JP2024507564A - High color rendering white LED virus sterilization element containing 405 nm light and the sterilization lighting device - Google Patents

High color rendering white LED virus sterilization element containing 405 nm light and the sterilization lighting device Download PDF

Info

Publication number
JP2024507564A
JP2024507564A JP2023551268A JP2023551268A JP2024507564A JP 2024507564 A JP2024507564 A JP 2024507564A JP 2023551268 A JP2023551268 A JP 2023551268A JP 2023551268 A JP2023551268 A JP 2023551268A JP 2024507564 A JP2024507564 A JP 2024507564A
Authority
JP
Japan
Prior art keywords
light
virus
white led
color rendering
lighting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023551268A
Other languages
Japanese (ja)
Inventor
アン、チョン-ウク
ヨン ホン、ソク
ピン ペ、チョン
チョン、ヒョン-ウ
Original Assignee
オーリックス シーオー., エルティーディー.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オーリックス シーオー., エルティーディー. filed Critical オーリックス シーオー., エルティーディー.
Publication of JP2024507564A publication Critical patent/JP2024507564A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/08Radiation
    • A61L2/10Ultraviolet radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/16Disinfection, sterilisation or deodorisation of air using physical phenomena
    • A61L9/18Radiation
    • A61L9/20Ultraviolet radiation
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/7729Chalcogenides
    • C09K11/7731Chalcogenides with alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/77348Silicon Aluminium Nitrides or Silicon Aluminium Oxynitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2202/00Aspects relating to methods or apparatus for disinfecting or sterilising materials or objects
    • A61L2202/10Apparatus features
    • A61L2202/11Apparatus for generating biocidal substances, e.g. vaporisers, UV lamps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2209/00Aspects relating to disinfection, sterilisation or deodorisation of air
    • A61L2209/10Apparatus features
    • A61L2209/12Lighting means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Public Health (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Veterinary Medicine (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)

Abstract

本発明によって405nmの紫光が含まれる白色LEDによる感染ウイルス等に対して殺菌効果を発現させる光源装置は、ポリフィリンのSoret帯とQ帯の吸収に近い可視光波長である400~420nmの紫光と白色光が含まれ、それぞれの発光強度を制御できる殺菌照明装置であり、ウイルス及びバクテリアなどの細菌を不活性化する効果を提供する。本発明は、紫外線であるUV-Cの光と異なり、可視光であることから人体・生態系に安全であるため長時間の使用に効果を発揮する。According to the present invention, the light source device that uses a white LED containing 405 nm violet light to exert a sterilizing effect on infectious viruses, etc. uses 400 to 420 nm violet light and white light, which is a visible light wavelength close to the Soret band and Q band absorption of porphyrin. It is a sterilizing lighting device that contains light and can control the intensity of each emission, and provides the effect of inactivating germs such as viruses and bacteria. Unlike UV-C light, which is ultraviolet light, the present invention uses visible light, which is safe for the human body and the ecosystem, and is effective for long-term use.

Description

本発明は405nmの紫光を含む白色LEDによる感染ウイルス等に対する殺菌効果を発現さす光源装置に関する。 The present invention relates to a light source device that exhibits a sterilizing effect on infectious viruses and the like using a white LED containing 405 nm violet light.

2019年中国、武漢で発生した新型コロナウイルス(SARS CoV-2, COVID-19)による感染症は世界的に深刻な問題である。発生から約1年以上を経過しても、感染拡大の流れは止まらない。新しいタイプの感染ウイルスの殺菌・減菌・滅菌は、医学のみならず公衆衛生上喫緊の重要な課題である。 The infectious disease caused by the new coronavirus (SARS CoV-2, COVID-19) that occurred in Wuhan, China in 2019 is a serious problem worldwide. Even though more than a year has passed since the outbreak, the infection continues to spread. Disinfection, sterilization, and sterilization of new types of infectious viruses are urgent issues not only in medicine but also in public health.

これまでに、紫外線による殺菌はウイルスなどの細菌の遺伝子の吸収波長に近い低圧水銀灯の254nmの紫外線(UV-C)が用いられ、この波長のエネルギーが遺伝子に直接作用することにより対象菌を死滅させると考えられている。しかしながら、260nm近傍の紫外線は人間に有害であるばかりではなく、無機物及び有機物を破壊する。そのため、人体及び生物に安全な光による殺菌効果が期待されている。 Until now, sterilization using ultraviolet light has used 254 nm ultraviolet light (UV-C) from a low-pressure mercury lamp, which is close to the absorption wavelength of the genes of bacteria such as viruses, and the energy at this wavelength kills the target bacteria by acting directly on the genes. It is believed that However, ultraviolet light around 260 nm is not only harmful to humans, but also destroys inorganic and organic materials. Therefore, it is expected that light will have a sterilizing effect that is safe for the human body and living things.

最近、Ushioから人体に安全な光として、エキシマーガスの放電光による222nmの遠紫外線(Far-UVC)による新型ウイルスの不活性化・殺菌効果、及び徳島大学のグループによる紫外線(UV-C)LEDによる新型コロナウイルスに関する不活性効果に関する研究結果が発表されている。 Recently, Ushio has announced that 222nm far-UVC (excimer gas discharge light) has the effect of inactivating and sterilizing new viruses as light that is safe for the human body, and ultraviolet (UV-C) LED has been developed by a group at Tokushima University. Research results regarding the inactivation effect regarding the new coronavirus have been announced.

前記研究結果内容以外の光として、405nmの光がバクテリア、ヘリコバクターピロリ菌及び皮膚感染菌などの細菌に有効であることが報告(特許文献1及び2)されているが、405nmの紫光を含む白色LEDから発生する可視光線の照射によるウイルスの不活性化(殺菌)効果の報告とその実用装置の発明は無い(非特許文献1)。最近、新型コロナウイルに感染した重症患者の多くは、フェリチン(Fe)過剰になっているとの医学的報告(非特許文献2)がある。 In addition to the above research results, it has been reported that 405 nm light is effective against bacteria, Helicobacter pylori, and skin-infecting bacteria (Patent Documents 1 and 2), but white light containing 405 nm violet light There is no report on the effect of inactivating (sterilizing) viruses by irradiation with visible light emitted from LEDs, and there is no invention of a practical device for the same (Non-Patent Document 1). Recently, there is a medical report (Non-Patent Document 2) that many critically ill patients infected with the new coronavirus have excessive ferritin (Fe).

本発明は、ポリフィリンの吸収帯に近い405nmの紫光を含む白色LED光源を用いて新型コロナウイルスの核酸構造(RNA)に類似するウイルスに関する実験結果を通じて、その殺菌メカニズムを考察し、ウイルスへの不活性化・殺菌効果を発現さす白色LED光源の実用化に関する。 The present invention uses a white LED light source containing 405 nm violet light, which is close to the absorption band of porphyrin, to examine the sterilization mechanism of the new coronavirus through experimental results on a virus similar to the nucleic acid structure (RNA) of the new coronavirus. Concerning the practical application of white LED light sources that exhibit activation and sterilization effects.

1.特許JP5435619
2.特開JP2008-25337
1. Patent JP5435619
2. JP2008-25337

E.Kvan and K.Benner, “Mechanistic insights in UV-A mediated bacterial disinfection via endogeneous photosensitizers” J. of Photochemistry & Photobiology, B:Biology 209 (2020) 111899.
W.Liu and H.Li, “Covid-19 attacks the 1-Beta chain of hemoglobin and capture the porphyrin to inhibit human heme metabolism, ChemRxiv 2020, April 10.
E. Kvan and K. Benner, “Mechanistic insights in UV-A mediated bacterial disinfection via endogeneous photosensitizers” J. of Photochemistry & Photobiology, B:Biology 209 (2020) 111899.
W.Liu and H.Li, “Covid-19 attacks the 1-Beta chain of hemoglobin and capture the porphyrin to inhibit human heme metabolism, ChemRxiv 2020, April 10.

本発明は、ポルフィリンの吸収域に近接する405nmの紫色光を含む白色LEDを利用し、新型コロナウイルスの核酸構造(RNA)に類似したウイルスに関する実験結果により、その殺菌のメカニズムを考察し、ウイルスに対する不活性化及び殺菌効果を発現させる白色LED光源の実用化に関するものである。 The present invention uses a white LED that emits 405 nm violet light, which is close to the absorption range of porphyrins, and uses experimental results regarding a virus similar to the nucleic acid structure (RNA) of the new coronavirus to study the sterilization mechanism. The present invention relates to the practical application of a white LED light source that exhibits inactivation and sterilization effects on bacteria.

本発明によれば、UV-Cの紫外線とは違って、405nm付近の可視光領域の紫光により、ウイルスなどの対象菌の細胞内に発生する活性酸素の酸化作用により細胞膜及び遺伝子を破壊させる効果を発現させる。即ち、ウイルスを構成又は前述ウイルスと結合する多くのたんぱく質(例えば、ポリフィリン)は、その吸収波長が400~410nm(SORET帯の最大ピーク)及び550~660nm(Q帯)に存在することが知られている。 According to the present invention, unlike UV-C ultraviolet rays, violet light in the visible light range around 405 nm has the effect of destroying cell membranes and genes through the oxidation effect of active oxygen generated within the cells of target bacteria such as viruses. Express. That is, it is known that many proteins (e.g., porphyrin) that constitute viruses or bind to the aforementioned viruses have absorption wavelengths in the range of 400 to 410 nm (the maximum peak of the SORET band) and 550 to 660 nm (the Q band). ing.

本発明では、405nmの紫色光を含む白色LEDの光を利用して、このSORET帯及びQ帯を直接励起し、生体内に一重項の電子配置を有する活性酸素(1O2)を発生させて、ウイルスの核酸(DNA又はRNA)の側鎖及び細胞膜を攻撃し破壊することで、ウイルスを死滅させる効果を発現させる白色LED光源を発明することにある。 In the present invention, the SORET band and Q band are directly excited using white LED light containing 405 nm violet light, and active oxygen (1O2) having a singlet electron configuration is generated in the living body. The purpose of this invention is to invent a white LED light source that has the effect of killing viruses by attacking and destroying the side chains of viral nucleic acids (DNA or RNA) and cell membranes.

ウイルスは、人間の口腔内で感染し、その後、唾液などと結合した後、咳などの飛沫感染で空気中に飛散し、その後さらに、ウイルスは人間に感染し増殖する。 The virus infects humans in the oral cavity, and after combining with saliva, it is dispersed into the air through droplet infection such as when coughing, and then the virus further infects humans and multiplies.

本発明では、このように、飛沫感染及び血液などにウイルスが結合した状態に405nm光と白色LED光を同時照射してウイルスを殺菌する方法である。 The present invention is a method of sterilizing viruses by simultaneously irradiating 405 nm light and white LED light to droplet infections and virus bound to blood.

そのためには、405nm光による殺菌を効果的に発現さす為、高出力の405nm光とQ帯の吸収スペクトルに類似するスペクトル波長分布を有する白色LED光源が発明の基本である。 To this end, in order to effectively achieve sterilization using 405 nm light, the basis of the invention is a high-output 405 nm light and a white LED light source with a spectral wavelength distribution similar to the absorption spectrum of the Q band.

本発明では、一つのパッケージ(PKG)内にこれらの構造を同時に備えた2in1 PKG構造を作製し、光出力が可変出来ることが特徴である。 The present invention is characterized in that a 2-in-1 PKG structure is fabricated in which these structures are simultaneously provided in one package (PKG), and the light output can be varied.

前述のようにこの発明は、殺菌効果に有効な405nm紫光と照明機能を有する白色光の強度を制御する組み合わせにより、長時間にわたり効果的にウイルスの不活性化が出来る。 As mentioned above, this invention can effectively inactivate viruses over a long period of time by combining 405 nm violet light, which is effective for sterilizing effects, and controlling the intensity of white light, which has a lighting function.

UV-Cの様な瞬時の殺菌効果ではなく、可視光の紫光を利用しているので、比較的長時間継続して殺菌が必要な安全な場所での活用を期待する場所に有効である。 It does not have an instant sterilization effect like UV-C, but uses visible violet light, so it is effective in safe areas where sterilization is required over a relatively long period of time.

一般照明機能のみならずウイルスの不活性化(殺菌)効果をもたらすので、病院などの医療機関及び介護施設のみならず、一般家庭及び商業施設など幅広い場所で応用出来る。 Since it not only has a general lighting function but also has the effect of inactivating (sterilizing) viruses, it can be applied not only to medical institutions such as hospitals and nursing care facilities, but also to a wide range of places such as general homes and commercial facilities.

図1は、405nm紫光と別途405nmで励起された高演色白色LEDからなる2in1PKG構造SMD型殺菌照明装置を示す。Figure 1 shows a 2-in-1 PKG structure SMD germicidal lighting device consisting of 405nm violet light and a high color rendering white LED separately excited at 405nm. 図2は、SMD型殺菌照明装置の断面図として、405nmの反射・散乱光により蛍光体が励起され発光する様子を示す。Figure 2 is a cross-sectional view of the SMD germicidal lighting device, showing how the phosphor is excited and emits light by 405 nm reflected and scattered light. 図3は、405nm励起高演色白色LEDと405nm紫色LEDCOB型殺菌照明光源のルーレット配置構造を示すもので、Vは405nmLED、Wは高演色白色LEDを示す。Figure 3 shows the roulette arrangement structure of a 405nm excited high color rendering white LED and a 405nm violet LED COB type germicidal illumination light source, where V indicates the 405nm LED and W indicates the high color rendering white LED. 図4は、ウイルス及びバクテリアの不活性化実験に用いた15Wダウンライト光源とウイルス培養器での実験配置図を示す。Figure 4 shows the experimental layout of the 15W downlight light source and virus incubator used in the virus and bacteria inactivation experiment. 図5は、殺菌用白色LED光源の発光スペクトル(色温度、6500K)の代表例及びポリフィリンの吸収スペクトル(Soret帯とQ帯)の比較(挿入図)を示す。Figure 5 shows a typical example of the emission spectrum (color temperature, 6500K) of a white LED light source for sterilization and a comparison (inset) of the absorption spectrum (Soret band and Q band) of porphyrin. 図6は、RVSウイルスとロタウイルスの生存率(不活性化)曲線を示す。Figure 6 shows survival (inactivation) curves for RVS virus and rotavirus. 図7は、大腸菌(E.Coli)への照射効果を示す。(a) Control(非照射)と(b)Irradiation(照射)Figure 7 shows the effect of irradiation on E. coli. (a) Control (non-irradiation) and (b) Irradiation (irradiation) 図8は、サルモネラ菌(S.Typhimurium)への照射効果を示している。(a)は、飛沫によるウイルス伝搬の様子及び(b)はポルフィリンと結合したウイルスの様子を模式的に示す。Figure 8 shows the effect of irradiation on Salmonella enterica (S. Typhimurium). (a) schematically shows the state of virus propagation by droplets, and (b) schematically shows the state of the virus bound to porphyrin. 図9は、405nm光と白色光によるウイルスの殺菌メカニズムを示している。(a)は飛沫によるウイルスの伝搬の様子及び(b)はポリフィリンと結合したウイルスの様子を模式的に示す。Figure 9 shows the virus sterilization mechanism by 405nm light and white light. (a) schematically shows the state of virus propagation by droplets, and (b) schematically shows the state of the virus bound to porphyrin.

以下、添付の図面を参照し、本発明の実施例を更に詳しく説明する。しかし、本発明は以下に開示される実施例に限るものではなく、様々な形態として具現されるものであり、只本実施例たちは、本発明の開示が完全になるようにし、通常の知識を持つ者へ発明の範疇を完全に示すために提供するものである。図面上で同一符号は、同一要素を示す。 Hereinafter, embodiments of the present invention will be described in more detail with reference to the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below, and may be embodied in various forms, and these embodiments are intended to provide a complete disclosure of the present invention, and are not limited to the embodiments disclosed below. This is provided to fully illustrate the scope of the invention to those who have the invention. The same reference numerals in the drawings indicate the same elements.

[1]殺菌照明用LED光源
本発明で用いたLED光源は、高出力405nmの紫色光と別途405nmで励起された演色性の高い白色光を発生する構造で構成される。
[1] LED light source for sterilization lighting The LED light source used in the present invention has a structure that generates high-output 405 nm violet light and white light with high color rendering properties that is separately excited at 405 nm.

図1及び図2は、前記LEDの光源構造を示す。 1 and 2 show the light source structure of the LED.

図1は2種類のLEDが電気回路配線基板上に実装されている表面実装型(SMD)である。405nmのLED chipはシリコーン樹脂で封止されている。一方、高演色白色は、シリコーン樹脂に蛍光体を分散して封止した構造である。これらの2種類のLED chipは一つのパッケージ(PKG)に実装されている。 Figure 1 shows a surface mount type (SMD) in which two types of LEDs are mounted on an electrical circuit board. The 405nm LED chip is sealed with silicone resin. On the other hand, high color rendering white has a structure in which phosphor is dispersed and sealed in silicone resin. These two types of LED chips are mounted in one package (PKG).

図2は、図1のSMD構造の断面図である。真ん中の壁は、出来るだけ低くして、405nmの紫光が、隣のPKGに反射及び散乱することが出来る。即ち、高演色白色LEDが点灯していない場合でも、405nm紫光により、高演色白色LED chip上に塗布した蛍光体が発光して、常に白色光を放射出来るようにしている。 FIG. 2 is a cross-sectional view of the SMD structure of FIG. 1. The middle wall should be as low as possible to allow the 405nm violet light to be reflected and scattered to the neighboring PKG. That is, even when the high color rendering white LED is not lit, the 405 nm violet light causes the phosphor coated on the high color rendering white LED chip to emit light, so that it can always emit white light.

更に、光出力を増加するために、図3に示すようなCOB構造を作製する。前述の図1と図2で示したように、2種類のLED chipは、ルーレット上に配置され、間の壁は、出来るだけ低くして、405nm紫光が、隣の蛍光体を励起するようにする。 Furthermore, in order to increase the optical output, we will fabricate a COB structure as shown in Figure 3. As shown in Figures 1 and 2 above, two types of LED chips are placed on a roulette, and the wall between them is kept as low as possible so that the 405nm violet light excites the neighboring phosphors. do.

以上の様に、405nmの紫光は、高演色白色LEDが点灯していない場合でも、常に蛍光体を励起できるようなPKG構造にしておく。照明器具にLED光源を取り付けた際でも、外側のカバーに405nmが反射して蛍光体を提起し発光することもある。 As described above, the 405 nm violet light has a PKG structure that can always excite the phosphor even when the high color rendering white LED is not lit. Even when an LED light source is attached to a lighting fixture, 405nm light may be reflected from the outer cover and cause the phosphor to emit light.

以下、405nm LEDと高演色白色LEDに関して説明する。
(1)405nmLEDは縦型及び横型chipの半導体InGaN量子井戸構造から成り立ち、光出力が1W以上ある。中心波長が405nmであり、発光半値幅が15nmである。
(2)高演色白色LED:405nmによって励起される以下の蛍光体を含む。
青色蛍光体として、(Sr,Br)10(PO4)6Cl2:Eu
緑色蛍光体として、SiAlON:Eu
黄色蛍光体として、(Ba,Sr)Si2(O,Cl)2N2:Eu
第一赤色蛍光体として、CaAlSi(ON)2:Eu
第二赤色蛍光体として、CaALSiN2Eu
Below, we will explain about 405nm LED and high color rendering white LED.
(1) 405nm LEDs are composed of semiconductor InGaN quantum well structures in vertical and horizontal chips, and have a light output of 1W or more. The center wavelength is 405 nm, and the emission half width is 15 nm.
(2) High color rendering white LED: Contains the following phosphors excited by 405 nm.
As a blue phosphor, (Sr,Br)10(PO4)6Cl2:Eu
As a green phosphor, SiAlON:Eu
As a yellow phosphor, (Ba,Sr)Si2(O,Cl)2N2:Eu
As the first red phosphor, CaAlSi(ON)2:Eu
As the second red phosphor, CaALSiN2Eu

上述の蛍光体をシリコン樹脂に、12.3:1.0:1.0:5.0:0.3の重量比で混合して用いる。これらの蛍光体の重量比を変化することにより、後述する図5のポリフィリンの吸収スペクトルに近づけることが出来る。更に、蛍光体の重量比を調整することにより、色温度を2000K~10000Kに調色出来る。高演色照明特性に必要とされる平均演色評価数(Ra)は90以上である。また、異なる色温度のLEDを図3のルーレット基板に配置することにより、高出力で調色可変できる。 The above-described phosphor is mixed with silicone resin at a weight ratio of 12.3:1.0:1.0:5.0:0.3. By changing the weight ratio of these phosphors, it is possible to approximate the absorption spectrum of porphyrin shown in FIG. 5, which will be described later. Furthermore, by adjusting the weight ratio of the phosphors, the color temperature can be adjusted from 2000K to 10000K. The average color rendering index (Ra) required for high color rendering lighting characteristics is 90 or higher. Furthermore, by placing LEDs with different color temperatures on the roulette board shown in Figure 3, it is possible to vary the color toning with high output.

[2]ウイルス殺菌用光源と発光スペクトル
試験に用いたLED殺菌光源を図4に示す。光源は、前記の図1及び図3に示した2種類のLEDが搭載されている。構造は、光源内部にウイルスが侵入しないように気密性が保たれている。
[2] Virus sterilization light source and emission spectrum Figure 4 shows the LED sterilization light source used in the test. The light source is equipped with the two types of LEDs shown in FIGS. 1 and 3 above. The structure is airtight to prevent viruses from entering the light source.

光出力は消費電力15Wの時、光源から33.5cm下で、31μW/cm2であった。LEDの直下では、約35mW/cm2である。この時の発光スペクトルを図5に示す。405nmの強度は紫色LEDからの発光と白色LEDから放射される405nmの光が合成された強度である。430nmから長波長域の幅広い発光は、白色発光に用いた蛍光体からの発光である。色温度は、6500Kである。白色光は対象物を見やすくする照明効果が有る。 The light output was 31μW/cm2 at a distance of 33.5cm from the light source when the power consumption was 15W. Directly below the LED, it is approximately 35mW/cm2. The emission spectrum at this time is shown in Figure 5. The intensity of 405nm is the combined intensity of the light emitted from the violet LED and the 405nm light emitted from the white LED. The wide range of light emission from 430 nm to long wavelength range is the light emission from the phosphor used for white light emission. Color temperature is 6500K. White light has a lighting effect that makes objects easier to see.

[3]ポリフィリンの吸収特性
図5の挿入図にポリフィリンの吸収特性を示す。
[3] Absorption properties of porphyrin The inset of Figure 5 shows the absorption properties of porphyrin.

350~410nmに鋭いピークが現れる。これはSoret帯と呼ばれる。一方、ブロードな吸収はQ帯(510nm,545nm,580nm,635nm)と呼ばれる。図5の白色発光スペクトルと比較すると、ちょうどSoret帯、Q帯の位置と発光帯が対応していることが解る。また、発明した殺菌光源のスペクトルにおいて、405nmと白色の発光強度比が、Soret帯とQ帯の強度比に比較的近い。従って、発明した405nm紫励起の高演色白色LED光源からの光は、ポリフィリンに良く吸収されることが解る。 A sharp peak appears between 350 and 410 nm. This is called the Soret zone. On the other hand, broad absorption is called the Q band (510nm, 545nm, 580nm, 635nm). When compared with the white emission spectrum in Figure 5, it can be seen that the positions of the Soret band and Q band correspond to the emission bands. Furthermore, in the spectrum of the invented sterilizing light source, the emission intensity ratio of 405 nm and white light is relatively close to the intensity ratio of Soret band and Q band. Therefore, it can be seen that the light from the invented high color rendering white LED light source with 405 nm violet excitation is well absorbed by porphyrin.

本発明では、405nmの紫色の光で何故ウイルスの不活性化(殺菌)が出来るのかに関して、未知の部分が多いが、一つの仮説として、コロナウイルスの構造も、表面のスパイク(S)タンパク質もたんぱく質の成分を有することから、Soret帯とQ帯の吸収が起こることが推察される。 In the present invention, there are many unknowns as to why the virus can be inactivated (sterilized) with 405 nm purple light, but one hypothesis is that the structure of the coronavirus and the spike (S) protein on the surface Since it contains protein components, it is inferred that Soret band and Q band absorption occurs.

後述する殺菌メカニズムに於いて言及するが、405nmと白色光が、ウイルスの細胞内で、活性酸素を発生させ、これにより細胞膜の破壊及びDNA及びRNAの側鎖を切断する可能性が有ると考えて発明を行った。 As will be mentioned later in the sterilization mechanism, it is believed that 405nm and white light generate active oxygen within virus cells, which may destroy cell membranes and cleave side chains of DNA and RNA. He made an invention.

以下に、実際のウイルスの不活性化に関する実験に関して詳述する。ウイルスは、新型コロナウイルスと同じような構造を持つRSVウイルス及びロタウイルス(RVA)である。また、ウイルス以外に、バクテリアに関する検証も同時に行った。対象菌は、大腸菌とサルモネラ菌であり、両細菌ともグラム陰性菌である。 Below, experiments related to actual virus inactivation will be explained in detail. The viruses are RSV virus and rotavirus (RVA), which have a similar structure to the new coronavirus. In addition to viruses, we also conducted tests on bacteria. The target bacteria are Escherichia coli and Salmonella enterica, both of which are Gram-negative bacteria.

[4]ウイルス評価試験
2種類の感染ウイルスであるRSV(Human respiratory syncytial virus)及びRVA (Rotavirus A)に対してKorea Testing and Research Institute(KTR)にて不活性化試験を行った。
[4] Virus evaluation test
Inactivation tests were conducted at the Korea Testing and Research Institute (KTR) for two types of infectious viruses, RSV (Human respiratory syncytial virus) and RVA (Rotavirus A).

1.宿主細胞の培養
宿主細胞は細胞培地を用いて5%CO2、温度36±2℃の条件で培養した。
1. Culture of host cells Host cells were cultured using cell culture medium under conditions of 5% CO2 and a temperature of 36±2°C.

2.ウイルスの培養
2.1 RSVの培養
フラスコにて単層培養したHep-2細胞をPBSで洗浄後、RSV希釈液3mlを接種した。60~90分ウイルスに感染させた後、ウイルス培養培地を添加し、90%以上の宿主細胞が細胞病変減少(Cytopathic effect, CPE)を起こすまでウイルスを3~12日間培養した。その後、培養上層液を2000rpmにて10分間遠心分離し、上層液を0.45μmのフィルターで濾過しウイルスを分離した。
2. Virus culture
2.1 Cultivation of RSV After washing Hep-2 cells cultured in a monolayer in a flask with PBS, 3 ml of a diluted RSV solution was inoculated. After virus infection for 60 to 90 minutes, virus culture medium was added and the virus was cultured for 3 to 12 days until more than 90% of the host cells exhibited cytopathic effect (CPE). Thereafter, the culture supernatant liquid was centrifuged at 2000 rpm for 10 minutes, and the supernatant liquid was filtered through a 0.45 μm filter to separate the virus.

2.2 RVAの培養
フラスコに単層培養したCV-1細胞をPBSで洗浄後、RVA希釈液3mlを接種した。60~90分間ウイルスに感染させた後、ウイルス培養培地を添加し、90%以上の宿主細胞が細胞病変現象(CPE)を起こすまでウイルスを約1週間培養した。その後、培養上層液を2000rpmにて遠心分離し、上層液を0.45μmのフィルターで濾過しウイルスを分離した。
2.2 Cultivation of RVA After washing CV-1 cells cultured in a monolayer in a flask with PBS, 3 ml of RVA dilution was inoculated. After infection with the virus for 60-90 minutes, virus culture medium was added and the virus was cultured for about 1 week until more than 90% of the host cells developed cell lesion phenomenon (CPE). Thereafter, the culture supernatant liquid was centrifuged at 2000 rpm, and the supernatant liquid was filtered through a 0.45 μm filter to separate the virus.

3.抗ウイルス試験
3.1 細胞毒性試験
減菌したシャーレに試験ウイルスを0.2ml注入後、無菌試験台内部層流の待機条件下で30分間乾燥させたウイルスフイルムを形成した。これを光源との距離30cmの所に置き、照射時間を変化させて測定した。シャーレにウイルス培養培地2mlを添加した後、cell scraperを用いて表面を削り落とす方式でフィルムを回収した。ウイルス培養培地に10倍ずつ段階的に希釈して、宿主細胞に(36±2)℃にて1時間処理した後に細胞毒性様子を顕微鏡にて観測した。
3. antiviral test
3.1 Cytotoxicity Test After injecting 0.2 ml of the test virus into a sterilized petri dish, it was dried for 30 minutes under laminar flow standby conditions inside the sterile test stand to form a virus film. This was placed at a distance of 30 cm from the light source, and measurements were taken while varying the irradiation time. After adding 2 ml of virus culture medium to the petri dish, the film was collected by scraping off the surface using a cell scraper. It was serially diluted 10 times in virus culture medium and treated with host cells at (36±2)°C for 1 hour, after which the cytotoxicity was observed under a microscope.

3.2 芽細胞毒性試験
細胞毒性試験にて回収した溶液を宿主細胞に30分間処理後、細胞単層をPBSで洗浄してから、試験ウイルス希釈液を接種した。その後、ウイルスを感染させ培養した。
3.2 Blast Toxicity Test After treating host cells with the solution collected in the cytotoxicity test for 30 minutes, the cell monolayer was washed with PBS and then inoculated with a diluted test virus. Thereafter, they were infected with the virus and cultured.

3.3 中和試験
細胞毒性試験にて回収した溶液と試験ウイルス希釈液を同量で混合し、約20分間反応させた後、宿主細胞に摂取した。その後、ウイルスを感染させ培養した。
3.3 Neutralization test The solution collected in the cytotoxicity test and the diluted test virus were mixed in equal amounts, allowed to react for about 20 minutes, and then ingested into host cells. Thereafter, they were infected with the virus and cultured.

3.4 細胞培養対象群
宿主細胞にウイルス培養培地を処理し、細胞培養の対象とした。
3.4 Cell culture target group Host cells were treated with virus culture medium and used as the target for cell culture.

3.5 ウイルス対象群
試験ウイルスをウイルス培養培地に1:9の比率で混合し、ウイルス培養培地に10倍ずつ段階希釈した。各希釈液を宿主細胞に接種し、試験ウイルスの力価を測定した。
3.5 Virus Target Group The test virus was mixed in the virus culture medium at a ratio of 1:9 and serially diluted 10 times in the virus culture medium. Each dilution was inoculated into host cells and the titer of the test virus was determined.

即ち、ウイルスフイルムにウイルス培養培地2mlを添加後、cell scraperを用いて表面を削り落とす方式でウイルスを回収し、ウイルス培養培地に10倍ずつ段階的に希釈した。各希釈液を宿主細胞に接種し、対象群のウイルス力価を測定した。ウイルスフィルムを22±2℃にて2時間及び4時間放置した後、ウイルス培養培地2mlを添加し、ウイルス力価を測定した。 That is, after adding 2 ml of virus culture medium to the virus film, the virus was collected by scraping off the surface using a cell scraper, and then diluted stepwise in 10-fold increments in the virus culture medium. Each dilution was inoculated into host cells, and the virus titer in the control group was measured. After the virus film was left at 22±2°C for 2 and 4 hours, 2 ml of virus culture medium was added and the virus titer was measured.

3.6 ウイルス試験群
ウイルスフィルムを形成してから、上記と同様な方法にてウイルス力価を測定した。
3.6 Virus test group After forming a virus film, the virus titer was measured in the same manner as above.

3.7 ウイルス回収
各段階毎の希釈液を96 well plateに予め準備した細胞100μlずつ、4個wellに処理(4回繰り返す)して、表1の条件で培養した。
3.7 Virus Recovery 100 μl of the diluted solution for each stage was applied to 4 wells (repeated 4 times) of cells prepared in advance in a 96 well plate, and cultured under the conditions shown in Table 1.

3.8 染色条件
25% メチルアルコール、0.5% crystal violetの染色試薬を細胞に処理し、22±2℃にて10分間染色した。
3.8 Staining conditions
Cells were treated with a staining reagent of 25% methyl alcohol and 0.5% crystal violet, and stained at 22±2°C for 10 minutes.

3.9 観測及び評価
Crystal violetにより染色されたwellを数え、Spearman-Karber法にて力価を算出した。
3.9 Observation and evaluation
The wells stained with Crystal violet were counted, and the titer was calculated using the Spearman-Karber method.

実施例1 Example 1

4 試験結果
4.1 細胞毒性試験及び芽細胞毒性試験
試験溶液の細胞毒性を確認した結果、Hep-2及びCV-1細胞共に細胞毒性は観測されなかった。また、試験溶液に芽細胞毒性は観測されず、中和対象における試料の中和が確認された。RSV及びRVAに対する、これらの結果を表2に示す。
4 Test results
4.1 Cytotoxicity Test and Blast Toxicity Test As a result of confirming the cytotoxicity of the test solution, no cytotoxicity was observed for either Hep-2 or CV-1 cells. Furthermore, no blast toxicity was observed in the test solution, confirming the neutralization of the sample in the neutralization target. These results are shown in Table 2 for RSV and RVA.

下記の表2は、芽細胞毒性試験泳ぎ中和試験を示す(+:ウイルス感染を示す) Table 2 below shows the blast toxicity test swim neutralization test (+: indicates viral infection)

4.2 抗ウイルス試験結果
4.2.1 RSV
試験ウイルスの力価は107.00TCID50/100μL、初期対象群の力価は106.80TCID50/carrier、2時間後の対象群の力価は106.30TCID50/carrier、4時間後の対象群の力価は105.55TCID50/carrier、そして、2時間後の試験群の力価は105.30TCID50/carrier、4時間後の対象群の力価は102.80TCID50/carrierと観測された。従って、ログ現象は、2時間後に1.00,4時間後に2.75となった。これらの値は、ウイルスの不活性化が、それぞれ、90%、99.9%なされたことを意味する。
4.2 Antiviral test results
4.2.1 RSV
The titer of the test virus is 107.00TCID50/100μL, the titer of the initial target group is 106.80TCID50/carrier, the titer of the target group after 2 hours is 106.30TCID50/carrier, the titer of the target group after 4 hours is 105.55TCID50 /carrier, and the titer of the test group after 2 hours was observed to be 105.30TCID50/carrier, and the titer of the control group after 4 hours was observed to be 102.80TCID50/carrier. Therefore, the log phenomenon was 1.00 after 2 hours and 2.75 after 4 hours. These values mean that the virus was inactivated by 90% and 99.9%, respectively.

4.2.2 RVA
同様に、RVAに対して、ログ現象は、2時間後に1.50,4時間後に2.50と算出された。
4.2.2 RVA
Similarly, for RVA, the log phenomenon was calculated to be 1.50 after 2 hours and 2.50 after 4 hours.

これらの値は、ウイルスの不活性化率が、それぞれ、90%、99.9%なされたことを意味する。 These values mean that the virus inactivation rate was 90% and 99.9%, respectively.

実験は、図4に示した様にインキュベーション装置内に設置した光源を用いて行った。外部から電力を供給し、センサーにて、光出力をモニターした。 The experiment was conducted using a light source installed in the incubation apparatus as shown in Figure 4. Power was supplied from the outside and the light output was monitored using a sensor.

不活性化に関する評価結果を図6に示す。縦軸が、ウイルス生存率、横軸が積算照射時間を示す。両方のウイルス共に、約4時間後ほぼ99.9%死滅することが解る。横軸は、放射光密度(Φ=W/cm2)x照射時間(t)の積で表される。即ち、Φを大きくすると照射時間は短く出来る事を意味する。例えば、6分間の照射では、100Φ有れば良い。405nmの光は可視光であるが、目の安全性に関する近紫外線(UV-A)の照射量の限界値(exempt:10W/m2)は、IEC62471に定められている。本LED光源では、0.31W/m2であった。 Figure 6 shows the evaluation results regarding inactivation. The vertical axis shows the virus survival rate, and the horizontal axis shows the cumulative irradiation time. It can be seen that approximately 99.9% of both viruses are killed after about 4 hours. The horizontal axis is expressed as the product of radiation density (Φ=W/cm2) x irradiation time (t). In other words, increasing Φ means that the irradiation time can be shortened. For example, for 6 minutes of irradiation, 100Φ is sufficient. Although 405 nm light is visible light, the limit value (exempt: 10 W/m2) of near ultraviolet ray (UV-A) irradiation amount for eye safety is specified in IEC62471. With this LED light source, it was 0.31W/m2.

実施例2 Example 2

5 バクテリアに関する殺菌実験
大腸菌とサルモネラ菌に関する殺菌実験もKTRにて行った。図7に大腸菌に対する実験結果を示す。図8にサルモネラ菌に関する実験結果を示す。Control 及びIrradiationの比較対象区それぞれのプレート(シャーレ)上のコロニーの数をカウントして生存率を評価した。
5 Sterilization experiments involving bacteria Sterilization experiments involving Escherichia coli and Salmonella were also conducted at KTR. Figure 7 shows the experimental results for E. coli. Figure 8 shows the experimental results regarding Salmonella. The survival rate was evaluated by counting the number of colonies on each plate (Petri dish) in the Control and Irradiation comparison plots.

大腸菌は、4時間後約4%であった。一方、サルモネラ菌は、4時間後約10%がであった。特許文献1によれば、20cm下に於いて、8μW/cm2の強度を24時間照射すると、S.augus,B.cereusは100%不活性化する。しかしながら、E.coliは、24時間後でも10%程度は存在すると報告されている。本発明のLED光源は、33.5cm下での放射強度が、31μW/cm2有るので、特許文献1の光源の約4倍強い。従って、白色光も有効に作用して、4時間程度で、24時間と同様な結果が得られたものと考えられる。この結果からも、バクテリアの殺菌に対しても本発明の光源の有効性が確認された。 E. coli was about 4% after 4 hours. On the other hand, about 10% of Salmonella bacteria was present after 4 hours. According to Patent Document 1, S.augus and B.cereus are 100% inactivated when irradiated with an intensity of 8μW/cm2 for 24 hours at a distance of 20cm. However, it has been reported that about 10% of E. coli remains even after 24 hours. The LED light source of the present invention has a radiation intensity of 31 μW/cm2 at a height of 33.5 cm, which is about four times stronger than the light source of Patent Document 1. Therefore, it is thought that white light also worked effectively, and results similar to those obtained in 24 hours were obtained in about 4 hours. This result also confirmed the effectiveness of the light source of the present invention in killing bacteria.

実施例1と比較すると、ウイルスの場合がバクテリアより低い照射線量で、不活化できることが解る。従って、405nmの光照射によって、ウイルスとバクテリアなどの細菌との不活性化メカニズムが異なることが予想される。現時点では、何故、405nmの紫光によりウイルスが不活性化するかのメカニズムが生物学的及び医学的に解明されていないが、以下に、推論できるメカニズムについて考察する。 A comparison with Example 1 shows that viruses can be inactivated with a lower irradiation dose than bacteria. Therefore, it is expected that irradiation with 405 nm light will cause a different inactivation mechanism between viruses and bacteria such as bacteria. At present, the mechanism of why viruses are inactivated by 405 nm violet light has not been elucidated biologically or medically, but the possible mechanisms will be discussed below.

6 殺菌メカニズムの提言
ウイルスは大きさ数10~数100ナノメートルの粒子で、カプトンと呼ばれる膜とその中に遺伝子(DNA,RNA)を持つ醸造からなる。更に、その外側を覆うスパイク(S)タンパク質とエンベロープと呼ばれる膜を持つ。ウイルスは限られた情報しか持たないため、自分自身の力では増殖できない、その代わりに、他の細胞に侵入し、遺伝子を潜り込ませ、その細胞の持つ酵素(タンパク質)を利用して自分自身を増殖させる。本発明では、この酵素に対して405nmの光が有効ではないかと考えている。
6 Proposal for sterilization mechanism Viruses are particles with a size of several tens to hundreds of nanometers, and consist of a membrane called Kapton and a membrane containing genes (DNA, RNA). Furthermore, it has a spike (S) protein and a membrane called an envelope that covers its outside. Viruses have limited information and cannot reproduce on their own. Instead, they invade other cells, infiltrate their genes, and use the enzymes (proteins) of those cells to reproduce themselves. Proliferate. In the present invention, we believe that 405 nm light may be effective against this enzyme.

非特許文献2によれば、新型コロナウイルスの感染症は、医学的な肺疾患ではなく、赤血球の疾病を引き起こすと報告されている。即ち、ウイルスは、一連の細胞作用を通じて赤血球内のヘモグロビンを攻撃し、その結果として赤血球の酸素運搬を不可能にしていることを明らかにした。また、ウイルスは生き残るために栄養素である多量のポリフィリンを必要とする。人体のポリフィリンは、ほとんどFeと結びついたヘムである。従って、ウイルスはヘモグロビンを標的にして、ヘムを攻撃してポリフィリンを獲得すものと考えられる。この、ポリフィレンこそ、本発明の図5で説明したSORERT帯と,Q帯の光吸収を持つ物質である。これに、405nm紫光を含む白色光を照射した際、405nmの紫光と可視光を強く吸収して、ラジカル種である一重項活性酸素(1O2)を発生させて結合しようとするウイルスの細胞膜及びRNAを破壊するのである。図9(a)と(b)に、その概略を示した。 According to Non-Patent Document 2, it has been reported that the new coronavirus infection causes not a medical lung disease but a red blood cell disease. In other words, it was revealed that the virus attacks hemoglobin in red blood cells through a series of cellular actions, and as a result, makes it impossible for red blood cells to carry oxygen. Viruses also require large amounts of the nutrient porphyrin to survive. Most of the porphyrins in the human body are heme combined with Fe. Therefore, it is thought that the virus targets hemoglobin and attacks heme to acquire porphyrin. This polyphyllene is a substance that has light absorption in the SORERT band and Q band as explained in FIG. 5 of the present invention. When this is irradiated with white light containing 405nm violet light, it strongly absorbs 405nm violet light and visible light, generating singlet active oxygen (1O2), a radical species, which binds to the cell membrane and RNA of the virus. It destroys. The outline is shown in Figures 9(a) and (b).

上述のようなメカニズムにより、ウイルスは細胞膜及びRNAが破壊されて不活性化すると考えられる。 It is thought that the cell membrane and RNA of the virus are destroyed and inactivated by the mechanism described above.

図9(a)では、新型コロナウイルスの感染は、主に飛沫感染からウイルスが空気中に飛散して伝搬する様子を示す。このウイルスは、口腔内で、例えば、ポリフィリンを多量に含む歯周病菌(P.gingivalis)及び血液と結合した状態が想定される。従って、上記の説明のように、ポリフィリンが豊富に含まれている状態で結合したウイルスに405nm光を照射することにより、上述と同様な効果で空気中に飛散するウイルスを不活性することが可能であると推測される。 Figure 9(a) shows how the new coronavirus is transmitted mainly through droplet infection, with the virus scattering in the air. This virus is assumed to be in a state in which it binds to, for example, periodontal disease bacteria (P. gingivalis) containing a large amount of porphyrin and blood in the oral cavity. Therefore, as explained above, by irradiating 405nm light to a virus that is bound in a state that is rich in porphyrin, it is possible to inactivate viruses scattered in the air with the same effect as described above. It is assumed that

図9(b)には、血液とウイルスが結合した場合に想定される405nmの照射により発生した活性酸素(一重項酸素:1O2)の効果によりウイルスの細胞膜及びRNA側鎖が破壊されることを模式的に示した。 Figure 9(b) shows that the virus cell membrane and RNA side chain are destroyed by the effect of active oxygen (singlet oxygen: 1O2) generated by 405 nm irradiation, which is assumed to occur when blood and virus combine. Shown schematically.

以上の説明は、本発明の技術思想を例示的に説明したものにすぎず、本発明の属する技術分野に於ける通常の知識を持つ者であれば、本発明の本質的特性から外れない範囲で様々な修正及び変形が可能であると考えられる。従って、本発明に開示された実施例らは、本発明の技術思想を限定するためのものではなく説明するためのものであり、このような実施例によって本発明の技術思想の範囲が限られるものではない。本発明の保護範囲は下記の請求範囲により解釈されるべきであり、それと同等の範囲内にある全ての技術思想は本発明の権利範囲に含まれるものと解釈されるべきである。
The above description is merely an illustrative explanation of the technical idea of the present invention, and a person with ordinary knowledge in the technical field to which the present invention pertains will be able to understand the technical idea within the scope of the essential characteristics of the present invention. It is believed that various modifications and variations are possible. Therefore, the examples disclosed in the present invention are not intended to limit the technical idea of the present invention, but to explain it, and the scope of the technical idea of the present invention is limited by such examples. It's not a thing. The protection scope of the present invention should be interpreted in accordance with the following claims, and all technical ideas within the scope equivalent thereto should be construed as falling within the scope of rights of the present invention.

Claims (4)

400~410nmの紫光LED及び別途405nmの波長で励起される高演色白色LEDの2種類の発光素子からなるLED光源構造が含まれ、ポリフィリンの光吸収帯に近い発光スペクトル分布を有し、前記紫光の光放射強度が3.1μW/cm2以上を有するウイルス及びバクテリアの不活性化に有効な殺菌照明装置 It includes an LED light source structure consisting of two types of light emitting elements: a 400-410nm violet LED and a high color rendering white LED that is separately excited at a wavelength of 405nm, and has an emission spectrum distribution close to the light absorption band of porphyrin. A sterilizing lighting device effective for inactivating viruses and bacteria with a light radiation intensity of 3.1μW/cm2 or higher. 第1項に於いて、
前記高演色白色LEDが点灯していない場合でも、400~410nmの紫光で前記高演色白色LEDの表面に塗布されている蛍光体が発光し、その発光スペクトルは500~700nmにかけた分布を有し、演色評価数が90以上及び光束が1000lm以上の照明特性を有する殺菌照明装置
In paragraph 1,
Even when the high color rendering white LED is not lit, the phosphor coated on the surface of the high color rendering white LED emits light with violet light of 400 to 410 nm, and the emission spectrum has a distribution over 500 to 700 nm. , a sterilizing lighting device with lighting characteristics of a color rendering index of 90 or more and a luminous flux of 1000 lm or more.
第2項に於いて、
前記白色LEDは、赤色蛍光体としてCaAlSiN2:Eu又はCaAlSiN:Euを含有し、黄色蛍光体としてBaSr(O,Cl)N:Euを含有し、緑色蛍光体としてSiAlON:Euを含有し、青色蛍光体として(Sr,Br)10(PO4)6Cl2:Euを含有する殺菌照明装置
In paragraph 2,
The white LED contains CaAlSiN2:Eu or CaAlSiN:Eu as a red phosphor, BaSr(O,Cl)N:Eu as a yellow phosphor, SiAlON:Eu as a green phosphor, and a blue phosphor. Germicidal lighting device containing (Sr,Br)10(PO4)6Cl2:Eu as a body
第1項に於いて、
前記白色LED光源の色温度は2000K以上10000K未満であり、色温度の違う2個のLEDの間で調色を行うことが可能な殺菌照明装置














In paragraph 1,
The color temperature of the white LED light source is 2000K or more and less than 10000K, and the sterilization lighting device is capable of adjusting the color between two LEDs with different color temperatures.














JP2023551268A 2021-02-26 2021-10-08 High color rendering white LED virus sterilization element containing 405 nm light and the sterilization lighting device Pending JP2024507564A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2021-0026083 2021-02-26
KR1020210026083A KR102615929B1 (en) 2021-02-26 2021-02-26 Sterilization lighting device including high color rendering white LED virus sterilization element including 405nm light
PCT/KR2021/013901 WO2022181916A1 (en) 2021-02-26 2021-10-08 Sterilization lighting device including high color rendering white led virus sterilization element including 405 nm light

Publications (1)

Publication Number Publication Date
JP2024507564A true JP2024507564A (en) 2024-02-20

Family

ID=83048310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023551268A Pending JP2024507564A (en) 2021-02-26 2021-10-08 High color rendering white LED virus sterilization element containing 405 nm light and the sterilization lighting device

Country Status (3)

Country Link
JP (1) JP2024507564A (en)
KR (1) KR102615929B1 (en)
WO (1) WO2022181916A1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5061345B2 (en) * 2006-09-26 2012-10-31 国立大学法人山口大学 Method for enhancing drug sensitivity of drug-resistant pathogenic microorganisms and method for preventing the appearance of highly drug-resistant bacteria
JP7116321B2 (en) * 2018-05-31 2022-08-10 日亜化学工業株式会社 light emitting device
US11253618B2 (en) * 2018-11-29 2022-02-22 Seoul Viosys Co., Ltd. LED lighting apparatus having sterilizing function
KR20220034456A (en) * 2020-09-11 2022-03-18 주식회사 싸이큐어 Surface and Space LED Sterilization Light Unit

Also Published As

Publication number Publication date
KR20220122003A (en) 2022-09-02
KR102615929B1 (en) 2023-12-21
WO2022181916A1 (en) 2022-09-01

Similar Documents

Publication Publication Date Title
US11617899B2 (en) Apparatus, method, and system for selectively effecting and/or killing bacteria
Bhardwaj et al. UVC-based photoinactivation as an efficient tool to control the transmission of coronaviruses
ES2437204T3 (en) Procedure and apparatus for sterilizing and disinfecting air and surfaces, and protecting an area against external microbial contamination
JP2019520955A (en) Insertion device and system for generating luminescence inside a medium and method of using the same
US11786595B2 (en) Methods for radiotherapy to trigger light activation drugs
Ahmed et al. Recent patents on light-based anti-infective approaches
De Santis et al. Rapid inactivation of SARS-CoV-2 with LED irradiation of visible spectrum wavelengths
Enwemeka et al. The role of UV and blue light in photo-eradication of microorganisms
WO2019014413A1 (en) Methods for radiotherapy to trigger light activated drugs
JP2008161095A (en) Apparatus for ultraviolet ray sterilization, and method for ultraviolet ray sterilization
JP2024507564A (en) High color rendering white LED virus sterilization element containing 405 nm light and the sterilization lighting device
KR20230110859A (en) Lighting device for multifunctional plant growth using 405nm LED light
US20110306920A1 (en) Medical device and method for increasing anti-oxidation capability
KR20070120811A (en) An air sterlizer irradiating infrared ray and negative ion
Margolis‐Nunno et al. Psoralen‐mediated virus photoinactivation in platelet concentrates: enhanced specificity of virus kill in the absence of shorter UVA wavelengths
Yaqubi et al. Effectiveness of purple led for inactivation of Bacillus subtilis and Escherichia coli bacteria in in vitro sterilizers
CN106421864A (en) Improved method and improved equipment for generating high disinfection effect in air and surface
CN212817295U (en) LED disinfection lamp that disinfects based on UVC and UVA dual wavelength gain
AU2023252691B2 (en) Visible light chromophore excitation for microorganism control
US20240181106A1 (en) Water-soluble photosensitive composition of photodynamic environmental disinfection and method of environmental disinfection by using the same
JP3230494U (en) Willis killing device by ultraviolet rays
KR20180053854A (en) Planar Light Source Device
CN118141963A (en) Photodynamic environment disinfection water-soluble photosensitive composition, use method and application
Paul Remician Effect of rose bengal photodynamic therapy on Staphylococcus aureus and Candida spp cultures
O’Neill et al. Testing the Efficacy of Energy Harness’ UVC LEDs Against E. coli Colonies at Varied Concentrations

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230823