JP2024508872A - 脈波信号を分析して血圧の指標及び/又は血圧変化を決定する方法、装置及びコンピュータプログラム製品 - Google Patents

脈波信号を分析して血圧の指標及び/又は血圧変化を決定する方法、装置及びコンピュータプログラム製品 Download PDF

Info

Publication number
JP2024508872A
JP2024508872A JP2023553077A JP2023553077A JP2024508872A JP 2024508872 A JP2024508872 A JP 2024508872A JP 2023553077 A JP2023553077 A JP 2023553077A JP 2023553077 A JP2023553077 A JP 2023553077A JP 2024508872 A JP2024508872 A JP 2024508872A
Authority
JP
Japan
Prior art keywords
blood pressure
cardiac cycle
change
pulse wave
average
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023553077A
Other languages
English (en)
Inventor
レネ マルティヌス マリア デルクス
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Koninklijke Philips NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips NV filed Critical Koninklijke Philips NV
Publication of JP2024508872A publication Critical patent/JP2024508872A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/02108Measuring pressure in heart or blood vessels from analysis of pulse wave characteristics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7246Details of waveform analysis using correlation, e.g. template matching or determination of similarity
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/02Operational features
    • A61B2560/0223Operational features of calibration, e.g. protocols for calibrating sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7242Details of waveform analysis using integration

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Cardiology (AREA)
  • Engineering & Computer Science (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Physiology (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Vascular Medicine (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Psychiatry (AREA)
  • Signal Processing (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

一態様によれば、被験者から得られた脈波信号PWSを分析して被験者の血圧の指標又は血圧の変化を決定するためのコンピュータ実施方法が提供される。PWSは、第1の期間における被験者の複数の心周期に関する脈波測定値を含む。当該方法は、(i)PWSを分析して、第1の期間における第1の時点に関する第1の平均心周期波形及び第1の期間における第2の時点に関する第2の平均心周期波形を決定するステップ111;(ii)第1の平均心周期波形から第2の平均心周期波形への形態変化を表す差分信号を決定するステップ113;(iii)該差分信号から形態変化の絶対値を決定するステップ115;(iv)該形態変化の方向を決定するステップ117;及び(v)該形態変化の絶対値及び方向を組み合わせることにより相対血圧変化を決定するステップ119を有する。

Description

本開示は、被験者から得られる、被験者の複数の心周期に関する脈波測定値を含む脈波信号に関する。より詳細には、本開示は、脈波信号を分析して被験者の血圧の指標及び/又は血圧変化を決定するための方法、装置及びコンピュータプログラム製品に関する。
血圧(BP)は、人/被験者の健康の重要な指標である。米国では、成人人口の約30%が高血圧であると推定されている。高血圧は、明らかな外見上の症状がない一般的な健康問題である。一般的に血圧は加齢とともに上昇し、晩年に高血圧になるリスクは相当なものである。持続的な高血圧は、脳卒中、心不全、死亡率の増加の主要な危険因子の1つである。被験者の状態は、ライフスタイルの変更、健康的な食事の選択及び投薬により改善できる。特に、ハイリスク患者にとって、通常の日常生活活動を妨げないシステムによる継続的な24時間血圧モニタリングは非常に重要である。血圧の継続的なモニタリングは、病院等の医療環境、例えば手術室(OR)又は集中治療室(ICU)における患者にとっても有用である。低血圧は、重要な臓器への酸素供給の低下につながり得、臓器損傷を生じさせ得る。過度に高い血圧は、特に脳手術における外科的手順の間及び後に防止されるべき出血を生じさせ得る。
幾つかのケースでは、血圧の絶対測定値を取得することができ、他のケースでは、血圧の相対測定値、例えば血圧の変化の測定値を取得することができる。特に、血圧は短い時間窓(ウィンドウ)にわたり(例えば数分程度の)変化し得、これらの変化は更なる医療検査及び恐らくは医療介入治療に関連し得る。
血圧及び/又は血圧の変化を測定するために利用できる多数の異なる技術が存在する。これらの技術の幾つかは血圧自体を測定する一方、他の技術は被験者の他の生理学的特徴を測定し、例えば生理学的特徴の変化又は値を血圧の変化又は値に関連付けることにより、これらを血圧の代用として使用する。血圧を直接測定する技術の幾つかは、被験者の動脈への侵襲的アクセス、又は膨張可能なカフ等の嵩張る/不便な機器の使用を必要とする。しかしながら、血圧の代用として使用される生理学的特性の幾つかは、被験者の身体に取り付けられる簡単な及び/又は目立たないセンサを使用して測定できる。
眼圧測定は、外部に配置される力又は圧力センサを使用して、動脈に圧力が加えられる際の動脈の拡張(すなわち、動脈の拡張を表す波形)を測定する。他の例として、1以上の光電脈波計(PPG)センサを身体の一部上に配置して、複数の心臓周期(心周期)の間の当該身体部分における血流量の変化を表す1以上のPPG信号を取得することもできる。これらの技術の両者とも、被験者から該被験者の複数の心周期をカバーする脈波信号(PWS)を取得する。この脈波波形/信号を分析して、代用的血圧測定値として使用される1以上の生理学的特性を決定することができる。
代用的血圧測定値として使用できる1つの生理学的特性は、脈波速度(PWV)である。心臓が鼓動すると、大動脈及び他の動脈系の血液を介して脈波が生成される。該脈波の速度(脈波速度と呼ばれる)は、血液(液体)特性及び一部の動脈特性(直径及び順応性等)により影響を受ける。これらの血液特性及び動脈特性は血圧にも影響され、したがって、PWVの変化は血圧の変化に関連付けることができる。
PWVを測定するための幾つかの技術は、2点又はデュアルスポット手法を使用する。これには、2つの信号を同時にキャプチャするために2つのセンサ(例えば、PPGセンサ)が必要とされる。第1のセンサからの信号は、例えば心臓に近い近位位置における脈波の開始を検出するために使用される。第2の信号からの信号は、遠位位置、例えば患者の指の動脈における脈波の到着を検出するために使用される。
しかしながら、測定機器による被験者の不便さを最小限に抑えるために、PWVを測定するための単点(シングルスポット)技術が開発されている。これらの技術は、動脈樹における脈波反射を利用する。大動脈から例えば指へと進行する直接的な脈波が存在する一方、最初に大動脈から腎分岐部に進行し、次いで該腎分岐部から指に進行する間接的な脈波が存在する。このようにして、間接(反射)脈波は直接脈波よりも遅く指位置に到達する。直接脈波及び間接脈波の到着時間が指で測定される場合、これら到着時間を差し引くと、大動脈弓から腎分岐部まで及びその戻りで進行するのに要する時間が得られる。反射脈波のこの余分な伝播距離の知見(又は近似)により、反射波の脈波速度を下記の式(1)により推定でき:
Figure 2024508872000002
ここで、Lhrは大動脈弓と腎分岐部との間の距離、PRTはいわゆる脈波反射時間で、直接脈波の開始(登り斜面)から間接脈波の開始(登り斜面)までの時間として定義される。PRTを計算するために必要とされる時間t及びtは、例えばPPG波形の時間に関する二重微分を介して得られるPPG測定値のいわゆる「加速度波形」を介して決定できる。
典型的に、加速度波形は、図1に示されるように、5つの「基準点」又は「参照点」からなると仮定される。図1の(a)は、重複切痕が示された1秒期間をカバーする例示的なPPG信号を示している。図1の(b)は図1の(a)のPPG信号の時間に関する一次微分を示し、図1の(c)は図1の(a)のPPG信号の時間に関する二次微分を示す。一次微分はv-PPGで示され、二次微分(加速度波形)はa-PPGで示される。上記5つの基準点が、加速度波形(図1の(c))に示されている。a点は直接脈波の開始を印し、b点は直接脈波の終了を印している。e点は収縮期の終了(大動脈弁の閉鎖)を印し、本開示の目的で、c点が反射波の開始を印す一方、d点が反射波の終了を印すものと仮定される。
図2は、シングルスポットPPG測定及び式(1)によるPWVの導出の一例を示している。図2の(a)のグラフは、ICU患者の5時間にわたる平均動脈圧(MAP)をmmHgで示している。図2の(b)のグラフは、式(1)に従ってPPG信号から計算されたPWVをm/sで示し、2Lhr(心臓から腎分岐部までの距離の2倍)を75cmと推定している。
図2では、シングルスポット測定からのMAPと脈波速度との間に強い肯定的相関関係が存在することがわかる。しかしながら、該脈波速度測定の堅牢性に疑問があり得る。特に2点測定手法から導出される脈波速度と比較した場合、脈波速度値には多数の外れ値が存在するからである。
シングルスポット脈波速度測定の問題の一部は、反射脈波の基準点を検出することが必ずしも容易ではないことである。このことは、図1の(c)のa-PPGプロットからわかる。このPPG信号の二次微分を計算すると、元のPPG信号における量子化及びノイズにより非常に劣悪な信号になる。改善された基準点検出を得るために、信号平滑化(時間的な又は複数の心周期にわたる)を適用することができる。このような平滑化の後に、基準点をロバストに検出することが可能となる。しかしながら、c点及びd 点(これらは反射波に関連する)を良好に検出するには、基準点をロバストに検出できる前に、かなりの平滑化を適用する必要がある。過度に多い時間的平滑化は高周波基準点の喪失につながる一方、複数の心周期にわたる過度に多い平均化は時間的に変化する条件下で問題が発生する。
PWVに基づいて代用的血圧測定値を取得する1つの方法は、前述したPRTに基づく手法と同様の方法で、平均化された心周期波形においてc点又はc波を検出すると共に、a点とc点との間の時間を測定することである。しかしながら、c点は常に明確な極大値として現れるとは限らない。このことは、しばしば、動脈が硬化した高齢者に当てはまる。したがって、代用的血圧測定のロバストさ及び信頼性を改善するには、平均化された心周期波形において基準点を検出する必要性を回避することが有益であり得る。したがって、平均化された心周期波形からの被験者の血圧の指標又は血圧の変化の決定を改善する必要がある。
本明細書に記載される技術は、平均心周期波形の形態変化から代用的血圧測定値を計算するための代替方法を定義することにより、代用的血圧測定値の計算における収縮後期基準点の検出の使用を回避する。
第1の特定の態様によれば、被験者から得られる脈波信号PWSを分析して該被験者の血圧の指標又は血圧の変化を決定するためのコンピュータ実施方法が提供される。前記PWSは、第1の期間における被験者の複数の心周期に関する脈波測定値を含む。当該方法は、(i)PWSを分析して、第1の期間内の第1の時点に関する第1の平均心周期波形及び第1の期間内の第2の時点に関する第2の平均心周期波形を決定するステップ;(ii)第1の平均心周期波形から第2の平均心周期波形への形態変化を表す差分信号を決定するステップ;(iii)差分信号から形態変化の絶対値を決定するステップ;(iv)形態変化の方向を決定するステップ;及び(v)形態変化の絶対値及び方向を組み合わせることにより相対血圧変化を決定するステップ;を有する。このように、当該方法は、被験者の血圧の指標又は血圧の変化を、平均化された心周期波形から、典型的に基準点の検出が非常に困難であり従って間違うことになる心周期の収縮期後期において基準点を検出することを要せずに決定できるようにする。
幾つかの実施形態において、ステップ(iv)は差分信号から形態変化の方向を決定するステップを含む。これらの実施形態は、形態変化の方向を決定するために別のセンサ又は測定信号が必要とされないという利点を有する。
代替実施形態において、ステップ(iv)は、第1の期間の間の被験者の脈波到着時間(PAT)信号を分析して、第1の時点から第2の時点への相対PAT変化を決定するステップ;及び形態変化の方向を該相対PAT変化の方向として決定するステップ;を含む。
幾つかの実施形態において、ステップ(v)は、形態変化の絶対値及び方向を乗算して相対血圧変化を決定するステップを含む。
幾つかの実施形態において、ステップ(i)は、PWSを分析して、複数の心周期及び識別された各心周期の各々の基準点を識別するステップを含む。
幾つかの実施形態において、当該方法は、(vi)相対血圧変化を時間に関して積分して被験者の血圧の推定値を決定するステップを更に有する。
幾つかの実施形態において、ステップ(vi)は、血圧の推定値を、前記絶対値、形態変化の方向、及び相対血圧変化の質の第1の尺度を使用して決定するステップを有する。
これらの実施形態において、ステップ(vi)は、相対血圧変化の質の第1の尺度を、第1及び第2の平均心周期波形のPWSにおける複数の心周期に対する適合度を計算することにより決定するステップを更に有する。
幾つかの実施形態において、前記差分信号は、第1の平均心周期波形及び第2の平均心周期波形に関して各基準点に対して測定される複数の遅延時間値に対する各差分サンプルを含み、特定の遅延時間値に対する差分サンプルは、該特定の遅延時間値における第1の平均心周期波形と、該特定の遅延時間値における第2の平均心周期波形との間の差分である。
これらの実施形態において、前記基準点は被験者の脈波の始まりであり、前記複数の遅延時間値は基準点から0ミリ秒後から300ミリ秒後までの遅延時間値であり得る。これらの実施形態において、ステップ(iii)は、形態変化の絶対値を複数の遅延時間値に関する差分サンプルの大きさの和として決定するステップを含み得る。これらの実施形態において、ステップ(iv)は、複数の遅延時間値の部分組に関して差分サンプルの和を決定するステップ;及び形態変化の方向を該差分サンプルの和の符号として決定するステップ;を有し得る。これらの実施形態において、前記基準点は被験者の脈波の始まりであり得、複数の遅延時間値の部分組は該基準点の後の遅延時間値であり得る。これらの実施形態において、複数の遅延時間値の部分組は、基準点から75ミリ秒後から150ミリ秒後までの遅延時間値であり得る。これらの遅延時間値は、PWSのうちの反射波により影響を受ける部分である。これらの実施形態において、遅延時間値の各々は、被験者の心周期の持続時間以下であり得る。
幾つかの実施形態において、PWSは、光電脈波、PPG信号である。
第2の特定の態様によれば、被験者から得られる脈波信号PWSを分析して該被験者の血圧の指標又は血圧の変化を決定するための装置が提供される。上記PWSは、第1の期間における被験者の複数の心周期に関する脈波測定値を含む。当該装置は:(i)PWSを分析して、第1の期間内の第1の時点に関する第1の平均心周期波形及び第1の期間内の第2の時点に関する第2の平均心周期波形を決定し;(ii)第1の平均心周期波形から第2の平均心周期波形への形態変化を表す差分信号を決定し;(iii)該差分信号から形態変化の絶対値を決定し;(iv)形態変化の方向を決定し;及び(v)形態変化の絶対値及び方向を組み合わせることにより相対血圧変化を決定する。このように、当該装置は、被験者の血圧の指標又は血圧の変化を、平均化された心周期波形から、典型的に基準点の検出が非常に困難であり従って間違うことになる心周期の収縮期後期において基準点を検出することを要せずに決定できるようにする。
処理ユニットが前述した第1の態様の実施形態のいずれかに従って動作するように構成される当該装置の種々の実施形態が想定される。
幾つかの実施形態において、当該装置は、被験者からPWSを取得するための脈波センサを更に備える。代替実施形態において、当該装置は脈波センサからPWSを受信するように構成される。
第3の態様によれば、コンピュータ可読コードが組み込まれたコンピュータ可読媒体を有するコンピュータプログラム製品が提供され、前記コンピュータ可読コードは、適切なコンピュータ又は処理ユニットによる実行時に、該コンピュータ又は処理ユニットに第1の態様による方法又はその何らかの実施形態を実行させる。これら及び他の態様は、後述される実施形態から明らかとなり、それら実施形態を参照して説明されるであろう。
例示的な実施形態は、以下の図面を参照して単なる例示として後述される。
図1の(a)はPPG信号の1秒区間を示し、同図の(b)及び(c)は該PPG信号の一次微分及び二次微分を各々示す。 図2の(a)は5時間にわたる平均動脈圧の測定値を示し、図2の(b)は同じ期間に関するシングルスポットPPG測定値及び式(1)によるPWV導出の例を示す。 図3は、種々の例示的な実施形態による装置のブロック図である。 図4は、被験者から得られた脈波信号を分析して平均心周期波形を決定する方法を示すフローチャートである。 図5の(a)はPPG信号の1秒区間を示し、図5の(b)及び(c)はPPG信号の一次微分及び二次微分を各々示す。 図6の(a)は1分の時間ウィンドウにおける動脈血圧のグラフを示し、図6の(b)は60秒の時間ウィンドウにおける脈波信号の二次微分のグラフを示す。 図7は、互いに重ねられた、脈波信号の2次微分値において識別された複数の波形を示すグラフである。 図8は、図7に示された複数の波形の0次平均を示すグラフである。 図9は、共通の基準点からの特定の遅延時間値における脈波信号の二次微分において識別された複数の波形の値、及び表示された値に対する3つのn次多項式の適合を示すグラフである。 図10は、60秒の時間ウィンドウの間の幾つかの時点に関する一次平均波形を示すグラフである。 図11は、被験者から得られた脈波信号を分析して血圧の指標又は血圧の変化を決定するための方法を示すフローチャートである。 図12は、複数の被験者についての相対血圧変化と差分信号との間の相関を示すグラフである。 図13は、被験者の絶対MAP及びMAP変化の推定値を基準MAP測定値に対して示す一対のグラフである。 図14は、種々の実施形態による脈波信号を分析する際の種々の動作を示す機能ブロック図である。 図15は、種々の代替実施形態による脈波信号を分析する際の種々の動作を示す機能ブロック図である。
本明細書に記載の技術は、平均心周期波形の形態変化から代用血圧測定値を計算する代替方法を定義することにより、代用血圧測定値の計算における基準点検出の使用を回避する。特に、相対的な血圧変化を、2つの平均心周期波形に跨がる形態変化の絶対値及び該形態変化の方向から決定できる。記載される技術は、単一のセンサが被験者に取り付けられる、いわゆるシングルスポット測定技術に特に有用である。
脈波信号(PWS)は、被験者の身体上の測定点における脈拍変化/脈波に関する情報を含む。PWSは、例えば、PPG信号又は眼圧測定法を使用して得られる脈波信号であり得る。
図3は、本明細書に記載の技術の種々の実施形態による、PWSを分析して相対的な血圧変化を決定するための装置30のブロック図である。図3には、被験者の身体上の単一点において圧力波を測定し、PWSを出力するために使用される脈波センサ32が示されている。脈波センサ32は、PPGセンサ、眼圧測定ベースのセンサ、又は任意のタイプの圧力センサ、例えばNXP Semiconductors社のMPXV6115シリーズの集積シリコン圧力センサを使用して被験者の(上)腕に幾らかの被着圧力で被着され得る流体型センサパッドであり得る。幾つかの実施形態において、脈波センサ32は装置30の一部であるか又は装置30と一体であり得る。他の実施形態において、装置30は脈波センサ32に直接的に(例えば有線で)又は間接的に(例えば、Bluetooth(登録商標)、WiFi、セルラ通信プロトコル等の無線通信技術を使用して)接続することができる。代替実施形態において、装置30は脈波センサ32に接続されなくてもよく、代わりに、装置30はサーバ若しくはデータベース等の他のデバイス又は装置からPWSを取得することができる。
既知のように、PPGセンサ32は、被験者の身体上、例えば、腕、脚、耳たぶ、指等に配置することができ、身体の当該部分を通過する血液量に関する出力信号(「PPG信号」)を供給することができる。身体の当該部分を通過する血液量は、該身体部分における血液の圧力に関係する。PPGセンサ32は、通常、光センサ及び1以上の光源を備える。PPGセンサ32により出力されるPPG信号は、光センサからの生の測定信号であり得る(例えば、PPG信号は経時的な光強度を表す信号であり得る)。他の例として、PPGセンサ32は、例えばノイズを低減し及び/又は動きアーチファクトを補償するために、光強度信号の何らかの前処理を実行してもよいが、このような前処理は本明細書に記載される技術の実装には必要ではないことが理解されるであろう。
装置30は、サーバ、デスクトップコンピュータ、ラップトップ、タブレットコンピュータ、スマートフォン、スマートウォッチ等のコンピューティング装置の形態若しくはその一部、又は被験者/患者の種々の生理学的特徴を監視(及びオプションとして表示)するために使用される患者監視装置(例えば、臨床環境において患者のベッド脇に配置される監視装置)等の臨床環境で通常見られるタイプの装置であり得る。
装置30は、該装置30の動作を制御し、PWSを分析するために本明細書に記載される方法を実行又は実施するように構成され得る処理ユニット34を含む。処理ユニット34は、本明細書に記載される種々の機能を果たすために、ソフトウェア及び/又はハードウェアを用いて種々の方法で実装できる。処理ユニット34は、必要とされる機能を果たすために、及び/又は必要とされる機能を果たすために処理ユニット34の構成要素を制御するようにソフトウェア又はコンピュータプログラムコードを使用してプログラムすることができる1以上のマイクロプロセッサ又はデジタル信号プロセッサ(DSP)を備え得る。処理ユニット34は、幾つかの機能(例えば、増幅器、前置増幅器、アナログ/デジタル変換器(ADC)及び/又はデジタル/アナログ変換器(DAC))を果たすための専用ハードウェアと、他の機能を果たすためのプロセッサ(例えば、1以上のプログラムされたマイクロプロセッサ、コントローラ、DSP及び関連回路)との組み合わせとして実装できる。本開示の種々の実施形態で使用され得る構成要素の例は、これらに限定されるものではないが、通常のマイクロプロセッサ、DSP、特定用途向け集積回路(ASIC)、フィールドプログラマブルゲートアレイ(FPGA)、ニューラルネットワークを実装するためのハードウェア、及び/又はいわゆる人工知能(AI)ハードウェアアクセラレータ(すなわち、メインプロセッサと併用できるAIアプリケーション用に特別に設計されたプロセッサ又は他のハードウェア)を含む。
処理ユニット34はメモリユニット36に接続され、該メモリユニットは装置30の動作を制御する際、及び/又は本明細書に記載の方法を実行若しくは実施する際に該処理ユニット34により使用されるデータ、情報及び/又は信号を記憶できる。幾つかの実装形態において、メモリユニット36は、処理ユニット34が本明細書に記載の方法を含む1つ以上の機能を実施できるように、該処理ユニット34により実行可能なコンピュータ可読コードを記憶する。特定の実施形態において、該プログラムコードは、スマートウォッチ、スマートフォン、タブレット、ラップトップ又はコンピュータ用のアプリケーションの形式であり得る。メモリユニット36は、ランダムアクセスメモリ(RAM)、スタティックRAM(SRAM)、ダイナミックRAM(DRAM)、読み取り専用メモリ(ROM)、プログラマブルROM(PROM)、消去可能PROM(EPROM)及び電気的消去可能PROM(EEPROM(登録商標))等の揮発性及び不揮発性コンピュータメモリを含むキャッシュ又はシステムメモリのような任意の種類の非一時的なマシン可読媒体を備えることができる一方、該メモリユニット36は、メモリチップ、光ディスク(例えば、コンパクトディスク(CD)、デジタルバーサタイルディスク(DVD)又はBlu-Rayディスク)、ハードディスク、テープストレージソリューション、又はメモリスティック、ソリッドステートドライブ(SSD)、メモリカード等のソリッドステートデバイスの形態で実装できる。
幾つかの実施形態において、装置30はユーザインターフェース38を備え、該ユーザインターフェースは装置30のユーザが情報、データ及び/又はコマンドを装置30に入力できるようにする、及び/又は装置30が情報又は情報を該装置30のユーザに出力できるようにする1以上の構成要素を含む。ユーザインターフェース38により出力できる情報は、決定された相対血圧変化の指示情報、及び幾つかの実施形態では被験者の絶対血圧の指示情報を含み得る。ユーザインターフェース38は、これらに限定されるものではないが、キーボード、キーパッド、1以上のボタン、スイッチ又はダイヤル、マウス、トラックパッド、タッチスクリーン、スタイラス、カメラ、マイクロフォン等を含む任意の適切な入力要素を備えることができ、及び/又は該ユーザインターフェース38は、これらに限定されるものではないが、表示スクリーン、1以上のライト又は光素子、1以上のスピーカ、振動素子等を含む任意の適切な出力要素を備えることができる。
図3には示されていないが、装置30は被験者の生理学的特徴を測定するための1以上の追加のセンサを備えることができ、又は処理ユニット34は1以上の追加のセンサから測定信号を受信するように構成することができる。幾つかの実施形態では、心臓の電気的活動を測定するために、心電図(ECG)センサの形態の追加のセンサが設けられる。
装置30の実際の構成は、図3に示す構成要素に対して追加の構成要素を含み得ることが理解されるであろう。例えば、装置30は、バッテリ等の電源、又は該装置30が主電源に接続されることを可能にするための構成要素も含み得る。装置30は、脈波センサ32(脈波センサ32が装置30から分離されている実施形態における)、サーバ、データベース、ユーザ装置及び/又は他のセンサを含む他の装置とのデータ接続及び/又はデータ交換を可能にするためのインターフェース回路も含み得る。
上述したように、本明細書に記載の技術は、2つの平均心周期波形に跨がる形態変化の絶対値及び該形態変化の方向から相対血圧変化を決定できるようにする。これら2つの平均心周期波形は、特定の期間における被験者の複数の心周期に関する脈波測定値を含むPWSの二次微分から決定できる。時間に関するPWSの二次微分は、本明細書では2PWSで表される。平均心周期波形は、PWSによりカバーされる期間内の各時点における平均心周期波形を表す。このように、最初のステップは、PWSから平均心周期波形を決定することである。PWSから平均心周期波形を決定する技術は、以下の段落で説明される。
[平均心周期波形の決定]
複数の心周期にわたる平均化が、結果としての平均におけるノイズを低減又は除去するために使用されて、心周期波形の反射脈波及び/又は他の特性の改善された分析を可能にする。被験者の身体の測定点における脈拍変化/脈波に関する情報を含むPWSに関し、平滑化されるべき各心周期の基準点がPWS内で識別される。識別されるべき基準点は、好ましくは、脈波の最初の上り斜面(すなわち、脈波の始まり)に関連するものであって、反射の影響のないものであるべきであり、従って、安定した基準点(すなわち、血圧変化に依存しないもの)であるべきである。しかしながら、必要ならば、異なる基準点を使用できることも理解されるであろう。次いで、平均心周期波形を計算するために、基準点のさまざまな発生の時間及び振幅が使用される。
幾つかの実施形態では、例えば国際特許出願公開第2015/044010号に記載されているように、時間ウィンドウにわたる全ての心周期波形の通常の平均化が使用される。すなわち、個々の心周期波形を各々の識別された基準点で整列させた後、識別された基準点からの各「遅延時間」における2PWSの振幅値が平均化(例えば、平均が計算され得る)されて、平均心周期波形を形成する。
しかしながら、上述した「通常の平均化」は、時間とともに変化する状況、すなわち、血圧が平均化プロセスによりカバーされる期間中に変化する場合を許容しない。このように、より好ましいアプローチでは、平均化を平均化手順における各遅延に関する(線形な)時間的変化を許容するように拡張する平均化技術を使用できる(当該遅延又は遅延時間は、各心周期の識別された基準点に対する時間、例えば、各心周期に関する識別されたa基準点に対する時間である)。この平均化技術は、“Method,apparatus and computer program product for analysing a pulse wave signal”なる名称の、Koninklijke Philips NVにより2020年12月15日に出願されたヨーロッパ特許出願第20214268.3号に記載されている。
図4のフローチャートは、被験者から得られたPWSを分析して平均心周期波形を決定するための例示的な方法を示す。幾つかの実装形態においては、装置30内の処理ユニット34を、図4の方法を実施するように構成できる。他の実装形態においては、コンピュータ又は処理装置34が実行する際に該コンピュータ又は処理ユニット34に図4の方法を実行させるコンピュータ可読コードを設けることができる。
PWSは、被験者の単一の測定点に配置された脈波センサ32から受信され、該PWSは、被験者の複数の心周期(すなわち、心拍)の脈波測定値を表す。図4の方法は、以下ではPPG信号の形態のPWSに関して説明されるが、当該方法は他の形態のPWSにも適用できることが理解されるであろう。幾つかの実装形態において、図4の方法は、PWSに対し被験者から受信又は測定される際に定期的又は連続的に実行することができる。幾つかの実装形態において、図4の方法は、より長いPWSのウィンドウ部分、例えば、1時間の期間をカバーするPWSの1分のウィンドウに対して動作できる。しかしながら、当該方法は、任意の数の心周期をカバーする任意の所望の長さを有するPWSにも適用できると理解されたい。以下の説明において、PWSに対して実行される動作又はステップへの言及は、これらの動作又はステップを、関心のあるPWSの部分、例えば1分の期間に対応する部分に対して実行することに関連する。
この方法の第1のステップであるステップ40では、PWSが分析されて心周期が識別され、各心周期に対して対応する基準点が識別される。該基準点は、後続のステップにおいて心周期を「整列させ」て、平均値が決定されることを可能にするために使用できる点である。
図1を参照して前述したように、「加速度波形」(時間に関するPWSの二次微分)における各心周期は5つの「基準点」又は「参照点」を含むと考えることができる。a基準点は、脈波(すなわち、心臓の鼓動により引き起こされる血液の脈動)の始まりである直接脈波の始まりを示す一方、b点は直接脈波の終りを示す。e点は収縮期の終了(大動脈弁の閉鎖)を示し、本開示の目的で、c点は反射波の始まりを示す一方、d点は反射波の終りを示すものと仮定される。好ましくは、ステップ40において、各心周期の基準点は、収縮期の開始と見ることができる脈波の(脈波の直接部分)始まり、すなわち基準点aとする。しかしながら、他の実施形態では、これら基準点のうちの他のもの又は実際に図1の(c)に示される基準点a~eとは異なる基準点をステップ40で識別できると理解されるであろう。
以下の説明において、時間に関するPWSの一次微分に対応する信号は「1PWS」と表記される一方、時間に関するPWSの2次微分に対応する信号は「2PWS」と表記される。PPG信号の特定の例に関して説明される場合、1PWSは「速度波形」(v-PPG)とも称され、2PWSは「加速度波形」(a-PPG)とも称される。
ステップ40の幾つかの実施形態は、2PWSで表される各心周期内の極大値を検出することにより脈波の開始の検出を行う。しかしながら、図1の(c)において、二重微分されたPPG信号は、元のPPG信号のノイズ又は量子化により、低品質のものであり得ることがわかる。
したがって、より好ましい実装形態では、脈波の始まりは2段階プロセスを使用して検出される。図5の(a)は、図1の(a)に示したPPG信号の同じ1秒区間を示している。図5の(b)は時間に関するPPG信号の1次微分(v-PPG)を示し、図5の(c)は時間に関するPPG信号の2次微分(a-PPG)を示している。図5の(a)には、2つの心周期の脈波の始まりが50とラベル付けされた点により示されており、この実施形態の目的は、これらの点を識別することである。第1の段階では、ピーク検出が時間に関するPWSの一次微分(1PWS)に対して実行される。図5の(b)では、v-PPG信号のピークが、元のPPG波形(図の5(a)に示される)における最も急な斜面に概ね対応していることがわかる。v-PPG信号において検出されたピークの時間位置は52とラベル付けされている。
1PWSにおいて最大速度ピーク52を検出した後、第2段階で、狭められた(局部的)探索ウィンドウが最大速度ピーク52の各々のタイミングに基づいて2PWS(例えば、図5の(c)に示すa-PPG)に適用され、2PWS上のこれらの狭められた探索ウィンドウ内の最大ピークが検出される。当該狭められた探索ウィンドウは、30~100ミリ秒の持続時間を有し得る。これらの最大ピークは、所望のa基準点、すなわち、PWS信号における登り斜面に対応する脈波の開始点に対応する。図5の(c)に示すa‐PPG波形において、狭められた探索ウィンドウは、検出された速度ピーク52のタイミングで終了する水平ライン54により示されている。a-PPG波形上のこれらの狭められた探索ウィンドウ内で識別された最大ピークは、56とラベル付けされており、所望のa基準点に対応する。
2PWSは劣って量子化された信号の場合に雑音的であり得るので、2PWSにおいてピークを検出する前に何らかの平滑化を実行することが有益であり得る。この平滑化は、PWSに微分の前に適用でき、1PWSにピーク検出が実行される前に適用でき、又は2PWSにピーク検出が実行される前に適用できる。幾つかの実装形態において、平滑化は、フィルタリング、例えばSavitzky-Golayフィルタリングを使用して達成できる。該平滑化プロセス及び平滑化されたPWS/1PWSを微分して2PWSを決定した結果は、図5の(c)における平滑化されたラインで見られる。
図5の(c)では、最初の心周期に関してb、c、d及びe波の最大値/最小値も示されている。c及びd波は(この最良の状況であっても)非常に小さく、通常はロバストに検出することが非常に困難であることがわかる。このことはa基準点の検出が優先することを示しているが、前述したように、ステップ40において他の基準点の検出を目標とすることも可能であろう。以下では、複数の心周期について検出されたa基準点が、平均心周期波形を決定すべく複数の心周期の平均化を実行するために使用される。
次いで、ステップ42、44及び46においては、PWSに平均化技術が適用されて、該PWS内の1以上のタイミング点に関して平均心周期波形を決定する。ステップ42、44及び46は、以下に図6の(b)に示される例示的な2PWS(a‐PPGの形態である)を参照して説明される。図6の(b)における2PWSは、特定の被験者に対して1分の期間をカバーするPPG信号から導出される。この1分の期間は、被験者の74の心周期をカバーする。a‐PPG波形における各心周期に関してステップ40で識別された各基準点が、図6の(b)に印されている。図6の(a)は、図6の(b)におけるa-PPG信号が関係するのと同じ被験者及び同じ期間に関する動脈血圧(ABP-細いライン)及び平均動脈圧(MAP-太いライン線)の測定値を示している。ABP測定値は図6の(b)におけるa-PPG波形に対する前後関係を提供するために図6の(a)に示されており、ABP測定値は、通常、シングルスポットPPG測定値が取得されている被験者には利用できないことが理解されるであろう。図6の(a)では、20秒と40秒との間に40mmHg程度の平均動脈圧の増加が存在することが分かる。a-PPG波形(図6の(b))には、30秒周辺に幾らかの目に見える変化が存在し(例えば、0~30秒のa基準点の高い呼吸変調及び30~60秒のa基準点の低い呼吸変調)、本明細書に記載の平均化技術を使用して、60秒のウィンドウにわたり及び/又はその全体を通してa-PPG波形の形態の変化を識別及び/又は分析することができる。
a‐PPGの形態が60秒の期間にわたってどのように変化するかを示すために、図7は図6の(b)のa‐PPG波形からの7つの心周期を互いに重ね合わせて示すグラフである。図7に含まれる7つの心周期は図6の(b)では1から7とラベル付けされており、これらは1分の時間ウィンドウ内で相対的に均等な間隔とされている。これらの7つの心周期は、単に心周期がどのように変化するかを示すために、図6の(b)で識別された心周期から任意に選択されたものであることに注意されたい。図7において、7つの選択された心周期のa-PPG波形は、各a-PPG波形のa基準点が時間t=0に位置合わせされて重ね合わされ、各a-PPG波形は、t=0において各a-PPG波形の振幅が同一(振幅=1)となる一方、他の時間ではa-PPG波形が通常は-1~1の範囲となる振幅を有するように、正規化されている。図7に示される7つの波形は、本明細書では「正規化された」a-PPG波形と呼ばれる。すなわち、これら波形は、共通の時点(例えば、この例における各心周期の基準点「a」)の周辺でa-PPG波形の振幅が該基準点において整合されるように正規化されている。
図7では、血圧の変化により、全部の形態(a基準点以降の)が時間の経過とともに変化していることがわかる。また、部分的に二次微分計算におけるノイズにより、当該波形を個別に識別又は分析することが非常に困難であることもわかる。
図7の例に示されるように、当該脈波の形態は常に変化するものであり得るので、複数の波形に平均化を単に適用することは、反射脈波の分析に関連する高周波情報を喪失させるであろう。したがって、線形変化を考慮できる平均化方法が必要である。本明細書に開示される平均化技術は、国際特許出願公開第WO2015/044010号の技術に基づくもので、線形変化に対応するように拡張されている。
当該アルゴリズムを以下で説明するために、ベクトルは、サイズNの時間ウィンドウ内のa-PPGデータとして定義される。波形選択の基準点(以下の実例ではピーク位置、a基準点である)は長さNを持つベクトルpとして掲載され、ここで、Nは心周期数/識別された基準の数である。図6及び図7の例において、Nは74である。検出されたピーク位置における波形値はにより示され、ここで、j=0、…、N-1は各心周期におけるピークのインデックスである。ピーク位置からの値は、後に短いフォーマットで:
Figure 2024508872000003
として示され、ここで、j=0,…,N-1はピークのインデックスである。
当該平均化プロセスの次のステップは、Nの隣接するサンプル(初期ピーク(a基準点))に対して左及び右方向)を分析し、初期ピークレベルと比較した平均変化(減少)を計算することである。ピークと同様に、ピーク位置に対して隣接する位置は、短いフォーマットで:
Figure 2024508872000004
と定義され、ここで、Δはピーク位置に対する遅延指数であり、これは正又は負の値のいずれかであり得る。
1分のウィンドウ内にあるピーク位置に対する全ての隣接位置について、平均レベル変化(低下)が:
Figure 2024508872000005
と計算され、ここで、Nは領域[0…N-1]内にある平均化される値の数に等しい。このことは、当該平均化手順におけるNは必ずしもピーク数Nに等しくはなく、値(+Δの幾つかが長さNのウィンドウ外であるかに依存して1又は2小さくなるであろうということを意味する。
モデルの計算は、反復又は繰り返しと呼ばれる、Δの幾つかの負及び正の値に対して実行される。該平均モデルにおける全ての平均値は個別に計算され得る。心周期の収縮期における平均モデル値のみが対象であるので、Δの負の値及び正の値の限界を適用できる。Δの負の値については、収縮期の開始の一部である負の値のみを含めることができる。ピーク位置は収縮期のこの開始に非常に近いので、Δの負の値は、例えば-0.1秒に相当するように限定できる。Δの正の値の場合、収縮期の残りの部分である遅延が含まれる。Δの典型的な正の最大値は、例えば0.4秒に相当するように選択できる。かくして、平均正規化波形は、全ての遅延インデックスΔに対して:
Figure 2024508872000006
と計算でき、ここで、ψΔは式(4)により計算されたものである。
図8は、図7に示された正規化されたa‐PPG波形からの7つの心周期上に重ねられた平均正規化波形(太線80)を示す。実際には、上記プロセスからの平均正規化波形80は、時間t=0から各遅延時間値(Δ)における各正規化された心周期の平均 (平均値)をとることにより得られる。例えば、時間t=+100msにおける平均波形80の値は、時間t=+100msにおける個々の正規化されたa-PPG波形の値の平均(平均値)(すなわち、各心周期に関して識別されたa基準点に対して時間及び振幅に関して正規化された)により与えられる。この平均波形80は、正規化されたa-PPG心周期に対する0次多項式適合としても描くことができる。
しかしながら、図8に示されるように、この1分間ウィンドウ全体にわたる平均は、該1分間ウィンドウ全体における正規化された心周期の全てに良好に適合する(当てはまる)ものではない。波形の形態が時間とともに変化しているからである。
したがって、上記平均化手順は、遅延時間ΔにおけるNの値の0次平均を単に計算するのではなく、遅延時間ΔにおけるNの値の1次以上の多項式フィット(適合)を計算することにより、時間変化する状況に対応するよう一般化される。次数n(nは0 以上である)を有する該多項式フィットは、x軸上に時間、y軸上にレベル低下値を有するので、平均化された(又は曲線フィッティングされた)レベル低下も0より大きな多項式次数に対して時間依存性を有するであろう。遅延時間Δの各々について、m+1(m≦n)の多項式曲線フィット係数を計算することができる。これらの係数a、…、aは、以下のように最小二乗的に最小化を得るように計算でき:
Figure 2024508872000007
ここで、
Figure 2024508872000008
は:
Figure 2024508872000009
なる線形フィッティングモデルである。
次に、多項式係数a、…、aに基づいて、平均レベル変化(低下)を、線形フィッティングモデル:
Figure 2024508872000010
を介して:
Figure 2024508872000011
と直接計算することができる。
n=0に対し、式(4)で与えられる平均レベル変化(低下)が得られ、式(5)を使用することで、国際特許出願公開第WO2015/044010号に記載され、図8に示されているような平均フィッティングモデルが得られることがわかり、これは、時間ウィンドウ(例えば、この例では1分のウィンドウ)内のサンプルインデックスに依存しないであろう。しかしながら、n>0の場合、該平均フィッティングモデルは時間ウィンドウ内のサンプルインデックスに依存するであろう。これが図9に示されており、該図は上記例における74の心周期について識別されたα基準点に対して+200ミリ秒の遅延時間における正規化されたa‐PPG波形値を示している。該正規化されたa-PPG波形値はライン90により示されている。図9は、遅延時間+200msでの正規化されたa-PPG波形値の0次平均(ライン92、当該時間遅延における全ての値を平均する(平均値を導出する)だけの従来のアプローチに相当する)、時間遅延+200msでの正規化されたa-PPG波形値の1次平均(ライン94)、及び遅延時間+200msにおける正規化されたa-PPG波形値の2次平均(ライン96)も示している。図9の各バージョン(すなわち、各適合モデル)は、一連の遅延時間値に対して決定される。
図10は、n=1の場合の一連の遅延時間値に対する平均(時間変化)フィッティングモデルを使用した、図6の(b)のa-PPG信号における幾つかの時点の平均正規化心周期波形を示している。このように、図10は、一連の遅延時間(Δ)値における正規化されたa-PPG波形値の一次平均を決定することから得られる平均波形を示す。単なる例として、図10は、時間t=0に関する平均波形(102とラベル付けされている)、時間t=1分に関する平均波形(104とラベル付けされている)、及び図6の(b)において1~7とラベル付けされた波形に対応する時間の平均波形を示している。
+200msの遅延時間における図10の平均心周期波形の値に対する図9の比較から、時間t=0に関する平均波形の+200msにおける値は0.3である(すなわち、一次多項式フィット94は、t=0(又はインデックス0の心周期)に対して‐0.3の値を有する)一方、時間t=1分に関する平均波形の+200msにおける値は略0である(すなわち、1次多項式フィット94は、t=1分(又はインデックス73の心周期)に対して略0の値を有する)ことがわかる。
したがって、1分の時間ウィンドウ内の選択された時間に対する平均心周期波形は、遅延時間値の各々における各多項式フィットから導出できる。更に、1分のウィンドウ内の異なるタイミングにおける全ての中間平均結果(図6の(b)における1から7とラベル付けされた正規化されたa-PPG波形に対応する時間に対する)も計算できることがわかる。したがって、次数n?1を使用することにより、当該平均化手順において時間変化による変化は適応される。nは1以上の如何なる整数値とすることもできるが、PWSが相対的に短い期間にわたって分析され、波形内の基となる変化が単純な心周期を表すPWSに対しては、実際にはn=1で既に良好な結果が得られることに注意されたい。時間の経過に伴い一層大きな形態の変化があることが予想される場合は、nを1より大きい値に設定できる。
図4のステップ42、44及び46は、上記平均化技術を次のように実行する。上記平均化技術に従って、ステップ42、44及び46は「正規化された2PWS」に対して動作する。正規化された2PWSは、ステップ40で識別された各心周期に対応する2PWSの各部分を、当該心周期に関して識別された基準点における2PWSの振幅に関して個別に正規化することにより得られる。すなわち、ステップ40で識別された特定の心周期に関して、当該心周期に対応する2PWSの振幅が、該心周期の識別された基準点における2PWSの振幅を中心に正規化される。
ステップ42では、識別された基準点に対して測定される第1の遅延時間値Δについて、正規化された2PWSの第1の組の値に対してn次多項式フィットが決定される。前述したように、nは1以上である。正規化された2PWSの第1の組の値は、識別された各心周期の基準点から第1の遅延時間値後に生じる2PWSの値を含む。すなわち、ステップ42では、Xmsの時間遅延値に対して、第1組の値はステップ40で識別された基準点の各々からXmsとなる正規化された2PWSの値である。図9に示された例において、第1の組の値はライン90に対応する。ステップ42で決定されたn次多項式フィット(n≧1)は、n=1の場合はライン94に、n=2の場合はライン96に対応する。
ステップ44においては、ステップ42が、1以上の更なる時間遅延値に対して1回以上繰り返される。このように、ステップ44では、テップ42の1回以上の更なる反復が1以上の更なる遅延時間値に対し実行されて、正規化された2PWSの各組の値に関する各々の更なるn次多項式フィット94、96を決定する。正規化された2PWSの各組の値の各々は、識別された各心周期の基準点から各々の更なる遅延時間値後に生じる正規化された2PWSの値を含む。このように、ステップ44の結果、図9の1以上のバージョンが各々の遅延時間値に対して導出されるようになる。
ステップ46に関連して後述されるように、ステップ42が繰り返される回数は、ステップ46で決定される平均心周期波形の時間分解能を決定する。ステップ42が繰り返される回数が多いほど、結果として得られる平均心周期波形の平滑さ及び分解能は高くなる。幾つかの実施形態において、ステップ42は、‐100ミリ秒から+400ミリ秒の範囲の遅延時間値に対して繰り返され得る。遅延時間値の範囲の大きさの上限が被験者の心拍数によって課せられ得ることが理解されるであろう。遅延時間値の範囲は、1以下の心周期(心周期のうちの、結果として得られる平均心周期波形において反射脈波等の脈波特徴が観察されるのに十分なものではあるが)をカバーする必要がある。
次に、ステップ46においては、第1の平均心周期波形が、PWSによりカバーされる期間内の第1の時点に対して形成される。第1の平均心周期波形は、第1の時点における複数のn次多項式フィット94、96の値から形成される。このように、PWSによりカバーされる期間内の時点Yについて、平均心周期波形は、ステップ42で決定された第1の組の値に対するn次多項式フィット94、96の時点Yにおける値(すなわち、第1の時間遅延値に対するn次多項式フィット94、96の時点Yにおける値)、及びステップ44で決定された更なるn次多項式フィット94、96の各々の時点Yにおける各値(すなわち、更なる時間遅延値に対するn次多項式フィット94、96の時点Yにおける値)から形成される。時点t=0及びn=1の特定の例において、平均心周期波形は、各遅延時間値に対する一次多項式フィット94の値から形成される。ステップ46の結果、例えば、図10に示されるような平均心周期波形102、104が得られる。
[血圧変化の決定]
前述したように、記載される技術は、代用的血圧測定値の計算における複数の基準点検出の使用を、平均心周期波形の形態変化から代用的血圧測定値を計算することにより回避する。特に、相対的血圧変化を、上述したように決定される2つの平均心周期波形の間の形態変化の絶対値、及び該形態変化の方向から決定することができる。
図11のフローチャートは、被験者から得られたPWSを分析して該被験者の血圧の指標又は血圧の変化を決定するための例示的な方法を示す。幾つかの実施形態において、前記装置30の処理ユニット34を、図11の方法を実施するように構成できる。他の実施形態では、コンピュータ又は処理ユニット34に該コンピュータ又は処理装置34が実行した場合に図11の方法を実行させるコンピュータ可読コードが提供され得る。
ステップ111は、PWSを分析して第1の期間内の第1の時点に関する第1の平均心周期波形及び第1の期間内の第2の時点に関する第2の平均心周期波形を決定する最初のステップを表す。ステップ111は、国際特許出願公開第WO2015/044010号に記載されているように、時間ウィンドウにわたる心周期波形の「通常の平均」を取ることにより実行できる。他の例として、より好ましい実施形態において、ステップ111は図4を参照して前述したように実行される。
これらの実施形態において、ステップ111は以下のサブステップを含むことができる。サブステップ(i)では、PWSが分析されて、複数の心周期を識別すると共に、識別された心周期の各々の基準点を識別する。サブステップ(ii)では、2PWSがPWSの時間に関する二次微分として決定される。サブステップ(iii)では、正規化された2PWSが、識別された各心周期に対応する2PWSの各部分について、2PWSの当該部分を当該心臓周期の識別された基準点における該2PWSの振幅に関して正規化することにより決定される。サブステップ(iv)では、第1の遅延時間値について、n次多項式フィットが第1組の正規化された2PWSの値に関して決定される。該第1組の正規化された2PWSの値は、識別された各心周期の基準点から第1の遅延時間値後に生じる正規化された2PWSの値を含む。nは1以上である。サブステップ(v)では、サブステップ(iv)の1以上の更なる反復が1以上の更なる遅延時間値に対して実行され、各組の正規化された2PWSの値に対する各々の更なるn次多項式フィットを決定する。各組の正規化された2PWSの値は、識別された各心周期の基準点から各々の更なる遅延時間値後に生じる正規化された2PWSの値を含む。最後に、サブステップ(vi)において、第1の期間内の第1の時点に関する第1の平均心周期波形が形成される。該第1の平均心周期波形は、第1の時点における複数のn次多項式フィットの値から形成される。第1の期間内の第2の時点に関する第2の平均心周期波形は、第2の時点における複数のn次多項式フィットの値から形成される。
このように、2つの平均心周期波形を、特定の期間における被験者の複数の心周期に関する脈波測定値を含むPWSの二次微分(2PWS)から決定できる。
PWSによりカバーされる特定の期間は、例えば1分であり得るが、該期間は例えば30秒、2分、5分等の異なる期間を有することもできる。この特定の期間は、「フレーム」と呼ばれる。実際のアプリケーションにおいて、血圧測定値は時間の経過に伴い連続的に計算され得るので、PWSは時間の経過に伴い進行するフレームにわたって繰り返し分析され得、連続するフレームは部分的に重なり合うことができる(例えば、1分の持続時間のフレーム間での50秒の重なり)。当該期間の開始時の平均心周期波形におけるサンプル(遅延)は:
Figure 2024508872000012
と示され、ここで、「0」は特定の期間(フレーム)における最初の心周期のインデックスであり、「n」は平均化手順の次数であり、「Δ」は単一サイクル波形における遅延時間である。変数κはフレームインデックスである。同様に、1分の平均化ウィンドウの終了時での平均心周期波形におけるサンプル(遅延)は:
Figure 2024508872000013
と示され、ここで、N-1は最後の心周期(N=74)のインデックスに等しい。
このように、式(9)及び(10)によれば、第1の平均心周期波形はPWSによりカバーされる期間内の最初の心周期を対象とすることができ、第2の平均心周期波形はPWSによりカバーされる期間内の最後の心周期を対象とすることができる。しかしながら、第1の平均心周期波形及び第2の平均心周期波形のいずれか又は両方が、当該期間における異なる心周期に対応することも可能である。他の例として、ステップ46で決定されたように、PWSによりカバーされる期間内の第1の時点における第1の平均心拍波形のみを計算することも可能である。幾つかの実施形態においては、第2の平均心周期波形が、PWSによりカバーされる期間内の第2の時点に関して形成され得る。該第2の平均心周期波形は、ステップ46で決定された第1の平均心周期波形と同じ方法で形成することができる。一例として、第1の時点及び第2の時点のうちの一方はPWSの開始時点におけるもの又はその近傍のものとすることができ、第1の時点及び第2の時点の他方は、式(9)及び(10)におけるのと同様に、PWSの終了時点における又はその近傍のものとすることができる。他の実施形態では、1以上の更なる平均心周期波形を、PWSによりカバーされる期間内の各々の時点に対して決定することができる。
ステップ113では、第1の平均心周期波形及び第2の平均心周期波形から差分信号が決定される。該差分信号は、第1の平均心周期波形から第2の平均心周期波形への形態の変化を表す。
特に、図4を参照して前述した平均心周期波形を決定するアプローチは平均(二次微分)波形が長い時間ウィンドウ内で決定されることを可能にし、この平均波形の時間的に変化する変化を、この長いウィンドウにわたりモデル化することができる。平均波形のこの時間依存的特性により、この長いウィンドウにわたる波形の平均変化を計算できる。これは、以下のように、単純な減算により実行でき:
Figure 2024508872000014
ここで、
Figure 2024508872000015
は長い平均化ウィンドウ内のインデックス0の最初の心周期から該長い平均化ウィンドウ内のインデックス(N-1)の最後の心周期までの遅延Δに対するの形態の平均変化である。
幾つかの実施形態において、ステップ113から得られる差分信号は、第1の平均心周期波形及び第2の平均心周期波形の各々の基準点に関して測定された複数の遅延時間値に対する各差分サンプルを含む。上記基準点は被験者の脈波の開始、すなわち、図1に示された「a」基準点であり得る。特定の遅延時間値に対する差分サンプルは、該特定の遅延時間値における第1の平均心周期波形(の振幅)と、該特定の遅延時間値における第2の平均心周期波形(の振幅)との間の差分であり得る。
血圧の代用的尺度にとって基礎となるものは、式(11)により計算される形態変化である。したがって、この形態変化を、この尺度における遅延Δの各々に関して、当該期間にわたる基準血圧変化と相関付ける(及び分析する)ことができる。
血圧に関する「黄金」基準として、被験者から静脈内的に取得されたABP信号が、5分ウィンドウ内の線形回帰を計算することにより5分ウィンドウ内のMAPの(線形)傾向を計算するために使用される。該MAPは、例えば0.025Hzのカットオフ周波数を有する二次バターワースローパスフィルタを使用してABPデータの平均を計算することにより計算できる。ΔMAP値は、平均化ウィンドウ内でのMAPの変化量を反映する線形トレンドパラメータに基づいて計算できる。この場合、相対的なBP変化は:
Figure 2024508872000016
と計算でき、ここで、ΔMAP(κ)はMAPの変化(mmHgでの)であり、MAP(κ)は平均化ウィンドウ内での平均MAP(これも、mmHgでの)であり、ΔMAP(κ)は平均化ウィンドウ内のデータを用いたカーブフィット手順を使用して取得される。
式(11)からの形態の変化(差分信号)は、次いで、式(12)で与えられる基準血圧変化ΔRMAP(κ)と相関させることができる(各遅延及び20秒ずれによる各スライディングウィンドウ毎に)。次に、相関係数r△kを、以下のようにインデックスΔkの遅延毎に計算できる:
Figure 2024508872000017
相関係数r△kの計算は、各遅延Δに対して実行できる。ΔRMAP(κ)及び
Figure 2024508872000018
の平均値は補償されることを要さない。これらの様式は、差分計算を介して計算されているので、既にオフセットがないと想定できるからである。
この相関の結果は、図12に29人の異なる被験者の各々について示されており、平均は太い黒の曲線として示されている。このように、図12は相関係数を各被験者に関して個別のラインとして示している。図12の各ラインは、特定の被験者について、相対血圧変化(直接のABP測定から導出された)と、異なる遅延時間Δに関する該被験者の各差分信号との間の相関を示す。図12からわかるように、個々の被験者は相関関係の非常に異なる結果を示している。一方で、類似点も存在する。第1の類似点は、基準点(0ミリ秒の遅延時間)において相関関係は不十分にしか定義されていないことである。この理由は、この遅延時間では如何なる形態変化もあり得ないためである。該基準点は常に1の値に等しいからである(定義上)。第2の類似点は、0ミリ秒の基準点に近い遅延はMAPの変化と負に相関されることである。このことは、通常、MAPが増加すると、a-PPG信号のa波が狭くなるということを意味する。このことは図10の例でも見ることができ、a波は1分のウィンドウの過程で狭くなっている(特に、-100ミリ秒から0ミリ秒まで)。このことは幾つかの心臓の特性、例えば心臓の収縮性に関係し得る。一回拍出量(心拍出量による)はMAPに直接関係することが分かっているからである。第3の類似点は、収縮期中期(例えば、75ミリ秒から200ミリ秒まで)において形態変化の値がMAP変化と正に相関することである。このことは、増加するMAP値に対して指の位置(これらの被験者に対してPWSセンサ32が配置される)に早く到着する動脈樹内の反射に起因し得る。また、b波振幅の増加は、増加する血圧に対して増加する(すなわち、負の値のb点は、負の程度が減少するか又は正にさえなる)ことが知られている。このb点の値の増加は、おそらく、反射波の早い戻りに起因する。最後の類似点は、収縮期後期において形態変化の値は再びMAP変化と負に相関するという一般的な傾向があることである。このことは、反射波のタイミングのずれに関係し得る。血圧の増加に対して反射波が早く到着した場合、反射波が通過した後の早期に発生するa-PPG波形の低下も存在するであろう。
図11に戻ると、ステップ113において差分信号を決定した後、ステップ115において該差分信号から形態変化の絶対値が決定される。幾つかの実施形態において、該絶対値は、複数の遅延時間値、例えば0ミリ秒から300ミリ秒までの遅延時間値に関する差分サンプルの大きさの和として決定され得る。
図12から、遅延の範囲全体(すなわち、脈波の開始、「a」基準点に対して-100ミリ秒から300ミリ秒まで)に対して血圧の影響があると思われるため、当該組κは、これら全ての遅延を含むと定義される。このように、組κは心周期の全収縮期に対応する遅延を含むことができる。フレームκ内での形態変化の絶対値は:
Figure 2024508872000019
と計算でき、ここで、κは当該形態変化が計算されるべき遅延時間の範囲(例えば、-100ミリ秒から300ミリ秒まで)である。
遅延κによって指定される持続時間により式(14)において形態変化を正規化する代わりに、幾つかの実施形態では、脈波の正確な形態も考慮に入れる異なる正規化を実行することができる。正規化された形態変化は:
Figure 2024508872000020
と計算でき、ここで、正規化値Ψ(κ)は:
Figure 2024508872000021
のように計算される。
式(15)の正規化値では、平均波のエネルギーが使用され、ウィンドウ内のトレンド情報は破棄される。更に、値ΔΨ(κ)及びΨ(κ)は両方とも正の値とされる。したがって、結果として得られる正規化された絶対形態変化:
Figure 2024508872000022
も正の値となる。
次に、ステップ117において、形態変化の方向が決定される。式(15)及びステップ115の形態変化の尺度は正の値であるので、血圧変化の方向は検出できず、該相対血圧代用尺度の拡張が:
Figure 2024508872000023
のように導入され、ここで、
Figure 2024508872000024
は符号の推定、すなわち当該形態変化の方向の指示情報である。
幾つかの実施形態において、形態変化の方向は、ステップ117において、第1の期間における被験者の脈波到着時間(PAT)信号を分析して、第1の時点から第2の時点までの相対的PAT変化を決定することにより決定される。当該形態変化の方向は、該相対的PAT変化の方向として決定される。既知のように、PATは、ECG信号上のRピークから、手首又は指等の末梢身体位置における当該脈波の到着までの時間間隔として測定される。このように、被験者に関するPATを取得するために、PWSセンサ32が末梢身体位置に配置されると共に、心臓の電気的活動を測定するためにECGセンサが設けられる。ECGセンサからのECG信号及びPWS信号が分析されて、被験者に関するPATが決定される。
代替実施形態において、形態変化の方向は、ステップ117において前記差分信号を使用して決定される。特に、当該変化の方向は、ステップ117において複数の遅延時間値の部分組についての差分サンプルの和を決定すると共に、形態変化の方向を該差分サンプルの和の符号として決定することにより決定することができる。幾つかの実施形態において、上記複数の遅延時間値の部分組は、脈波の開始(すなわち、「a」点)後の75ミリ秒から150ミリ秒までの遅延時間値とすることができる。これについては以下に更に説明する。
図12を参照すれば、75ミリ秒から150ミリ秒までの範囲の遅延時間に対しては強い正の相関関係があることが分かっているので、符号
Figure 2024508872000025
は:
Figure 2024508872000026
により推定することができ、ここで、Lは当該符号推定のために考慮される遅延時間の組である。反射波により明らかに影響を受ける遅延時間、すなわち75~150msの範囲の遅延時間を使用することが有効である。形態変化の量は動的血管特性に依然として依存するので、尺度
Figure 2024508872000027
は較正された代用血圧尺度ではないことに注意する必要がある。
最後に、ステップ119において、テップ115で決定された形態変化の絶対値と、ステップ117で決定された該形態変化の方向とを組み合わせることにより相対血圧変化が決定される。絶対値及び変化の方向(符号)を式(17)に従って組み合わせて、相対的な血圧変化を決定できる。すなわち、形態変化の絶対値と方向とを乗算して、相対血圧変化を決定することができる。
[絶対血圧の決定]
他の実施形態においては、絶対血圧値を相対血圧変化から決定することができる。特に、ステップ119で決定された相対血圧変化を時間に関して積分し、被験者の血圧の推定値(すなわち、絶対血圧値)を決定できる。
該絶対血圧の推定値における積分ドリフトを回避又は低減するために、規則的な時点で、絶対血圧の較正を血圧の他の測定値、例えばオシロメトリック測定技術を使用して取得されたものを使用して実行できる。オシロメトリック測定の間では、初期オシロメトリック値に合計された相対血圧変化の積分が、代用的絶対血圧測定値を提供する。
このように、較正血圧測定値が例えばオシロメトリック測定技術を使用して得られる時点で、絶対血圧代用値
Figure 2024508872000028
は、κ=cの時点における較正(例えば、オシロメトリック)血圧測定値に設定され:
Figure 2024508872000029
ここで、MAP(κ)は較正血圧測定値である。
次に、インデックスκ>cの次のフレームを使用して反復積分が実行され、
Figure 2024508872000030
の新しい値:
Figure 2024508872000031
を推定し、ここで、係数B/Nは、当該積分をB個のサンプルのオーバーラップを伴うNのウィンドウ長を使用して平均化手法から独立にさせるための正規化である。
Figure 2024508872000032
は相対的なMAP変化(Nxのサンプルのウィンドウ内の)であり、
Figure 2024508872000033
に従ってステップ119で決定された代用的相対血圧変化を使用して取得される。
この結果、
Figure 2024508872000034
が得られる。
理解されるように、品質指数QI(κ)は、式(17)を介して計算された相対血圧変化の質の尺度を示す重み係数である。該QUは0から1の範囲内の値を有する。相対血圧変化の質が劣る場合、QI(κ)の値はゼロに近くなり、この劣った質により積分が乱されることはないであろう。好ましい実施形態として、この質の尺度は、PWSにおける複数の心周期波形に対する第1及び第2の平均心拍波形(式(9)及び式(10)により計算される)の「適合度」から計算できる。例えば、該品質尺度は:
Figure 2024508872000035
と計算でき、ここで、
Figure 2024508872000036
は:
Figure 2024508872000037
と計算され、ここで、γは積分の抑制に対する品質指数値の感度を決定するパラメータである。γの値が小さいほど、感度が低くなり、積分手順に対する品質指数値の影響が小さくなる。γ=2が良好な結果をもたらすことがわかった。式(23)により定義される品質の尺度は、0≦QI(κ)≦1により制限される。
式(22)では、代用絶対血圧測定値が、形態の変化及び品質指数を利用することによるMAP変化推定値の連続的積分及び基準点使用することにより再帰的に計算されることが分かる。当該品質指数は、誤って推定された変化の積分を回避するために使用できる。より具体的には、式(21)において、該品質指数は積分に対する重み係数として使用される。より劣る品質指数に対して、積分値に対する形態変化の寄与は一層小さくなる。
図13は、この絶対代用MAP推定の例示的な結果を、被験者の基準MAP測定値と一緒に示す。図13の(a)は、推定された絶対代用MAP及び基準の絶対代用MAPを約270分の期間にわたり示す。図13の(b)は、推定された及び基準の相対代用MAP(すなわち、MAP変化)を同じ期間にわたり示す。推定された絶対及び相対代用MAPは図13の(a)及び(b)では各々「Sur」とラベル付けされる一方、基準MAP及びMAP変化測定値は図13の(a)及び(b)において各々「Ref」とラベル付けされている。絶対代用推定の場合、t=0分において単一の較正のみを適用でき、その場合、当該値は70mmHg較正血圧に設定される。図13の(b)には、図13の(a)の代用MAP推定値の微分により得られた(相対)MAP変化(mmHg/分での)も示されている。ここでも、代用MAP変化を基準MAP変化と比較することができる。この代用値の微分により得られる相対変化は、変化率
Figure 2024508872000038
と密接に関係する。
図14は、種々の例示的な実施形態による、PWSを分析する際の種々の動作を示す機能ブロック図である。図14に示す種々の動作及び機能は、図3に示した処理ユニット34により実現できる。この例示的な図示の実施形態において、PWSはPPG信号1401である。PPG信号1401はシリアル/パラレル(S/P)コンバータ1402に入力され、該コンバータはPPG信号1401をNサンプルの1以上のウィンドウに分離又は分割する。該PPG信号のウィンドウは、重なり合っても良く、又は連続していても良い。ウィンドウ処理されたPPG信号は微分計算ブロック1403により受信され、該ブロックは時間に関するPPG信号の二次微分値(2PPG)を決定する。
2PPGは平均化ブロック1404に入力される。平均化ブロック1404は、2PPGから第1及び第2の平均心周期波形を決定するための本明細書に記載の技術のいずれかを実施することができる。平均化ブロック1404が図4を参照して前述した方法を実施する実施形態では、多項式フィット(「カーブフィット」)に対するnの所望の値が平均化ブロック1404に入力される。他の例として、nの所望の値は、予め決定され又は平均化ブロック1404にプリセットされ得る。平均化ブロック1404は、ウィンドウ化されたPPG信号における特定の時点についての第1の平均心周期波形、及びウィンドウ化されたPPG信号における他の特定の時点についての第2の平均心周期波形を出力する。更に、平均化ブロック1404は品質の尺度(例えば、「品質指数」)も出力し、該品質尺度は絶対血圧を計算する積分ブロック1410に入力される。図14において、平均化ブロック1404は、t=0及びt=‐N(例えば、t=0の1分前)の平均心周期波形を出力するものとして示されている。
上記平均心周期波形はデルタブロック1405に入力され、該デルタブロックは第1及び第2の平均心周期波形から差分信号(形態の変化を表す)を決定する。デルタブロック1405は、図11のステップ113を参照して前述したように動作することができる。当該デルタ信号又は差分信号は、絶対形態変化ブロック1406及び符号推定ブロック1407に出力される。
絶対形態変化ブロック1406は、上記差分信号から形態変化の絶対値を決定する。絶対形態変化ブロック1406は、図11のステップ115を参照して前述したように動作し得る。
符号推定ブロック1407は、上記差分信号から形態変化の方向を決定する。この変化の方向は、血圧の変化の方向に対応する。符号推定ブロック1407は、図11のステップ117を参照して前述したように動作し得る。
絶対形態変化ブロック1406及び符号推定ブロック1407の出力は乗算ブロック1408に供給され、該乗算ブロックは形態変化の絶対値と該変化の方向とを乗算して、代用相対血圧変化測定値1409を決定する。代用相対血圧変化測定値1409は、ユーザ、例えば医療提供者、医師又は被験者自身に出力することができる。
絶対血圧が決定されるべき実施形態においては、代用相対血圧変化測定値1409が積分ブロック1410に入力され、該積分ブロックは相対血圧変化測定値1409を時間に関して積分する。平均化ブロック1404において計算された前記品質の尺度が該積分の重み係数として使用され、相対血圧変化測定値の積分を、これら測定値の品質が低い場合に抑制する。例えばオシロメトリック測定技術を使用して取得される1以上の基準血圧測定値1411が、相対血圧変化測定値1409の積分を較正するために使用される。積分ブロック1410の出力は、代用絶対血圧測定値1412である。該絶対血圧変化測定値1412は、ユーザ、例えば医療提供者、医師又は被験者自身に出力することができる。
図15は、種々の代替の例示的実施形態による、PWSを分析する際の種々の動作を示す機能ブロック図である。これらの実施形態では、前記差分信号から形態変化の方向を推定するのではなく、代わりに、被験者のPAT信号から形態変化の方向(すなわち、符号推定)が決定される。図15に示す種々の動作及び機能は、図3に示した処理ユニット34により実現することができる。図14の実施形態に示された動作及び機能と共通する図15の動作及び機能は、同じ参照番号を使用している。図14におけるのと同様に、この例示的な実施形態において、PWSはPPG信号1401である。
PPG信号1401はS/Pコンバータ1402に入力され、該コンバータはPPG信号1401をNのサンプルの1以上のウィンドウに分離又は分割する。該PPG信号のウィンドウは、重なり合っても又は連続していてもよい。ウィンドウ処理されたPPG信号は微分計算ブロック1403により受信され、該ブロックは時間に関するPPG信号の二次微分値(2PPG)を決定する。
上記2PPGは、平均化ブロック1404に入力される。平均化ブロック1404は、本明細書に記載の技術のいずれかを実施して、2PPGから第1及び第2の平均心周期波形を決定することができる。平均化ブロック1404が図4を参照して前述した方法を実施する実施形態では、多項式フィット(「カーブフィット」)に対するnの所望の値が該平均化ブロック1404に入力される。他の例として、nの所望の値は、予め決定され又は平均化ブロック1404にプリセットされ得る。平均化ブロック1404は、ウィンドウ化されたPPG信号における特定の時点に関する第1の平均心周期波形、及び該ウィンドウ化されたPPG信号における他の特定の時点に関する第2の平均心周期波形を出力する。図15において、平均化ブロック1404は、t=0及びt=‐N(例えば、t=0の1分前)に関する平均心周期波形を出力するものとして示されている。更に、平均化ブロック1404は当該品質の尺度(例えば、「品質指数」)も出力し、該尺度は絶対血圧を計算する積分ブロック1410に入力される。
上記平均心周期波形はデルタブロック1405に入力され、該デルタブロック1405は第1及び第2の平均心周期波形から差分信号(形態の変化を表す)を決定する。デルタブロック1405は、図11のステップ113を参照して前述したように動作し得る。該デルタ又は差分信号は絶対形態変化ブロック1406に出力される。
絶対形態変化ブロック1406は、前記差分信号から形態変化の絶対値を決定する。絶対形態変化ブロック1406は、図11のステップ115を参照して前述したように動作することができる。絶対形態変化ブロック1406の出力は乗算ブロック1408に供給される。
前述したように、形態変化の方向(すなわち、符号の推定)は被験者のPAT信号から決定される。このように、ECG信号1501がS/Pコンバータ1502に入力され、該コンバータはECG信号1501を、PPG信号1401の場合と同様に、Nのサンプルの1以上のウィンドウに分離又は分割する。すなわち、同じウィンドウがPPG信号1401及びECG信号1501に適用され、形態変化の方向が同じ期間について計算されるようにする。
ウィンドウ化されたECG信号は、S/Pコンバータ1402からのウィンドウ化されたPPG信号と一緒にPATブロック1503に入力され、PAT信号が決定される。PAT信号は、経時的な被験者のPATを示し、ウィンドウ内の各心周期のPATを含む。特定の心周期のPATは、ECG信号1501におけるRピークから該脈波がPPG信号1401で到着するまでの時間により与えられる。
PATブロック1503の出力はカーブフィットブロック1504に入力され、該カーブフィットブロックは:
Figure 2024508872000039
により与えられる相対的なPAT変化(相対PAT変化)を計算し、ここで、該相対PAT変化は、式(12)におけるのと同様の方法で、当該ウィンドウ内の全てのPAT値を使用し、ΔPAT(κ)を計算するためにPAT値に対してカーブフィット手順を使用し、及びPAT(κ)を計算するために通常の平均を使用して計算される。
相対PAT変化を計算した後、この情報は前述した相対形態変化尺度と組み合わせることができる。実験によれば、血圧が大幅に変化する事象が検出されるようになる場合には、相対形態変化尺度がPAT変化尺度に勝ることがわかる。しかしながら、変化の方向(符号推定により与えられる)は、形態に基づく方法と比較してPATの方が優れている。したがって、有利には、絶対変化はPPGの形態変化を利用することにより計算され得る一方、変化の方向はPAT測定値を利用し、
Figure 2024508872000040
の符号を調べることにより計算され得るものとする。
符号ブロック1505は、上記PATブロックで計算された
Figure 2024508872000041
の値に基づいて符号(‐1又は1のいずれか)を決定する。
Figure 2024508872000042
の場合は正の符号(すなわち、血圧が上昇している)となる一方、
Figure 2024508872000043
の場合は負の符号(すなわち、血圧が低下している)となる。
乗算ブロック1408は、形態変化の絶対値と符号ブロック1505からの変化の方向とを乗算して、代用相対血圧変化測定値1409を決定する。該代用相対血圧変化測定値1409は、ユーザ、例えば、介護提供者、医師又は対象者自身に出力することができる。
絶対血圧が決定されるべき実施形態においては、代用相対血圧変化測定値1409が積分ブロック1410に入力され、該積分ブロックは相対血圧変化測定値1409を時間に関して積分する。平均化ブロック1404で計算された品質の尺度が該積分に対する重み係数として使用され、相対血圧変化測定値の積分を、これら測定値の品質が低い場合は抑制する。相対血圧変化測定値1409の該積分を較正するために、例えばオシロメトリック測定技術を使用して取得される1以上の基準血圧測定値1411が使用される。積分ブロック1410の出力は、代用絶対血圧測定値1412である。該絶対血圧変化測定値1412は、ユーザ、例えば医療提供者、医師又は被験者自身に出力され得る。
図15に示される実施形態は、脈波到着時間(PAT)を計算するために追加の信号/センサを必要とし、ECG信号は、正確なPAT測定を可能にするために、PPG信号と例えば大凡ミリ秒の精度内で同期して捕捉されることを要することが理解されるであろう。この要件は、特に装置30が家庭環境で使用されねばならない場合に、実際には必ずしも容易に満たせるものではなく、上記追加のセンサは装置30の使い易さを低下させ得るので、図14に示された実施形態の方が、図15の実施形態よりも好ましい。
したがって、被験者の血圧変化又は血圧の改善された推定のための技術が提供されるものである。
開示された実施形態の変形は、当業者によれば、本明細書に記載の原理及び技術を実施するに際して、本図面、開示及び添付請求項の精査から理解され、実現され得るものである。請求項において、「有する(含む)」という文言は他の要素又はステップを排除するものではなく、単数形は複数を排除するものではない。単一のプロセッサ又は他のユニットは、請求項に記載される幾つかの項目の機能を果たすことができる。特定の手段が相互に異なる従属請求項に記載されているという単なる事実は、これらの手段の組み合わせが有利に使用できないことを示すものではない。コンピュータプログラムは、他のハードウェアと一緒に、又は他のハードウェアの一部として供給される光記憶媒体又はソリッドステート媒体等の適切な媒体により記憶又は配布することができるのみならず、インターネット又は他の有線若しくは無線通信システムを介して等のように、他の形態で配布することもできる。請求項におけるいかなる参照符号も、当該範囲を限定するものとして解釈されるべきではない。

Claims (15)

  1. 被験者から得られる脈波信号を分析して該被験者の血圧の指標又は血圧の変化を決定するためのコンピュータ実施方法であって、前記脈波信号は第1の期間における前記被験者の複数の心周期に関する脈波測定値を含み、当該コンピュータ実施方法が、
    (i)前記脈波信号を分析して、前記第1の期間内の第1の時点に関する第1の平均心周期波形及び前記第1の期間内の第2の時点に関する第2の平均心周期波形を決定するステップと、
    (ii)前記第1の平均心周期波形から前記第2の平均心周期波形への形態変化を表す差分信号を決定するステップと、
    (iii)前記差分信号から前記形態変化の絶対値を決定するステップと、
    (iv)前記形態変化の方向を決定するステップと、
    (v)前記形態変化の前記絶対値及び前記方向を組み合わせることにより相対血圧変化を決定するステップと
    を有する、コンピュータ実施方法。
  2. 当該コンピュータ実施方法が、
    (vi)前記相対血圧変化を時間に関して積分して、前記被験者の血圧の推定値を決定するステップ
    を更に有する、請求項1に記載のコンピュータ実施方法。
  3. 前記ステップ(vi)が、前記血圧の推定値を、前記絶対値、前記形態変化の方向、及び前記相対血圧変化の質の第1の尺度を使用して決定するステップを有する、請求項2に記載のコンピュータ実施方法。
  4. 前記ステップ(vi)が、前記相対血圧変化の質の第1の尺度を、前記第1及び第2の平均心周期波形の前記脈波信号における前記複数の心周期に対する適合度を計算することにより決定するステップを更に有する、請求項3に記載のコンピュータ実施方法。
  5. 前記差分信号は、前記第1の平均心周期波形及び前記第2の平均心周期波形に関して各基準点に対して測定される複数の遅延時間値に対する各差分サンプルを含み、特定の遅延時間値に対する差分サンプルは、該特定の遅延時間値における前記第1の平均心周期波形と、該特定の遅延時間値における前記第2の平均心周期波形との間の差分である、請求項1から4の何れか一項に記載のコンピュータ実施方法。
  6. 前記基準点は前記被験者の脈波の始まりであり、前記複数の遅延時間値は前記基準点から0ミリ秒後から300ミリ秒後までの遅延時間値である、請求項5に記載のコンピュータ実施方法。
  7. 前記ステップ(iv)が、
    前記複数の遅延時間値の部分組に関して前記差分サンプルの和を決定するステップと、
    前記形態変化の方向を前記差分サンプルの和の符号として決定するステップと
    を有する、請求項5又は6に記載のコンピュータ実施方法。
  8. 前記基準点は前記被験者の脈波の始まりであり、前記複数の遅延時間値の部分組が前記基準点の後の遅延時間値である、請求項7に記載のコンピュータ実施方法。
  9. 被験者から得られる脈波信号を分析して該被験者の血圧の指標又は血圧の変化を決定するための装置であって、前記脈波信号は第1の期間における前記被験者の複数の心周期に関する脈波測定値を含み、当該装置が、
    (i)前記脈波信号を分析して、前記第1の期間内の第1の時点に関する第1の平均心周期波形及び前記第1の期間内の第2の時点に関する第2の平均心周期波形を決定し、
    (ii)前記第1の平均心周期波形から前記第2の平均心周期波形への形態変化を表す差分信号を決定し、
    (iii)前記差分信号から前記形態変化の絶対値を決定し、
    (iv)前記形態変化の方向を決定し、
    (v)前記形態変化の前記絶対値及び前記方向を組み合わせることにより相対血圧変化を決定する、
    装置。
  10. 当該装置が、更に、
    (vi)前記相対血圧変化を時間に関して積分して、前記被験者の血圧の推定値を決定する、
    請求項9に記載の装置。
  11. 前記(vi)の動作が、前記血圧の推定値を前記絶対値、前記形態変化の方向、及び前記相対血圧変化の質の第1の尺度を使用して決定する動作を含む、請求項10に記載の装置。
  12. 前記(vi)の動作が、前記相対血圧変化の質の第1の尺度を、前記第1及び第2の平均心周期波形の前記脈波信号における前記複数の心周期に対する適合度を計算することにより決定する動作を更に含む、請求項11に記載の装置。
  13. 前記差分信号は、前記第1の平均心周期波形及び前記第2の平均心周期波形に関して各基準点に対して測定される複数の遅延時間値に対する各差分サンプルを含み、特定の遅延時間値に対する差分サンプルは、該特定の遅延時間値における前記第1の平均心周期波形と、該特定の遅延時間値における前記第2の平均心周期波形との間の差分である、請求項9から12の何れか一項に記載の装置。
  14. 前記基準点は前記被験者の脈波の始まりであり、前記複数の遅延時間値は前記基準点から0ミリ秒後から300ミリ秒後までの遅延時間値である、請求項13に記載の装置。
  15. コンピュータ可読コードが組み込まれたコンピュータ可読媒体を有するコンピュータプログラムであって、前記コンピュータ可読コードが、適切なコンピュータ又は処理ユニットによる実行時に、該コンピュータ又は処理ユニットに請求項1から8の何れか一項に記載のコンピュータ実施方法を実行させる、コンピュータプログラム。
JP2023553077A 2021-03-03 2022-02-28 脈波信号を分析して血圧の指標及び/又は血圧変化を決定する方法、装置及びコンピュータプログラム製品 Pending JP2024508872A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP21160541.5A EP4052642A1 (en) 2021-03-03 2021-03-03 Method, apparatus and computer program product for analysing a pulse wave signal to determine an indication of blood pressure and/or blood pressure change
EP21160541.5 2021-03-03
PCT/EP2022/054923 WO2022184610A1 (en) 2021-03-03 2022-02-28 Method, apparatus and computer program product for analysing a pulse wave signal to determine an indication of blood pressure and/or blood pressure change

Publications (1)

Publication Number Publication Date
JP2024508872A true JP2024508872A (ja) 2024-02-28

Family

ID=74858219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023553077A Pending JP2024508872A (ja) 2021-03-03 2022-02-28 脈波信号を分析して血圧の指標及び/又は血圧変化を決定する方法、装置及びコンピュータプログラム製品

Country Status (5)

Country Link
US (1) US20240115145A1 (ja)
EP (2) EP4052642A1 (ja)
JP (1) JP2024508872A (ja)
CN (1) CN117015337A (ja)
WO (1) WO2022184610A1 (ja)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010075232A (ja) * 2008-09-24 2010-04-08 Toshiba Corp 自律神経活動計測装置及び自律神経活動の計測方法
JP5234078B2 (ja) * 2010-09-29 2013-07-10 株式会社デンソー 脈波解析装置および血圧推定装置
EP3048972B1 (en) 2013-09-27 2022-11-09 Koninklijke Philips N.V. Processing apparatus, processing method and system for processing a physiological signal
ES2870584T3 (es) * 2015-07-16 2021-10-27 Preventicus Gmbh Procesamiento de datos biológicos

Also Published As

Publication number Publication date
EP4301215A1 (en) 2024-01-10
EP4052642A1 (en) 2022-09-07
CN117015337A (zh) 2023-11-07
US20240115145A1 (en) 2024-04-11
WO2022184610A1 (en) 2022-09-09

Similar Documents

Publication Publication Date Title
El-Hajj et al. A review of machine learning techniques in photoplethysmography for the non-invasive cuff-less measurement of blood pressure
US20210244302A1 (en) Methods to estimate the blood pressure and the arterial stiffness based on photoplethysmographic (ppg) signals
JP6121177B2 (ja) ソースビデオ画像から動脈拍動経過時間を導出すること
US8668649B2 (en) System for cardiac status determination
Landry et al. Nonlinear dynamic modeling of blood pressure waveform: Towards an accurate cuffless monitoring system
JP2018511391A (ja) 血圧を測定する方法及び装置
Yang et al. Estimation and validation of arterial blood pressure using photoplethysmogram morphology features in conjunction with pulse arrival time in large open databases
EP2819571A1 (en) A method of processing a signal representing a physiological rhythm
Wang et al. The non-invasive and continuous estimation of cardiac output using a photoplethysmogram and electrocardiogram during incremental exercise
Junior et al. Estimation of blood pressure and pulse transit time using your smartphone
Bote et al. Evaluation of blood pressure estimation models based on pulse arrival time
EP4173555A1 (en) Device, system and method for calibrating a blood pressure surrogate for use in monitoring a subject's blood pressure
TW202027673A (zh) 生命體徵估計器的生命體徵估計裝置和校準方法
US20240008748A1 (en) Method and apparatus for determining information about an arterial property of a subject
EP4052642A1 (en) Method, apparatus and computer program product for analysing a pulse wave signal to determine an indication of blood pressure and/or blood pressure change
EP4014837A1 (en) Method, apparatus and computer program product for analysing a pulse wave signal
JP2023539358A (ja) 心拍出量測定結果の信頼性を推定するための方法及び装置
EP4094682A1 (en) Method, apparatus and computer program product for analysing a pulse wave signal
EP4173556A1 (en) Device, system and method for calibrating a blood pressure surrogate for use in monitoring a subject's blood pressure
Nagy et al. Sensor fusion for the accurate non-invasive measurement of blood pressure
Koohi Methods for Non-invasive trustworthy estimation of arterial blood pressure
Koçak et al. Design a Cuffless Blood Pressure Measurement System
López-Lozada et al. Blood Pressure Estimation Algorithm By A Cuff-Based Monitoring Unit
De Alwis et al. Correction factor estimation for a parametric model between pulse transit time and systolic blood pressure, for non-invasive blood pressure estimation
KEERTHANA et al. NON-INVASIVE CUFFLESS BLOOD PRESSURE MEASUREMENT