞の直径は、例えば、2mm以上8mm以下であり得る。前記空洞は、巻取軸になる巻心を抜き取った箇所であり得る。前記空洞の直径が小さいほど、電極組立体100を含む電池ハウジングの内部空間の活用に有利であるが、巻心を用いないと電極組立体100が製造できないので、前記空洞の直径を0にすることはできない。また、前記空洞は、電解液の注液時に電解液の移動通路になるので、電解液の含浸を円滑に達成するためには、所定の大きさ以上にならなければならない。これによって、許容される巻取工程の水準で、少なくとも前記空洞の直径は2mm以上にすることが望ましく、前記空洞の直径が8mmを超えると、内部空間の活用が非効率的になるのでエネルギー密度の観点で望ましくない。
正極40は、長辺と短辺を有するシート状の正極集電体の一面または両面に、正極活物質層40bがコーティングされた構造を有し、巻取方向に沿って一側長辺の端部に活物質がコーティングされていない正極非コーティング部40aを含む。ここで、長辺とは、X軸方向と平行な方向であって、長さが相対的に長い辺を意味する。X軸方向とは、長手方向と呼び得る。短辺とは、図面においてY軸方向と平行な方向であって、長辺よりも長さが短い辺を意味する。Y軸方向は、幅方向と呼び得る。
正極非コーティング部40aが電極タブとして定義され、ストリップ形態の電極タブを別に取り付ける従来技術と区別される。ここで、電極タブとして定義されるということは、二次電池の製造に際し、集電板と結合して電流経路を形成する部位になることを意味する。また、正極非コーティング部40aの一部のみが電極タブとして定義される。これは、正極非コーティング部40aの一部は電極タブとして用いられないということを意味する。電極タブとして用いられない部分は、正極非コーティング部40aの他の部分に比べて巻取軸方向(Y軸方向)の高さが小さいか、または一部の区間で省略されるなどして集電板と接続されず、電流経路を形成する部位になれない部分であり得る。このように正極非コーティング部40aの一部のみが電極タブとして定義されるという点で従来技術とさらに区別される。このように、正極非コーティング部40aは、電極タブとして用いられる電極タブ定義区間と、電極タブとして用いられない少なくとも一つ以上の電極タブ未定義区間と、を含み得る。
負極50も、長辺と短辺を有するシート状の負極集電体の一面または両面に負極活物質層50bがコーティングされた構造を有し、巻取方向に沿って一側長辺の端部に活物質がコーティングされていない負極非コーティング部50aを含む。負極非コーティング部50aも電極タブとして定義される。また、負極非コーティング部50aの一部のみが電極タブとして定義される。このように、負極非コーティング部50aも、電極タブとして用いられる電極タブ定義区間と、電極タブとして用いられない少なくとも一つ以上の電極タブ未定義区間と、を含み得る。
正極非コーティング部40a及び負極非コーティング部50aは、互いに反対方向に配置され、巻取完了後の電極組立体100は、ほぼ円柱形状になる。電極組立体100の上端には正極非コーティング部40aが位置し、電極組立体100の下端には負極非コーティング部50aが位置する。このような電極組立体100において、上方へ突出した正極非コーティング部40aの一部と下方へ突出した負極非コーティング部50aの一部を電極タブとして使用し、ここに各々の集電板を溶接して連結すると、集電効率が改善されたタブレス円筒形二次電池を製造し得る。電極組立体100の上方及び下方へ突出した非コーティング部40a、50aを電極タブとして用いることで二次電池の内部抵抗を減少させ、エネルギー密度を増加させることができる。
本発明の一実施例による電極組立体100は、電極組立体100に含まれる電極である正極40または負極50において、電極の第2経路(最大電流経路)を構成する集電体の短辺に沿う幅方向の電流経路の長さL1に対する、電極の第2経路を構成する集電体の長辺に沿う長手方向の電流経路の長さL2の割合L2/L1(「電流経路の割合」)が11以下である点で従来技術からさらに区別される。
電極集電体の短辺と長辺は各々電極の幅と長さとなる。これによって、正極40または負極50の最大電流経路において幅方向の電流経路の長さL1に対する長手方向の電流経路の長さL2の割合(ratio)L2/L1は、11以下である。
本発明において、電極組立体に含まれる電極における最大電流経路における電流経路の割合を前記のように一定の範囲以内で設定するようになった背景を図8を参照して説明する。図8には、仮想の電極組立体を構成する正極及び負極における電流または電子の流れが概略的に示されている(第1経路と第2経路の接続位置は、▲表示、電極の端部地点は■で表示した。)。
図8に示した正極10’及び負極11’は、例えば、図4~図6を参照して説明した従来技術において、正極10の非コーティング部10a及び負極11の非コーティング部11aを幅方向へノッチングすることで複数の正極タブ10c及び複数の負極タブ11cを形成した構造を有する。
図8に示した正極10’と負極11’を含む電極組立体を円筒形二次電池に製造し、モジュールバスバー溶接位置が図2を参照して説明した二次電池と同一であれば、各電極10’、11’の電極タブ10c、11cに至る経路である第1経路も、図2を参照して説明した二次電池と同一であろう。しかし、電極10’、11’の第2経路(最大電流経路)は、図8に示したように図3とは明らかな差を見せる。
図8において、正極10’及び負極11’は、いずれも幅方向の電流経路の長さが幅方向の長さ水準に短く、ほぼ連続的に存在する非コーティング部10a、11aによって長手方向への移動は、図3に示した従来の第2経路よりも短い。特に、正極10’の正極タブ10cと負極11’の負極タブ11cが電極組立体の上部と下部で互いに対応して位置するようになれば、長手方向の移動は図示したようにほとんどないか、または非常に短い。これによって、電極10’、11’の最大電流経路は、電極の幅方向の電流経路と実質的に同一になる。
即ち、正極10’と負極11’が図8のような電極構造を有すれば、最大電流経路の幅方向の電流経路の長さは、事実上、電極の幅方向の距離水準に短く、電極の長手方向への電流移動経路は、非常に短い。これによって、電流経路の割合は0に近くなる。
しかし、電極の最大電流経路における長手方向の電流経路の長さは、図3を参照して説明したように、電極タブ(非コーティング部領域)の構造によって変わり得る。図8においては、電極10’、11’の長手方向に沿ってほぼ連続的に電極タブ10c、11cが形成されている構造が示されているが、望ましくは、電極タブの除去された領域が存在し得る。
例えば、本発明の実施例による電極組立体は、非コーティング部がコアに向かって折り曲げられた形態を有することができ、この場合、コアに備えられる空洞を、折り曲げられた非コーティング部が遮る現象を防止するために、コアに近い非コーティング部は折り曲げないか、または巻取方向への高さを小さくするか、または相当部分を除去して前述したような電極タブ未定義区間にし得る。電極タブ未定義区間は、電極を巻き取った後に電極組立体のコア側に近く形成され得る。また、電極タブ未定義区間は、電極を巻き取る前を基準にする場合、長手方向の一側端部と他側端部との間における複数の個所に備えられ得る。また、電極タブ定義区間の巻取方向の長さは、電極タブ未定義区間の位置と長さによって多様に設定され得る。電極が複数の電極タブ未定義区間を含む場合、電極の最大電流経路は、巻取方向において最も長い長さを有する電極タブ未定義区間で定義され得る。電極タブ未定義区間では、電子が電極タブ定義区間側へ移動すべきであるので、最長の電極タブ未定義区間で最大電流経路が定義されるのである。そのため、電極タブ未定義区間の巻取方向の長さが増加するほど電流経路の割合が図8に示した場合よりは長くなるしかない。また、電流経路の割合は、電極タブ定義区間の位置によって変わり得る。
電極タブ定義区間の位置をどのように設定するかによって最大電流経路が変わり、最大電流経路が小さいほど電極の抵抗が減少する。しかし、電極組立体の設計時において、非コーティング部の一部区間には電極タブ未定義区間が含まれる必要性が発生するので、抵抗増加要因がある。これによって、本発明においては、低抵抗条件を満たすように電極タブ未定義区間に対する最大電流経路における電流経路の割合L2/L1の上限を制限する。即ち、二次電池の抵抗が所定の範囲以上には増加しないように電流経路の割合L2/L1の範囲が制限され得る。
このように、本発明の非コーティング部の少なくとも一部区間に電極タブ未定義区間を含ませると共に、電極タブ未定義区間に対する最大電流経路における電流経路の割合L2/L1の上限を所定の範囲に制限することを特徴とする。言い換えれば、本発明は、二次電池の抵抗増加を最小にしながら、電極タブ未定義区間をどの程度の長さに設定し得るかについてのガイドを提供する。
図9は、図7の電極組立体に含まれる第1実施例の電極構造を示した平面図である。
図9を参照すると、図7に示した正極40または負極50である電極140は、金属ホイルからなる電極集電体141及び活物質層142を含む。金属ホイルは、伝導性の金属、例えば、アルミニウムまたは銅であってもよく、電極140の極性によって適切に選択される。正極集電体(ホイル)の厚さは10μm~20μmであり、負極集電体(ホイル)の厚さは5μm~15μmであり得る。
集電体141の短辺の長さは60mm~85mmであり、集電体141の長辺の長さは3m~5mであり得る。この場合、集電体141の長辺に対する短辺の割合は、1.2%~2.8%であってもよく、これは、1865または2170のフォームファクターを有する円筒形二次電池における6%~11%水準よりも著しく小さい。即ち、集電体141は、長手方向へ非常に長く、巻き取ったときの巻回数が非常に多い。巻回数は、電極組立体100のコア側端部を基準にして数え得る。
集電体141の少なくとも一面に活物質層142が形成される。活物質層142は、巻取方向(X軸方向)に沿って形成される。電極140は、巻取方向の長辺端部に非コーティング部143を含む。非コーティング部143は、活物質がコーティングされていない集電体141の一部領域である。非コーティング部143は、巻取方向における一部が電極タブ未定義区間として設定され、残りは電極タブ定義区間として設定される。
電極140は、集電体141に活物質層142を形成した後、圧着して製造する。望ましくは、活物質層142と非コーティング部143の境界には、絶縁コーティング層144が形成され得る。絶縁コーティング層144は、少なくとも一部が活物質層142と非コーティング部143との境界と重畳するように形成される。絶縁コーティング層144は、分離膜(図7の60参照)を挟んで対向している極性の異なる二つの電極140、即ち、正極40と負極50との短絡を防止する。絶縁コーティング層144は、0.3mm~5mmの幅で活物質層142と非コーティング部143との境界部分を覆い得る。絶縁コーティング層144の幅は、電極140の巻取方向に沿ってその幅が可変し得る。絶縁コーティング層144は、高分子樹脂を含み、Alのような無機物フィラーを含み得る。絶縁コーティング層144が覆っている集電体141部分は、活物質層がコーティングされた領域ではないため、非コーティング部として看做され得る。
非コーティング部143は、電極組立体100のコアに隣接する第1部分B1(コア側の非コーティング部)と、電極組立体100の外周面に隣接する第2部分B3(外周側の非コーティング部)と、第1部分B1と第2部分B3との間の第3部分B2(中間非コーティング部)と、を含む。
B1/B2の境界は、電極組立体のコア側から外周側へ進むほど非コーティング部の高さ(または変化パターン)が実質的に変わる地点または電極組立体の半径を基準にして所定の%の地点(例えば、半径の5%、10%、15%地点など)に適切に定義され得る。B2/B3の境界も、電極組立体の外周側からコア側へ進むほど非コーティング部の高さ(または変化パターン)が実質的に変わる地点または電極組立体の半径を基準にして所定の%の地点(例えば、半径の85%、90%、95%地点など)に定義され得る。B1/B2の境界とB2/B3の境界が特定されると、第3部分B2は自動に特定され得る。
第1部分B1と第3部分B2との間に他の構造が介在されることを排除しない。また、第3部分B2と第2部分B3との間に他の構造が介在されることを排除しない。
本実施例の非コーティング部143の高さは一定ではなく、巻取方向で相対的な差がある。即ち、第1部分B1は、第3部分B2よりも巻取軸方向へ小さい高さを有する。高さが一定になるように非コーティング部143を形成した後、第1部分B1の非コーティング部を第3部分B2の非コーティング部よりもさらに切って高さ差を有するようにし得る。ここで、各部分の高さは、平均高さまたは最大高さであってもよく、以下同一である。
第1部分B1と第2部分B3の巻取軸方向の高さは0以上であり、第1部分B1と第2部分B3の高さは同一であるか、または相違し得る。本実施例では、第1部分B1と第2部分B3の高さが相異なり、第2部分B3の高さが第3部分B2の高さと同一の場合を例に挙げている。
本実施例において、第1部分B1は電極タブ未定義区間となり、第3部分B2が電極タブ定義区間となる。第2部分B3も、電極タブ定義区間として設定され得る。第3部分B2は、電極組立体100の半径方向に沿って折り曲げられた状態で電極タブとして定義され得る。同様に、第2部分B3も、半径方向に沿って折り曲げられた状態で電極タブとして定義され得る。第1部分B1は、半径方向に沿って折り曲げられず、後述する集電板と電気的に接触しないため、第1部分B1で酸化還元反応が起こるとき、電流(電子)は隣接する第3部分B2を通して迂回して流れる。
このような構造の電極140において、第2部分B3は折り曲げられることで溶接領域になり得る。巻取方向において、第3部分B2の長さdB2が第1部分B1の長さdB1よりも長くてもよい。第3部分B2の長さdB2は、第2部分B3の長さdB3よりも長くてもよい。第3部分B2の長さdB2を長くすることで、折り曲げに際し、折曲部位が多重に重畳され得る。第3部分B2の長さdB2を長くすることで、十分な溶接領域が確保可能である。
望ましくは、電極タブ未定義区間となる第1部分B1は、コア側に近い。第1部分B1が最も先に巻き取られた後に第3部分B2が巻き取られる。第3部分B2は、第1部分B1によってコアよりも遠い側に位置するため、第3部分B2を折り曲げるときに第3部分B2の変形が起こらない。
第1部分B1の高さが小さく、折り曲げられないので、電極組立体100のコアの空洞を閉塞しない。コアの空洞が閉塞されなければ、電解質注液工程が容易になり、電解液注液効率が向上する。また、コアから溶接ジグを挿入して負極(または正極)側の集電板と電池ハウジング(または電極端子)との溶接工程を容易に行い得る。
高さが一定に非コーティング部143を形成した後、第1部分B1の非コーティング部を第3部分B2の非コーティング部よりもさらに切って高さの差を有するようにし、これによって、第1部分B1が電極タブとして使用されない。このように非コーティング部143に電極タブ未定義区間が含まれると、非コーティング部全体が電極タブ定義区間として設計される場合に比べて最大電流経路が増加するにつれて抵抗が増加する。
望ましくは、電極タブ定義区間が折り曲げられてコアの空洞を閉塞しないようにするために第1部分B1が必要である。第1部分B1の長さdB1が長くなっても第3部分B2の長さdB2と第2部分B3の長さdB3が相対的に長いか、または第3部分B2によって確保される溶接面積が十分であれば、セル全体の抵抗(AC抵抗とDC抵抗)はあまり変化しないことがあるが、第1部分B1における抵抗は増加するようになる。そのため、第1部分B1における抵抗の増加を考慮して第1部分B1の長さdB1を限定する必要がある。
最大電流経路に対する電流経路の割合L2/L1において、分母は電極の幅として一定である。これによって、第1部分B1の長さdB1が最大電流経路の電流経路の割合L2/L1を決定するファクターである。本発明は、第1部分B1の長さdB1を調節して最大電流経路の電流経路の割合L2/L1を11以下になるようにすることで、コアの空洞閉鎖は防止しながらも抵抗増加を最小化する。望ましくは、最大電流経路の電流経路の割合L2/L1は、10.15以下であり得る。より望ましくは、最大電流経路の電流経路の割合L2/L1は、8.5以下であり得る。より望ましくは、最大電流経路の電流経路の割合L2/L1は、2~5であり得る。各数値は、集電体141及び活物質層142の電気的、物理的、化学的物性条件、二次電池の抵抗条件、コアの空洞を遮らないために必要な第1部分B1の長さdB1、適切な重畳数を有すると共に、有効な溶接面積を確保するために必要な第2部分B3の長さdB3、そして第3部分B2の長さdB2などを考慮して臨界的効果を有するように最適化した値であり得る。このように本発明では最大電流経路の電流経路の割合L2/L1を所定の範囲に制限しながら電極タブ未定義区間の個数と長さを調節し、残りを電極タブ定義区間に設計する。
図9に一実施例による最大電流経路を示した(第1経路と第2経路の連結位置は▲で表示し、電極の端部地点は■で表示している。)。最大電流経路は、電極タブ未定義区間である第1部分B1に含まれる。最大電流経路とは、第1部分B1において電気化学的酸化還元反応が起こるときに電流(電子)が流れる経路の長さが最大となる経路である。
最大電流経路の幅方向の電流経路の長さL1は、集電体141や電極140の短辺の長さの水準で短い。具体的には、幅方向の電流経路の長さL1は、非コーティング部143の長辺の一端から集電体141の長辺の他端までの最小長さである。第2部分B3及び第3部分B2の高さは同一であるため、電極140の幅方向の電流経路の長さは、電極140の短辺の長さ(幅)と同一であり、第2部分B3の非コーティング部を切っていないため、集電体141の短辺の長さとも同一である。
本実施例において、最大電流経路の電流経路の割合はL2/L1であり、L1は電極140の幅に対応するため、電流経路の割合は、第1部分B1の長さdB1を用いて調節し得る。
電流経路の割合L2/L1の上限は、電極組立体100を含む二次電池のDC抵抗が4mΩ以下であり、AC抵抗が3mΩ以下になるようにする値であり得る。より望ましくは、前記電流経路の割合L2/L1の上限は、電極組立体100を含む二次電池のAC抵抗が2mΩ以下になるようにする値であり得る。
二次電池の抵抗は、集電体141及び活物質層142の電気的、物理的、化学的物性条件によって変わり、例えば、集電体141の短辺の長さが60mm~85mmであり、集電体141の長辺の長さが3m~5mであり、かつ集電体141の厚さが5μm~20μmであるとき、第1部分B1の長さdB1は、660mm以下であり得る。このような場合、第1部分B1の長さdB1の最大値は660mmであり、集電体141の長辺の長さを考慮すると、第1部分B1の長さdB1の最大値は、集電体141の長辺の長さの13.2%~22%を示し得る。集電体141の長辺の長さや厚さが変わる場合、第1部分B1の長さdB1の最大値は4%~23%を示し得る。即ち、電極140において電極タブとして定義されない部分、即ち、電極タブ未定義区間の長さの最大値が660mmであり、これは集電体141の長辺の長さがそのまま電極140の長辺の長さになる点を考慮して、電極140の長さの4%~23%ともいえる。また、集電体141の短辺の長さがそのまま電極140の短辺の長さになるとすれば、電極140において電極タブとして定義されない部分の長さの最大値である660mmは、電極140の幅の9.4倍~11倍であることが分かる。集電体141の短辺の長さや厚さが変わる場合、第1部分B1の長さdB1の最大値は、2.5倍~11倍になり得る。
また、第1部分B1の長さdB1が660mmである場合、集電体141の長辺の長さが4mmであるとすれば、電流経路の割合L2/L1は10.15であり得る。第1部分B1の長さdB1を660mmよりも小さくして電流経路の割合L2/L1をさらに減少させ得る。
前記電流経路の割合L2/L1の上限は、二次電池の最小抵抗の要求条件を満たさせるものであり得る。即ち、二次電池の抵抗の最大値よりも小さい二次電池の抵抗を示すように決定されるものであり得る。本実施例に適用しているDC抵抗の最大値である4mΩと、AC抵抗の最大値である3mΩの数値は、二次電池の仕様によって変わり得る。
本発明者は、第1部分B1のように電極タブ未定義区間の長さが増加するにつれて二次電池の抵抗が増加することをシミュレーションによって確認した。しかし、電極タブ未定義区間の長さが一定の水準以上に大きくなれば、それ以上抵抗が増加せず、収斂される特徴を確認した。電極タブ未定義区間の長さと二次電池抵抗との相関関係を調べ、二次電池の最小抵抗の要求条件を満たさせる電極タブ未定義区間の長さを決めることができた。
図10は、シミュレーションに使用された電極タブ未定義区間を含む電極の模式図であり、図11は、シミュレーションによって確認した溶接ポイント数による抵抗グラフである。
図10は、電極タブ143a1が等間隔で存在する場合を示し、第1経路と第2経路の連結位置は▲で表示し、電極の端部地点は■で示した。例えば、電極タブ143a1の個数が6個であれば、電極タブ未定義区間143a2の個数は7個であり、電極タブ143a1の個数が7個であれば、電極タブ未定義区間143a2の個数は8個である場合のように、電極タブ143a1の個数が Qであるとき、電極タブ未定義区間143a2の個数がQ+1になる等間隔条件を仮定した。各電極タブ143a1は、集電板と溶接されるので、溶接ポイント数は、電極タブ143a1の個数と同一である。
シミュレーション時、電極140’に含まれる集電体141’の短辺の長さは60mm~85mmであり、集電体141’の長辺の長さは3m~5mであり、集電体141’の厚さが5μm~20μmであると仮定した。
このような電極140’が正極と負極に含まれる電極組立体を含む二次電池のAC抵抗を、電極タブ143a1の個数を1個から50個まで増加させながらシミュレーションした。その結果である図11を参照すると、電極タブ143a1の個数が増加しながら抵抗が収斂されることが分かり、シミュレーション条件下で二次電池のAC抵抗が2mΩ以下になるようにする電極タブ143a1の個数は6個になるという結果を得た。
電極タブ143a1の個数は、電極タブ未定義区間143a2の長さに換算され得る。電極タブ143a1の幅が10mmであるとき、長辺の長さが3m~5mである集電体141’において等間隔で存在する電極タブ143a1が6個である場合、電極タブ未定義区間143a2の一つの長さは660mmである。電極タブ143a1が7個である場合、電極タブ未定義区間143a2の一つの長さは564mmである。電極タブ143a1が7個である場合、二次電池のAC抵抗は1.7mΩでシミュレーションされた。
このようなシミュレーションから、電極タブ未定義区間143a2の長さは、660mm以下にすることが望ましいという結果を得た。集電体141’の短辺の長さが60mm~85mmである点を考慮すると、長手方向の電流経路である電極タブ未定義区間143a2の長さと幅方向の電流経路である集電体141’の短辺の長さとの比が11以下になる。これによって、電極タブ未定義区間を含む場合、電流経路の割合L2/L1を11以下にすると、二次電池のAC抵抗が2mΩ以下である低抵抗条件を満たし得るという結果を得た。
このようなシミュレーション結果に基づき、本実施例で提案するように、第1部分B1の長さdB1は660mm以下にすることが望ましい。言い換えれば、電極タブ未定義区間143a2の長さが660mmを超えないように管理してセル抵抗が二次電池の最小抵抗の要求条件を満たすようにし得る。
第1部分B1の長さdB1が長くなれば、前記電流経路の割合L2/L1が大きくなり、第1部分B1の長さdB1が短くなれば、前記電流経路の割合L2/L1が小さくなる。第1部分B1の長さdB1は、第3部分B2の非コーティング部をコア側へ折り曲げたとき、電極組立体100のコアに備えられた空洞を遮らない条件を適用して前記電流経路の割合L2/L1の条件を満たす条件下で設計し得る。
即ち、第1部分B1の長さdB1は、660mm以下で必要条件によって決定され得る。第1部分B1の長さdB1が660mmであり、集電体141の短辺の長さが65mmである場合に、前記電流経路の割合L2/L1は10.15になるので、第1部分B1の長さdB1によって前記電流経路の割合L2/L1が10.15以下を満たし得る。言い換えれば、第1部分B1を含む電極140を設計すれば、第1部分B1が存在せず、全てが第3部分B2のように非コーティング部を含む場合に比べて電流経路の割合が増加するが、最小抵抗を満たすガイドとして電流経路の割合L2/L1が10.15以下になるまでは第1部分B1の長さdB1をふやすことができるため、第3部分B2の非コーティング部をコア側へ折り曲げたとき、電極組立体100のコアに備えられた空洞を遮らないようにすることができるのである。
図12は、本発明の他の実施例による電極組立体に含まれる第2実施例の電極構造を示した平面図である。
図12に示した電極145aは、第1実施例と比較して第2部分B3の高さが外周側へ進むほど次第に減少することが相違するだけであり、残りの構成は実質的に同一である。一変形例において、第2部分B3は高さが段階的に減少する階段状(点線参照)に変形が可能である。ここで、第2部分B3は、第3部分B2よりも小さい高さを有するようになる。第2部分B3を第3部分B2よりも小さい高さにすることで、第2部分B3を折り曲げて、折り曲げられた第3部分B2の上に折り曲げるときに、第3部分B2の変形をさらに抑制できる。
図13は、本発明の他の実施例による電極組立体に含まれる第3実施例の電極構造を示した平面図である。
第3実施例の電極145bは、第1部分B1と第2部分B3の高さが0以上であり、3部分B2よりは相対的に小さい。また、第1部分B1と第2部分B3の高さは、同一である。第1部分B1と同様に、第2部分B3は電極タブ未定義区間に対応し、第2部分B3の非コーティング部は電極タブとして定義されず、第3部分B2が電極タブとして定義される。巻取方向において、第2部分B3の長さは、第1部分B1の長さdB1よりも短い。第2部分B3は、最外側の巻回ターンを含む電極領域の非コーティング部であり得る。第3部分B2は、電極組立体100の半径方向に沿って折り曲げられた状態で電極タブとして定義され得る。第1部分B1と第2部分B3は、半径方向に沿って折り曲げられない。本実施例によれば、電池ハウジングに電極組立体を挿入し、電池ハウジングの外周面を内部へ圧入してビーディング部を形成するとき、ビーディング部が第2部分B3の辺りで加圧される過程でビーディング部と第2部分B3が互いに接触して内部短絡が起こる現象を防止することができる。
図14は、本発明の他の実施例による電極組立体に含まれる第4実施例の電極構造を示した平面図である。
第4実施例の電極150は、第1部分B1と第2部分B3の高さが0以上であるが、第3部分B2よりは相対的に小さい。また、第1部分B1と第2部分B3の高さは同一であるか、または相違し得る。
望ましくは、第3部分B2の高さは、コア側から外周側へ進むほど段階的に増加する階段状であり得る。
パターン1~7は、非コーティング部143の高さが変化する位置を中心にして第3部分B2を区分したものである。望ましくは、パターンの数と各パターンの高さ(Y軸方向の長さ)と幅(X軸方向の長さ)は、非コーティング部143の折曲過程で応力を最大限に分散させるように調節され得る。応力分散は、非コーティング部143が電極組立体のコア側へ折り曲げられるとき、非コーティング部143の破れを防止するためのものである。
第1部分B1の長さdB1は、第3部分B2のパターンをコア側へ折り曲げたとき、コアに備えられる空洞を遮らない条件を適用して設計する。一例において、第1部分B1の長さdB1は、パターン1の折曲長さに比例して増加し得る。折曲長さは、パターンの折曲地点を基準にしたパターンの高さである。
望ましくは、第1部分B1の長さdB1は、第1部分B1が形成する巻回ターンの半径方向の幅がパターン1の折曲長さ以上になるように設定し得る。変形例において、第1部分B1の長さdB1は、パターン1の折曲長さから第1部分B1が形成する巻回ターンの半径方向の幅を減算した値が0よりも小さいか、またはコア半径の10%以下になるように設定し得る。
具体的な例において、電極150がフォームファクターが4680である円筒形二次電池の電極組立体を製造するのに使用される場合、第1部分B1の長さdB1は、コアの直径とパターン1の折曲長さによって180mm~350mmに設定し得る。この場合、電流経路の割合L2/L1は2.57~5.83になり得る。第1部分B1の長さdB1をさらに調節すると、電流経路の割合L2/L1が2~5になるようにし得る。
一実施例において、各パターンの幅は、電極組立体の一つまたは二つ以上の巻回ターンを構成するように設計され得る。
一変形例において、第3部分B2の高さは、コア側から外周側へ進むほど増加してから減少する階段状であり得る。
他の変形例において、第2部分B3は、第2実施例と同じ構造を有するように変形され得る。
また、他の変形例において、第3部分B2に適用されたパターン構造が第2部分B3まで拡張し得る(点線参照)。
図15は、本発明の他の実施例による電極組立体に含まれる第5実施例の電極構造を示した平面図である。
望ましくは、電極160において、第3部分B2は、複数の分節片161を含み得る。言い換えれば、第3部分B2の少なくとも一部領域は、独立的に折曲可能な複数の分節片161に分割され得る。
複数の分節片161は、コア側から外周側へ進むほど高さが段階的に増加し得る。複数の分節片161は、下部から上部へ進むほど幅が減少する幾何学的な図形の形態を有する。望ましくは、幾何学的な図形は、台形であり得る。後述するが、幾何学的な図形の形態は、多様に変形可能である。
分節片161は、レーザーでノッチングされたものであり得る。分節片161は、超音波カッティングや打抜けなどの公知の金属箔のカッティング工程によって形成し得る。分節片161は、折り曲げられて巻取軸方向へ重ねられる。
分節片161は、独立的に折曲可能であることから、分節片161を折り曲げるときに非コーティング部143の変形をさらに抑制可能であるため、望ましい。また、分節片161を折り曲げて多重に重畳して空間(隙間)が存在しないように制御することが可能であるという利点がある。分節片161の構造を有することで、非コーティング部143が折り曲げられるときに非コーティング部143が破れる現象が防止できる。
第1部分B1は、集電体141のコア側の短辺から始まり、第1部分B1の高さは、巻取方向に沿って一定であり、半径方向に沿って折り曲げられない。第3部分B2の分節片161のみが電極タブとして定義される。そのため、電極160において、集電体141の短辺に沿う幅方向の電流経路の長さL1に対する集電体141の長辺に沿う長手方向の電流経路の長さL2の割合である電流経路の割合L2/L1が11以下になるようにするために、電極160のコア側端部から長手方向へ一番目に位置した分節片161の下端部までの長さ、ここでは、第1部分B1の長さdB1と同じその長さを調節し得る。
望ましくは、集電体141の厚さが5μm~25μmであり、分節片161の幅(図16のD参照)は3mm~10mmであり、前記分節片の高さ(図16のH参照)は10mm以下であり得る。
一面で、複数の分節片161は、コア側から外周側へ進むほど複数の分節片グループをなし得る。同じ分節片グループに属した分節片の幅、高さ及び離隔ピッチの少なくとも一つ以上は実質的に同一であり得る。望ましくは、同じ分節片グループに属した分節片の幅、高さ及び離隔ピッチは互いに同一であり得る。
分節片161のディメンション(幅、高さ、離隔ピッチ)は、抵抗、加工の容易性(例えば、クラックの発生なくレーザーノッチングが適用可能であるか否かなど)、折曲の容易性、複数の分節片161同士の重畳程度などを考慮して調節され得る。
望ましくは、同じ分節片グループに属した分節片の幅及び高さは、実質的に同一であり得る。
図16は、台形分節片161の幅D、高さH及び離隔ピッチPの定義を示す。
図16を参照すると、分節片161の幅D、高さH及び離隔ピッチPは、非コーティング部143の折曲加工時、折曲地点付近の非コーティング部143が破れることを防止し、十分な溶接強度を確保するために、非コーティング部143の重畳数を充分に増加させて非コーティング部143の異常変形を防止するように設計する。
分節片161の折り曲げは、切断溝163の下端を通過するラインGまたはその上部で行われる。切断溝163は、電極組立体の半径方向への分節片161の折り曲げをスムーズかつ容易にする。
分節片161の幅Dは、分節片161の両側の側辺163bから延びた二本の直線と切断溝163の底部163aから延びる直線とが交わる二つの地点間の長さに定義される。分節片161の高さHは、分節片161の最上端の辺と切断溝163の底部163aから延びた直線との最短距離に定義される。分節片161の離隔ピッチPは、切断溝163の底部163aから延びた直線と前記底部163aと連結された二つの側辺163bから延び直線とが交わる二つの地点間の長さに定義される。側辺163b及び/または底部163aが曲線であるとき、直線は、側辺163b及び底部163aが交わる交差点で側辺163b及び/または底部163aから延びる接線を代わりにし得る。
望ましくは、分節片161の幅Dは1mm以上である。Dが1mm未満であれば、分節片161がコア側へ折り曲げられたとき、溶接強度を充分に確保可能な程度に分節片161が重畳しない領域や空間(隙間)が発生し得る。
望ましくは、分節片161の幅Dは、分節片161がコア側に向かって折り曲げられるとき、分節片161の重畳が半径方向へよく行われるように分節片161が位置する巻回ターンの半径に応じて幅Dを適応的に調節し得る。
分節片161の高さHは、2mm以上であり得る。分節片161の高さHが2mm未満であれば、分節片161がコア側へ折り曲げられたとき、溶接強度を充分に確保できる程度に分節片161が重畳しない領域や空間(隙間)が発生し得る。
分節片161の高さHは、分節片161がコア側へ折り曲げられたとき、コアの空洞を閉塞しない条件を適用して決定し得る。望ましくは、コアは、直径の90%以上が外部に開放されるように分節片161の高さHを調節し得る。
望ましくは、分節片161の高さHは、分節片161が位置する巻回ターンの半径とコアの半径に依存してコア側から外周側へ進むほど次第に増加し得る。
一実施例において、分節片161の高さHが巻回ターンの半径が増加するにつれ、hからhまでN段階にわたって段階的に増加し得る。
一例で、電極160の全体の巻回ターンの半径が22mmであり、分節片161の高さが3mmから始まるが、分節片161を含む巻回ターンの半径が1mm増加する度に分節片161の高さが3mm、4mm、5mm、6mmに順次増加し、残りの巻回ターンにおいては、高さが6mmとして実質的に同一に維持され得る。即ち、全体の巻回ターンの半径のうち分節片161の高さ可変区間の半径方向の幅は3mmであり、残りの半径区間は高さ均一区間となる。
他の例で、コアの半径rが3mであるとき、3mm(h)、4mm(h)、5mm(h)及び6mm(h)の高さを有する分節片161が含まれた巻回ターンの開始半径r、r、r及びrは、各々6mm、7mm、8mm及び9mmであり、半径9mmから最後の巻回ターンまでは分節片161の高さが6mmに維持され得る。また、6mm(r)よりも小さい半径を有する巻回ターンには、分節片161が含まれなくてもよい。このような例において、コアCと最も隣接する高さ3mm(h)の分節片161が半径6mmを有する巻回ターンから位置するので、当該分節片161がコアC側へ折り曲げられても3mm~6mmの半径区間のみを覆い、実質的にコアの空洞を遮蔽しない。
分節片161の高さ可変区間において分節片161の高さHは、10mm以下であり得る。電気的絶縁のために、分離膜60の端部は、電極160の端部から外側へ絶縁ギャップに対応する長さにさらに延び得る。また、電極160と分離膜60が巻回されるとき、分離膜60の端部が蛇行を起こすことを考慮して、分離膜60の最小蛇行マージンとなる区間が非コーティング部143に割り当てられる必要がある。また、分節片161をカッティングするためには、集電体ホイルの端部に最小限の切断スクラップマージンが割り当てられなければならない。
望ましくは、前記絶縁ギャップは、前記電極160が正極であるとき、0.2mm~6mmであり得る。また、前記絶縁ギャップは、前記電極160が負極であるとき、0.1mm~2mmであり得る。望ましくは、前記分離膜60の最小蛇行マージンは0~1mmであり得る。望ましくは、切断スクラップマージンは、1.5mm~8mmであり得る。切断スクラップマージンは、分節片161を形成する工程によって割り当てられないことも可能である。例えば、分節片161の上辺と集電体ホイルの上辺が互いに一致するように切断溝163を形成してもよく、この場合、切断スクラップマージンは0になり得る。
前記条件を考慮したとき、分節片161の高さ可変区間における分節片161の最大高さは10mmに設定し得る。これによって、分節片161の高さ可変区間における分節片161の高さは、2mm~10mm区間で電極組立体の半径方向に沿って段階的または漸進的に増加し得る。
図16を参照すると、分節片161の離隔ピッチPは0.05mm~1mmの範囲で調節し得る。離隔ピッチPが0.05mm未満であれば、電極160が巻取工程などで走行されるとき、応力によって切断溝163の下端付近にて非コーティング部143にクラックが生じ得る。これに対し、離隔ピッチPが1mmを超過すると、分節片161が折り曲げられたとき、溶接強度が充分に確保可能な程度に分節片161が互いに重畳しない領域または空間(隙間)が発生し得る。
一方、電極160の集電体141がアルミニウムからなる場合、離隔ピッチPは、0.5mm以上に設定することがより望ましい。離隔ピッチPが0.5mm以上である場合、電極160が巻取工程などで300gf以上の張力(tension)下で100mm/sec以上の速度で走行しても、切断溝163の下部におけるクラックの発生を防止できる。
図16に示したように、巻取方向に隣接する二つの分節片161の間には、切断溝163が介在される。切断溝163は、非コーティング部143が除去されて生じた空間である。望ましくは、切断溝163の下部の両端の角部は、ラウンド形状を有する。即ち、切断溝163は、実質的に扁平な底部163aとラウンド部163cを含む。ラウンド部163cは、底部163aと分節片161の側辺163bを連結する。変形例において、切断溝163の底部163aは、円弧形状になり得る。この場合、分節片161の側辺163bは、底部163aの円弧形状によってスムーズに連結され得る。
複数の分節片161は、コア側から外周側へ進むほど下部内角θが増加し得る。一例において、複数の分節片161は、コア側から外周側へ進むほど下部内角θが漸進的にまたは段階的に増加し得る。下部の内角θは、切断溝163の底部163aから延びた直線と分節片161の側辺163bから延びた直線とがなす角度である。分節片161が左右対称であるとき、左側と右側の下部内角θは、実質的に同一である。
電極組立体の半径が増加すると、曲率半径が増加する。もし、分節片161の下部内角θが電極組立体の半径が増加するにつれて共に増加すると、分節片161が折り曲げられるとき、半径方向及び円周方向に生ずる応力を緩和させることができる。また、下部内角θが増加すると、分節片161が折り曲げられたとき、内側の分節片161と重畳する面積及び重畳数も共に増加することで、半径方向及び円周方向における溶接強度を均一に確保でき、折曲表面領域を平坦に形成し得る。
望ましくは、下部内角θは、分節片161が位置する巻回ターンの半径と分節片161の幅Dによって決定され得る。一例において、電極160が、直径が22mmであり、コアの半径が4mmである巻回構造を形成する場合、分節片161の下部内角は、高さ可変区間の60°~85°区間で漸進的にまたは段階的に増加し得る。
図15をさらに参照すると、第1部分B1の長さdB1は、第3部分B2の分節片161をコア側へ折り曲げたとき、コアがその直径を基準にして90%以上外部に開放されるように設計する。第1部分B1の長さdB1は、第1グループの分節片161の折曲長さに比例して増加し得る。折曲長さは、折曲地点から分節片161の上端辺までの長さとなる。
分節片161の折曲地点は、切断溝163の下端を通過するラインまたはそのラインから上部へ所定の距離に離隔した地点に設定され得る。切断溝163の下端から所定の距離に離隔した地点で分節片161がコア側へ折り曲げられると、半径方向への分節片の重畳がより容易になる。分節片161が折り曲げられるとき、コアの中心を基準にして外側にある分節片が内側にある分節片を押圧する。この際、折曲地点が切断溝163の下端から所定の距離に離隔していると、内側の分節片が外側の分節片によって巻取軸方向へ押圧されて分節片の重畳がより容易に行われる。折曲地点の離隔距離は、望ましくは1mm以下であり得る。分節片の最小高さは2mmであるため、最小高さに対する折曲地点の離隔距離の割合は50%以下であり得る。
一実施例において、各分節片グループの幅は、電極組立体の同じ巻回ターンを構成するように設計され得る。ここで、巻回ターンは、電極160が巻き取られた状態にいるとき、第1部分B1の端部を基準にして数え得る。
他の変形例に置いて、各分節片グループの幅は、電極組立体の少なくとも一つ以上の巻回ターンを構成するように設計され得る。
第1グループから第8グループは、第3部分B2に含まれる分節片グループの一例に過ぎない。グループの数、各グループに含まれる分節片161の数及びグループの幅は、非コーティング部143の折曲過程で応力を最大限に分散させて集電体との溶接強度を充分に確保できるように、分節片161が多重に重畳するように望ましく調節され得る。
第3部分B2において、電極160の巻取方向を基準にして分節片161の高さが段階的に増加する区間(第1グループから第7グループ)は、分節片の高さ可変区間に定義され、最後にある分節片グループ(第8グループ)は、分節片の高さが均一に維持される高さ均一区間に定義され得る。
即ち、第3部分B2において、分節片161の高さがh~hまで段階的に増加するとき、h~hN-1(Nは高さインデックスであって、2以上の自然数である。)の高さを有する分節片161が配置された区間は高さ可変区間になり、hの高さを有する分節片161が配置された区間は高さ均一区間になる。
第1グループの幅は、第1部分B1の幅に対して35~40%であり得る。第2グループの幅は、第1グループの幅に対して130~150%であり得る。第3グループの幅は、第2グループの幅に対して120~135%であり得る。第4グループの幅は、第3グループの幅に対して85~90%であり得る。第5グループの幅は、第4グループの幅に対して120~130%であり得る。第6グループの幅は、第5グループの幅に対して100~120%であり得る。第7グループの幅は、第6グループの幅に対して90~120%であり得る。第8グループの幅は、第7グループの幅に対して115~130%であり得る。第2部分B3の長さdB3は、第1部分B1の幅と同様に180mm~350mmであり得る。
第1グループから第8グループの幅が一定の増加または減少パターンを示さない理由は、分節片の幅は、第1グループからグループ8へ進むほど次第に増加するが、グループ内に含まれる分節片の数は整数個に制限され、電極の厚さが巻取方向へ若干の偏差を有するためである。これによって、特定の分節片グループでは、分節片の数が減少し得る。これによって、グループの幅は、コア側から外周側へ進むほど前記の例示のように不規則な変化様相を示し得る。
以上の実施例によれば、分節片161の重畳数を充分に増加させて集電板の溶接強度を向上させることができる。分節片161のディメンション(幅、高さ、離隔ピッチ)を最適化して溶接ターゲット領域として使用される領域の分節片161の積層数を充分に増加させることによって集電板が溶接される領域の物性を改善することができる。
図15には、代表的な電流経路も示した。第1経路と第2経路の連結位置は▲で表示し、電極の端部地点は■で示した。第1経路と第2経路の連結位置は、第2部分B3及び第3部分B2の任意のいずれの位置も可能であるが、図示の便宜のために第1グループの一箇所、第8グループの一箇所に示した。電極の端部地点も任にのいずれの位置も可能であるが、幅方向の電流経路の長さL1を示すための一箇所と、最大電流経路に位置する一箇所に示した。
ここでも、電流経路の割合L2/L1の上限を決定するL2は、電極タブとして定義された第3部分B2において電極の端部地点に至る距離であり、第1部分B1の長さdB1となる。第1部分B1の長さdB1を調節することで前記電流経路の割合L2/L1を調節し得る。このような電流経路の割合L2/L1は、抵抗を多少増加させ得るが、二次電池の最小抵抗の要求条件は満たすようになるため、分節片161の重畳程度、溶接強度の確保などをさらに考慮する場合、11以下、10.15以下、8.5以下、または2~5範囲に低くなり得る。例えば、第3部分B2の長さdB2を充分に長くして分節片161をより大きく形成するか、またはより多く形成するなどして、分節片161の重畳程度を高める必要がある場合、前記電流経路の割合L2/L1は、8.5以下、または2~5範囲に低くなり得る。電流経路を最小化する低抵抗セルの設計観点で前記電流経路の割合L2/L1の上限を決めたという点で本発明の意義がある。前記電流経路の割合L2/L1の上限を超えると、二次電池の最小抵抗の要求条件が満たせない。
このような構造の電極160において、第3部分B2は折り曲げられて溶接領域になり得る。巻取方向において、第3部分B2の長さdB2が第1部分B1の長さdB1よりも長くてもよい。第3部分B2の長さdB2は、第2部分B3の長さdB3よりも長くてもよい。第3部分B2の長さdB2を長くすることで、折曲時に折曲部位が多重に重畳され得る。第3部分B2の長さdB2を長くすることで、十分な溶接領域を確保することができる。
また、他の変形例によれば、電極160の非コーティング部143が分節片構造を有するとき、電極160は、図17に示したように、複数の分節片のうち一部が規則的または不規則的に省略されている分節片省略区間164を含み得る。図17は、本発明の第5実施例による電極の変形構造を示した平面図である。
図17を参照すると、望ましくは、分節片省略区間164は、複数であり得る。一例で、分節片省略区間164の幅は、コア側から外周側に進むにつれて一定であり得る。他の例で、分節片省略区間164の幅は、コア側から外周側へ進むほど規則的にまたは不規則的に増加または減少し得る。望ましくは、分節片省略区間164に存在する非コーティング部の高さは、第1部分B1及び/または第2部分B3の高さと対応し得る。
分節片省略区間164の間に存在する分節片161の数は、少なくとも一つ以上であり得る。電極160は、図17に示したようにコアから外周側へ進むほど分節片省略区間164の間に存在する分節片161の数が増加する非コーティング部区間を含み得る。
このように非コーティング部143の中間に分節片省略区間164を置く場合にも、分節片省略区間164が電極タブ未定義区間に対応するので、分節片省略区間164の長さは、電極タブ未定義区間における電流経路の割合L2/L1が11以下になる条件を考慮して決定し得る。
図18は、本発明の変形例による電極が電極組立体に巻き取られたとき、複数の分節片が位置し得る独立領域を示した上部平面図である。
望ましくは、分節片省略区間164の幅は、図18に示したように、電極160が巻き取られたとき、各巻回ターンに位置した分節片が電極組立体200のコアCを基準にして予め設定された独立領域166内に位置するように設定され得る。
即ち、複数の分節片161は、電極組立体200を巻取軸方向から見たとき、コアCを基準にして複数の独立領域166内に位置し得る。独立領域166の数は、2個、3個、4個、5個などに変化させ得る。
望ましくは、独立領域166は、扇形であり得る。この場合、独立領域166の間の角度は、実質的に同一であり得る。また、独立領域166の円周角δは、 20°以上、選択的に25°以上、選択的に30°以上、選択的に35°以上、または選択的に40°以上であり得る。
変形例において、独立領域166は、正方形、長方形、平衡四辺形、台形などの幾何学的図形の形態を有し得る。
前記のようにする場合、独立領域166のみに集電板との溶接部が形成でき、独立領域166に対応するレッグ構造を有するように集電板を設計することができるため、集電効率の面で利点がある。
図19は、本発明の第6実施例による電極の構造を示した平面図である。
図19を参照すると、第6実施例の電極170は、分節片161’の形状が前述した実施例と異なることを除いては、残りの構成は実質的に同一である。したがって、特に言及しない限り、第5実施例の構成は、第6実施例にも同様に適用可能である。
分節片161’は、上部と下部の幅が実質的に同一の幾何学的図形の形態を有する。望ましくは、分節片161’は、四角形の形態を有し得る。
図20は、本発明の第6実施例による電極に含まれた分節片の幅、高さ及び離隔ピッチの定義を示した図である。
図20を参照すると、分節片161’の幅D、高さH及び離隔ピッチPは、非コーティング部143の折曲加工時に非コーティング部143が破れることを防止し、集電体との溶接強度の向上のために非コーティング部143の重畳数を充分に増加させながら非コーティング部143の異常変形を防止するように設定し得る。異常変形とは、折曲地点の下部の非コーティング部が直線状態を維持できずに崩れて不規則に変形されることを意味する。
分節片161’の幅Dは、分節片161’の両側の側辺から延びた二本の直線と切断溝163の底部163aから延びる直線とが交わる二つの地点間の長さに定義される。分節片161’の高さHは、分節片161’の最上端の辺と切断溝163の底部163aから延びた直線との最短距離に定義される。分節片161’の離隔ピッチPは、切断溝163の底部163aから延びた直線と前記底部163aと連結された二本の側辺163bから延びた直線とが交わる二つの地点間の長さに定義される。側辺163b及び/または底部163aが曲線である場合、直線は、側辺163bと底部163aが交わる交差点で側辺163b及び/または底部163aから延びる接線を代わりにし得る。
望ましくは、分節片161’の幅D、高さH及び離隔ピッチPに関する条件は、上述した第5実施例と実質的に同一であるので反復的な説明は省略する。但し、分節片161’が四角形の形態を有するので、分節片161’の下部内角は90°として一定であり得る。
第5実施例の電極160と類似に、第6実施例による電極170も複数の分節片のうち一部が規則的または不規則的に省略されている分節片省略区間164を含み得る。
第5実施例及び第6実施例のように、第3部分B2が複数の分節片161、161’を含む場合、各分節片161、161’の形状は多様に変形可能である。
本発明のさらに他面によれば、電極160、170が電極組立体として巻き取られた後に、電極組立体の上部及び下部に露出している分節片は、電極組立体の半径方向に沿って多重に重畳されて折曲表面領域を形成し得る。
分節片161が電極組立体200のコアC側へ折り曲げられて形成された折曲表面領域Fは、電極組立体200の上部と下部に共に形成され得る。図21は、折曲表面領域が形成された電極組立体を概略的に示した上部斜視図である。
図21を参照すると、折曲表面領域Fは、巻取軸方向へ分節片161が複数のレイヤーで重畳された構造を有する。重畳方向は、巻取軸方向である。
分節片161が含まれた巻回ターンの半径に応じて分節片161の高さ、幅及び離隔ピッチを調節して折曲表面領域Fの各位置で分節片161の積層数を要求される集電板の溶接強度に合わせて最適化することができる。
上述した実施例(変形例)の電極構造は、ゼリーロールタイプまたは当該技術分野における公知の他のタイプの電極組立体に含まれた正極と負極に適用可能である。
本発明において、正極にコーティングされる正極活物質及び負極にコーティングされる負極活物質は、当業界における公知の活物質であれば、制限なく使用され得る。
一例で、正極活物質は、一般化学式A[A]O2+z(Aは、Li、Na及びKの少なくとも一つ以上の元素を含む;Mは、Ni、Co、Mn、Ca、Mg、Al、Ti、Si、Fe、Mo、V、Zr、Zn、Cu、Mo、Sc、Zr、Ru及びCrより選択された少なくとも一つ以上の元素を含む;x≧0、1≦x+y≦2、-0.1≦z≦2;化学量論係数x、y及びzは、化合物が電気的中性を維持するように選択される。)で表されるアルカリ金属化合物を含み得る。
他の例で、正極活物質は、US6,677,082、US6,680,143などに開示されたアルカリ金属化合物xLiM‐(1‐x)Li(Mは、平均酸化状態3を有する少なくとも一つ以上の元素を含む;Mは、平均酸化状態4を有する少なくとも一つ以上の元素を含む;0≦x≦1)であり得る。
さらに他の例で、正極活物質は、一般化学式Li Fe1‐x 1‐y 4‐z(Mは、Ti、Si、Mn、Co、Fe、V、Cr、Mo、Ni、Nd、Al及びMgより選択された少なくとも一つ以上の元素を含む;Mは、Ti、Si、Mn、Co、Fe、V、Cr、Mo、Ni、Nd、Al、Mg、As、Sb、Si、Ge、V及びSより選択された少なくとも一つ以上の元素を含む;Mは、Fを選択的に含むハロゲン族元素を含む;0<a≦2、0≦x≦1、0≦y<1、0≦z<1;化学量論係数a、x、y及びzは、化合物が電気的中性を維持するように選択される。)、またはLi(PO[Mは、Ti、Si、Mn、Fe、Co、V、Cr、Mo、Ni、Al及びMgより選択された少なくとも一つの元素を含む。]で表されるリチウム金属ホスフェートであり得る。
望ましくは、正極活物質は、一次粒子及び/または一次粒子が凝集した二次粒子を含み得る。
一例で、負極活物質は、炭素材、リチウム金属またはリチウム金属化合物、ケイ素またはケイ素化合物、すずまたはすず化合物などを使用し得る。電位が2V未満であるTiO、SnOのような金属酸化物も負極活物質として使用可能である。炭素材としては、低結晶性炭素、高結晶性炭素などがいずれも使用され得る。
分離膜は、多孔性高分子フィルム、例えば、エチレン単独重合体、プロピレン単独重合体、エチレン/ブテン共重合体、エチレン/ヘキセン共重合体、エチレン/メタクリレート共重合体などのようなポリオレフィン系高分子から製造した多孔性高分子フィルムを単独でまたはこれらを積層して使用し得る。他の例で、分離膜は、通常の多孔性不織布、例えば、高融点のガラスファイバー、ポリエチレンテレフタレート繊維などからなる不織布を使用し得る。
分離膜の少なくとも一表面には、無機物粒子のコーティング層を含み得る。また、分離膜自体が無機物粒子のコーティング層からなることも可能である。コーティング層を構成する粒子は、隣接する粒子の間にインタースティシャルボリューム(interstitial volume)が存在するようにバインダーと結合した構造を有し得る。
無機物粒子は、誘電率が5以上である無機物からなり得る。この非制限的な例として、前記無機物粒子は、Pb(Zr,Ti)O(PZT)、Pb1-xLaZr1-yTi(PLZT)、PB(MgNb2/3)O‐PbTiO(PMN‐PT)、BaTiO、ハフニア(HfO)、SrTiO、TiO、Al、ZrO、SnO、CeO、MgO、CaO、ZnO及びYからなる群より選択された少なくとも一つ以上の物質を含み得る。
図22は、第5実施例及び第6実施例(これらの変形例)の電極のうちいずれか一つを正極及び負極に適用したゼリーロールタイプの電極組立体をY軸方向(巻取軸方向)に沿って切った断面図である。
図22を参照すれば、正極非コーティング部143aは、電極組立体200のコアに隣接する第1部分B1と、電極組立体200の外周表面に隣接する第2部分B3と、第1部分B1と第2部分B3との間に介在された第3部分B2と、を含む。
第1部分B1の高さは、第3部分B2の高さよりも相対的に小さい。また、第3部分B2において最内側に位置した正極非コーティング部143aの折曲長さは、第1部分B1の半径方向の長さRと同一であるか、または小さい。折曲長さH’は、正極非コーティング部143aが折り曲げられる地点から正極非コーティング部143aの上端までの距離である。変形例において、折曲長さH’は、第1部分B1の半径方向の長さRとコアC半径の10%を合算した値よりも小さくてもよい。
したがって、第3部分B2が折り曲げられても電極組立体200のコアCはその直径の90%以上が外部に開放される。コアCは、電極組立体200の中心に存在し、空洞を備える。コアCの空洞が閉塞されなければ、電解質注液工程が容易であり、電解液注液の効率が向上する。また、コアCから溶接ジグを挿入して負極(または正極)側の集電板と電池ハウジング(または電極端子)との溶接工程を容易に行うことができる。
第2部分B3の高さは、第3部分B2の高さよりも相対的に小さい。これによって、電池ハウジングのビーディング部が第2部分B3の近傍で加圧される過程でビーディング部と第2部分B3が互いに接触して内部短絡が起こる現象を防止することができる。
負極非コーティング部143bは、正極非コーティング部143aと同じ構造を有する。一変形例において、負極非コーティング部143bは、従来の電極構造や他の実施例(変形例)の電極構造を有し得る。
一変形例において、第2部分B3の高さは、図22に示したものと異なり、漸進的にまたは段階的に減少し得る。また、図22には、第3部分B2の高さが外周側の一部が同一であるが、第3部分B2の高さは、第1部分B1と第3部分B2の境界から第3部分B2と第2部分B3の境界まで漸進的にまたは段階的に増加し得る。第3部分B2が複数の分節片に分割されているとき、正極非コーティング部143aの高さが変わる区間は、分節片の高さ可変区間E2になる。
より詳しくは、電極組立体200は、巻取軸方向による断面を基準にして、半径方向に沿って順次に、分節片が存在しない分節片省略区間E1と、分節片の高さが可変する高さ可変区間E2と、分節片の高さが均一な高さ均一区間E3と、を含む。
正極非コーティング部143aと負極非コーティング部143bの端部201は、電極組立体200の半径方向、例えば、外周側からコア側へ折曲加工され得る。この際、第1部分B1と第2部分B3は折り曲げられない。
前述した複数の分節片161、161’は、高さ可変区間E2と高さ均一区間E3に配置され、電極組立体200の半径方向に沿って折り曲げられることで折曲表面領域(図21のF)を形成するようになる。分節片161、161’の折り曲げによって形成された折曲表面領域Fに集電板を広い面積で溶接した構造が適用可能であるため、それを含む電極組立体200のエネルギー密度が向上し、抵抗が減少できる。
第3部分B2が複数の分節片を含む場合、折曲応力が緩和することによって、折曲地点近傍の正極非コーティング部143aと負極非コーティング部143bの破れ、または異常変形を防止することができる。また、分節片161、161’の幅及び/または高さ及び/または離隔ピッチが上述した実施例の数値範囲によって調節される場合、分節片161、161’がコアC側へ折り曲げられて溶接強度を充分に確保可能な程度で多重に重畳され、折曲表面領域に穴(隙間)を形成しない。
本実施例において、分節片省略区間E1は第1部分B1に対応する。
一方、電極組立体200から高さ可変区間E2が省略された変形例も可能である。
図23は、本発明の第5実施例による電極の変形構造を示した平面図である。
図23において、変形例の電極180は、分節片161の高さが均一であり、図22のような電極組立体200に製造する場合、高さ可変区間E2なく分節片省略区間E1と高さ均一区間E3のみを含むようになることを除いては、残りの構成は実質的に同一である。これによって、特に言及しない限り、第5実施例の構成は、本変形例にも同一に適用可能である。また、第2部分B3が分節片に分割されておらず、第1部分B1の高さと第2部分B3の高さは同一である。
図23に最大電流経路のL1とL2を示した(第1経路と第2経路の連結位置は▲で示し、電極の端部地点は■で示した。)。
図23のような構造を有する電極180において、第1部分B1の長さdB1を変化させて実施例及び比較例の二次電池を製造した後、AC抵抗とDC抵抗と低温サイクルと急速充電サイクルとを実験した。分節片161の個数は115個であり、分節片161の幅は、最も広い幅が8mm、分節片161の高さは6mmにした。負極集電体は銅であって、その厚さは10μmであり、正極集電体はアルミニウムであって、その厚さは15μmであり、各集電体でL1にほぼ近い短辺の長さは65mm、長辺の長さは4mにした。正極活物質としてはリチウム複合遷移金属酸化物を含み、負極活物質としては黒鉛を含むものを用いた。分離膜は、ポリオレフィン分離膜を用いた。電解液は、エチレンカーボネート(EC)と、ジメチルカーボネート(DMC)と、エチルメチルカーボネート(EMC)と、を20:70:10の体積で混合した溶媒に1.4M LiPFが溶解されたものを用いた。
例えば、AC抵抗評価は、通常使用する交流インピーダンス(AC Impedence)測定器を用いて周波数1kHzの交流を印加して測定し得る。本実験においては、200mA電流(0.1C)でフォーメーション(formation)を行った後、4.2V、666mA(0.3C、0.05Cカットオフ)の条件でCC/CV充電と、2.5V、666mA(0.3C)の条件でCC放電を3回反復した。その後、25℃の温度条件、SOC(State Of Charge)50%状態でマルチインピーダンスアナライザー(Multi impedance analyzer、Biologic社、モデル:VMP3)を用いて10mHz~100kHzの範囲でAC抵抗を測定した。
例えば、DC抵抗評価は、通常使用するDC抵抗測定器を用いて電極の表面に探針を載せて電流が電極の表面のみに流れるようにして測定し得る。本実験においては、完全充電された二次電池を常温でSOC50%まで放電し、0.5Cの電流で10秒間放電させる場合に発生する電圧降下を記録し、オームの法則(R=V/I)を用いて計算されるDC抵抗(DC-IR)値を測定した[放電パルス(0.5Cパルスを10秒間印加)、DC-IR=(V0-V1)/I、V0は放電パルス以前の電圧、V1は放電パルス印加後の電圧である。]。
低温サイクル性能(低温寿命特性評価)は、200mA電流(0.1C)でフォーメーションを行った後、4.2V、666mA(0.3C、0.05Cカットオフ)の条件でCC/CV充電と、2.5V、666mA(0.3C)の条件でCC放電を10℃で300回(サイクル)反復した。その後、一番目の放電容量を初期容量にして、初期容量に対する300番目の放電容量を比較して容量維持率%で計算した。放電容量測定は、PNE-0506充放電器(製造社:(株)PNEソリューション、5V、6A)のような機器を使用し得る。
急速サイクル性能は、SOC10%からSOC80%になるまで25分間急速充電を行ってからSOC10%まで放電する過程を500回反復した。全ての充放電はCCで行った。500回のサイクル後、充電容量変化率を%に計算した。
実施例1の二次電池は、L2を決定する第1部分B1の長さdB1が556mmであり、比較例1の二次電池は、第1部分B1の長さdB1が680mmであり、比較例2の二次電池は、第1部分B1の長さdB1が920mmであった。実施例1は、第1部分B1の長さdB1が556mmであることから、シミュレーションによって確認した電極タブ未定義区間143a2の長さである660mm以下を満たす。比較例1と比較例2は、第1部分B1の長さdB1がシミュレーションによって確認した電極タブ未定義区間143a2の長さである660mmよりも大きい。
表1に、実施例1、比較例1及び比較例2の条件と実験結果値を整理して示した。
表1を参照すると、実施例1の場合、AC抵抗が1.5mΩであり、DC抵抗が3.6mΩで測定された。シミュレーションによる結果のようにAC抵抗が2mΩ以下を満たしており、DC抵抗も二次電池の最小抵抗の要求条件(DC抵抗が4mΩ以下であり、AC抵抗が3mΩ以下であること)を満たす。
比較例1で測定されたDC抵抗は3.9mΩであり、AC抵抗は1.7mΩであることから、二次電池の最小抵抗の要求条件を満たすが、低温サイクルが76%であり、急速充電サイクルが83%であることから、低温サイクルが82%であり、急速充電サイクルが87%である実施例1と比較して性能が劣った。特に、急速充電サイクルの観点で実施例1のように第1部分B1の長さdB1が660mm以下であるときに有利になることが分かる。
比較例2で測定されたDC抵抗は4.3mΩであることから、二次電池の最小抵抗の要求条件を満たしておらず、低温サイクルが58%であり、急速充電サイクルが64%で測定されたことから、比較例1よりも性能が劣った。即ち、第1部分B1の長さdB1が660mmを超えて増加するほど(680mm→920mm)抵抗が増加し、低温サイクル及び急速充電サイクル性能が劣ることが分かる。
このように、本発明の実施例よって第1部分B1の長さdB1を所定の範囲にして電流経路の割合L2/L1を11以下にするときに二次電池の最小抵抗の要求条件を満たす低抵抗セルの設計が可能であり、低温サイクルと急速充電サイクルの観点からも優秀な性能を有することができることから、電気自動車に適用するためにフォームファクターを増加させた円筒形二次電池への製造に適することを確認することができる。
本発明の実施例による多様な電極組立体の構造は円筒形二次電池に適用され得る。
望ましくは、円筒形二次電池は、例えば、フォームファクターの比(円筒型二次電池の直径を高さで割った値、即ち、高さHに対する直径Φの割合に定義される。)が約0.4よりも大きい円筒形二次電池であり得る。
望ましくは、円筒形二次電池の直径は40mm~50mmであり、高さは60mm~130mmであり得る。一実施例による円筒形二次電池のフォームファクターは、例えば、46110、4875、48110、4880または4680であり得る。フォームファクターを示す数値において、最初の数字二つは二次電池の直径を示し、残りの数字は二次電池の高さを示す。
フォームファクターの比が0.4を超過する円筒形二次電池にタブレス構造の電極組立体を適用する場合、非コーティング部を折り曲げるとき、半径方向へ加えられる応力が大きくて非コーティング部が破れやすい。また、非コーティング部の折曲表面領域に集電体を溶接するに際し、溶接強度を充分に確保して抵抗を低めるためには、折曲表面領域で非コーティング部の積層数を充分に増加させる必要がある。このような要求条件は、本発明の実施例(変形例)による電極と電極組立体によって達成可能である。特に、このような要求条件は、電流経路の割合(L2/L1)が11以下になるようにすることで達成可能であるので、低抵抗設計が可能である。
本発明の一実施例による二次電池はほぼ円柱状の二次電池であって、その直径が約46mmであり、その高さは約110mmであり、フォームファクターの比が0.418である円筒形二次電池であり得る。
他の実施例による二次電池はほぼ円柱状の二次電池であって、その直径が約48mmであり、その高さは約75mmであり、フォームファクターの比が0.640である円筒形二次電池であり得る。
また、他の実施例による二次電池はほぼ円柱状の二次電池であって、その直径が約48mmであり、その高さが約110mmであり、フォームファクターの比が0.436である円筒形二次電池であり得る。
また、他の実施例による二次電池はほぼ円柱状の二次電池であって、その直径が約48mmであり、その高さは約80mmであり、フォームファクターの比が0.600である円筒形二次電池であり得る。
さらに他の実施例による二次電池はほぼ円柱状の二次電池であって、その直径が約46mmであり、その高さが約80mmであり、フォームファクターの比が0.575である円筒形二次電池であり得る。
従来には、フォームファクターの比が約0.4以下である二次電池が用いられていた。即ち、従来には、例えば、18650二次電池、21700二次電池などが用いられた。18650二次電池の場合、その直径が約18mmであり、その高さが約65mmであり、フォームファクターの比が0.277である。21700二次電池の場合、その直径が約21mmであり、その高さは約70mmであり、フォームファクターの比は0.300である。
以下、本発明の実施例による円筒形二次電池について詳しく説明する。
図24は、本発明の一実施例による円筒形二次電池の断面図である。図24の二次電池300は、第5実施例及び第6実施例(これらの変形例)の電極のうちいずれか一つを正極及び負極に適用したゼリーロールタイプの電極組立体である電極組立体200を含んでいる。図24は、このような二次電池300を巻取軸方向に沿って切った断面図である。
図24を参照すると、電極組立体200において正極非コーティング部143aと負極非コーティング部143bは互いに反対方向に配置される。そして、正極非コーティング部143aと負極非コーティング部143bは、分離膜(図7の60参照)の外部に露出する。このような電極組立体200は、正極非コーティング部143aと負極非コーティング部143bの一部のみが電極タブとして定義されて用いられ得る。例えば、正極非コーティング部143aの一部のみが正極電極タブとして、負極非コーティング部143bの一部のみが電極タブとして使用され得る。
また、二次電池300は、電極組立体200を収納し、負極非コーティング部143bと連結された円筒形の電池ハウジング305を含む。電池ハウジング305は、導電性の金属材料からなる。一例で、電池ハウジング305は、鉄、ニッケルめっき鉄またはステンレススチール(SUS)からなり、電池缶であり得るが、本発明はこれに限定されない。
望ましくは、電池ハウジング305の一側(本実施例の下部)は開放されることで開放部を形成する。電池ハウジング305において、前記開放部の反対側は閉鎖部である。本実施例において、前記閉鎖部は、電池ハウジング305の底部310である。電池ハウジング305の底部310は、円形である。電池ハウジング305の側面(外周面)と底部310は一体に形成され得る。電池ハウジング305の底部310は、ほぼフラットな形態を有する。電池ハウジング305は、前記開放部から電極組立体200を収納し、電解質も共に収容する。電池ハウジング305の側面は、底部310から一定の長さで延びている。
電池ハウジング305の底部310は、正極端子315がカシメ工程によって貫通孔320にリベッティングされた構造を有する。また、二次電池300は、正極端子315と貫通孔320の間に介在されたリベットガスケット325を含み得る。
正極端子315は、導電性金属材料からなる。一例で、正極端子315は、アルミニウムを主成分にする素材からなり得るが、本発明はこれに限定されない。正極端子315は、リベッティング加工が容易であり、抵抗が低い10系のアルミニウム合金からなり得る。正極端子315の一部は電池ハウジング305の内部に挿入されており、他の一部は、電池ハウジング305の外部に露出している。
リベットガスケット325は、絶縁性及び弾性を有する高分子樹脂からなり得る。一例で、リベットガスケット325は、ポリプロピレン、ポリブチレンテレフタレート、ポリフルオル化エチレンなどからなり得るが、本発明はこれらに限定されない。
二次電池300は、正極非コーティング部143aと連結される正極集電板330を含む。正極非コーティング部143aと正極集電板330との連結は、溶接方式で行い得る。正極集電板330は、正極非コーティング部143aの電極タブ定義区間と連結される。正極集電板330は、正極端子315とも連結される。正極集電板330と正極端子315とは、レーザー溶接方式によって連結される。正極集電板330は、正極集電体及び/または正極端子315と同種の金属であるか、またはこれらとの溶接が容易な材質であり得る。例えば、正極集電板330は、アルミニウムを主成分にする素材からなり得る。例えば、鉄、ニッケルめっき鉄またはSUSなどであり得る。正極端子315は、正極集電板330を介して正極非コーティング部143aと連結される。
また、二次電池300は、電池ハウジング305から絶縁可能に電池ハウジング305の開放部を封止する封止体335を含み得る。望ましくは、封止体335は、無極性のキャッププレート340と、キャッププレート340の周縁部と電池ハウジング305の開放部との間に介在された封止ガスケット345を含み得る。
キャッププレート340は、アルミニウム、鉄、ニッケルめっき鉄またはSUSなどの導電性金属材料からなり得る。また、封止ガスケット345は、絶縁性及び弾性を有するポリプロピレン、ポリブチレンテレフタレート、ポリフルオル化エチレンなどからなり得る。しかし、本発明がキャッププレート340と封止ガスケット345の素材によって限定されることではない。キャッププレート340は、電池ハウジング305の開放部をカバーし得る。キャッププレート340は、伝導性の金属材質である場合にも、極性を有さない。極性を有さないということは、キャッププレート340が電極組立体200と連結されないことを意味し得る。また、電池ハウジング305及び正極端子315と電気的に絶縁されていることを意味し得る。極性を有さないため、キャッププレート340は、電極端子として機能しない。キャッププレート340は、電極組立体200及び電池ハウジング305と連結されなくてもよく、その材質が必ずしも伝導性金属である必要はない。
キャッププレート340は、電池ハウジング305の内部の圧力が臨界値を超過すると破裂するベント切欠き350を含み得る。ベント切欠き350は、キャッププレート340の一面または両面に形成され得る。ベント切欠き350は、キャッププレート340の表面で連続的または不連続的な円形パターン、直線パターンまたはその他のパターンを形成し得る。例えば、ベント切欠き350は、一定の幅を有するほぼ円形のリング状に形成され得る。このような円形のリング状のベント切欠き350は、キャッププレート340の中心と同じ中心を有してもよく、キャッププレート340の半径よりも小さい半径を有する。
ベント切欠き350の深さと幅などを制御して電池ハウジング305の破断圧を制御し得る。例えば、ベント切欠き350は、電池ハウジング305の内部の圧力が15~35kgf/cmの範囲になると破裂するように設定され得る。ベント切欠き350は、ノッチングによって部分的に電池ハウジング305の厚さを減少させることで形成し得る。ベント切欠き350は、厚さ勾配を有し得る。厚さ勾配とは、ベント切欠き350の断面が、予め決められた水平面を基準にして一定な角度を有して傾斜して形成されているという意味である。このようなベント切欠き350は、電池ハウジング305の内部圧力の異常上昇時に破断され、内部のガスを全て外部へ排出させる。
電池ハウジング305は、封止体335を固定するために、電池ハウジング305の内側へ延びて曲げられており、封止ガスケット345と共にキャッププレート340の周縁部を囲んで固定するクリンピング部(crimping part)355を含み得る。望ましくは、キャッププレート340の下面は、クリンピング部355の下端よりも上方に位置し得る。そのような場合、キャッププレート340の下部にベント空間が形成され、ベント切欠き350が破裂したとき、ガス排出が円滑に行われ得る。
また、電池ハウジング305は、開放部に隣接する領域に電池ハウジング305の内側に向かって圧入されたビーディング部(beading part)360をさらに含み得る。ビーディング部360は、電池ハウジング305の内側へ凹んでいる。ビーディング部360は、封止体335がクリンピング部355によって固定されるとき、封止体335の周縁部、特に、封止ガスケット345の外周面を支持する。
また、二次電池300は、負極非コーティング部143bと連結される負極集電板365をさらに含み得る。負極非コーティング部143bと負極集電板365との連結は、溶接方式で行い得る。負極集電板365は、負極非コーティング部143bの電極タブ定義区間と連結される。負極集電板365は、負極集電体と同種金属であるか、またはそれと溶接が容易な材質であり得る。例えば、銅または銅合金、ニッケルまたはニッケル合金、鉄、SUSまたはこれらの複合材質であり得る。望ましくは、負極集電板365は、負極非コーティング部143bと接触しない縁部の少なくとも一部365aがビーディング部360と封止ガスケット345との間に介在されてクリンピング部355によって固定され得る。選択的に、負極集電板365の縁部の少なくとも一部365aは、クリンピング部355と隣接するビーディング部360の内周面360aに溶接によって固定され得る。これによって、負極集電板365は、電池ハウジング305とも連結され、電池ハウジング305は、負極集電板365によって負極非コーティング部143bと連結される。また、負極集電板365は、その中心部に集電板孔(図示せず)を備え得る。集電板孔は、コアCの空洞を遮らない。負極集電板365は、集電板孔を含むことで正極集電板330を正極端子315に溶接する段階でレーザービームを通過させ、レーザービームが正極集電板330に到達するようにする。
各集電板330、365は、電極組立体200の各電極に発生した電流を正極端子315と電池ハウジング305へ誘導する。各集電板330、365は、各電極の端部である正極非コーティング部143aと負極非コーティング部143bから電流を導出するために接続される部品である。正極非コーティング部143a及び負極非コーティング部143bに各集電板330、365を溶接方式などによって連結して直接的に接続させることで電流を導入及び導出する構造であるため、別の集電タブが不要である。これによって、集電タブの取付工程が不要となるので、生産性の向上を図ることができる。また、集電タブを収納するための空間を減らすことができ、電池構造が全体的にコンパクトになり、空間活用性がよくなる。
また、二次電池300は、正極端子315及び電池ハウジング305の外面310aにおいて正極端子315が占める領域を除いた残りの領域を各々正極端子及び負極端子として利用可能な構造を有する。即ち、電池ハウジング305の開放部の反対側の表面のほとんどを負極端子として利用可能な構造を有する。これによって、電気的配線のためにバスバーのような連結のための部品を溶接できる十分な面積の確保が可能であるという長所を有する。
正極端子315によって、電池ハウジング305内の空間効率性を増大させることができる。そのため、それを含む二次電池300の内部抵抗を低めてエネルギー密度を増加させることができる。正極端子315は、電流経路の断面積を拡大するように改善されたものであり得る。これによって、それを含む二次電池300は、急速充電時に生ずる内部発熱の問題が改善される。
正極端子315は、貫通孔320に挿入された本体部315aと、電池ハウジング305の底部310の外面310aに露出した本体部315aの一側の周縁から外面310aに沿って延びた外部フランジ部315bと、電池ハウジング305の底部310の内面310bに露出した本体部315aの他側の周縁から内面310bに向かって延びた内部フランジ部315cと、内部フランジ部315cの内側に備えられた平坦部315dと、を含み得る。
望ましくは、正極集電板330の少なくとも一部は、正極端子315の平坦部315dとレーザー溶接されて結合し得る。望ましくは、平坦部315dと電池ハウジング305の底部310の内面310bは、互いに平行であり得る。ここで、「平行」とは、目視で観察したとき、実質的に平行であることを意味する。
平坦部315dの直径は3mm~14mmであり得る。平坦部315dは、溶接可能領域の大きさを決定し得る。溶接可能領域の直径が3mmよりも小さいと、適切な溶接強度を確保しにくくなる恐れがある。溶接可能領域の直径が14mmを超過すると、正極端子315の外部フランジ部315bの直径が大きすぎて負極端子として使用される電池ハウジング305の底部310の外面310aの面積を十分に確保しにくい。
平坦部315dを正極集電板330と連結するのにレーザー溶接が用いられる。電池ハウジング305の開放部から電極組立体200が挿入された状態で電池ハウジング305の開放部が開放されている状態でレーザー溶接が行われ得る。レーザー溶接時、レーザービームは電極組立体200のコアCに存在する空洞を通して正極集電板330の溶接領域に到達し得る。正極集電板330は、正極端子315の平坦部315dに溶接されるとき、正極端子315が正極集電板330の溶接領域を支持し得る。また、正極端子315の平坦部315dは面積が広いため、溶接領域も広く確保可能である。これによって、溶接領域の接触抵抗を低めることで二次電池300の内部抵抗を低めることができる。リベッティングされた正極端子315と正極集電板330の面対面の溶接構造は、急速充電に非常に有用である。電流が流れる方向の断面における単位面積当たりの電流密度を低めることができるので、電流経路で発生する発熱量を従来よりも低めることができるためである。
また、正極端子315のリベッティング構造が適用された二次電池300は、一側方向で電気的配線を行い得る。二次電池300は、封止体335のキャッププレート340が極性を有さない。その代わり、負極集電板365が電池ハウジング305に連結されているため、電池ハウジング305の底部310の外面310aが正極端子315とは反対極性を有する。これによって、複数の二次電池300を連結するに際し、一方向で正極/負極を共に連結可能であるため、連結構造を簡素化することができる。これによって、バッテリーパックの製造のために複数個の二次電池300を直列及び/または並列に接続しようとするとき、電池ハウジング305の底部310の外面310aと正極端子315を用いて二次電池300の上部でバスバー連結などの配線を行い得る。これによって、同じ空間に搭載可能な二次電池の数を増加させてエネルギー密度を向上させることができ、電気的配線作業を容易に行うことができる。したがって、空間効率が良好であり、電気的配線の効率性が高いので、電気自動車の組立過程、そしてバッテリーパックの組立て及びメインテナンス時に相当な作業改善の効果を奏する。
さらに、電気的配線は、電池ハウジング305の底部310の外面310aと正極端子315が位置した側で行い、その反対側に位置したキャッププレート340には電気的配線を設けなくてもよいので、キャッププレート340に形成されたベント切欠き350の効果を極大化することができる。また、キャッププレート340側にヒートシンクや冷却板やトレイなどを配設すると、電気的配線連結部位と関係なく組立て及び冷却などの目的を効果的に達成することができる。また、ベント切欠き350が下方に位置するように組み立てることで二次電池の内部から排出されるガスは下方へ排出されるようになる。通常、二次電池は、EVなど車両の搭乗者よりも低い位置に搭載されるので、二次電池から上方へガスが排出されると、搭乗者に危害を加える恐れがある。しかし、本発明の二次電池300は、二次電池の内部の高圧ガスを効果的に排出可能であるだけでなく、上部の電気的配線連結部位に関わらず安全であり、ひいては、ベント切欠き350の破断によるガス排出時、ガスが下方へ排出されるので、搭乗者に危害を加えなく、安全性が大幅に向上する。
二次電池300は、電池ハウジング305の閉鎖部と正極集電板330との間に介在されるインシュレーター370をさらに含み得る。インシュレーター370は、正極集電板330と電池ハウジング305の底部310の内面310bとの間、そして電池ハウジング305の側壁の内周面305aと電極組立体200との間に介在され得る。
望ましくは、インシュレーター370は、正極端子315の平坦部315dを正極集電板330側に露出させる溶接孔370aを含み得る。また、溶接孔370aは、電極端子の平坦部315dと共に内部フランジ部315cと内部ガスケット325bを露出させ得る。望ましくは、溶接孔370aは、コアCの空洞を遮らない。これによって、二次電池の異常によって多量のガスが発生した場合、コアCの空洞を通してキャッププレート340側へ移動しようとするガスの動きを邪魔しない。そのため、多量のガス発生時、ベント切欠き350の電池内圧制御作用を円滑にし得る。また、キャッププレート340は、溶接孔370aを含むことで、正極集電板330を正極端子315に溶接する段階でレーザービームを通過させてレーザービームが正極集電板330に到達されるようにする。
望ましくは、インシュレーター370は、少なくとも正極集電板330の表面と電極組立体200の一側(上部)端部をカバーし得る。これによって、電池ハウジング305と異なる極性を有する正極集電板330と正極非コーティング部143aが互いに接触することを防止することができる。
望ましくは、インシュレーター370は絶縁性樹脂からなり、上部プレート370bと側面スリーブ370cを含み得る。一例で、上部プレート370bと側面スリーブ370cは、一体化した射出成形物であり得る。または、側面スリーブ370cは、絶縁テープなどで代替可能である。絶縁テープは、電極組立体200の外周面に露出した正極非コーティング部143aと共に正極集電板330の外側の縁部をカバーし得る。
望ましくは、インシュレーター370と電池ハウジング305の底部310の内面310bは、互いに密着し得る。ここで、「密着」とは、目視で確認される空間(隙間)がないことを意味する。空間(隙間)をなくすために、電池ハウジング305の底部310の内面310bから正極端子315の平坦部315dまで至る距離は、インシュレーター370の厚さと同一であるか、それより若干小さい値を有し得る。
一方、図24において、モジュールバスバーの溶接位置から各電極140の電極タブである正極非コーティング部143aと負極非コーティング部143bに至る経路(第1経路)を示した(電流開始点は●で示し、連結位置は▲で示した。)。電流開始点は、正極端子315及び負極端子に位置する。負極端子は、電池ハウジング305である。モジュールバスバー溶接位置が二次電池300の上端に位置する。正極端子315から始まって正極非コーティング部143aに繋がる電流経路が形成され、負極端子から始まって負極非コーティング部143bに繋がる電流経路が形成される。
図2に示した従来の円筒形二次電池と比較して前記第1経路は互いに類似であるが、電極組立体200を構成する電極140における第2経路は、図15にも示したように、図3を参照して説明した従来の第2経路及び図8を参照して説明した仮想の第2経路と有意味な差を有し、電流経路の割合L2/L1を11以下にし、このために電極タブ未定義区間の長さ、例えば、第1部分B1の長さdB1の範囲を設定することに本発明の特徴がある。
本発明においては、図1~図3を参照して説明した従来の電極構造とは異なり、電極を巻き取る前、広げられた状態を基準にして見るとき、電極の長辺側に非コーティング部からなる電極タブを形成することで電流が電極の長手方向に沿って移動することがほとんど発生しないようにして、幅方向に沿って移動するようにすることで、電流経路を最小化することができ、これによって抵抗を減少させることができる。さらに、非コーティング部の一部区間は、電極タブ未定義区間として設定することで、非コーティング部の溶接領域を折り曲げるときに変形が起こらないようにし、電極組立体のコアに存在する空洞を閉塞しないようにする。また、このような構造の電極を用いてゼリーロールタイプの電極組立体及びそれを含む円筒形二次電池を製造するに際し、電極タブ未定義区間の長さまたは隣接する分節片同士の間隔などを調節して、上述したように最大電流経路における電流経路の割合L2/L1が11以下になるようにした。
上述した実施例(変形例)による円筒形二次電池は、バッテリーパックを製造するのに使用され得る。
図25は、本発明の実施例によるバッテリーパックの構成を概略的に示した図である。
図25を参照すると、本発明の実施例によるバッテリーパック400は、二次電池401が電気的に接続された集合体及びそれを収容するパックハウジング402を含む。二次電池401は、上述した実施例(変形例)による二次電池のいずれか一つであり得る。図面では、図示の便宜上、二次電池401の電気的接続のためのバスバー、冷却ユニット、外部端子などの部品の図示は省略した。
バッテリーパック400は、自動車に搭載され得る。自動車は一例で、電気自動車、ハイブリッド自動車またはプラグインハイブリッド自動車であり得る。自動車は四輪自動車または二輪自動車を含む。
図26は、図25のバッテリーパック400を含む自動車を説明するための図である。
図26を参照すると、本発明の一実施例による自動車Vは、本発明の一実施例によるバッテリーパック400を含む。自動車Vは、本発明の一実施例によるバッテリーパック400から電力を受けて作動する。
以上、本発明を限定された実施例と図面によって説明したが、本発明はこれに限定されず、本発明の属する技術分野における通常の知識を持つ者によって本発明の技術思想と特許請求の範囲の均等範囲内で多様な修正及び変形が可能であることは言うまでもない。
100、200 電極組立体
140、150、160、170、180 電極
141 集電体
142 活物質層
143 非コーティング部
143a 正極非コーティング部
143b 負極非コーティング部
161、161’ 分節片
164 分節片省略区間
166 独立領域
300、401 二次電池
305 電池ハウジング
315 正極端子
330 正極集電板
335 封止体
340 キャッププレート
345 封止ガスケット
365 負極集電板
400 バッテリーパック

Claims (45)

  1. 正極、負極及び前記正極と前記負極との間に介在された分離膜が巻取軸を中心にして巻き取られることでコアと外周面を定義した電極組立体であって、
    前記正極または前記負極である電極は、長辺と短辺を有するシート状の集電体であって、長辺の端部に非コーティング部を含む集電体を含み、
    前記非コーティング部は、電極タブとして使用される電極タブ定義区間及び電極タブとして使用されない少なくとも一つ以上の電極タブ未定義区間を含み、
    前記少なくとも一つ以上の電極タブ未定義区間に対する最大電流経路は、前記集電体の短辺に沿う幅方向の電流経路及び前記集電体の長辺に沿う長手方向の電流経路を含み、前記幅方向の電流経路の長さ及び前記長手方向の電流経路の長さを各々L1及びL2とする場合、電流経路の割合L2/L1は、11以下であることを特徴とする、電極組立体。
  2. 前記電流経路の割合L2/L1が、10.15以下であることを特徴とする、請求項1に記載の電極組立体。
  3. 前記電流経路の割合L2/L1が、8.5以下であることを特徴とする、請求項2に記載の電極組立体。
  4. 前記電流経路の割合L2/L1が、2~5であることを特徴とする、請求項3に記載の電極組立体。
  5. 前記電極タブ未定義区間は、前記電極タブ定義区間よりも非コーティング部の高さが小さいことを特徴とする、請求項1に記載の電極組立体。
  6. 前記電極タブ未定義区間の長さの最大値が、前記正極及び前記負極の長さの4%~23%であることを特徴とする、請求項1に記載の電極組立体。
  7. 前記電極タブ未定義区間の長さの最大値が、前記正極及び前記負極の幅の2.5倍~11倍であることを特徴とする、請求項1に記載の電極組立体。
  8. 前記非コーティング部は、前記コアに隣接する第1部分と、前記外周面に隣接する第2部分と、前記第1部分と前記第2部分との間の第3部分と、を含み、
    巻取軸方向へ前記第1部分が前記第3部分よりも小さい高さを有することを特徴とする、請求項1に記載の電極組立体。
  9. 前記第3部分が、前記電極組立体の半径方向に沿って折り曲げられた状態で電極タブとして定義されることを特徴とする、請求項8に記載の電極組立体。
  10. 前記第2部分が、前記巻取軸方向へ前記第3部分と同一であるか、または小さい高さを有することを特徴とする、請求項8に記載の電極組立体。
  11. 前記第2部分及び前記第3部分が前記電極組立体の半径方向に沿って折り曲げられた状態で電極タブとして定義されることを特徴とする、請求項10に記載の電極組立体。
  12. 前記集電体の短辺の長さが60mm~85mmであり、前記集電体の長辺の長さが3m~5mであることを特徴とする、請求項8に記載の電極組立体。
  13. 前記第1部分において前記集電体の長辺に沿う長さの最大値が、前記集電体の長辺の長さの4%~23%であることを特徴とする、請求項12に記載の電極組立体。
  14. 前記第1部分において前記集電体の長辺に沿う長さが660mm以下であることを特徴とする、請求項12に記載の電極組立体。
  15. 前記第1部分が、前記電極タブ未定義区間に対応することを特徴とする、請求項8に記載の電極組立体。
  16. 前記第1部分が、前記電極組立体の半径方向に沿って折り曲げられないことを特徴とする、請求項8に記載の電極組立体。
  17. 前記第2部分が、前記電極組立体の半径方向に沿って折り曲げられないことを特徴とする、請求項8に記載の電極組立体。
  18. 前記電極組立体の巻取方向へ、前記第3部分の長さが前記第1部分の長さ及び前記第2部分の長さよりも長いことを特徴とする、請求項8に記載の電極組立体。
  19. 前記第1部分が前記集電体のコア側の短辺から始まり、前記第1部分の高さが巻取方向に沿って一定であり、前記第1部分が前記電極組立体の半径方向に沿って折り曲げられないことを特徴とする、請求項8に記載の電極組立体。
  20. 前記第3部分の少なくとも一部領域が独立的に折曲可能な複数の分節片に分割されていることを特徴とする、請求項8に記載の電極組立体。
  21. 前記分節片が、折り曲げられて前記巻取軸方向へ重ねられたことを特徴とする、請求項20に記載の電極組立体。
  22. 前記集電体の短辺の長さが60mm~85mmであり、前記集電体の長辺の長さが3m~5mであり、前記集電体の厚さが5μm~25μmであり、前記分節片の幅が10mm以下であり、前記分節片の高さが10mm以下であることを特徴とする、請求項20に記載の電極組立体。
  23. 前記第1部分において、前記集電体の長辺に沿う長さが660mm以下であることを特徴とする、請求項22に記載の電極組立体。
  24. 前記電極組立体が、前記巻取軸方向による断面を基準にして、半径方向に沿って順次に、分節片の存在しない分節片省略区間と、分節片の高さが均一な高さ均一区間と、を含み、前記複数の分節片が、前記高さ均一区間に配置され、前記電極組立体の半径方向に沿って折り曲げられることで折曲表面領域を形成することを特徴とする、請求項20に記載の電極組立体。
  25. 前記電極組立体が、前記分節片省略区間と前記高さ均一区間との間に分節片の高さが可変する高さ可変区間をさらに含み、前記複数の分節片が、前記高さ可変区間及び前記高さ均一区間に配置され、前記電極組立体の半径方向に沿って折り曲げられることで折曲表面領域を形成することを特徴とする、請求項24に記載の電極組立体。
  26. 前記分節片省略区間が、前記電極タブ未定義区間に対応することを特徴とする、請求項24に記載の電極組立体。
  27. 前記第2部分が分節片に分割されておらず、前記第1部分の高さと前記第2部分の高さが同一であることを特徴とする、請求項24に記載の電極組立体。
  28. 前記第3部分が、前記電極組立体の巻取方向に沿って分節片の存在しない分節片省略区間を一つ以上含むことを特徴とする、請求項20に記載の電極組立体。
  29. 前記分節片省略区間における非コーティング部の高さが、前記第1部分の高さと同一であることを特徴とする、請求項28に記載の電極組立体。
  30. 前記分節片が、前記コアを基準にして円周方向に配置されている二つ以上の扇形領域または多角形領域に位置することを特徴とする、請求項28に記載の電極組立体。
  31. 前記分節片省略区間が、前記電極タブ未定義区間に対応することを特徴とする、請求項28に記載の電極組立体。
  32. 前記コアに空洞が備えられており、前記第3部分が前記電極組立体の半径方向に沿って折り曲げられた状態で電極タブとして定義され、前記第3部分が独立的に折曲可能な複数の分節片に分割されており、折り曲げられた前記分節片が前記空洞を遮らないことを特徴とする、請求項8に記載の電極組立体。
  33. 前記第1部分において、前記集電体の長辺に沿う長さの最大値が、前記集電体の長辺の長さの4%~23%であることを特徴とする、請求項32に記載の電極組立体。
  34. 請求項1から33のいずれか一項に記載の電極組立体と、
    一側に形成された開放部から前記電極組立体を収容し、負極の非コーティング部と接続された円筒形電池ハウジングと、
    前記円筒形電池ハウジングから絶縁可能に前記円筒形電池ハウジングの開放部を封止する封止体と、
    前記円筒形電池ハウジングの前記開放部の反対側に位置する前記円筒形電池ハウジングの底部に形成された貫通孔を通してリベットされ、正極の非コーティング部と接続された正極端子と、
    を含むことを特徴とする、二次電池。
  35. 前記正極の非コーティング部が分離膜の外部に露出し、前記負極の非コーティング部が前記正極の非コーティング部と反対方向に前記分離膜の外部に露出し、
    前記正極の非コーティング部と電気的に接続された正極集電板及び前記負極の非コーティング部と電気的に接続された負極集電板をさらに含むことを特徴とする、請求項34に記載の二次電池。
  36. 前記二次電池のDC抵抗が4mΩ以下であり、AC抵抗が3mΩ以下であることを特徴とする、請求項34に記載の二次電池。
  37. 前記二次電池のAC抵抗が2mΩ以下であることを特徴とする、請求項34に記載の二次電池。
  38. 前記二次電池は、高さに対する直径の割合が0.4よりも大きいことを特徴とする、請求項34に記載の二次電池。
  39. 前記封止体が、無極性のキャッププレートと、前記キャッププレートの周縁部と前記円筒形電池ハウジングの開放部との間に介在された封止ガスケットと、を含むことを特徴とする、請求項34に記載の二次電池。
  40. 前記正極端子は、
    前記貫通孔に挿入された本体部と、
    前記円筒形電池ハウジングの底部の外面に露出した前記本体部の一側の周縁から前記外面に沿って延びた外部フランジ部と、
    前記円筒形電池ハウジングの底部の内面に露出した前記本体部の他側の周縁から前記内面に向かって延びた内部フランジ部と、
    前記内部フランジ部の内側に備えられた平坦部と、
    を含むことを特徴とする、請求項34に記載の二次電池。
  41. 前記二次電池が、前記正極の非コーティング部と電気的に接続された正極集電板及び前記負極の非コーティング部と電気的に接続された負極集電板をさらに含み、
    前記平坦部において、前記正極端子が前記正極集電板とレーザー溶接によって結合することを特徴とする、請求項40に記載の二次電池。
  42. 電極タブ未定義区間が、前記負極集電板及び前記正極集電板と接続しないことによって電流経路が形成されない部分であることを特徴とする、請求項35に記載の二次電池。
  43. 請求項34に記載の複数の二次電池を含むことを特徴とする、バッテリーパック。
  44. 複数の二次電池は、所定の数の列に配列され、各二次電池の正極端子と電池ハウジングの底部の外面が、上方に向かうように配置されることを特徴とする、請求項43に記載のバッテリーパック。
  45. 請求項43に記載のバッテリーパックを少なくとも一つ含むことを特徴とする、自動車。
JP2023557212A 2021-08-05 2022-08-01 電極組立体、二次電池、それを含むバッテリーパック及び自動車 Pending JP2024512489A (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
KR10-2021-0103378 2021-08-05
KR20210103378 2021-08-05
KR10-2022-0089230 2022-07-19
KR1020220089230A KR20230021584A (ko) 2021-08-05 2022-07-19 전극 조립체, 이차전지, 이를 포함하는 배터리 팩 및 자동차
PCT/KR2022/011313 WO2023014018A1 (ko) 2021-08-05 2022-08-01 전극 조립체, 이차전지, 이를 포함하는 배터리 팩 및 자동차

Publications (1)

Publication Number Publication Date
JP2024512489A true JP2024512489A (ja) 2024-03-19

Family

ID=85026928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023557212A Pending JP2024512489A (ja) 2021-08-05 2022-08-01 電極組立体、二次電池、それを含むバッテリーパック及び自動車

Country Status (6)

Country Link
US (1) US20240145783A1 (ja)
EP (1) EP4290674A1 (ja)
JP (1) JP2024512489A (ja)
CN (2) CN115706233A (ja)
CA (1) CA3222391A1 (ja)
WO (1) WO2023014018A1 (ja)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6677082B2 (en) 2000-06-22 2004-01-13 The University Of Chicago Lithium metal oxide electrodes for lithium cells and batteries
US6680143B2 (en) 2000-06-22 2004-01-20 The University Of Chicago Lithium metal oxide electrodes for lithium cells and batteries
JP4401634B2 (ja) * 2002-09-04 2010-01-20 パナソニック株式会社 蓄電池およびその製造方法
KR20050121914A (ko) * 2004-06-23 2005-12-28 삼성에스디아이 주식회사 이차 전지와 이에 사용되는 전극 조립체
KR100599749B1 (ko) * 2004-06-23 2006-07-12 삼성에스디아이 주식회사 이차 전지와 이에 사용되는 전극 조립체
KR101743136B1 (ko) * 2014-07-16 2017-06-02 주식회사 엘지화학 내부 저항이 감소된 이차전지 및 그의 제조방법
KR102264701B1 (ko) * 2016-07-20 2021-06-11 삼성에스디아이 주식회사 이차전지
KR102367537B1 (ko) 2020-02-13 2022-02-25 한양대학교 에리카산학협력단 자성 입자 및 이의 제조 방법
KR20220089230A (ko) 2020-12-21 2022-06-28 엘지디스플레이 주식회사 데이터구동부를 포함하는 표시장치

Also Published As

Publication number Publication date
US20240145783A1 (en) 2024-05-02
CN115706233A (zh) 2023-02-17
CA3222391A1 (en) 2023-02-09
CN218414640U (zh) 2023-01-31
EP4290674A1 (en) 2023-12-13
WO2023014018A1 (ko) 2023-02-09

Similar Documents

Publication Publication Date Title
EP4047725B1 (en) Battery, and battery pack and vehicle including the same
US20230133740A1 (en) Electrode assembly, battery, and battery pack and vehicle including the same
US20240128605A1 (en) Electrode assembly, battery, and battery pack and vehicle including the same
EP4366073A1 (en) Cylindrical battery cell, and battery pack including same and vehicle including same and current collector plate
JP2023549100A (ja) 二次電池、及びこれを含む電池パック及び自動車
CN116888786A (zh) 电极组件、电池以及包括该电池的电池组和车辆
JP2024512489A (ja) 電極組立体、二次電池、それを含むバッテリーパック及び自動車
EP4290630A1 (en) Electrode assembly, battery, and battery pack and vehicle comprising same
KR20230021584A (ko) 전극 조립체, 이차전지, 이를 포함하는 배터리 팩 및 자동차
EP4297173A1 (en) Secondary battery, and battery pack and vehicle comprising same
US20240006721A1 (en) Cylindrical battery cell, battery pack and vehicle including the same, and method for manufacturing the same
JP2023549142A (ja) 二次電池、及びこれを含む電池パック及び自動車
JP2024506959A (ja) 電解液含浸性が優秀な電極組立体及びそれを含むバッテリー、バッテリーパック及び自動車
JP2023553034A (ja) 電極組立体、バッテリーセル、バッテリーパック、および自動車
KR20240034735A (ko) 원통형 배터리, 배터리 팩 및 자동차
KR20240011650A (ko) 원통형 배터리, 배터리 팩 및 자동차

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230915