JP2024500138A - Wire rod and graphite steel for graphitization heat treatment - Google Patents

Wire rod and graphite steel for graphitization heat treatment Download PDF

Info

Publication number
JP2024500138A
JP2024500138A JP2023537369A JP2023537369A JP2024500138A JP 2024500138 A JP2024500138 A JP 2024500138A JP 2023537369 A JP2023537369 A JP 2023537369A JP 2023537369 A JP2023537369 A JP 2023537369A JP 2024500138 A JP2024500138 A JP 2024500138A
Authority
JP
Japan
Prior art keywords
less
heat treatment
graphitization
graphite
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023537369A
Other languages
Japanese (ja)
Inventor
イ,ビョンガブ
パク,インギュ
キム,チョルキ
チェ,サンウ
イ,キホ
Original Assignee
ポスコ カンパニー リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ポスコ カンパニー リミテッド filed Critical ポスコ カンパニー リミテッド
Publication of JP2024500138A publication Critical patent/JP2024500138A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/525Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length for wire, for rods
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite

Abstract

【課題】本発明の目的は、黒鉛化熱処理時間を大幅に短縮しながらも、黒鉛化熱処理時に微細黒鉛粒が基地内に均一に分布する黒鉛化熱処理線材および黒鉛鋼を提供することである。【解決手段】本発明の黒鉛化熱処理用線材は、重量%で、C:0.65~0.85%、Si:2.00~3.00%、Mn:0.15~0.35%、Ti:0.005~0.1%、N:0.01%以下、B:0.0005%以下、P:0.05%以下、S:0.05%以下を含み、残部がFeおよび不可避な不純物からなり、下記式(1)の値が-1以上1以下を満たし、微細組織は、面積分率で、フェライト40%以下、ベイナイトとマルテンサイトの合計5%以下および残部としてのパーライトを含むことを特徴とする。式(1):100*([Mn]-0.25)2-(100*[N])2上記式(1)中、[Mn]、[N]は、各合金元素の重量%を意味する。【選択図】なしAn object of the present invention is to provide a graphitizing heat-treated wire and a graphite steel in which fine graphite grains are uniformly distributed within the matrix during the graphitizing heat treatment while significantly shortening the graphitizing heat treatment time. [Solution] The wire rod for graphitization heat treatment of the present invention has C: 0.65 to 0.85%, Si: 2.00 to 3.00%, and Mn: 0.15 to 0.35% in weight percent. , Ti: 0.005 to 0.1%, N: 0.01% or less, B: 0.0005% or less, P: 0.05% or less, S: 0.05% or less, and the balance is Fe and Consisting of unavoidable impurities, the value of formula (1) below satisfies -1 or more and 1 or less, and the microstructure has an area fraction of 40% or less ferrite, 5% or less in total of bainite and martensite, and pearlite as the balance. It is characterized by including. Formula (1): 100*([Mn]-0.25)2-(100*[N])2 In the above formula (1), [Mn] and [N] mean the weight% of each alloying element. do. [Selection diagram] None

Description

本発明は、機械部品など多様な産業分野において応用できる黒鉛鋼に係り、より詳細には、黒鉛化熱処理時間が短く、切削性に優れた黒鉛化熱処理用線材および黒鉛鋼に関する。 The present invention relates to graphite steel that can be applied in various industrial fields such as mechanical parts, and more particularly to a wire rod for graphitization heat treatment and graphite steel that has short graphitization heat treatment time and excellent machinability.

切削性が要求される小型機械部品などの素材としてPb、Bi、Sなどの切削性付与元素を添加した快削鋼が用いられてきた。最も代表的な快削鋼であるPb添加快削鋼は、切削作業時に有毒性フューム(fume)などの有害物質を排出するので、人体に非常に有害であり、鋼材のリサイクルにも非常に不利であるという問題がある。 Free-cutting steels to which machinability-imparting elements such as Pb, Bi, and S are added have been used as materials for small mechanical parts that require machinability. Pb-added free-cutting steel, which is the most typical free-cutting steel, emits harmful substances such as toxic fumes during cutting operations, which is extremely harmful to the human body and is also extremely disadvantageous for recycling steel materials. There is a problem that.

このような問題を有するPb快削鋼に取って代わるために、S、Bi、Te、Snなどを添加した快削鋼が提案されてきた。Sを添加したS快削鋼は、切削性がPb快削鋼に達しない。Biを添加したBi快削鋼は、製造時に亀裂の発生が容易で、生産が非常に難しい問題がある。TeおよびSnなどを添加した快削鋼も、熱間圧延時に亀裂の発生を引き起こす問題がある。 In order to replace Pb free-cutting steel which has such problems, free-cutting steels to which S, Bi, Te, Sn, etc. are added have been proposed. The machinability of S free-cutting steel to which S is added does not reach that of Pb free-cutting steel. Bi free-cutting steel to which Bi is added has a problem in that it easily cracks during manufacturing, making it extremely difficult to produce. Free-cutting steels to which Te and Sn are added also have the problem of causing cracks during hot rolling.

Pb快削鋼に取って代わる鋼材として黒鉛鋼は、フェライト基地あるいはフェライトおよびパーライト基地の内部に黒鉛粒が存在する鋼である。黒鉛鋼は、基地組織内部の黒鉛粒が切削時にクラック供給源(source)として作用し、チップブレーカー(chip breaker)の役割をすると同時に、工具との摩擦を減らすことによって、切削性に優れている。 Graphite steel, which is a steel material replacing Pb free-cutting steel, is a steel in which graphite grains exist inside a ferrite base or a ferrite and pearlite base. Graphite steel has excellent machinability because the graphite grains inside the base structure act as a crack source during cutting, acting as a chip breaker and reducing friction with tools. .

しかしながら、黒鉛鋼は、準安定相のセメンタイトを分解し、黒鉛粒を析出させるための別途の黒鉛化熱処理が長時間必要な短所がある。これは、生産性の低下および費用増加だけでなく、長時間の黒鉛化熱処理過程で脱炭が起こり、最終製品の性能に悪影響を及ぼす弊害が発生する。 However, graphite steel has the disadvantage that it requires a separate graphitization heat treatment for a long time to decompose the metastable cementite phase and precipitate graphite particles. This not only reduces productivity and increases costs, but also causes decarburization during the long graphitization heat treatment process, which has a negative effect on the performance of the final product.

また、黒鉛化熱処理を通じて黒鉛粒を析出したとしても、黒鉛粒が不規則な形状に不均一に分布する場合、切削時に物性が不均一で、チップ処理性や表面粗さが非常に悪くなり、工具寿命も短縮される問題がある。 In addition, even if graphite particles are precipitated through graphitization heat treatment, if the graphite particles are unevenly distributed in an irregular shape, the physical properties will be uneven during cutting, and the chip processability and surface roughness will be extremely poor. There is also the problem that tool life is shortened.

韓国公開特許第1995-0006006号公報Korean Published Patent No. 1995-0006006

前述のような問題点を解決するために、本発明は、黒鉛化熱処理時間を大幅に短縮しながらも、黒鉛化熱処理時に微細黒鉛粒が基地内に均一に分布する黒鉛化熱処理線材および黒鉛鋼を提供しようとするものである。 In order to solve the above-mentioned problems, the present invention provides graphitization heat-treated wire and graphite steel in which fine graphite grains are uniformly distributed within the base during graphitization heat treatment while significantly shortening the graphitization heat treatment time. This is what we are trying to provide.

本発明の黒鉛化熱処理用線材は、重量%で、C:0.65~0.85%、Si:2.00~3.00%、Mn:0.15~0.35%、Ti:0.002~0.1%、N:0.01%以下、B:0.0005%以下、P:0.05%以下、S:0.05%以下を含み、残部がFeおよび不可避な不純物からなり、下記式(1)の値が-1以上1以下を満たし、微細組織は、面積分率で、フェライト40%以下、ベイナイトとマルテンサイトの合計5%以下および残部としてのパーライトを含むことを特徴とする。
式(1):100*([Mn]-0.25)-(100*[N])
上記式(1)中、[Mn]、[N]は、各合金元素の重量%を意味する。
The wire rod for graphitization heat treatment of the present invention has, in weight percent, C: 0.65 to 0.85%, Si: 2.00 to 3.00%, Mn: 0.15 to 0.35%, and Ti: 0. Contains .002 to 0.1%, N: 0.01% or less, B: 0.0005% or less, P: 0.05% or less, S: 0.05% or less, and the remainder is Fe and unavoidable impurities. Therefore, the value of the following formula (1) satisfies -1 or more and 1 or less, and the microstructure contains 40% or less of ferrite, 5% or less of bainite and martensite in total, and pearlite as the balance in terms of area fraction. Features.
Formula (1): 100*([Mn]-0.25) 2 -(100*[N]) 2
In the above formula (1), [Mn] and [N] mean the weight percent of each alloying element.

本発明の各黒鉛化熱処理用線材は、下記式(2)の値が6以下を満たすことができる。
式(2):100*[Ti]+10000*[B]
上記式(2)中、[Ti]、[B]は、各合金元素の重量%を意味する。
Each wire rod for graphitization heat treatment of the present invention can satisfy the value of the following formula (2) of 6 or less.
Formula (2): 100*[Ti]+10000*[B]
In the above formula (2), [Ti] and [B] mean the weight percent of each alloying element.

また、上記目的を達成するための本発明の黒鉛鋼は、重量%で、C:0.65~0.85%、Si:2.0~3.0%、Mn:0.15~0.35%、Ti:0.002~0.1%、N:0.01%以下、B:0.0005%以下、P:0.05%以下、S:0.05%以下を含み、残部がFeおよび不可避な不純物からなり、下記式(1)の値が-1以上1以下を満たし、微細組織は、面積分率で、フェライト80%以上および残部としての黒鉛粒を含むことを特徴とする。
式(1):100*([Mn]-0.25)-(100*[N])
上記式(1)中、[Mn]、[N]は、各合金元素の重量%を意味する。
本発明の各黒鉛鋼において、下記式(2)の値が6以下を満たすことができる。
式(2):100*[Ti]+10000*[B]
上記式(2)中、[Ti]、[B]は、各合金元素の重量%を意味する。
Furthermore, the graphite steel of the present invention for achieving the above object has, in weight percent, C: 0.65 to 0.85%, Si: 2.0 to 3.0%, Mn: 0.15 to 0. 35%, Ti: 0.002 to 0.1%, N: 0.01% or less, B: 0.0005% or less, P: 0.05% or less, S: 0.05% or less, and the remainder is It consists of Fe and unavoidable impurities, the value of the following formula (1) satisfies -1 or more and 1 or less, and the microstructure is characterized by containing 80% or more of ferrite and graphite grains as the balance in terms of area fraction. .
Formula (1): 100*([Mn]-0.25) 2 -(100*[N]) 2
In the above formula (1), [Mn] and [N] mean the weight percent of each alloying element.
In each graphite steel of the present invention, the value of the following formula (2) can satisfy 6 or less.
Formula (2): 100*[Ti]+10000*[B]
In the above formula (2), [Ti] and [B] mean the weight percent of each alloying element.

本発明の各黒鉛鋼において、引張強度が550MPa以下であってもよい。 Each graphite steel of the present invention may have a tensile strength of 550 MPa or less.

本発明による黒鉛鋼は、自動車、家電/電子機器、産業機器など精密機械部品の素材に適用可能である。特に本発明は、合金組成の制御によって黒鉛化熱処理時間を大幅に短縮し、黒鉛鋼の製造費用を画期的に低減しながらも、基地組織内微細な黒鉛粒が均一に分布するようにして、優れた切削性を確保することができる。 The graphite steel according to the present invention can be applied to materials for precision mechanical parts such as automobiles, home appliances/electronic equipment, and industrial equipment. In particular, the present invention significantly shortens the graphitization heat treatment time by controlling the alloy composition, and dramatically reduces the manufacturing cost of graphite steel, while also ensuring uniform distribution of fine graphite grains within the matrix structure. , excellent machinability can be ensured.

上記目的を達成するための手段として、本発明の一例による黒鉛化熱処理用線材は、重量%で、C:0.65~0.85%、Si:2.00~3.00%、Mn:0.15~0.35%、Ti:0.002~0.1%、N:0.01%以下、B:0.0005%以下、P:0.05%以下、S:0.05%以下を含み、残部がFeおよび不可避な不純物からなり、下記式(1)の値が-1以上1以下を満たし、微細組織は、面積分率で、フェライト40%以下、ベイナイトとマルテンサイトの合計5%以下および残部としてのパーライトを含んでもよい。
式(1):100*([Mn]-0.25)-(100*[N])
上記式(1)中、[Mn]、[N]は、各合金元素の重量%を意味する。
As a means for achieving the above object, a wire rod for graphitization heat treatment according to an example of the present invention has, in weight percent, C: 0.65 to 0.85%, Si: 2.00 to 3.00%, Mn: 0.15 to 0.35%, Ti: 0.002 to 0.1%, N: 0.01% or less, B: 0.0005% or less, P: 0.05% or less, S: 0.05% Contains the following, with the remainder consisting of Fe and unavoidable impurities, the value of the following formula (1) satisfies -1 or more and 1 or less, and the microstructure has an area fraction of 40% or less of ferrite, the total of bainite and martensite. It may contain up to 5% and the balance pearlite.
Formula (1): 100*([Mn]-0.25) 2 -(100*[N]) 2
In the above formula (1), [Mn] and [N] mean the weight percent of each alloying element.

以下では、本発明の好ましい実施形態を説明する。しかしながら、本発明の実施形態は、様々な他の形態に変形されてもよく、本発明の技術思想が以下で説明する実施形態に限定されるものではない。また、本発明の実施形態は、当該技術分野における平均的な知識を有する者に本発明をより完全に説明するために提供されるものである。 In the following, preferred embodiments of the invention will be described. However, the embodiments of the present invention may be modified into various other forms, and the technical idea of the present invention is not limited to the embodiments described below. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art.

本出願において使用する用語は、単に特定の例示を説明するために使用されるものである。したがって、単数の表現は、文脈上明らかに単数でなければならないものでない限り、複数の表現を含む。また、本出願において使用される「含む」または「具備する」などの用語は、明細書上に記載された特徴、段階、機能、構成要素またはこれらを組み合わせたものが存在することを明確に指すために使用されるものであり、他の特徴や段階、機能、構成要素またはこれらを組み合わせたものの存在を予備的に排除するために使用されるものでないことに留意しなければならない。 The terminology used in this application is merely used to describe specific examples. Accordingly, references to the singular include the plural unless the context clearly requires otherwise. Additionally, the words "comprising" and "comprising" as used in this application clearly refer to the presence of the features, steps, functions, components, or combinations thereof described in the specification. It should be noted that it is used for the purposes of the present invention and is not used to preliminarily exclude the existence of other features, steps, functions, components or combinations thereof.

なお、別段の定義がない限り、本明細書において使用されるすべての用語は、本発明の属する技術分野における通常の知識を有する者によって一般的に理解されるのと同じ意味を有すると見なされるべきである。したがって、本明細書において明確に定義しない限り、特定の用語が過度に理想的または形式的な意味で解釈されるべきではない。例えば、本明細書において単数の表現は、文脈上明らかに例外がない限り、複数の表現を含む。 It should be noted that, unless otherwise defined, all terms used herein are deemed to have the same meaning as commonly understood by a person of ordinary skill in the technical field to which this invention pertains. Should. Therefore, unless explicitly defined herein, certain terms should not be construed in an overly idealized or formal sense. For example, as used herein, the singular term includes the plural term unless the context clearly dictates otherwise.

また、本明細書の「約」、「実質的に」などは、言及した意味に固有の製造および物質許容誤差が提示されるとき、その数値またはその数値に近い意味で使用され、本発明の理解を助けるために正確であるか、または、絶対的な数値が言及された開示内容を非良心的な侵害者が不当に利用することを防止するために使用される。 Additionally, the terms "about," "substantially," and the like herein are used at or near that numerical value when manufacturing and material tolerances inherent in the recited meaning are used; Precise or absolute numbers are used to aid understanding or to prevent unconscionable infringers from taking unfair advantage of the referenced disclosures.

鋼材基地内に析出した黒鉛粒は、切削性を向上させる。具体的には、切削中に黒鉛粒は、固体潤滑剤として作用して切削工具の摩耗を抑制し、応力集中による亀裂開始点として作用して切削摩擦を低減し、切削粉が短く切れるようにし、切削性を向上させる。 Graphite grains precipitated within the steel base improve machinability. Specifically, during cutting, graphite particles act as a solid lubricant to suppress the wear of the cutting tool, and act as a crack initiation point due to stress concentration to reduce cutting friction and allow cutting chips to be cut short. , improve machinability.

しかしながら、黒鉛化を行うためには、初期圧延組織のパーライト内セメンタイトを黒鉛化する熱処理が必要である。黒鉛粒を析出するためには、長時間の黒鉛化熱処理を行わなければならず、このような長時間の熱処理は、費用増加をもたらすだけでなく、熱処理中に脱炭を起こし、最終部品の性能に悪影響を及ぼす弊害が発生する。 However, in order to graphitize, heat treatment is required to graphitize cementite within pearlite in the initial rolling structure. In order to precipitate graphite grains, a long graphitization heat treatment must be carried out, and such a long heat treatment not only increases costs, but also causes decarburization during the heat treatment, which deteriorates the quality of the final part. Problems that adversely affect performance occur.

まず、本発明は、切削性を向上させながらも、長時間の黒鉛化熱処理を短縮するために、CとSiを多量で添加する。Cは、多いほど、黒鉛化熱処理後に黒鉛粒が多量形成され、そのため、切削性にさらに優れる。Siは、セメンタイトを不安定にして、セメンタイト分解を促進し、その結果、黒鉛化熱処理を短縮することができる。これらのうち、Siは、過剰添加される場合、切削工具の摩耗問題、製鋼難易度が上昇する問題があり、特に従来の中・高Cベースの黒鉛鋼では、冷間鍛造性を確保するために、Siが少量添加された。一方、本発明では、Siを2.0重量%以上で上向き添加し、黒鉛化をさらに促進する。 First, in the present invention, large amounts of C and Si are added in order to shorten the long graphitization heat treatment while improving machinability. The more C there is, the more graphite grains will be formed after the graphitization heat treatment, and therefore the machinability will be more excellent. Si destabilizes cementite, promotes cementite decomposition, and as a result, graphitization heat treatment can be shortened. Among these, when Si is added excessively, there are problems such as wear of cutting tools and an increase in the difficulty of steel manufacturing.In particular, in conventional medium- and high-C based graphite steels, it is necessary to ensure cold forgeability. In addition, a small amount of Si was added. On the other hand, in the present invention, Si is added upward in an amount of 2.0% by weight or more to further promote graphitization.

また、本発明は、特に黒鉛粒の核生成先として作用するAlN、BN、TiN窒化物のうちTiN窒化物を主に活用する。BN、AlNは、析出温度が低いため、オーステナイトが形成された後、粒界に偏重して不均一に析出する。不均一に析出したBN、AlNは、黒鉛化熱処理時に黒鉛粒の生成核として作用するので、黒鉛粒の不均一な分布を引き起こす恐れがある。一方、TiNは、析出温度がAlNやBNより高いため、オーステナイト生成が完了する前に晶出するので、オーステナイト粒界および粒内に均一に分布する。換言すれば、TiNは、BN、AlNに比べて、微細組織内均一に分布し、その結果、TiNを核生成先にして形成された黒鉛粒は、微細組織内均一に分布し、黒鉛粒が偏重して成長するBN、AlNに比べて、黒鉛化をさらに促進することができる。また、均一に分布する黒鉛粒は、チップ処理性など切削性を向上させることができる。 Furthermore, the present invention mainly utilizes TiN nitride among AlN, BN, and TiN nitrides that act as nucleation sites for graphite grains. Since BN and AlN have low precipitation temperatures, after austenite is formed, they are concentrated at grain boundaries and precipitate non-uniformly. The unevenly precipitated BN and AlN act as nuclei for forming graphite particles during graphitization heat treatment, so there is a risk of causing uneven distribution of graphite particles. On the other hand, since TiN has a higher precipitation temperature than AlN and BN, it crystallizes before austenite formation is completed, so it is uniformly distributed at austenite grain boundaries and inside grains. In other words, TiN is more uniformly distributed within the microstructure than BN and AlN, and as a result, graphite grains formed with TiN as the nucleation target are uniformly distributed within the microstructure, and the graphite grains are Graphitization can be further promoted compared to BN and AlN, which grow in an unbalanced manner. Furthermore, uniformly distributed graphite particles can improve cutting properties such as chip processing properties.

本発明による黒鉛鋼は、黒鉛化熱処理用線材を黒鉛化熱処理することで用意する。本発明の一例による黒鉛化熱処理用線材は、重量%で、C:0.65~0.85%、Si:2.00~3.00%、Mn:0.15~0.35%、Ti:0.002~0.1%、N:0.01%以下、B:0.0005%以下、P:0.05%以下、S:0.05%以下を含み、残部がFeおよび不可避な不純物からなることができる。 The graphite steel according to the present invention is prepared by subjecting a wire rod for graphitization heat treatment to graphitization heat treatment. A wire rod for graphitization heat treatment according to an example of the present invention has, in weight percent, C: 0.65 to 0.85%, Si: 2.00 to 3.00%, Mn: 0.15 to 0.35%, and Ti. : 0.002 to 0.1%, N: 0.01% or less, B: 0.0005% or less, P: 0.05% or less, S: 0.05% or less, and the balance is Fe and unavoidable It can consist of impurities.

以下、前記黒鉛化熱処理用線材の成分組成を限定した理由について具体的に説明する。黒鉛鋼合金組成の限定理由は、黒鉛化熱処理用線材と同一なので、便宜上省略する。 Hereinafter, the reason why the component composition of the wire rod for graphitization heat treatment is limited will be specifically explained. The reason for limiting the graphite steel alloy composition is the same as that for the wire rod for graphitization heat treatment, so it will be omitted for convenience.

Cの含有量は、0.65~0.85重量%である。
Cは、切削因子である黒鉛粒を構成する成分元素であり、C含有量が高まるほど黒鉛粒がさらに多く形成される。また、Cは、添加されるほどC活動度を高め、その結果、セメンタイト分解が促進され、黒鉛化熱処理を短縮することができる。C含有量が0.65重量%未満では、C活動度が劣り、切削性が低下する問題点がある。一方、C含有量が0.85重量%を超過すると、C活動度の増大効果が飽和するだけでなく、過剰形成された黒鉛粒により鋼材の靭性が低下し、その後、CD-Bar(cold drawn bar)を製造するために黒鉛鋼を伸線するとき、破断発生の恐れがある。したがって、本発明においてC含有量は、0.65~0.85重量%に制御される。
The content of C is 0.65 to 0.85% by weight.
C is a component element constituting graphite grains, which is a cutting factor, and the higher the C content, the more graphite grains are formed. Further, the more C is added, the more the C activity increases, and as a result, cementite decomposition is promoted, and the graphitization heat treatment can be shortened. If the C content is less than 0.65% by weight, there is a problem that the C activity is poor and the machinability is reduced. On the other hand, when the C content exceeds 0.85% by weight, not only the effect of increasing C activity is saturated, but also the toughness of the steel material decreases due to excessively formed graphite grains, and then CD-Bar (cold drawn When drawing graphite steel to produce wire (bar), there is a risk of breakage occurring. Therefore, in the present invention, the C content is controlled to 0.65 to 0.85% by weight.

Siの含有量は、2.00~3.00重量%である。
Siは、溶鋼の製造時に脱酸剤として必要な成分であり、鋼中のセメンタイトを不安定にして、炭素を黒鉛として析出させることができる黒鉛化促進元素であるから、積極的に添加する。Si含有量が2.00重量%未満なら、黒鉛化速度が急激に遅くなる恐れがある。一方、Si含有量が3.00重量%を超過すると、黒鉛化促進効果が飽和し、非金属介在物の増加による脆性誘発と熱間圧延時の脱炭現象を引き起こす恐れがある。したがって、本発明においてSi含有量は、2.00~3.00重量%に制御される。
The content of Si is 2.00 to 3.00% by weight.
Si is a necessary component as a deoxidizing agent during the production of molten steel, and is a graphitization-promoting element that can destabilize cementite in steel and precipitate carbon as graphite, so it is actively added. If the Si content is less than 2.00% by weight, the graphitization rate may decrease rapidly. On the other hand, if the Si content exceeds 3.00% by weight, the graphitization promoting effect is saturated, and there is a risk of inducing brittleness due to an increase in nonmetallic inclusions and causing decarburization during hot rolling. Therefore, in the present invention, the Si content is controlled to 2.00 to 3.00% by weight.

Mnの含有量は、0.15~0.35重量%である。
Mnは、鋼材の強度および衝撃特性を向上させ、鋼中Sと結合し、MnS介在物を形成し、切削性の向上に寄与するので、積極的に添加される。また、Mn含有量が少なすぎれば、MnSを形成しないSにより黒鉛化速度が阻害され、素材の脆性が誘発される問題がある。これを考慮して、本発明においてMnは、0.15重量%以上添加される。しかしながら、Mn含有量が多すぎれば、鋼材の強度および硬度が過度に増加し、工具の摩耗深さが低下する恐れがある。これを考慮して、本発明においてMn含有量は、0.35重量%以下に制御される。
The content of Mn is 0.15 to 0.35% by weight.
Mn improves the strength and impact properties of the steel material, combines with S in the steel, forms MnS inclusions, and contributes to improving machinability, so it is actively added. Moreover, if the Mn content is too low, there is a problem that the graphitization rate is inhibited by S which does not form MnS, and the material becomes brittle. Considering this, in the present invention, Mn is added in an amount of 0.15% by weight or more. However, if the Mn content is too high, the strength and hardness of the steel material may increase excessively, and the wear depth of the tool may decrease. Considering this, in the present invention, the Mn content is controlled to 0.35% by weight or less.

Tiの含有量は、0.002~0.1重量%以下である。
Tiは、B、Alなどのように窒化物であるTiNを形成し、黒鉛化を阻害する固溶窒素含有量を低減し、形成されたTiNは、黒鉛の核生成先として作用して黒鉛化時間を短縮する。黒鉛の核生成先として作用するBN、AlNは、析出温度が低いため、オーステナイトが形成された後、粒界に偏重して不均一に析出する。しかしながら、TiNは、析出温度がAlNやBNより高いため、オーステナイト生成が完了する前に晶出するので、オーステナイト粒界および粒内に均一に分布する。換言すれば、TiNは、BN、AlNに比べて、微細組織内均一に分布し、その結果、TiNを核生成先として形成された黒鉛粒は、微細組織内均一に分布し、黒鉛粒が偏重して成長するBN、AlNに比べて黒鉛化をさらに促進することができ、黒鉛鋼の切削性を向上させることができる。これを考慮して、本発明においてTiは、0.002重量%以上添加される。一方、Ti含有量が多すぎれば、TiNによる黒鉛化熱処理の短縮効果が飽和し、粗大な炭窒化物を形成し、かえって黒鉛化を低下させる恐れがある。これを考慮して、本発明においてTiは、0.1重量%以下に制御される。
The content of Ti is 0.002 to 0.1% by weight or less.
Ti, like B, Al, etc., forms TiN, which is a nitride, and reduces the solid solution nitrogen content that inhibits graphitization, and the formed TiN acts as a nucleation site for graphite and promotes graphitization. Reduce time. BN and AlN, which act as nucleation sites for graphite, have low precipitation temperatures, so after austenite is formed, they are concentrated at grain boundaries and precipitate non-uniformly. However, since TiN has a higher precipitation temperature than AlN and BN, it crystallizes before austenite formation is completed, so that it is uniformly distributed at austenite grain boundaries and inside grains. In other words, TiN is more uniformly distributed within the microstructure than BN and AlN, and as a result, graphite grains formed using TiN as a nucleation site are uniformly distributed within the microstructure, and the graphite grains are unbalanced. Graphitization can be further promoted compared to BN and AlN, which grow as a result, and the machinability of graphite steel can be improved. Considering this, in the present invention, Ti is added in an amount of 0.002% by weight or more. On the other hand, if the Ti content is too high, the shortening effect of graphitization heat treatment by TiN will be saturated, and coarse carbonitrides will be formed, which may actually reduce graphitization. Considering this, in the present invention, Ti is controlled to 0.1% by weight or less.

Nの含有量は、0.01重量%以下である。
Nは、Ti、B、Alと結合してTiN、BN、AlNなどの窒化物を生成する。これらのうちBN、AlNは、析出温度が低いため、主にオーステナイト粒界に偏重して不均一に析出する。不均一に析出したBN、AlNは、黒鉛化熱処理時に黒鉛粒の生成核として作用するので、黒鉛粒の不均一な分布を引き起こす恐れがある。したがって、TiNを主に析出させながらも、BN、AlNの形成は、最大限抑制するために、N含有量を適切に調節する必要がある。また、N含有量が多すぎて、窒化物形成元素と結合せず、固溶窒素として鋼中に存在すると、セメンタイトを安定化させて黒鉛化を阻害する問題点がある。これを考慮して、本発明においてN含有量は、0.01重量%以下に制御される。
The content of N is 0.01% by weight or less.
N combines with Ti, B, and Al to produce nitrides such as TiN, BN, and AlN. Among these, BN and AlN have low precipitation temperatures, so they are concentrated mainly at austenite grain boundaries and precipitate non-uniformly. The unevenly precipitated BN and AlN act as nuclei for forming graphite particles during graphitization heat treatment, so there is a risk of causing uneven distribution of graphite particles. Therefore, in order to suppress the formation of BN and AlN to the maximum extent while mainly precipitating TiN, it is necessary to appropriately adjust the N content. Further, if the N content is too large and does not combine with nitride-forming elements and exists as solid solution nitrogen in the steel, there is a problem that it stabilizes cementite and inhibits graphitization. Considering this, in the present invention, the N content is controlled to 0.01% by weight or less.

Bの含有量は、0.0005重量%以下である。
Bは、Nと結合してBNを生成し、生成されたBNは、黒鉛化熱処理時に黒鉛粒生成の核として作用する。しかしながら、上述したように、BNは、オーステナイトが形成された後、粒界に偏重して不均一に析出する。その結果、BNを核生成先として形成された黒鉛粒も、不均一に分布するので、切削性が低下する恐れがある。したがって、Bは、黒鉛粒の不均一な分布を防止するために、その上限を0.0005重量%に管理することが好ましい。
The content of B is 0.0005% by weight or less.
B combines with N to generate BN, and the generated BN acts as a nucleus for graphite grain generation during graphitization heat treatment. However, as described above, after austenite is formed, BN is concentrated at grain boundaries and precipitates non-uniformly. As a result, the graphite grains formed using BN as a nucleation site are also distributed non-uniformly, which may reduce machinability. Therefore, in order to prevent uneven distribution of graphite particles, it is preferable to control the upper limit of B to 0.0005% by weight.

Pの含有量は、0.05重量%以下である。
Pは、不可避に含有される不純物である。Pは、鋼材内粒界を脆弱にして、切削性の向上を助ける。しかしながら、Pは、相当な固溶強化効果によってフェライトの硬度を増加させ、鋼材の靭性および遅れ破壊抵抗性を減少させ、表面欠陥の発生を促進する。したがって、P含有量は、可能な限り、低く管理されることが好ましい。本発明においてPの上限は、0.05重量%に管理される。
The content of P is 0.05% by weight or less.
P is an impurity that is inevitably contained. P weakens the grain boundaries within the steel material and helps improve machinability. However, P increases the hardness of ferrite through a considerable solid solution strengthening effect, reduces the toughness and delayed fracture resistance of steel materials, and promotes the occurrence of surface defects. Therefore, it is preferable that the P content is managed as low as possible. In the present invention, the upper limit of P is controlled at 0.05% by weight.

Sの含有量は、0.05重量%以下である。
Sは、不可避に含有される不純物である。Sは、MnSを形成し、切削性の向上効果がある。しかしながら、Sは、単独で鋼材内存在する場合、Cの黒鉛化を大きく阻害するだけでなく、結晶粒界に偏析して靭性を低下させ、低融点硫化物を形成させて、熱間圧延性を阻害する。また、MnSは、切削性の向上効果があるが、圧延後に延伸したMnSにより機械的異方性が現れる恐れがある。したがって、S含有量は、可能な限り、低く管理されることが好ましい。本発明においてSの上限は、0.05重量%に管理される。
The content of S is 0.05% by weight or less.
S is an impurity that is inevitably contained. S forms MnS and has the effect of improving machinability. However, when S exists alone in a steel material, it not only greatly inhibits the graphitization of C, but also segregates at grain boundaries, reducing toughness, forming low melting point sulfides, and improving hot rolling properties. inhibit. Further, although MnS has the effect of improving machinability, mechanical anisotropy may appear due to MnS stretched after rolling. Therefore, it is preferable that the S content is managed as low as possible. In the present invention, the upper limit of S is controlled at 0.05% by weight.

本発明の残りの成分は、鉄(Fe)である。ただし、通常の製造過程では、原料または周囲環境から意図しない不純物が不可避に混入することがあるので、これを排除することはできない。これらの不純物は、通常の製造過程の技術者なら誰でも知ることができるので、そのすべての内容を特に本明細書において言及しない。 The remaining component of the present invention is iron (Fe). However, in normal manufacturing processes, unintended impurities may inevitably be mixed in from raw materials or the surrounding environment, and this cannot be eliminated. Since these impurities are known to anyone skilled in the art of ordinary manufacturing processes, their full contents are not specifically mentioned herein.

本発明の一例による黒鉛化熱処理用線材は、前述した合金組成を満たしながらも、下記式(1)の値が-1以上1以下を満たすことができる。 The wire rod for graphitization heat treatment according to an example of the present invention can satisfy the value of the following formula (1) of -1 or more and 1 or less while satisfying the above-mentioned alloy composition.

式(1):100*([Mn]-0.25)-(100*[N]) Formula (1): 100*([Mn]-0.25) 2 -(100*[N]) 2

上記式(1)中、[Mn]、[N]は、各合金元素の重量%を意味する。 In the above formula (1), [Mn] and [N] mean the weight percent of each alloying element.

前述した式(1)の値が-1未満なら、切削性が低下したり、黒鉛化熱処理時間が長くなったりする問題点がある。反対に、式(1)の値が1を超過すると、鋼材の強度と硬度が増加して切削性が低下し、黒鉛化熱処理時間が長くなる問題点がある。 If the value of the above-mentioned formula (1) is less than -1, there are problems such as decreased machinability and increased graphitization heat treatment time. On the other hand, when the value of formula (1) exceeds 1, the strength and hardness of the steel increases, machinability decreases, and the graphitization heat treatment time increases.

また、本発明の一例による黒鉛化熱処理用線材は、前述した合金組成を満たしながらも、下記式(2)の値が6以下を満たすことができる。 Moreover, the wire rod for graphitization heat treatment according to an example of the present invention can satisfy the value of the following formula (2) of 6 or less while satisfying the above-mentioned alloy composition.

式(2):100*[Ti]+10000*[B] Formula (2): 100*[Ti]+10000*[B]

上記式(2)中、[Ti]、[B]は、各合金元素の重量%を意味する。 In the above formula (2), [Ti] and [B] mean the weight percent of each alloying element.

TiおよびBの含有量が増加して、式(2)の値が6を超過すると、晶出するTiNのサイズが大きくなって、黒鉛粒生成核としての役割を行うことが難しく、黒鉛化熱処理時間が長くなる問題点がある。また、結晶粒界に沿って生成されたBNが黒鉛粒生成核として作用して黒鉛粒が不均一に生成される。その結果、切削性が劣化する。 When the content of Ti and B increases and the value of formula (2) exceeds 6, the size of TiN that crystallizes becomes large, making it difficult to function as graphite grain generation nuclei, and graphitization heat treatment becomes difficult. The problem is that it takes a long time. Moreover, BN generated along grain boundaries acts as graphite grain generation nuclei, and graphite grains are generated non-uniformly. As a result, machinability deteriorates.

本発明の一例による黒鉛化熱処理用線材の微細組織は、面積分率で、フェライト:40%以下、ベイナイト、マルテンサイトの合計:5%以下および残部としてのパーライトを含んでもよい。 The microstructure of the wire rod for graphitization heat treatment according to an example of the present invention may include, in terms of area fraction, ferrite: 40% or less, bainite and martensite total: 5% or less, and pearlite as the balance.

本発明による黒鉛鋼は、黒鉛化熱処理用線材を黒鉛化熱処理することで用意し、黒鉛鋼の微細組織は、フェライトおよび残部としての黒鉛を含むことが好ましい。パーライトが残存すると、鋼材の硬度が増加し、その結果、切削時に工具摩耗問題が発生し、切削性が低下する。一例によれば、黒鉛鋼の微細組織は、面積分率で、フェライト80%以上および残部としての黒鉛粒を含んでもよい。 The graphite steel according to the present invention is preferably prepared by subjecting a wire rod for graphitization heat treatment to graphitization heat treatment, and the microstructure of the graphite steel preferably includes ferrite and graphite as the balance. If pearlite remains, the hardness of the steel increases, resulting in tool wear problems during cutting and reduced machinability. According to one example, the microstructure of graphite steel may include, in area fraction, 80% or more of ferrite and the balance graphite grains.

また、本発明の一例によれば、黒鉛化熱処理した黒鉛鋼の引張強度が550MPa以下であってもよい。 Moreover, according to an example of the present invention, the tensile strength of graphitized steel subjected to graphitization heat treatment may be 550 MPa or less.

本発明によれば、黒鉛化熱処理時間を画期的に減縮することができる。黒鉛化熱処理用線材は、730~770℃で6時間以下で黒鉛化熱処理し、黒鉛鋼として用意し、この際、黒鉛鋼の黒鉛化率は99%以上であってもよい。ここで、黒鉛化率とは、鋼に添加された炭素含有量に対して黒鉛状態で存在する炭素含有量の比を意味し、下記式(3)によって定義され、黒鉛化率が99%以上というのは、添加された炭素がほぼ全部黒鉛を生成するのに消耗したという意味である。式(3)において、フェライト内固溶炭素量および微細炭化物はきわめて少ないので、考慮しない。黒鉛化率が99%以上というのは、換言すれば、未分解のパーライトが鋼中に存在せず、フェライトと残部としての黒鉛粒で構成されたことを意味する。 According to the present invention, the graphitization heat treatment time can be dramatically reduced. The wire rod for graphitization heat treatment is subjected to graphitization heat treatment at 730 to 770° C. for 6 hours or less to prepare graphite steel, and at this time, the graphitization rate of the graphite steel may be 99% or more. Here, the graphitization rate means the ratio of the carbon content existing in a graphite state to the carbon content added to steel, and is defined by the following formula (3), and the graphitization rate is 99% or more. This means that almost all of the added carbon was used up to produce graphite. In formula (3), the amount of solid solute carbon in ferrite and fine carbides are extremely small and are therefore not taken into account. In other words, a graphitization rate of 99% or more means that undecomposed pearlite does not exist in the steel, and the steel is composed of ferrite and graphite grains as the remainder.

式(3):黒鉛化率(%)=(1-残部としてのパーライト炭素含有量/鋼中炭素含有量)*100 Formula (3): Graphitization rate (%) = (1 - pearlite carbon content as remainder/carbon content in steel) * 100

以下、本発明による黒鉛鋼の製造方法について詳細に説明する。 Hereinafter, the method for manufacturing graphite steel according to the present invention will be explained in detail.

以上で説明した本発明の黒鉛鋼は、多様な方法で製造することができ、その製造方法は、特に制限されないが、本発明の一例による黒鉛鋼の製造方法は、前述した合金組成を満たす鋼材を熱間圧延する段階と、730~770℃で6時間以下で黒鉛化熱処理する段階と、を含んでもよい。 The graphite steel of the present invention described above can be manufactured by various methods, and the manufacturing method is not particularly limited. and a step of graphitizing heat treatment at 730 to 770° C. for 6 hours or less.

熱間圧延する段階は、前述した合金組成を満たすインゴットを鋳造した後、1100~1300℃で5~10時間均質化熱処理し、1000~1100℃で熱間圧延することを含んでもよい。熱間圧延した後には、8℃以下で空冷して、黒鉛化熱処理用線材を製造することができる。 The hot rolling step may include casting an ingot having the above alloy composition, subjecting it to homogenization heat treatment at 1100 to 1300°C for 5 to 10 hours, and then hot rolling at 1000 to 1100°C. After hot rolling, the wire rod for graphitization heat treatment can be manufactured by air cooling at 8° C. or lower.

その後、黒鉛化熱処理用線材は、730~770℃で6時間以下で黒鉛化熱処理し、黒鉛鋼として用意することができる。本発明によれば、黒鉛化熱処理用線材を黒鉛化熱処理し、鋼内セメンタイトを黒鉛化する必要がある。黒鉛化を迅速にするためには、等温変態曲線でノーズ(nose)に該当する温度領域で熱処理することが好ましい。好ましい黒鉛化熱処理温度の範囲は、730~770℃であり、この温度区間で6時間以下の等温熱処理を通じて鋼材内すべてのパーライトにあるセメンタイトを完全に黒鉛化することができる。 Thereafter, the wire rod for graphitization heat treatment is subjected to graphitization heat treatment at 730 to 770° C. for 6 hours or less, and can be prepared as graphite steel. According to the present invention, it is necessary to subject the wire rod for graphitization heat treatment to graphitization heat treatment to graphitize the cementite within the steel. In order to speed up graphitization, it is preferable to perform the heat treatment in a temperature range corresponding to the nose of the isothermal transformation curve. A preferable range of graphitization heat treatment temperature is 730 to 770° C. In this temperature range, all the cementite in pearlite in the steel material can be completely graphitized through isothermal heat treatment for 6 hours or less.

上述したような本発明の黒鉛鋼は、自動車、家電/電子機器、産業機器など精密機械部品の素材に適用可能である。特に本発明は、合金組成の制御によって黒鉛化熱処理時間を大幅に短縮し、黒鉛鋼の製造費用を画期的に低減しながらも、基地組織内微細な黒鉛粒が均一に分布するようにして、優れた切削性を確保することができる。 The graphite steel of the present invention as described above can be applied to materials for precision mechanical parts such as automobiles, home appliances/electronic equipment, and industrial equipment. In particular, the present invention significantly shortens the graphitization heat treatment time by controlling the alloy composition, and dramatically reduces the manufacturing cost of graphite steel, while also ensuring uniform distribution of fine graphite grains within the matrix structure. , excellent machinability can be ensured.

本発明による黒鉛鋼は、伸線加工、冷間鍛造、切削加工などによって自動車、家電/電子機器、産業機器など精密機械部品に製造することができる。また、場合によっては、切削加工後に表面硬度を確保するために、Q/T(quenching and tempering)熱処理を行うことができる。 The graphite steel according to the present invention can be manufactured into precision mechanical parts for automobiles, home appliances/electronic devices, industrial equipment, etc. by wire drawing, cold forging, cutting, etc. In some cases, Q/T (quenching and tempering) heat treatment may be performed to ensure surface hardness after cutting.

以下、実施例に基づいて本発明をより具体的に説明する。ただし、下記の実施例は、本発明を例示してより詳細に説明するためのものであり、本発明の権利範囲を限定するためのものではないという点に留意すべきである。本発明の権利範囲は、特許請求範囲に記載された事項とこれから合理的に類推される事項によって決定されるものであるからである。 Hereinafter, the present invention will be explained more specifically based on Examples. However, it should be noted that the following examples are intended to illustrate and explain the present invention in more detail, and are not intended to limit the scope of the present invention. This is because the scope of rights in the present invention is determined by matters stated in the claims and matters reasonably inferred from these matters.

{実施例}
下記表1の成分組成を有するインゴット(ingot)を鋳造し、1250℃で6時間均質化熱処理した後、熱間圧延および空冷して、黒鉛化熱処理用線材を製造した。熱間圧延の際、仕上げ温度は、1000℃とした。
{Example}
An ingot having the composition shown in Table 1 below was cast, subjected to homogenization heat treatment at 1250° C. for 6 hours, and then hot rolled and air cooled to produce a wire rod for graphitization heat treatment. During hot rolling, the finishing temperature was 1000°C.

表1の「式(1)」、「式(2)」は、前述した式(1)、式(2)に合金組成含有量を代入して導き出した値である。 "Equation (1)" and "Equation (2)" in Table 1 are values derived by substituting the alloy composition content into Equation (1) and Equation (2) described above.

Figure 2024500138000001
Figure 2024500138000001

その後、表1の黒鉛化熱処理用線材を750℃で4時間黒鉛化熱処理し、黒鉛鋼に製造した。ただし、比較例8、9は、黒鉛化熱処理温度をそれぞれ711℃、803℃とし、黒鉛化熱処理した。表2の黒鉛化熱処理用線材組織は、黒鉛化熱処理前の黒鉛化熱処理用線材の微細組織を意味する。表2の黒鉛鋼組織は、黒鉛化熱処理後の黒鉛鋼の微細組織を意味する。 Thereafter, the wire rods for graphitization heat treatment shown in Table 1 were subjected to graphitization heat treatment at 750° C. for 4 hours to produce graphite steel. However, in Comparative Examples 8 and 9, the graphitization heat treatment was performed at a graphitization heat treatment temperature of 711° C. and 803° C., respectively. The wire rod structure for graphitization heat treatment in Table 2 means the fine structure of the wire rod for graphitization heat treatment before the graphitization heat treatment. The graphite steel structure in Table 2 means the microstructure of graphite steel after graphitization heat treatment.

表2の工具の摩耗深さは、直径25mmの各発明例、比較例の黒鉛鋼200個を直径15mmとなるまで切削加工した後、加工前後の工具のブレード深さを比較することによって、摩耗程度を求めた。この際、切削速度を100mm/min、移送速度を0.1mm/rev、切削深さを1.0mmとし、切削油を用いて切削加工した。 The wear depth of the tools in Table 2 was calculated by cutting 200 pieces of graphite steel of each invention example and comparative example with a diameter of 25 mm to a diameter of 15 mm, and then comparing the blade depths of the tools before and after cutting. I asked for the degree. At this time, cutting was performed using cutting oil at a cutting speed of 100 mm/min, a transfer speed of 0.1 mm/rev, and a cutting depth of 1.0 mm.

Figure 2024500138000002
(F:ferrite、P:Pearlite、G:Graphite)
Figure 2024500138000002
(F: ferrite, P: Pearlite, G: Graphite)

表1および表2の結果を参照すると、発明例1~9は、黒鉛化熱処理後に、パーライトがないため、4時間の短時間の黒鉛化熱処理だけでも黒鉛化率が99%以上であり、引張強度が550MPa以下であり、工具の摩耗深さが200mm以下であり、切削性に優れていた。 Referring to the results in Tables 1 and 2, in Inventive Examples 1 to 9, there is no pearlite after the graphitization heat treatment, so the graphitization rate is 99% or more even with a short graphitization heat treatment of 4 hours, and the tensile strength The strength was 550 MPa or less, the tool wear depth was 200 mm or less, and the machinability was excellent.

一方、比較例1~7は、本発明と同じ黒鉛化熱処理条件で黒鉛化熱処理したが、パーライト組織が残存していて、黒鉛化が完了せず、引張強度が550MPaを超過し、工具の摩耗深さが200mmを超過し、切削性が悪かった。 On the other hand, in Comparative Examples 1 to 7, graphitization heat treatment was performed under the same graphitization heat treatment conditions as in the present invention, but the pearlite structure remained, graphitization was not completed, the tensile strength exceeded 550 MPa, and the tool was worn out. The depth exceeded 200 mm and machinability was poor.

より具体的には、比較例1は、C含有量が低いため、黒鉛化駆動力が低く、黒鉛化を完了しなかった。比較例2は、Si含有量が高いため、非金属介在物の増加による脆性誘発と熱間圧延時の脱炭現象を引き起こした。比較例3は、MnS介在物を形成し、残存するMnが黒鉛化を阻害し、黒鉛化を完了しなかった。比較例4は、MnSを形成するMnが少ないため、MnSを形成せず、残存するSが黒鉛化を阻害し、黒鉛化を完了しなかった。比較例5は、N含有量が高いため、TiN、AlN、BNなどの窒化物を形成し、残存するNが黒鉛化を阻害し、黒鉛化を完了しなかった。比較例7は、B含有量が多すぎて、結晶粒界にBNがほとんど析出し、黒鉛化を阻害した。 More specifically, in Comparative Example 1, since the C content was low, the graphitization driving force was low and graphitization was not completed. In Comparative Example 2, since the Si content was high, brittleness was induced due to an increase in nonmetallic inclusions and decarburization occurred during hot rolling. In Comparative Example 3, MnS inclusions were formed, the remaining Mn inhibited graphitization, and graphitization was not completed. In Comparative Example 4, since there was little Mn to form MnS, MnS was not formed, and the remaining S inhibited graphitization, so graphitization was not completed. In Comparative Example 5, since the N content was high, nitrides such as TiN, AlN, and BN were formed, and the remaining N inhibited graphitization, and graphitization was not completed. In Comparative Example 7, the B content was too high, and most of the BN precipitated at the grain boundaries, inhibiting graphitization.

特に比較例3~5の場合、本発明が限定する式(1)の値の範囲を満たしていないので、黒鉛化を完了せず、切削性が劣化した。 In particular, in the case of Comparative Examples 3 to 5, the graphitization was not completed and machinability deteriorated because the value range of formula (1) defined by the present invention was not satisfied.

また、比較例6、7は、本発明が限定する式(2)の値の範囲を満たしていないので、晶出するTiNサイズが非常に大きくなって、黒鉛化を完了しなかった。また、結晶粒界に沿って生成されたBNが黒鉛粒生成核として作用して、黒鉛粒が不均一に生成された。その結果、切削性が劣化した。 In addition, Comparative Examples 6 and 7 did not satisfy the value range of formula (2) defined by the present invention, so the crystallized TiN size became very large and graphitization was not completed. Further, BN generated along grain boundaries acted as graphite grain generation nuclei, and graphite grains were generated non-uniformly. As a result, machinability deteriorated.

比較例8、9は、本発明が限定する黒鉛化熱処理温度を満たしていない。その結果、黒鉛化熱処理温度が非常に低い比較例8は、黒鉛化熱処理時にパーライトが完全に黒鉛化しなかった。一方、黒鉛化熱処理温度が非常に高い比較例9は、オーステナイトに相変態し、冷却時に再びパーライトが形成された。 Comparative Examples 8 and 9 do not meet the graphitization heat treatment temperature defined by the present invention. As a result, in Comparative Example 8 in which the graphitization heat treatment temperature was very low, pearlite was not completely graphitized during the graphitization heat treatment. On the other hand, in Comparative Example 9, in which the graphitization heat treatment temperature was very high, the phase transformed to austenite, and pearlite was formed again upon cooling.

以上、本発明の例示的な実施例を説明したが、本発明は、これに限定されず、当該技術分野における通常の知識を有する者なら、本明細書に記載する請求範囲の概念と範囲を逸脱しない範囲内で多様な変更および変形が可能であることを理解することができる。 Although the exemplary embodiments of the present invention have been described above, the present invention is not limited thereto, and a person having ordinary knowledge in the technical field will understand the concept and scope of the claims described in this specification. It can be understood that various changes and modifications can be made without departing from the scope.

本発明による黒鉛化熱処理用線材および黒鉛鋼は、黒鉛化熱処理時間を大幅に短縮しながらも、黒鉛化熱処理時に微細黒鉛粒が基地内に均一に分布するので、産業上の利用可能性がある。

The wire rod and graphite steel for graphitization heat treatment according to the present invention can be used industrially because fine graphite grains are uniformly distributed within the base during graphitization heat treatment while the graphitization heat treatment time is significantly shortened. .

Claims (5)

重量%で、C:0.65~0.85%、Si:2.00~3.00%、Mn:0.15~0.35%、Ti:0.002~0.1%、N:0.01%以下、B:0.0005%以下、P:0.05%以下、S:0.05%以下を含み、残部がFeおよび不可避な不純物からなり、下記式(1)の値が-1以上1以下を満たし、
微細組織は、面積分率で、フェライト40%以下、ベイナイトとマルテンサイトの合計5%以下および残部としてのパーライトを含むことを特徴とする黒鉛化熱処理用線材。
式(1):100*([Mn]-0.25)-(100*[N])
(上記式(1)中、[Mn]、[N]は、各合金元素の重量%を意味する。)
In weight%, C: 0.65 to 0.85%, Si: 2.00 to 3.00%, Mn: 0.15 to 0.35%, Ti: 0.002 to 0.1%, N: 0.01% or less, B: 0.0005% or less, P: 0.05% or less, S: 0.05% or less, and the remainder consists of Fe and unavoidable impurities, and the value of the following formula (1) is -1 or more and 1 or less,
A wire rod for graphitization heat treatment, characterized in that the microstructure contains, in terms of area fraction, 40% or less of ferrite, 5% or less of a total of bainite and martensite, and pearlite as the balance.
Formula (1): 100*([Mn]-0.25) 2 -(100*[N]) 2
(In the above formula (1), [Mn] and [N] mean the weight percent of each alloying element.)
下記式(2)の値が6以下を満たすことを特徴とする請求項1に記載の黒鉛化熱処理用線材。
式(2):100*[Ti]+10000*[B]
(上記式(2)中、[Ti]、[B]は、各合金元素の重量%を意味する。)
The wire rod for graphitization heat treatment according to claim 1, wherein the value of the following formula (2) satisfies 6 or less.
Formula (2): 100*[Ti]+10000*[B]
(In the above formula (2), [Ti] and [B] mean the weight percent of each alloying element.)
重量%で、C:0.65~0.85%、Si:2.0~3.0%、Mn:0.15~0.35%、Ti:0.002~0.1%、N:0.01%以下、B:0.0005%以下、P:0.05%以下、S:0.05%以下を含み、残部がFeおよび不可避な不純物からなり、下記式(1)の値が-1以上1以下を満たし、
微細組織は、面積分率で、フェライト80%以上および残部としての黒鉛粒を含むことを特徴とする黒鉛鋼。
式(1):100*([Mn]-0.25)-(100*[N])
(上記式(1)中、[Mn]、[N]は、各合金元素の重量%を意味する。)
In weight%, C: 0.65 to 0.85%, Si: 2.0 to 3.0%, Mn: 0.15 to 0.35%, Ti: 0.002 to 0.1%, N: 0.01% or less, B: 0.0005% or less, P: 0.05% or less, S: 0.05% or less, and the remainder consists of Fe and unavoidable impurities, and the value of the following formula (1) is -1 or more and 1 or less,
A graphite steel characterized in that the microstructure contains, in terms of area fraction, 80% or more of ferrite and the balance of graphite grains.
Formula (1): 100*([Mn]-0.25) 2 -(100*[N]) 2
(In the above formula (1), [Mn] and [N] mean the weight percent of each alloying element.)
下記式(2)の値が6以下を満たすことを特徴とする請求項3に記載の黒鉛鋼。
式(2):100*[Ti]+10000*[B]
(上記式(2)中、[Ti]、[B]は、各合金元素の重量%を意味する。)
The graphite steel according to claim 3, wherein the value of the following formula (2) satisfies 6 or less.
Formula (2): 100*[Ti]+10000*[B]
(In the above formula (2), [Ti] and [B] mean the weight percent of each alloying element.)
引張強度が550MPa以下であることを特徴とする請求項3に記載の黒鉛鋼。

The graphite steel according to claim 3, having a tensile strength of 550 MPa or less.

JP2023537369A 2020-12-18 2021-12-17 Wire rod and graphite steel for graphitization heat treatment Pending JP2024500138A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1020200178565A KR102497429B1 (en) 2020-12-18 2020-12-18 Wire rod for graphitization heat treatment and graphite steel with excellent cuttability and soft magnetism
KR10-2020-0178565 2020-12-18
PCT/KR2021/019313 WO2022131864A1 (en) 2020-12-18 2021-12-17 Wire rod for graphitization heat treatment, and graphite steel

Publications (1)

Publication Number Publication Date
JP2024500138A true JP2024500138A (en) 2024-01-04

Family

ID=82057944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023537369A Pending JP2024500138A (en) 2020-12-18 2021-12-17 Wire rod and graphite steel for graphitization heat treatment

Country Status (5)

Country Link
EP (1) EP4265800A1 (en)
JP (1) JP2024500138A (en)
KR (1) KR102497429B1 (en)
CN (1) CN116806276A (en)
WO (1) WO2022131864A1 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5476556A (en) 1993-08-02 1995-12-19 Kawasaki Steel Corporation Method of manufacturing steel for machine structural use exhibiting excellent free cutting characteristic, cold forging characteristic and post-hardening/tempering fatigue resistance
JPH07188850A (en) * 1993-12-28 1995-07-25 Kawasaki Steel Corp Graphite free-cutting steel excellent in machinability
JP4084462B2 (en) * 1998-06-04 2008-04-30 Jfe条鋼株式会社 Free-cutting hot-worked steel and its manufacturing method
KR102303599B1 (en) * 2017-05-18 2021-09-23 닛폰세이테츠 가부시키가이샤 Wire rods, steel wires, and methods for manufacturing steel wires
CN109207840B (en) * 2017-06-29 2020-12-22 宝山钢铁股份有限公司 Free-cutting non-quenched and tempered steel and manufacturing method thereof
KR102042063B1 (en) * 2017-12-21 2019-11-08 주식회사 포스코 Steel material for graphitization and graphite steel with improved machinability
KR102126971B1 (en) * 2018-10-23 2020-06-25 주식회사 포스코 Graphite steels excellent in machinability and soft magnetism and methods for manufacturing the same

Also Published As

Publication number Publication date
EP4265800A1 (en) 2023-10-25
CN116806276A (en) 2023-09-26
WO2022131864A1 (en) 2022-06-23
KR20220087978A (en) 2022-06-27
KR102497429B1 (en) 2023-02-10

Similar Documents

Publication Publication Date Title
KR102224044B1 (en) Steel wire for graphitization and graphite steel and manufacturing method thereof
JP6860532B2 (en) Steel materials for graphite steel and graphite steel with improved machinability
JP2010007143A (en) Steel for machine structure having excellent fatigue limit ratio and machinability
JP2006249570A (en) Steel for high-temperature carburization superior in grain-coarsening resistance, manufacturing method therefor, formed article for high-temperature carburization, and carburizing and quenching method therefor
KR101674826B1 (en) Graphite steel having excellent machinability, coercivity and iron-loss characteristics and method for manufacturing thereof
JP5206911B1 (en) Non-tempered steel for hot forging, non-tempered hot forged product, and method for producing the same
JP5762217B2 (en) Non-tempered steel for hot forging with excellent machinability
JP4344126B2 (en) Induction tempered steel with excellent torsional properties
JP2015134945A (en) Carburizing steel
JP2024500138A (en) Wire rod and graphite steel for graphitization heat treatment
JP2023554117A (en) Wire rod and graphite steel for graphitization heat treatment
JPS62207821A (en) Production of unnormalized steel for hot forging
WO2011155605A1 (en) High-machinability high-strength steel and manufacturing method therefor
JP3552286B2 (en) Manufacturing method of machine structural steel having excellent machinability, cold forgeability and fatigue strength after quenching and tempering, and a method of manufacturing the member
KR102528281B1 (en) Manufacturing method of wire rod for graphitization heat treatment and graphite steel
JP2002146438A (en) Method for producing case-hardening steel having excellent cold workability and grain size characteristic
JP7445686B2 (en) Wire rod for graphitization heat treatment, graphite steel and manufacturing method thereof
JPH0470385B2 (en)
JP4001787B2 (en) Cold tool steel with excellent fatigue life and heat treatment method thereof
JP2009270160A (en) Method for producing steel material for soft-nitriding
KR20230039008A (en) Graphite steel wire rode, graphite steel wire, and graphite steel for tv pem nut part and methods for manufacturing the same
JP2001192762A (en) High toughness non-heat treated steel for hot forging
KR20230052013A (en) Graphite steel wire rode, graphite steel wire, and graphite steel containing sulfur with excellent cuttability and methods for manufacturing the same
JP2000239742A (en) Production of carburized steel omissible of normalizing after hot-forging
JPS6299416A (en) Production of case hardening steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230810