JP2024118558A - Aromatic polyimide resin varnish for insulating coating, and insulated wire, coil, rotating electric machine, and electric/electronic device using the same - Google Patents

Aromatic polyimide resin varnish for insulating coating, and insulated wire, coil, rotating electric machine, and electric/electronic device using the same Download PDF

Info

Publication number
JP2024118558A
JP2024118558A JP2023024901A JP2023024901A JP2024118558A JP 2024118558 A JP2024118558 A JP 2024118558A JP 2023024901 A JP2023024901 A JP 2023024901A JP 2023024901 A JP2023024901 A JP 2023024901A JP 2024118558 A JP2024118558 A JP 2024118558A
Authority
JP
Japan
Prior art keywords
resin varnish
insulating layer
insulating coating
present
aromatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023024901A
Other languages
Japanese (ja)
Inventor
奈摘子 原
亮 国分
恵一 冨澤
大介 武藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Essex Furukawa Magnet Wire Japan Co Ltd
Original Assignee
Essex Furukawa Magnet Wire Japan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Essex Furukawa Magnet Wire Japan Co Ltd filed Critical Essex Furukawa Magnet Wire Japan Co Ltd
Priority to JP2023024901A priority Critical patent/JP2024118558A/en
Priority to PCT/JP2024/001985 priority patent/WO2024176695A1/en
Publication of JP2024118558A publication Critical patent/JP2024118558A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09D179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Paints Or Removers (AREA)
  • Insulated Conductors (AREA)

Abstract

【課題】芳香族ポリイミド樹脂で構成された絶縁層の形成に用いる、芳香族ポリアミック酸を含有する樹脂ワニスであって、より速乾性に優れ、1回の塗布・焼付け工程で形成される絶縁層をより厚くしても、ブツの発生を効果的に抑えることができる芳香族ポリイミド樹脂ワニス、当該樹脂ワニスを用いて形成した絶縁層を含む絶縁皮膜を有する、外観に優れた絶縁電線、並びに、この絶縁電線を用いたコイル、回転電機及び電気・電子機器を提供する。【解決手段】イミド化率が10~60%である芳香族ポリアミック酸を含む、絶縁被覆用芳香族ポリイミド樹脂ワニス。【選択図】なし[Problem] To provide an aromatic polyimide resin varnish containing an aromatic polyamic acid for use in forming an insulating layer made of an aromatic polyimide resin, which dries more quickly and can effectively suppress the occurrence of bumps even if the insulating layer formed in a single application and baking process is made thicker; an insulated wire having an excellent appearance and having an insulating coating including an insulating layer formed using the resin varnish; and a coil, rotating electric machine, and electric/electronic device using the insulated wire. [Solution] An aromatic polyimide resin varnish for insulating coating, which contains an aromatic polyamic acid with an imidization rate of 10 to 60%. [Selected Figure] None

Description

本発明は、絶縁被覆用芳香族ポリイミド樹脂ワニス、及びこれを用いた絶縁電線、コイル、回転電機並びに電気・電子機器に関する。 The present invention relates to an aromatic polyimide resin varnish for insulating coating, and to an insulated wire, coil, rotating electrical machine, and electrical/electronic device that uses the same.

高速スイッチング素子、インバータモーター、変圧器等の電気・電子機器用コイルには、マグネットワイヤとして、線状金属導体の外周面に樹脂製の絶縁皮膜を備えた絶縁電線が用いられている。絶縁電線の絶縁皮膜は、熱硬化性樹脂や熱可塑性樹脂を塗布・焼付けしたり、熱可塑性樹脂を押出被覆したり、あるいはこれらを組み合わせたりして形成されている。 Insulated electric wires with a resin insulating coating on the outer surface of a linear metal conductor are used as magnet wires for coils in electric and electronic devices such as high-speed switching elements, inverter motors, and transformers. The insulating coating of insulated electric wires is formed by applying and baking a thermosetting resin or a thermoplastic resin, extrusion coating a thermoplastic resin, or a combination of these.

上記熱硬化性樹脂や熱可塑性樹脂の塗布・焼付けでは、樹脂を溶剤に溶解した樹脂ワニスが用いられ、各絶縁層が目的の厚さとなるように樹脂ワニスの塗布量が決定される。樹脂ワニス中の溶剤は、樹脂ワニスの塗布に続く焼付け工程において揮発(蒸発)して除去される。そのため、1回の樹脂ワニスの塗布量をあまり多くせず(形成される絶縁層の厚さをあまり厚くせず)、かつ、十分な焼付け温度、焼付け時間が確保されれば、形成される絶縁層内の残留溶剤量を低く抑えることができる。一方で、樹脂ワニスの塗布量が多い(絶縁層が厚い)場合には、焼付け工程において溶剤が十分に揮発(蒸発)せず、形成される絶縁層内の残留溶剤量が多くなる。この過剰の残留溶剤は、樹脂ワニスの塗布・焼付けを繰り返す中で、絶縁層の内側から外側に向かって絶縁層を押し上げるように発泡してブツ(揮発成分由来の発泡等に由来する絶縁層ないし絶縁被膜表面の隆起、突起等)を生じさせ、外観不良の原因となる。また、生じたブツは導体と絶縁層の密着性や、絶縁層間の密着性を低下させる原因にもなる。
絶縁層における残留溶剤量を抑制し、絶縁皮膜の外観不良の発生を抑制する観点から、通常は1回あたりの樹脂ワニスの塗布量は少なく(絶縁層の厚さを薄く)設定されており、例えば1層あたり平均厚さが2~3μmの絶縁層となるように樹脂ワニスの塗布・焼付けが行われ、当該工程を繰り返して積層絶縁層とすることにより、目的の厚さの絶縁皮膜が形成される。
In the coating and baking of the thermosetting resin or thermoplastic resin, a resin varnish in which the resin is dissolved in a solvent is used, and the amount of resin varnish applied is determined so that each insulating layer has a desired thickness. The solvent in the resin varnish is removed by volatilization (evaporation) in the baking process following the application of the resin varnish. Therefore, if the amount of resin varnish applied at one time is not too large (the thickness of the insulating layer formed is not too thick) and sufficient baking temperature and baking time are ensured, the amount of residual solvent in the insulating layer formed can be kept low. On the other hand, if the amount of resin varnish applied is large (the insulating layer is thick), the solvent does not volatilize (evaporate) sufficiently in the baking process, and the amount of residual solvent in the insulating layer formed increases. This excess residual solvent foams so as to push the insulating layer from the inside to the outside during repeated application and baking of the resin varnish, causing bumps (bulges, protrusions, etc. on the insulating layer or insulating coating surface due to foaming due to volatile components, etc.), which causes poor appearance. Furthermore, the resulting bumps can cause a decrease in adhesion between the conductor and the insulating layer, as well as between insulating layers themselves.
From the standpoint of reducing the amount of residual solvent in the insulating layer and preventing the occurrence of poor appearance of the insulating coating, the amount of resin varnish applied each time is usually set small (to make the insulating layer thin). For example, the resin varnish is applied and baked so that the insulating layer has an average thickness of 2 to 3 μm per layer. This process is repeated to form a laminated insulating layer, thereby forming an insulating coating of the desired thickness.

樹脂ワニスの塗布・焼付けにより形成される絶縁層(エナメル層)の材料として、種々の熱硬化性樹脂が知られている。また、一部の熱可塑性樹脂もエナメル層の材料として用いられている。なかでも、芳香族環がイミド結合で連結された構造を有する熱硬化性の芳香族ポリイミド樹脂(以下、単に「芳香族ポリイミド樹脂」という。)は、耐熱性に優れ、電気特性の温度依存性が低く、寸法安定性が高く、耐薬品性にも優れており、絶縁層の形成材料として広く用いられている。芳香族ポリイミド樹脂の絶縁層は、芳香族ポリイミド樹脂の前駆体である芳香族ポリアミック酸を含有するワニスを塗布・焼付けすることにより形成される。 Various thermosetting resins are known as materials for the insulating layer (enamel layer) formed by applying and baking a resin varnish. Some thermoplastic resins are also used as materials for the enamel layer. Among them, thermosetting aromatic polyimide resins (hereinafter simply referred to as "aromatic polyimide resins"), which have a structure in which aromatic rings are linked by imide bonds, have excellent heat resistance, low temperature dependence of electrical properties, high dimensional stability, and excellent chemical resistance, and are widely used as materials for forming insulating layers. An insulating layer of aromatic polyimide resin is formed by applying and baking a varnish containing aromatic polyamic acid, which is a precursor of aromatic polyimide resin.

上記のポリイミド樹脂を含む絶縁皮膜中の残量溶媒量を低減した絶縁電線が提案されている。例えば特許文献1には、(1)実質的にポリアミドイミド、およびポリイミドのうちの少なくとも一方からなる第1絶縁層と、(2)ポリアミドイミドAに、ガラス転移温度140℃以上の熱可塑性樹脂Bを、重量比A/Bで表してA/B=70/30~30/70の割合で配合してなる第2絶縁層とをこの順に被覆、積層することによって、導体上に、上記第1絶縁層の膜厚T1と、第2絶縁層の膜厚T2との比T1/T2がT1/T2=5/95~40/60の範囲内で、かつ残留溶剤量が絶縁皮膜総量の0.05重量%以下である絶縁皮膜を形成したことを特徴とする絶縁電線の発明が記載されている。特許文献1記載の技術によれば、絶縁皮膜全体の残留溶媒量を上記の通り制御することにより、絶縁電線の末端を接合する工程で、接合部付近の絶縁皮膜が接合の熱などによって発泡したり、あるいはその変色長さが長くなったりすることをより確実に防止できるとされる。 An insulated electric wire has been proposed that reduces the amount of residual solvent in the insulating film containing the polyimide resin. For example, Patent Document 1 describes an invention for an insulated electric wire, which is characterized by forming an insulating film on a conductor by coating and laminating (1) a first insulating layer substantially consisting of at least one of polyamideimide and polyimide, and (2) a second insulating layer made by blending polyamideimide A with thermoplastic resin B having a glass transition temperature of 140°C or higher in a weight ratio A/B of 70/30 to 30/70, in that order, such that the ratio T1/T2 of the thickness T1 of the first insulating layer to the thickness T2 of the second insulating layer is within the range of T1/T2 = 5/95 to 40/60, and the amount of residual solvent is 0.05% by weight or less of the total amount of the insulating film. According to the technology described in Patent Document 1, by controlling the amount of residual solvent in the entire insulating film as described above, it is possible to more reliably prevent the insulating film near the joint from foaming due to heat during joining or from becoming discolored for an extended length during the process of joining the ends of the insulated electric wire.

特開2001-155551号公報JP 2001-155551 A

樹脂ワニスの塗布・焼付け工程において、1回の塗布・焼付け時の溶剤(溶媒)の揮発速度をより速めることができれば、より厚い絶縁層を形成しながらブツの発生を抑制することが可能となる。すなわち、必要な厚さの絶縁皮膜を、より少ない層数の絶縁層で形成することが可能となり、工程数を減らすことができ、結果、製造コストを抑えることができる。 If the evaporation rate of the solvent during each application and baking process of the resin varnish can be increased, it will be possible to form a thicker insulating layer while suppressing the occurrence of bumps. In other words, it will be possible to form an insulating film of the required thickness using fewer insulating layers, reducing the number of processes and, as a result, reducing manufacturing costs.

本発明は、芳香族ポリイミド樹脂で構成された絶縁層の形成に用いる、芳香族ポリアミック酸を含有する樹脂ワニス(以下、単に「芳香族ポリイミド樹脂ワニス」ともいう。)であって、より速乾性に優れ、1回の塗布・焼付け工程で形成される絶縁層をより厚くしても、ブツの発生を効果的に抑えることができる芳香族ポリイミド樹脂ワニスを提供することを課題とする。また、本発明は、当該樹脂ワニスを用いて形成した絶縁層を含む絶縁皮膜を有する、外観に優れた絶縁電線、並びに、この絶縁電線を用いたコイル、回転電機及び電気・電子機器を提供することを課題とする。 The present invention aims to provide an aromatic polyimide resin varnish (hereinafter, simply referred to as "aromatic polyimide resin varnish") containing aromatic polyamic acid, which is used to form an insulating layer made of aromatic polyimide resin, and which has excellent quick-drying properties and can effectively suppress the occurrence of bumps even if the insulating layer formed in a single application and baking process is made thicker. The present invention also aims to provide an insulated electric wire with excellent appearance, which has an insulating coating including an insulating layer formed using the resin varnish, and a coil, a rotating electric machine, and an electric/electronic device using this insulated electric wire.

本発明者らは、上記課題を解決すべく検討した結果、芳香族ポリイミド樹脂ワニスにおいて、塗布・焼付け工程の前に、ポリアミック酸構造の脱水・環化反応をある程度進めてイミド化率を一定の範囲に高めておくことにより、当該芳香族ポリイミド樹脂ワニスの速乾性を効果的に高めることができ、当該芳香族ポリイミド樹脂ワニスの塗布・焼付けを繰り返して形成される絶縁皮膜中の残留溶剤量を低減することができること、その結果、ブツの発生が抑制されて外観に優れた絶縁電線を得ることができることを見出した。本発明は、これらの知見に基づきさらに検討を重ね、完成されるに至ったものである。 As a result of studies to solve the above problems, the present inventors have found that in an aromatic polyimide resin varnish, by promoting the dehydration and cyclization reaction of the polyamic acid structure to a certain extent to raise the imidization rate to a certain range before the coating and baking process, the quick-drying property of the aromatic polyimide resin varnish can be effectively improved, and the amount of residual solvent in the insulating film formed by repeatedly coating and baking the aromatic polyimide resin varnish can be reduced, and as a result, the occurrence of bumps can be suppressed and an insulated wire with excellent appearance can be obtained. The present invention was completed after further studies based on these findings.

すなわち、本発明の上記課題は、以下の手段によって解決された。
〔1〕
イミド化率が10~60%である芳香族ポリアミック酸を含む、絶縁被覆用芳香族ポリイミド樹脂ワニス。
〔2〕
前記樹脂ワニスの不揮発分率(固形分量)を25質量%に調整した試料10mgを、ガス流量100ml/分の窒素雰囲気下で35℃から速度20℃/分で昇温した場合に、前記溶剤の沸点到達時点における重量減少率が40質量%以上である、前記〔1〕に記載の絶縁被覆用芳香族ポリイミド樹脂ワニス。
〔3〕
前記重量減少率が50質量%以上である、前記〔2〕に記載の絶縁被覆用芳香族ポリイミド樹脂ワニス。
〔4〕
前記樹脂ワニスの不揮発分率が10質量%以上である、前記〔1〕~〔3〕のいずれかに記載の絶縁被覆用芳香族ポリイミド樹脂ワニス。
〔5〕
導体と、導体の外周を覆う絶縁皮膜とを有する絶縁電線であって、
前記絶縁皮膜が、前記〔1〕~〔4〕のいずれかに記載の絶縁被覆用芳香族ポリイミド樹脂ワニスの塗布・焼付けを繰り返して形成された積層絶縁層を含む、絶縁電線。
〔6〕
前記積層絶縁層を構成する各絶縁層の1層あたりの平均厚さが4μm以上である、
前記〔5〕に記載の絶縁電線。
〔7〕
前記〔6〕に記載の絶縁電線を用いたコイル。
〔8〕
前記〔7〕に記載のコイルを有する電気・電子機器。
That is, the above-mentioned object of the present invention has been achieved by the following means.
[1]
An aromatic polyimide resin varnish for insulating coating contains an aromatic polyamic acid having an imidization rate of 10 to 60%.
[2]
The aromatic polyimide resin varnish for insulating coating according to [1] above, wherein when a 10 mg sample of the resin varnish, in which the non-volatile content (solid content) is adjusted to 25 mass %, is heated from 35° C. at a rate of 20° C./min in a nitrogen atmosphere with a gas flow rate of 100 ml/min, the weight loss rate at the time when the boiling point of the solvent is reached is 40 mass % or more.
[3]
The aromatic polyimide resin varnish for insulating coating according to [2] above, wherein the weight reduction rate is 50 mass% or more.
[4]
The aromatic polyimide resin varnish for insulating coating according to any one of [1] to [3] above, wherein the resin varnish has a non-volatile content of 10 mass% or more.
[5]
An insulated wire having a conductor and an insulating coating covering the outer periphery of the conductor,
An insulated wire, wherein the insulating coating comprises a laminated insulating layer formed by repeatedly applying and baking the aromatic polyimide resin varnish for insulating coating according to any one of [1] to [4].
[6]
The average thickness of each of the insulating layers constituting the laminated insulating layer is 4 μm or more.
The insulated wire according to [5] above.
[7]
A coil using the insulated wire according to [6] above.
[8]
An electric/electronic device having the coil described in [7].

本発明ないし本明細書において、単に「絶縁層」という場合、樹脂ワニスの塗布・焼付けを1回行って形成される層を意味する。本発明では、同一の樹脂ワニスの塗布・焼付けを複数回繰り返して形成した絶縁層は複層の絶縁層として捉える。つまり、樹脂ワニスが同一でも異なっていても、1回の塗布・焼付けで形成される層を絶縁層1層とカウントする。換言すれば、塗布・焼付けを繰り返したとき、当該繰り返し数と同じ数の絶縁層が積層された積層絶縁層が形成される。なお、この積層数は、絶縁層の断面をエッジング後、光学顕微鏡またはマイクロスコープで確認できる。
本発明では、絶縁電線における絶縁皮膜は上記の通り、樹脂ワニスの塗布・焼付けを繰り返して形成された積層絶縁層を含むことを特定事項として有しているが、これは単に絶縁皮膜の状態を示す(すなわち、絶縁皮膜が特定のエナメル層を含むことを示す)ものであり、これにより絶縁皮膜の構造ないし特性を明らかにするものである。
本発明ないし本明細書では、絶縁電線の長手方向と直交する断面形状で、導体および絶縁皮膜を含めた絶縁電線の形状を、単に断面形状と称する場合がある。本発明における断面形状は、単に切断面のみが特定の形状をしているのでなく、絶縁電線全体の長手方向に、この断面形状が連続してつながっており、特段の断りがない限り、絶縁電線の長手方向のいずれの部分に対しても、この方向と直交する断面形状は実質的に同じであることを意味する。
本発明ないし本明細書において、「~」を用いて表される数値範囲は、その前後に記載される数値を下限値及び上限値として含む範囲を意味する。
本発明ないし本明細書において、濃度の単位として記載する「ppm」は質量基準である。
In the present invention or this specification, the term "insulating layer" simply means a layer formed by applying and baking a resin varnish once. In the present invention, an insulating layer formed by repeatedly applying and baking the same resin varnish multiple times is regarded as a multi-layer insulating layer. In other words, whether the resin varnish is the same or different, a layer formed by applying and baking once is counted as one insulating layer. In other words, when the application and baking are repeated, a laminated insulating layer is formed in which the same number of insulating layers as the number of repetitions are laminated. Note that this number of layers can be confirmed with an optical microscope or a microscope after edging the cross section of the insulating layer.
In the present invention, the insulating coating of the insulated wire, as described above, has as a specific feature that it includes a laminated insulating layer formed by repeatedly applying and baking a resin varnish. However, this simply indicates the state of the insulating coating (i.e., indicates that the insulating coating includes a specific enamel layer), thereby clarifying the structure or characteristics of the insulating coating.
In the present invention and this specification, the cross-sectional shape perpendicular to the longitudinal direction of the insulated electric wire, including the conductor and the insulating coating, may be simply referred to as the cross-sectional shape. The cross-sectional shape in this invention does not simply mean that only the cut surface has a specific shape, but that this cross-sectional shape is continuous in the longitudinal direction of the entire insulated electric wire, and unless otherwise specified, it means that the cross-sectional shape perpendicular to the longitudinal direction is substantially the same for any part of the insulated electric wire in the longitudinal direction.
In the present invention and this specification, a numerical range expressed using "to" means a range including the numerical values before and after it as the lower limit and upper limit.
In the present invention and this specification, "ppm" described as a unit of concentration is based on mass.

本発明の絶縁被覆用芳香族ポリイミド樹脂ワニスは、塗布・焼付け処理における速乾性に優れ、1回の塗布・焼付けにより形成されるポリイミド絶縁層をより厚くした場合でも、ポリイミド絶縁層中に溶剤が残留しにくく、ブツの発生を効果的に抑えることができる。また、当該樹脂ワニスを絶縁皮膜の形成に用いた絶縁電線は、当該樹脂ワニスの1回の塗布・焼付けにより形成されるポリイミド絶縁層をより厚くした場合でも、絶縁皮膜の残留溶剤量を低く抑えることができ、ブツの発生が抑えられて外観に優れる。さらに、本発明によれば、前記絶縁電線を用いたコイル、回転電機および電気・電子機器が提供される。 The aromatic polyimide resin varnish for insulating coating of the present invention has excellent quick-drying properties during application and baking, and even if the polyimide insulating layer formed by a single application and baking is made thicker, the solvent is less likely to remain in the polyimide insulating layer, and the occurrence of bumps can be effectively suppressed. Furthermore, an insulated electric wire using this resin varnish to form an insulating coating can keep the amount of residual solvent in the insulating coating low, suppressing the occurrence of bumps and providing an excellent appearance, even if the polyimide insulating layer formed by a single application and baking of the resin varnish is made thicker. Furthermore, according to the present invention, a coil, a rotating electric machine, and an electric/electronic device using the insulated electric wire are provided.

図1は、本発明の電気・電子機器に用いられるステータの好ましい形態を示す概略分解斜視図である。FIG. 1 is a schematic exploded perspective view showing a preferred embodiment of a stator used in an electric/electronic device according to the present invention. 図2は、本発明の電気・電子機器に用いられるステータの好ましい形態を示す概略斜視図である。FIG. 2 is a schematic perspective view showing a preferred embodiment of a stator used in the electric/electronic device of the present invention.

本発明の好ましい実施形態について説明するが、本発明は、本発明で規定すること以外は、下記の実施形態に限定されるものではない。 A preferred embodiment of the present invention will be described below, but the present invention is not limited to the following embodiment except as specified in the present invention.

[絶縁被覆用芳香族ポリイミド樹脂ワニス]
本発明の絶縁被覆用(絶縁層形成用)芳香族ポリイミド樹脂ワニス(以下、「本発明の樹脂ワニス」とも称す。)は樹脂成分として芳香族ポリアミック酸を有し、絶縁電線の製造において、塗布・焼付けにより芳香族ポリイミド樹脂の絶縁層(ポリイミド絶縁層)を形成するための樹脂ワニスである。本発明の樹脂ワニスは、芳香族ポリアミック酸のイミド化率が特定の範囲に高められており、溶剤との相互作用性が抑えられて速乾性に優れる。そのため、本発明の樹脂ワニスを用いて形成した絶縁層、積層絶縁層ないし絶縁皮膜は残留溶剤量が低く抑えられ、これにより残留溶剤に起因する絶縁皮膜の外観異常の発生(ブツの発生等)を抑制することができる。
また、本発明の樹脂ワニスは速乾性に優れるため、本発明の樹脂ワニスの塗布・焼付けにおいて1回の塗布量を多くすることができ、これによって、より厚肉のポリイミド絶縁層を形成することができる。したがって、目的の皮膜厚さに到達するのに要する塗布・焼付けの繰り返し数を低減することができるため、絶縁電線の製造コストを低減させることができる。
本発明の樹脂ワニスに特徴的な構成について下記に説明する。
[Aromatic polyimide resin varnish for insulating coating]
The aromatic polyimide resin varnish for insulating coating (for forming an insulating layer) of the present invention (hereinafter also referred to as "the resin varnish of the present invention") has an aromatic polyamic acid as a resin component, and is a resin varnish for forming an insulating layer (polyimide insulating layer) of aromatic polyimide resin by coating and baking in the manufacture of insulated electric wires. In the resin varnish of the present invention, the imidization rate of the aromatic polyamic acid is increased to a specific range, and the interaction with the solvent is suppressed, resulting in excellent quick-drying properties. Therefore, the amount of residual solvent in the insulating layer, laminated insulating layer, or insulating film formed using the resin varnish of the present invention is kept low, thereby making it possible to suppress the occurrence of abnormalities in the appearance of the insulating film caused by the residual solvent (such as the occurrence of bumps).
In addition, since the resin varnish of the present invention has excellent quick-drying properties, a larger amount of the resin varnish can be applied in one application and baking, which allows a thicker polyimide insulating layer to be formed. This reduces the number of repeated application and baking steps required to reach a desired coating thickness, thereby reducing the manufacturing cost of the insulated wire.
The characteristic features of the resin varnish of the present invention will be described below.

<芳香族ポリアミック酸>
本発明の樹脂ワニスは、樹脂成分として芳香族ポリアミック酸(芳香族ポリイミド前駆体)を含有し、その構造の一部が特定の割合で脱水・環化反応を生じてイミド結合を形成し、本発明で規定するイミド化率へと制御されている。このようなポリマーを、以降の説明において「本発明に用いるポリアミック酸」ともいう。
<Aromatic polyamic acid>
The resin varnish of the present invention contains an aromatic polyamic acid (aromatic polyimide precursor) as a resin component, and a part of the structure undergoes a dehydration/cyclization reaction at a specific ratio to form an imide bond, and the imidization rate is controlled to the value specified in the present invention. In the following description, such a polymer is also referred to as the "polyamic acid used in the present invention."

芳香族ポリアミック酸は、芳香族カルボン酸二無水物と芳香族ジアミンから開環重付加反応により形成することができる。芳香族ポリアミック酸の調製方法は特に限定されず、常法により調製することができる。例えば、非プロトン性のアミド系極性溶剤に芳香族ジアミンを溶解させ、室温下で撹拌しながら芳香族カルボン酸二無水物を添加することにより得ることができる。 Aromatic polyamic acid can be formed by a ring-opening polyaddition reaction of aromatic carboxylic dianhydride and aromatic diamine. The method for preparing aromatic polyamic acid is not particularly limited, and it can be prepared by a conventional method. For example, it can be obtained by dissolving aromatic diamine in an aprotic amide polar solvent and adding aromatic carboxylic dianhydride with stirring at room temperature.

前記芳香族ポリアミック酸は、例えば下記一般式(1)で表される単位構造を有するものである。 The aromatic polyamic acid has a unit structure represented by the following general formula (1), for example:

Figure 2024118558000001
Figure 2024118558000001

一般式(1)中、Rは芳香族環を有する4価の基を示し、Rは芳香族環を有する2価の基を示す。ここで、Rは芳香族カルボン酸二無水物に由来し、Rは芳香族ジアミンに由来する。上記芳香族環として、例えば、ベンゼン環、ナフタレン環が挙げられ、ベンゼン環が好ましい。R及びRが有する芳香族環の数は、1~4が好ましく、1又は2がより好ましい(ナフタレン等の縮合芳香族環は、縮合芳香族環全体が1つの芳香族環である)。絶縁電線のエナメル層の形成に用いる芳香族ポリアミック酸それ自体は広く知られており、本発明は、これらの芳香族ポリアミック酸のイミド化率を制御した点に特徴がある。 In the general formula (1), R 1 represents a tetravalent group having an aromatic ring, and R 2 represents a divalent group having an aromatic ring. Here, R 1 is derived from an aromatic carboxylic dianhydride, and R 2 is derived from an aromatic diamine. Examples of the aromatic ring include a benzene ring and a naphthalene ring, and a benzene ring is preferred. The number of aromatic rings in R 1 and R 2 is preferably 1 to 4, and more preferably 1 or 2 (condensed aromatic rings such as naphthalene are one aromatic ring in their entirety). The aromatic polyamic acids themselves used to form the enamel layer of the insulated wire are widely known, and the present invention is characterized in that the imidization rate of these aromatic polyamic acids is controlled.

本発明に用いるポリアミック酸は、構造の一部が特定の割合で脱水・環化反応(イミド化反応)を生じてイミド結合を形成している。この脱水・環化反応は、例えば、加熱イミド化法や化学的イミド化法等の通常の方法により生じさせることができる。例えば、実施例に記載の方法を採用することもできる。
前記一般式(1)の単位構造がイミド化された場合、下記一般式(2)で表される構造となる。
The polyamic acid used in the present invention has a structure in which a part of the structure undergoes a dehydration/cyclization reaction (imidization reaction) at a specific ratio to form an imide bond. This dehydration/cyclization reaction can be caused by a normal method such as a thermal imidization method or a chemical imidization method. For example, the method described in the examples can also be adopted.
When the unit structure of the general formula (1) is imidized, the structure is represented by the following general formula (2).

Figure 2024118558000002
Figure 2024118558000002

一般式(2)中、Rは前記Rと同義であり、Rは前記Rと同義である In formula (2), R3 has the same meaning as R1 , and R4 has the same meaning as R2.

-イミド化率-
本発明に用いるポリアミック酸は、イミド化率が10~60%である。前記イミド化率は、樹脂ワニスを用いて、常法により測定することができる。例えば、樹脂ワニス中の樹脂のイミド化率を100%とした参照サンプル(ポリイミド)と測定サンプルである樹脂ワニス中の樹脂(ポリアミック酸)におけるFT-IRスペクトルを、島津社製のフーリエ変換赤外分光光度計(FT-IR、商品名:IRAffinity-1S)を用い、ATR(減衰全反射:Attenuated Total Reflection)法により測定し、得られたFT-IRスペクトル(波形データ)の1774cm-1付近のピーク強度を比較することにより、イミド化率を算出することができる。すなわち、イミド化率(%)は、ベースライン補正を行った後に、下記式により算出することができる。

イミド化率(%)=100×[測定サンプルの数値(A1774cm-1/A1495cm-1)]/[参照サンプルの数値(A1774cm-1/A1495cm-1)]

例えば、波数4000cm-1の吸光度を用いてベースライン補正を行い、また波数1495cm-1付近のピーク強度を用いて規格化を行い(1774cm-1付近のピーク強度を1495cm-1付近のピーク強度で割り)、得られた測定サンプルの数値(A1774cm-1/A1495cm-1)と、イミド化率を100%とした参照サンプルの数値(A1774cm-1/A1495cm-1)を比較することによりイミド化率を算出することができる。
上記樹脂ワニス中の樹脂のイミド化率を100%とした参照サンプルは、例えばポリイミド樹脂ワニスを300℃で1時間加熱することにより、ポリアミック酸の脱水・環化反応を十分に促進させて調製することができる。
なお、本明細書において、例えば「1774cm-1付近のピーク強度」とは、波長1774cm-1にピークがある場合には当該ピーク強度を意味し、波長1774cm-1にピークが無い場合には、波長1774cm-1に最も近い波数位置におけるピーク強度を意味する。すなわち、必ずしも波数1774cm-1位置の吸光度を意味するものではない。他のピーク強度についても同様である。
-Imidization rate-
The polyamic acid used in the present invention has an imidization rate of 10 to 60%. The imidization rate can be measured by a conventional method using a resin varnish. For example, the FT-IR spectra of a reference sample (polyimide) in which the imidization rate of the resin in the resin varnish is set to 100% and the resin (polyamic acid) in the resin varnish as a measurement sample are measured by an ATR (attenuated total reflection) method using a Fourier transform infrared spectrophotometer (FT-IR, product name: IRAffinity-1S) manufactured by Shimadzu Corporation, and the imidization rate can be calculated by comparing the peak intensity around 1774 cm −1 of the obtained FT-IR spectrum (waveform data). That is, the imidization rate (%) can be calculated by the following formula after baseline correction.

Imidization rate (%)=100×[measurement sample value (A1774 cm −1 /A1495 cm −1 )]/[reference sample value (A1774 cm −1 /A1495 cm −1 )]

For example, baseline correction is performed using the absorbance at a wavenumber of 4000 cm -1 , and normalization is performed using the peak intensity at a wavenumber of about 1495 cm -1 (the peak intensity at about 1774 cm -1 is divided by the peak intensity at about 1495 cm -1 ), and the imidization rate can be calculated by comparing the obtained numerical value of the measured sample (A1774 cm -1 /A1495 cm -1 ) with the numerical value of a reference sample in which the imidization rate is set to 100% (A1774 cm -1 /A1495 cm -1 ).
A reference sample in which the imidization rate of the resin in the resin varnish is 100% can be prepared, for example, by heating the polyimide resin varnish at 300° C. for 1 hour to sufficiently promote the dehydration and cyclization reaction of the polyamic acid.
In this specification, for example, "peak intensity near 1774 cm -1 " means the peak intensity when there is a peak at a wavelength of 1774 cm -1 , and means the peak intensity at the wavenumber position closest to the wavelength of 1774 cm -1 when there is no peak at the wavelength of 1774 cm -1 . In other words, it does not necessarily mean the absorbance at the wavenumber position of 1774 cm -1 . The same applies to other peak intensities.

本発明者らが検討を重ねた結果、ポリアミック酸のイミド化率が本発明で規定するイミド化率よりも低い場合には、樹脂ワニスを用いた塗布・焼付けによる絶縁層(絶縁皮膜)形成において溶剤の揮発(蒸発)が起こりにくいことが分かってきた。この理由は定かではないが、次のように考えられる。
樹脂ワニス中に含まれる溶剤は、ポリアミック酸が有する-NH-基や-OH基と水素結合等を形成して配位し、安定化するため、このように安定化した溶剤は、このような結合を形成していない遊離の溶剤と比較して揮発(蒸発)しにくい傾向にある。例えば、溶剤がジメチルアセトアミドやN-メチルピロリドンの場合、これらが有するカルボニル基を介してポリアミック酸が有する-NH-基や-OH基に配位する。ポリアミック酸のイミド化率が本発明で規定するイミド化率よりも低い場合には、樹脂ワニスを用いた塗布・焼付けによる絶縁層(絶縁皮膜)形成において、溶剤とポリアミック酸との相互作用性が強く働き、溶剤の揮発(蒸発)が起こりにくく、絶縁層内に溶剤が残留しやすくなるものと考えられる。
As a result of extensive investigations, the inventors of the present invention have found that when the imidization rate of the polyamic acid is lower than the imidization rate specified in the present invention, the volatilization (evaporation) of the solvent is difficult to occur when forming an insulating layer (insulating film) by coating and baking a resin varnish. The reason for this is unclear, but is thought to be as follows.
The solvent contained in the resin varnish is coordinated and stabilized by forming hydrogen bonds or the like with the -NH- and -OH groups of the polyamic acid. The stabilized solvent is less likely to volatilize (evaporate) than a free solvent that does not form such bonds. For example, when the solvent is dimethylacetamide or N-methylpyrrolidone, it coordinates with the -NH- and -OH groups of the polyamic acid via the carbonyl groups of these solvents. When the imidization rate of the polyamic acid is lower than the imidization rate specified in the present invention, the interaction between the solvent and the polyamic acid is strong in the formation of an insulating layer (insulating film) by coating and baking the resin varnish, and it is considered that the solvent is less likely to volatilize (evaporate) and the solvent is more likely to remain in the insulating layer.

一方で、ポリイミド樹脂のイミド化率が本発明で規定するイミド化率よりも高い場合にも、溶剤の速乾性は損なわれる傾向にあることもわかってきた。これは、樹脂ワニス自体が高粘度化することが原因であると考えられる。すなわち、樹脂が溶剤の蓋のように作用して溶剤の一部を塗布層内に閉じ込めてしまうことが推察される。 On the other hand, it has also been found that when the imidization rate of the polyimide resin is higher than the imidization rate specified in the present invention, the quick-drying property of the solvent tends to be impaired. This is thought to be due to the high viscosity of the resin varnish itself. In other words, it is presumed that the resin acts like a lid on the solvent, trapping part of the solvent within the coating layer.

このように絶縁層内部に残留した溶剤の少なくとも一部は、樹脂ワニスの塗布・焼付け作業を繰り返すうちに表層の絶縁層を下から押し上げるように発泡し、ブツ等を生じるため、絶縁皮膜の外観不良を引き起こす原因となる。 At least a portion of the solvent remaining inside the insulating layer in this way foams and pushes up the outer insulating layer from below as the resin varnish is repeatedly applied and baked, producing lumps and other defects that cause poor appearance of the insulating film.

本発明の樹脂ワニスはポリアミック酸のイミド化率を10~60%に制御することにより、ポリアミック酸に束縛されていない自由な溶剤(遊離状態の溶剤)の割合を増やして、塗布・焼付け時の溶剤の蒸発を促進させる一方で、樹脂ワニスの粘性も適度に抑えることができ、絶縁層内(絶縁皮膜内)における残留溶剤量を効果的に減少させることができ、結果として外観に優れた絶縁電線とすることができる。また、イミド化率を上記の範囲内とすることにより、本発明の樹脂ワニスの焼付け時において、イミド化反応による副生水の発生を抑えることができる。すなわち、当該副生水の突沸等に由来する発泡を抑制できることも、得られる絶縁電線を外観に優れたものとできる理由の1つと考えられる。 In the resin varnish of the present invention, the imidization rate of the polyamic acid is controlled to 10-60%, thereby increasing the proportion of free solvent (solvent in a free state) that is not bound to the polyamic acid, promoting the evaporation of the solvent during application and baking, while also appropriately suppressing the viscosity of the resin varnish, effectively reducing the amount of residual solvent in the insulating layer (insulating coating), resulting in an insulated wire with excellent appearance. In addition, by setting the imidization rate within the above range, the generation of by-product water due to the imidization reaction during baking of the resin varnish of the present invention can be suppressed. In other words, the ability to suppress foaming due to bumping of the by-product water is also thought to be one of the reasons why the resulting insulated wire has excellent appearance.

本発明の樹脂ワニスにおいて、樹脂ワニスの速乾性をより高める観点から、前記イミド化率は15%以上であることが好ましく、20%以上であることがより好ましく、25%以上であることがさらに好ましい。また、上記と同様の観点から、前記イミド化率は55%以下であることが好ましく、50%以下であることがより好ましく、45%以下であることがさらに好ましく、40%以下であることがさらに好ましく、35%以下であることがさらに好ましい。前記イミド化率を好ましい範囲として示すと、15~55%であり、20~50%がより好ましく、25~45%がさらに好ましく、25~40%とすることも好ましく、25~35%とすることも好ましい。 In the resin varnish of the present invention, from the viewpoint of further increasing the quick-drying property of the resin varnish, the imidization rate is preferably 15% or more, more preferably 20% or more, and even more preferably 25% or more. From the same viewpoint as above, the imidization rate is preferably 55% or less, more preferably 50% or less, even more preferably 45% or less, even more preferably 40% or less, and even more preferably 35% or less. The imidization rate is preferably in the range of 15 to 55%, more preferably 20 to 50%, even more preferably 25 to 45%, and is also preferably 25 to 40%, and is also preferably 25 to 35%.

-芳香族カルボン酸二無水物-
前記芳香族カルボン酸二無水物は、芳香族テトラカルボン酸二無水物であり、例えばピロメリット酸二無水物(PMDA)、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(BPDA)、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、4,4’-オキシジフタル酸二無水物(ODPA)、2,2-ビス(3,4-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(2,3-ジカルボキシフェニル)プロパン二無水物、1,1-ビス(3,4-ジカルボキシフェニル)エタン二無水物、1,1-ビス(2,3-ジカルボキシフェニル)エタン二無水物、ビス(3,4-ジカルボキシフェニル)メタン二無水物、ビス(2,3-ジカルボキシフェニル)メタン二無水物、ビス(3,4-ジカルボキシフェニル)スルホン二無水物、ビス(3,4-ジカルボキシフェニル)エーテル二無水物、1,2,5,6-ナフタレンテトラカルボン酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物が挙げられる。芳香族ポリアミック酸の調製において、上記芳香族カルボン酸二無水物は、1種のみを単独で使用してもよく、2種以上を併用してもよい。本発明の樹脂ワニスにおいて、前記芳香族カルボン酸二無水物はPMDA、BPDA、及び/又はODPAであることが好ましい。
- Aromatic carboxylic acid dianhydride -
The aromatic carboxylic dianhydride is an aromatic tetracarboxylic dianhydride, such as pyromellitic dianhydride (PMDA), 3,3',4,4'-biphenyltetracarboxylic dianhydride (BPDA), 3,3',4,4'-benzophenonetetracarboxylic dianhydride, 4,4'-oxydiphthalic dianhydride (ODPA), 2,2-bis(3,4-dicarboxyphenyl)propane dianhydride, 2,2-bis(2,3-dicarboxyphenyl)propane dianhydride, 1,1-bis(3, Examples of the aromatic carboxylic acid dianhydride include 1,1-bis(2,3-dicarboxyphenyl)ethane dianhydride, bis(3,4-dicarboxyphenyl)methane dianhydride, bis(2,3-dicarboxyphenyl)methane dianhydride, bis(3,4-dicarboxyphenyl)sulfone dianhydride, bis(3,4-dicarboxyphenyl)ether dianhydride, 1,2,5,6-naphthalenetetracarboxylic dianhydride, and 2,3,6,7-naphthalenetetracarboxylic dianhydride. In the preparation of the aromatic polyamic acid, the aromatic carboxylic acid dianhydride may be used alone or in combination of two or more kinds. In the resin varnish of the present invention, the aromatic carboxylic acid dianhydride is preferably PMDA, BPDA, and/or ODPA.

-芳香族ジアミン-
前記芳香族ジアミンは、芳香族ジアミン化合物であることが好ましく、例えば4,4’-オキシジアニリン(ODA)、m-フェニレンジアミン、3,3’-ジアミノ-4,4’ジヒドロキシジフェニルスルホン、4,4’ジアミノ-3,3’ジヒドロキシビフェニル、2,2-ビス〔4-(4-アミノフェノキシ)フェニル〕ヘキサフルオロプロパン、4,4’-ジアミノジフェニルエーテル(DDE)、3,4’-ジアミノジフェニルエーテル(m-DDE)、3,3’-ジアミノジフェニルエーテル、4,4’-ジアミノ-ジフェニルスルホン(p-DDS)、3,4’-ジアミノ-ジフェニルスルホン、3,3’-ジアミノ-ジフェニルスルホン、2,4’-ジアミノジフェニルエーテル、1,3-ビス(4-アミノフェノキシ)ベンゼン(m-TPE)、1,3-ビス(3-アミノフェノキシ)ベンゼン(APB)、2,2-ビス〔4-(4-アミノフェノキシ)フェニル〕プロパン(BAPP)、2,2-ビス〔4-(4-アミノフェノキシ)フェニル〕ヘキサフルオロプロパン(HF-BAPP)、ビス〔4-(4-アミノフェノキシ)フェニル〕スルホン(p-BAPS)、ビス〔4-(3-アミノフェノキシ)フェニル〕スルホン(m-BAPS)、4,4’ビス(4-アミノフェノキシ)ビフェニル(BAPB)、1,4-ビス(4-アミノフェノキシ)ベンゼン(p-TPE)、4,4’-ジアミノジフェニルスルフィド(ASD)、3,4’-ジアミノジフェニルスルフィド、3,3’-ジアミノジフェニルスルフィド、3,3’ジアミノ-4,4’ジヒドロキシジフェニルスルホン、2,4-ジアミノトルエン(DAT)、2,5-ジアミノトルエン,3,5-ジアミノ安息香酸(DABz),2,6-ジアミノピリジン(DAPy)、4,4’ジアミノ-3,3’ジメトキシビフェニル、4,4’ジアミノ-3,3’ジメチルビフェニル、9,9’-ビス(4-アミノフェニル)フルオレン(FDA)などが挙げられる。芳香族ポリアミック酸の調製において、上記ジアミンは、1種のみを単独で使用してもよく、2種以上を併用してもよい。本発明の樹脂ワニスにおいて、前記ジアミンはODA及び/又はBAPPであることが好ましい。
- Aromatic diamine -
The aromatic diamine is preferably an aromatic diamine compound, such as 4,4'-oxydianiline (ODA), m-phenylenediamine, 3,3'-diamino-4,4'dihydroxydiphenyl sulfone, 4,4'diamino-3,3'dihydroxybiphenyl, 2,2-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane, 4,4'-diaminodiphenyl ether (DDE), and 3,4'-diaminodiphenyl ether (m-DDE). , 3,3'-diaminodiphenyl ether, 4,4'-diamino-diphenyl sulfone (p-DDS), 3,4'-diamino-diphenyl sulfone, 3,3'-diamino-diphenyl sulfone, 2,4'-diaminodiphenyl ether, 1,3-bis(4-aminophenoxy)benzene (m-TPE), 1,3-bis(3-aminophenoxy)benzene (APB), 2,2-bis[4-(4-aminophenoxy)phenyl]propane (BAPP), 2,2-bis[ 4-(4-aminophenoxy)phenyl]hexafluoropropane (HF-BAPP), bis[4-(4-aminophenoxy)phenyl]sulfone (p-BAPS), bis[4-(3-aminophenoxy)phenyl]sulfone (m-BAPS), 4,4'-bis(4-aminophenoxy)biphenyl (BAPB), 1,4-bis(4-aminophenoxy)benzene (p-TPE), 4,4'-diaminodiphenyl sulfide (ASD), 3,4'-diaminodiphenyl Examples of the diamines include aryl sulfide, 3,3'-diaminodiphenyl sulfide, 3,3'diamino-4,4'dihydroxydiphenyl sulfone, 2,4-diaminotoluene (DAT), 2,5-diaminotoluene, 3,5-diaminobenzoic acid (DABz), 2,6-diaminopyridine (DAPy), 4,4'diamino-3,3'dimethoxybiphenyl, 4,4'diamino-3,3'dimethylbiphenyl, and 9,9'-bis(4-aminophenyl)fluorene (FDA). In the preparation of the aromatic polyamic acid, the diamines may be used alone or in combination of two or more. In the resin varnish of the present invention, the diamine is preferably ODA and/or BAPP.

<溶剤>
本発明の樹脂ワニスは、樹脂をワニス化させるために溶剤(有機溶剤、有機溶媒)を含有する。溶剤として、例えば、N,N-ジメチルアセトアミド(DMAc、沸点:165℃)、N-メチル-2-ピロリドン(NMP、沸点:202℃)、N,N-ジメチルホルムアミド(DMF、沸点:153℃)等のアミド系溶媒、N,N-ジメチルエチレンウレア、N,N-ジメチルプロピレンウレア、テトラメチル尿素等の尿素系溶媒、γ-ブチロラクトン、γ-カプロラクトン等のラクトン系溶媒、プロピレンカーボネート等のカーボネート系溶媒、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶媒、酢酸エチル、酢酸n-ブチル、ブチルセロソルブアセテート、ブチルカルビトールアセテート、エチルセロソルブアセテート、エチルカルビトールアセテート等のエステル系溶媒、ジグライム、トリグライム、テトラグライム等のグライム系溶媒、トルエン、キシレン、シクロヘキサン等の炭化水素系溶媒、クレゾール、フェノール、ハロゲン化フェノールなどのフェノール系溶媒、スルホラン等のスルホン系溶媒、ジメチルスルホキシド(DMSO)などが挙げられる。
<Solvent>
The resin varnish of the present invention contains a solvent (organic solvent, organic solvent) to turn the resin into a varnish. Examples of the solvent include amide-based solvents such as N,N-dimethylacetamide (DMAc, boiling point: 165° C.), N-methyl-2-pyrrolidone (NMP, boiling point: 202° C.), and N,N-dimethylformamide (DMF, boiling point: 153° C.), urea-based solvents such as N,N-dimethylethyleneurea, N,N-dimethylpropyleneurea, and tetramethylurea, lactone-based solvents such as γ-butyrolactone and γ-caprolactone, carbonate-based solvents such as propylene carbonate, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexane. Examples of the solvent include ketone-based solvents such as diethyl ether, isopropyl ether, and the like; ester-based solvents such as ethyl acetate, n-butyl acetate, butyl cellosolve acetate, butyl carbitol acetate, ethyl cellosolve acetate, ethyl carbitol acetate, etc.; glyme-based solvents such as diglyme, triglyme, tetraglyme, etc.; hydrocarbon-based solvents such as toluene, xylene, cyclohexane, etc.; phenol-based solvents such as cresol, phenol, halogenated phenol, etc.; sulfone-based solvents such as sulfolane, etc.; and dimethyl sulfoxide (DMSO).

これらのうち、加熱による架橋反応を阻害しやすい水素原子をもたない等の観点から、DMAc、NMP、DMF、N,N-ジメチルエチレンウレア、N,N-ジメチルプロピレンウレア、テトラメチル尿素、及びDMSOから選ばれるものがより好ましく、DMAc及び/又はNMPがさらに好ましい。
上記溶剤等は、1種のみを単独で使用してもよく、2種以上を併用してもよい。
Among these, from the viewpoint of not having hydrogen atoms that tend to inhibit the crosslinking reaction by heating, etc., those selected from DMAc, NMP, DMF, N,N-dimethylethyleneurea, N,N-dimethylpropyleneurea, tetramethylurea, and DMSO are more preferable, and DMAc and/or NMP are further preferable.
The above solvents and the like may be used alone or in combination of two or more kinds.

本発明の樹脂ワニスに含まれる樹脂中、ポリアミック酸の含有量は50質量%以上が好ましく、70質量%以上がより好ましく、80質量%以上がさらに好ましく、90質量%以上がさらに好ましく、樹脂のすべてがポリアミック酸であることも好ましい。また、ポリアミック酸以外の樹脂を含む場合、当該樹脂の種類は、本発明の効果を損なわい範囲で適宜に選択される。例えば、本発明の樹脂ワニスはポリアミック酸に加え、ポリイミド樹脂等を含有していてもよい。なお、樹脂ワニスがポリアミック酸以外の樹脂を含有する場合であっても、上記のイミド化率は上記の通り、樹脂ワニス全体の組成に基づき(樹脂ワニス全体を試料として)決定されるものである。 The content of polyamic acid in the resin contained in the resin varnish of the present invention is preferably 50% by mass or more, more preferably 70% by mass or more, even more preferably 80% by mass or more, and even more preferably 90% by mass or more, and it is also preferable that all of the resin is polyamic acid. In addition, when a resin other than polyamic acid is contained, the type of the resin is appropriately selected within a range that does not impair the effects of the present invention. For example, the resin varnish of the present invention may contain a polyimide resin in addition to polyamic acid. Note that even when the resin varnish contains a resin other than polyamic acid, the above imidization rate is determined based on the composition of the entire resin varnish (the entire resin varnish is used as a sample) as described above.

本発明の樹脂ワニスは、特性に影響を及ぼさない範囲で、密着助剤、酸化防止剤、帯電防止剤、紫外線防止剤、光安定剤、蛍光増白剤、顔料、染料、相溶化剤、滑剤、強化剤、難燃剤、架橋剤、架橋助剤、可塑剤、増粘剤、減粘剤およびエラストマーなどの各種添加剤を含有してもよい。
また、本発明の樹脂ワニスは、特性に影響を及ぼさない範囲で、無機微粒子を含有してもよい。このような無機微粒子としては、例えば酸化亜鉛、酸化チタン、シリカ、アルミナ、酸化錫、炭化ケイ素、チタン酸ストロンチウムなどが挙げられる。
The resin varnish of the present invention may contain various additives such as adhesion aids, antioxidants, antistatic agents, ultraviolet protection agents, light stabilizers, fluorescent brighteners, pigments, dyes, compatibilizers, lubricants, reinforcing agents, flame retardants, crosslinking agents, crosslinking aids, plasticizers, thickeners, viscosity reducers, and elastomers, provided that the additives do not affect the properties.
The resin varnish of the present invention may contain inorganic fine particles, provided that the inorganic fine particles do not affect the properties of the varnish. Examples of such inorganic fine particles include zinc oxide, titanium oxide, silica, alumina, tin oxide, silicon carbide, and strontium titanate.

<不揮発分率>
本発明ないし本明細書において、「樹脂ワニスの不揮発分」とは、樹脂ワニス中の水や溶剤等の揮発成分を除いた蒸発残分(固形分)を意味し、「不揮発分率」とは樹脂ワニスの固形分量(質量%)を意味する。本発明の樹脂ワニスは、不揮発分率が10質量%以上であることが好ましく、15質量%以上とすることもでき、20質量%以上とすることもできる。また、上限値は特に限定されないが、例えば50質量%以下とすることもでき、40質量%以下とすることもでき、35質量%以下とすることもできる。本発明の樹脂ワニスの不揮発分率を好ましい範囲として示すと、10~50質量%であり、15~40質量%がより好ましく、20~35質量%がさらに好ましい。
前記不揮発分率は、本発明の樹脂ワニスを加熱して揮発成分を十分に蒸発させ、加熱後に残った残渣の重量を測定し、加熱前の試料の重量に対する百分率を求めることにより算出することができる。加熱条件は、樹脂ワニスに含まれる溶剤等の沸点を考慮して適宜設定することができる。例えば、JIS K 5601-1-2:2008に準じた方法とし、加熱温度を200℃、加熱時間を2時間とすることも好ましい。
<Non-volatile content>
In the present invention and this specification, the "non-volatile content of the resin varnish" means the evaporation residue (solid content) excluding volatile components such as water and solvent in the resin varnish, and the "non-volatile content rate" means the solid content (mass%) of the resin varnish. The resin varnish of the present invention preferably has a non-volatile content rate of 10 mass% or more, and can be 15 mass% or more, or can be 20 mass% or more. In addition, the upper limit is not particularly limited, but can be, for example, 50 mass% or less, 40 mass% or less, or 35 mass% or less. The non-volatile content rate of the resin varnish of the present invention is preferably in the range of 10 to 50 mass%, more preferably 15 to 40 mass%, and even more preferably 20 to 35 mass%.
The non-volatile content can be calculated by heating the resin varnish of the present invention to thoroughly evaporate the volatile components, measuring the weight of the residue remaining after heating, and calculating the percentage of the weight of the sample before heating. The heating conditions can be appropriately set taking into consideration the boiling points of the solvents and the like contained in the resin varnish. For example, it is also preferable to use a method in accordance with JIS K 5601-1-2:2008, with a heating temperature of 200°C and a heating time of 2 hours.

<重量減少率>
本発明の樹脂ワニスは、ポリアミック酸のイミド化率が特定の範囲に制御されているため、樹脂ワニスに含まれる溶剤が、より揮発(蒸発)しやすい状態にある。そのため、本発明の樹脂ワニスは、一定の昇温速度で加熱したときに、溶剤の沸点温度における重量減少率が高いものである。本発明の樹脂ワニスにおける重量減少率の測定は、樹脂ワニスに溶剤を添加したり、イミド化が実質的に進行しない条件下で乾燥して濃縮したりして、不揮発分率を25質量%に調整した上で、下記の方法により行うことができる。

-測定条件-
・試料中の不揮発分率:25質量%
・試料重量:10mg
・装置:示差熱・熱重量同時測定装置(商品名:DTG-60AH、島津社製)
・昇温速度:20℃/分
・昇温範囲:35~400℃
・窒素雰囲気下
・ガス流量:100ml/分

上記測定において、試料は測定直前に調製することが好ましい。当該条件において、樹脂ワニスの含有する溶剤の沸点温度に達した時点における試料重量を測定し、測定前の試料重量から減少した重量の割合を算出して、当該溶剤の沸点温度における重量減少率(質量%)を決定することができる。例えば測定前の試料重量が10mg、溶剤の沸点温度に達したときの試料重量が2mgである場合、重量減少率(質量%)は、[1-(2/10)]×100=80(質量%)と計算することができる。溶剤の沸点温度は、その溶剤について公知となっている沸点温度を用いることができる。また、樹脂ワニスに複数の溶剤が含まれている場合には、これら溶剤の各沸点温度の加重平均値を、当該樹脂ワニスの溶剤の沸点温度とすることができる。例えば、沸点温度が100℃の溶剤Aの割合が20質量%、沸点温度が200℃の溶剤Bの割合が80質量%である混合溶剤の沸点温度は、[(100×20/100)+(200×80/100)]=180℃と計算することができる。
本発明の樹脂ワニスは、上記条件で測定される、溶剤の沸点温度に達した時点の重量減少率が40質量%以上であることが好ましく、45質量%以上であることがより好ましく、50質量%以上であることがさらに好ましい。
<Weight reduction rate>
In the resin varnish of the present invention, the imidization rate of the polyamic acid is controlled within a specific range, so that the solvent contained in the resin varnish is more likely to volatilize (evaporate). Therefore, when the resin varnish of the present invention is heated at a constant temperature increase rate, the weight loss rate at the boiling point temperature of the solvent is high. The weight loss rate of the resin varnish of the present invention can be measured by the following method after adjusting the non-volatile content rate to 25 mass% by adding a solvent to the resin varnish or by drying and concentrating under conditions in which imidization does not substantially proceed.

- Measurement conditions -
Non-volatile content in sample: 25% by mass
Sample weight: 10 mg
Apparatus: Differential thermal and thermogravimetric simultaneous measurement apparatus (product name: DTG-60AH, manufactured by Shimadzu Corporation)
・Heating rate: 20°C/min ・Heating range: 35-400°C
Under nitrogen atmosphere Gas flow rate: 100 ml/min

In the above measurement, it is preferable to prepare the sample immediately before the measurement. Under the above conditions, the weight of the sample is measured when the boiling point of the solvent contained in the resin varnish is reached, and the weight reduction rate (mass%) at the boiling point of the solvent can be determined by calculating the ratio of the weight reduction from the weight of the sample before the measurement. For example, if the weight of the sample before the measurement is 10 mg and the weight of the sample when the boiling point of the solvent is reached is 2 mg, the weight reduction rate (mass%) can be calculated as [1-(2/10)]×100=80 (mass%). The boiling point of the solvent can be a publicly known boiling point of the solvent. In addition, when the resin varnish contains multiple solvents, the weighted average of the boiling points of these solvents can be used as the boiling point of the solvent in the resin varnish. For example, the boiling point of a mixed solvent containing 20% by mass of solvent A, which has a boiling point of 100° C., and 80% by mass of solvent B, which has a boiling point of 200° C., can be calculated as follows: [(100×20/100)+(200×80/100)]=180° C.
The resin varnish of the present invention preferably has a weight loss rate, measured under the above conditions, of 40% by mass or more when the temperature reaches the boiling point of the solvent, more preferably 45% by mass or more, and even more preferably 50% by mass or more.

<流動性>
導体に樹脂ワニスを塗布する際、導体の温度(線温)は製造条件等により異なるが、概ね30~70℃程度であることが一般的である。そのため、本発明の樹脂ワニスは、樹脂ワニスの塗布・焼付け時に溶剤を十分に揮発(蒸発)させる観点から、当該樹脂ワニスの30~70℃の少なくともいずれか1点の温度(例えば30℃)における粘度が15000mPa・s以下であることが好ましく、10000mPa・s以下であることがより好ましく、3000mPa・s以下であることがさらに好ましい。また、樹脂ワニスを導体ないし絶縁層上に塗布する観点から、前記粘度は通常500mPa・s以上であり、1000mPa・s以上とすることもでき、1500mPa・s以上とすることもできる。
また、本発明の樹脂ワニスは、導体に樹脂ワニスを塗布する際の線温における粘度が、上記粘度の範囲内であることがより好ましい。
<Liquidity>
When applying the resin varnish to the conductor, the temperature (wire temperature) of the conductor varies depending on the manufacturing conditions, but is generally about 30 to 70°C. Therefore, in the resin varnish of the present invention, from the viewpoint of sufficiently volatilizing (evaporating) the solvent during application and baking of the resin varnish, the viscosity of the resin varnish at at least one temperature between 30 and 70°C (for example, 30°C) is preferably 15000 mPa·s or less, more preferably 10000 mPa·s or less, and even more preferably 3000 mPa·s or less. In addition, from the viewpoint of applying the resin varnish to the conductor or the insulating layer, the viscosity is usually 500 mPa·s or more, and can be 1000 mPa·s or more, or can be 1500 mPa·s or more.
Moreover, the resin varnish of the present invention more preferably has a viscosity within the above-mentioned viscosity range at the line temperature when the resin varnish is applied to the conductor.

[絶縁電線]
本発明の絶縁電線は、導体と、該導体の外周を覆う絶縁皮膜とを有する。この絶縁皮膜は、本発明の樹脂ワニスの塗布・焼付けを繰り返して形成される、いわゆるエナメル層(多層エナメル層)を含む。すなわち、本発明の絶縁電線において、前記絶縁皮膜はポリイミドを有する絶縁層を含む絶縁皮膜である。
本発明の絶縁電線の断面形状は、導体と相似形であることが好ましく、なかでも、絶縁皮膜全体の形状、すなわち、絶縁皮膜の、導体とは反対側の最外面における断面形状が、導体と相似形であることが特に好ましい。なお、相似形とは完全な相似形に限定されるものではなく、略相似形であればよい。
[Insulated wire]
The insulated wire of the present invention has a conductor and an insulating coating covering the outer periphery of the conductor. The insulating coating includes a so-called enamel layer (multi-layer enamel layer) formed by repeatedly applying and baking the resin varnish of the present invention. That is, in the insulated wire of the present invention, the insulating coating includes an insulating layer having a polyimide.
It is preferable that the cross-sectional shape of the insulated wire of the present invention is similar to that of the conductor, and it is particularly preferable that the overall shape of the insulating coating, i.e., the cross-sectional shape of the outermost surface of the insulating coating opposite the conductor, is similar to that of the conductor. Note that the similar shape is not limited to a completely similar shape, and may be an approximately similar shape.

<導体>
本発明に用いる導体としては、従来から絶縁電線の導体として用いられているものを使用することができる。例えば、銅線、アルミニウム線等の金属導体が挙げられる。
<Conductor>
The conductor used in the present invention may be any of those conventionally used as conductors for insulated wires, such as metal conductors such as copper wires and aluminum wires.

本発明で使用する導体の長手方向と直交する断面形状は特に限定されるものではない。例えば、円形または矩形(平角形状)の断面形状の導体が挙げられる。本発明では、断面形状が矩形の導体、すなわち平角導体が好ましい。断面形状が矩形の導体は、円形のものと比較し、巻線時にステータコアのスロットに対する占積率が高くなる。このため、一定の狭い空間に多くの絶縁電線を組み込むような用途に好ましい。
断面形状が矩形の導体は、コーナー部(角部)からの部分放電を抑制する点において、4隅に面取り(曲率半径r)を設けた形状であることが好ましい。曲率半径rは、0.6mm以下が好ましく、0.2~0.4mmがより好ましい。
導体の大きさは、特に限定されないが、平角導体の場合、矩形の断面形状において、幅(長辺)は1.0~10.0mmが好ましく、1.0~5.0mmがより好ましく、1.4~4.0mmがさらに好ましく、厚み(短辺)は0.4~3.0mmが好ましく、0.5~2.5mmがより好ましい。幅(長辺)と厚み(短辺)の長さの比(厚み:幅)は、1:1~1:20が好ましく、1:1~1:4がより好ましい。一方、断面形状が円形の導体の場合、直径は0.3~3.0mmが好ましく、0.4~2.7mmが好ましい。
The cross-sectional shape perpendicular to the longitudinal direction of the conductor used in the present invention is not particularly limited. For example, conductors having a circular or rectangular (rectangular) cross-sectional shape can be used. In the present invention, a conductor having a rectangular cross-sectional shape, i.e., a rectangular conductor, is preferred. A conductor having a rectangular cross-sectional shape has a higher space factor in the slots of the stator core when wound, compared to a circular conductor. For this reason, it is preferred for applications in which many insulated wires are incorporated in a certain narrow space.
A conductor having a rectangular cross section is preferably shaped such that the four corners are chamfered (with a radius of curvature r) in order to suppress partial discharge from the corners. The radius of curvature r is preferably 0.6 mm or less, and more preferably 0.2 to 0.4 mm.
The size of the conductor is not particularly limited, but in the case of a rectangular conductor, the width (long side) of the rectangular cross-sectional shape is preferably 1.0 to 10.0 mm, more preferably 1.0 to 5.0 mm, and even more preferably 1.4 to 4.0 mm, and the thickness (short side) is preferably 0.4 to 3.0 mm, and more preferably 0.5 to 2.5 mm. The ratio of the length of the width (long side) to the thickness (short side) (thickness:width) is preferably 1:1 to 1:20, and more preferably 1:1 to 1:4. On the other hand, in the case of a conductor having a circular cross-sectional shape, the diameter is preferably 0.3 to 3.0 mm, and preferably 0.4 to 2.7 mm.

<絶縁皮膜>
本発明の絶縁電線おいて、前記絶縁皮膜は絶縁層が複数積層された積層絶縁層(多層絶縁層)を含む。
本発明の樹脂ワニスは速乾性に優れるため、各絶縁層が厚肉となるように樹脂ワニスの塗布・焼付けを行っても、焼付け時に樹脂ワニス中の溶剤が素早く揮発、蒸発するため、絶縁層(絶縁皮膜)の残留溶剤量を低く制御することができる。また各絶縁層を厚肉とすることにより、樹脂ワニスの塗布・焼付けの繰り返し数を少なくすることができ、絶縁電線の製造に係るコストを低減することができる。上記の観点から、本発明の絶縁電線の絶縁皮膜を構成する各絶縁層の1層あたりの平均厚さは、1μm以上とすることができ、2μm以上であることが好ましく、3μm以上であることがより好ましく、4μm以上であることがさらに好ましく、5μm以上であることがさらに好ましい。また当該平均厚さは、15μm以下とすることもでき、10μm以下であってもよく、6μm以下であってもよい。上記各絶縁層の1層あたりの平均厚さを好ましい範囲として示すと、1~15μmであり、2~15μmがより好ましく、3~10μmがさらに好ましく、4~10μmがさらに好ましく、4~6μmがさらに好ましく、5~6μmがさらに好ましい。
ここで、本明細書では、平均厚さの測定は16点測定による。16点測定は、本分野では常用されている測定方法であって、具体的な測定方法は、国際公開第2013/073397号パンフレットに記載されている。
<Insulating film>
In the insulated wire of the present invention, the insulating coating includes a laminated insulating layer (multilayer insulating layer) in which a plurality of insulating layers are laminated.
Since the resin varnish of the present invention has excellent quick-drying properties, even if the resin varnish is applied and baked so that each insulating layer is thick, the solvent in the resin varnish quickly volatilizes and evaporates during baking, so that the amount of residual solvent in the insulating layer (insulating film) can be controlled to be low. Furthermore, by making each insulating layer thick, the number of times that the resin varnish is repeatedly applied and baked can be reduced, and the cost of manufacturing the insulated electric wire can be reduced. From the above viewpoint, the average thickness per layer of each insulating layer constituting the insulating film of the insulated electric wire of the present invention can be 1 μm or more, preferably 2 μm or more, more preferably 3 μm or more, even more preferably 4 μm or more, and even more preferably 5 μm or more. Moreover, the average thickness can be 15 μm or less, may be 10 μm or less, or may be 6 μm or less. The average thickness of each of the insulating layers is preferably in the range of 1 to 15 μm, more preferably 2 to 15 μm, even more preferably 3 to 10 μm, still more preferably 4 to 10 μm, even more preferably 4 to 6 μm, and still more preferably 5 to 6 μm.
In this specification, the average thickness is measured by 16-point measurement. The 16-point measurement is a commonly used measurement method in this field, and a specific measurement method is described in the pamphlet of International Publication No. WO 2013/073397.

前記絶縁皮膜の厚さは、30μm以上200μm以下であることが好ましく、40μm以上180μm以下であることがより好ましく、50μm以上160μm以下であることがさらに好ましい。
また、前記絶縁皮膜を形成するための塗布・焼付けの繰り返し数は特に限定されず、各絶縁層の厚さを上記の好ましい範囲としたときに、上記絶縁皮膜の厚さとなるように適宜設定することができる。なお、本発明において「塗布・焼付けの繰り返し数」とは、「絶縁皮膜を構成する絶縁層の層数」と同義である。例えば、塗布・焼付けの繰り返し数を10回以上35回以下とすることもでき、12回以上30回以下とすることもでき、15回以上25回以下とすることもできる。また、前記絶縁皮膜を構成する絶縁層の層数を、10層以上35層以下とすることもでき、12層以上層30以下とすることもでき、15層以上25層以下とすることもできる。
各絶縁層の平均厚さは、例えば導体側の絶縁層をより薄肉とし、導体と反対側の絶縁層をより厚肉とすることもできる。絶縁皮膜を構成する各絶縁層の厚さの平均は、上記「各絶縁層の1層あたりの平均厚さ」と同じ値とすることもできる。なお、前記各絶縁層の厚さの平均は、例えば絶縁皮膜の厚さを、絶縁皮膜を構成する絶縁層の層数で除することにより算出することができる。
The thickness of the insulating coating is preferably 30 μm or more and 200 μm or less, more preferably 40 μm or more and 180 μm or less, and even more preferably 50 μm or more and 160 μm or less.
The number of times of coating and baking to form the insulating film is not particularly limited, and can be appropriately set so as to obtain the thickness of the insulating film when the thickness of each insulating layer is within the above-mentioned preferred range. In the present invention, the "number of times of coating and baking" is synonymous with the "number of insulating layers constituting the insulating film". For example, the number of times of coating and baking can be 10 to 35, 12 to 30, or 15 to 25. The number of insulating layers constituting the insulating film can be 10 to 35, 12 to 30, or 15 to 25.
The average thickness of each insulating layer can be, for example, thinner on the conductor side and thicker on the opposite side to the conductor. The average thickness of each insulating layer constituting the insulating coating can be the same as the above-mentioned "average thickness per insulating layer." The average thickness of each insulating layer can be calculated, for example, by dividing the thickness of the insulating coating by the number of insulating layers constituting the insulating coating.

-残留溶剤量-
前記絶縁皮膜は、速乾性に優れる本発明の樹脂ワニスの塗布・焼付けを繰り返すことにより形成されるため、絶縁皮膜(絶縁層)中の残留溶剤量を低く抑えることができる。
本発明の絶縁電線の絶縁皮膜における残留溶剤量は、絶縁皮膜の外観不良の発生を抑制する観点から、10000ppm以下であることが好ましく、8000ppm以下であることがより好ましく、4000ppm以下であることがさらに好ましく、3600ppm以下であることがさらに好ましく、3200ppm以下であることがさらに好ましい。また、導体と絶縁層の密着性や、絶縁層間の密着性を向上させる観点から、500ppm以上であることが好ましく、1000ppm以上であることがより好ましく、2000ppm以上であることがさらに好ましく、2500ppm以上であることがさらに好ましい。
絶縁皮膜中の残留溶剤量は常法によって測定することができ、例えば実施例に記載の方法により測定することができる。
-Residual solvent amount-
The insulating film is formed by repeatedly applying and baking the resin varnish of the present invention, which has excellent quick-drying properties, and therefore the amount of residual solvent in the insulating film (insulating layer) can be kept low.
The amount of residual solvent in the insulating coating of the insulated wire of the present invention is preferably 10,000 ppm or less, more preferably 8,000 ppm or less, even more preferably 4,000 ppm or less, even more preferably 3,600 ppm or less, and even more preferably 3,200 ppm or less, from the viewpoint of suppressing the occurrence of defective appearance of the insulating coating. Also, from the viewpoint of improving the adhesion between the conductor and the insulating layer and between the insulating layers, the amount is preferably 500 ppm or more, more preferably 1,000 ppm or more, even more preferably 2,000 ppm or more, and even more preferably 2,500 ppm or more.
The amount of the residual solvent in the insulating coating can be measured by a conventional method, for example, by the method described in the Examples.

[絶縁電線の製造方法]
本発明の絶縁電線は、導体の外周に、本発明の樹脂ワニスを塗布して焼付ける操作を複数回繰り返す塗布・焼付け工程により積層絶縁層を形成して得ることができる。なお、塗布・焼付けに用いる樹脂ワニスは、本発明の規定を満たすものであれば、全ての絶縁層に同一の樹脂ワニスを用いてもよく、絶縁層ごとに異なる種類の樹脂ワニスを用いることもできる。
[Method of manufacturing insulated wire]
The insulated wire of the present invention can be obtained by forming a laminated insulating layer by a coating/baking process in which the resin varnish of the present invention is applied to the outer periphery of a conductor and baked multiple times. As long as the resin varnish used for coating/baking satisfies the requirements of the present invention, the same resin varnish may be used for all insulating layers, or different types of resin varnishes may be used for each insulating layer.

本発明の絶縁電線の製造方法において、絶縁電線の製造時に、本発明の樹脂ワニスのイミド化率及び/又は重量減少率が、それぞれ上記好ましい範囲となるように適宜調整されることが好ましい。イミド化率及び/又は重量減少率の測定は、当該調整の都度行うことができる。 In the method for producing an insulated electric wire of the present invention, it is preferable that the imidization rate and/or the weight loss rate of the resin varnish of the present invention are appropriately adjusted during the production of the insulated electric wire so that they are each within the above-mentioned preferred range. The imidization rate and/or the weight loss rate can be measured each time such adjustment is made.

本発明の樹脂ワニスを導体上に塗布する方法は、常法でよく、例えば、導体形状の相似形としたワニス塗布用ダイスを用いる方法や、導体断面形状が矩形である場合、井桁状に形成された「ユニバーサルダイス」と呼ばれるダイスを用いることができる。 The resin varnish of the present invention can be applied to a conductor by a conventional method, such as using a varnish application die that is similar in shape to the conductor, or, if the cross-sectional shape of the conductor is rectangular, a die called a "universal die" that is shaped like a grid can be used.

本発明の樹脂ワニスを塗布した導体は、常法にて、焼付炉で焼付けされる。具体的な焼付け条件はその使用される炉の形状などに左右されるが、およそ8mの自然対流式の竪型炉であれば、炉内温度400~650℃にて通過時間を10~90秒に設定することにより、達成することができる。本発明の樹脂ワニスの塗布量は、目的とする各絶縁層の厚さとなるように適宜設定することができる。 The conductor coated with the resin varnish of the present invention is baked in a baking oven in the usual manner. The specific baking conditions depend on the shape of the oven used, but in the case of a natural convection vertical oven of approximately 8 m, this can be achieved by setting the oven temperature at 400-650°C and the passage time at 10-90 seconds. The amount of resin varnish applied of the present invention can be appropriately set so as to obtain the desired thickness of each insulating layer.

[コイル、回転電機および電気・電子機器]
本発明の絶縁電線は、コイルとして、回転電機、各種電気・電子機器など、電気特性(耐電圧性)と耐熱性を必要とする分野に利用可能である。例えば、本発明の絶縁電線はモーターやトランス等に用いられ、高性能の回転電機、電気・電子機器を構成できる。特にハイブリッド自動車(HV)や電気自動車(EV)の駆動モーター用の巻線として好適に用いられる。
[Coils, rotating electrical machines, and electrical/electronic devices]
The insulated wire of the present invention can be used as a coil in fields requiring electrical properties (voltage resistance) and heat resistance, such as rotating electrical machines and various electrical and electronic devices. For example, the insulated wire of the present invention can be used in motors, transformers, etc. to configure high-performance rotating electrical machines and electrical and electronic devices. In particular, the insulated wire can be suitably used as a winding for the drive motor of a hybrid vehicle (HV) or an electric vehicle (EV).

本発明のコイルは、本発明の絶縁電線をコイル加工して形成したもの、本発明の絶縁電線を曲げ加工した後に所定の部分を電気的に接続してなるもの等が挙げられる。
本発明の絶縁電線をコイル加工して形成したコイルとしては、特に限定されず、長尺の絶縁電線を螺旋状に巻き回したものが挙げられる。このようなコイルにおいて、絶縁電線の巻線数等は特に限定されない。通常、絶縁電線を巻き回す際には鉄芯等が用いられる。
The coil of the present invention may be formed by coiling the insulated electric wire of the present invention, or may be formed by bending the insulated electric wire of the present invention and then electrically connecting predetermined portions thereof.
The coil formed by coil processing the insulated electric wire of the present invention is not particularly limited, and may be a coil formed by winding a long insulated electric wire in a spiral shape. In such a coil, the number of turns of the insulated electric wire is not particularly limited. Usually, an iron core or the like is used to wind the insulated electric wire.

本発明の絶縁電線を曲げ加工した後に所定の部分を電気的に接続してなるものとして、回転電機等のステータに用いられるコイルが挙げられる。このようなコイルは、例えば、図1に示されるように、本発明の絶縁電線を所定の長さに切断してU字形状等に曲げ加工して複数の電線セグメント34を作製し、各電線セグメント34のU字形状等の2つの開放端部(末端)34aを互い違いに接続して、作製されたコイル33(図1、図2参照)が挙げられる。 An example of a coil made by bending the insulated electric wire of the present invention and then electrically connecting predetermined portions is a coil used in a stator of a rotating electric machine or the like. As shown in FIG. 1, for example, such a coil is made by cutting the insulated electric wire of the present invention to a predetermined length, bending it into a U-shape or the like to make a plurality of electric wire segments 34, and alternately connecting the two open ends (terminals) 34a of the U-shape or the like of each electric wire segment 34 to make a coil 33 (see FIG. 1 and FIG. 2).

このコイルを用いてなる電気・電子機器としては、特に限定されない。このような電気・電子機器の好ましい一態様として、トランスが挙げられる。また、例えば、図1、図2に示されるステータ30を備えた回転電機(特にHV及びEVの駆動モーター)が挙げられる。この回転電機は、ステータ30を備えていること以外は、従来の回転電機と同様の構成とすることができる。
ステータ30は、電線セグメント34が本発明の絶縁電線で形成されていること以外は従来のステータと同様の構成とすることができる。すなわち、ステータ30は、ステータコア31と、例えば図1に示されるように本発明の絶縁電線からなる電線セグメント34がステータコア31のスロット32に組み込まれ、開放端部34aが電気的に接続されてなるコイル33とを有している。このコイル33は、隣接する融着層同士、あるいは融着層とスロット32とが固着されて固定化された状態となっている。ここで、電線セグメント34は、スロット32に1本で組み込まれてもよいが、好ましくは図2に示されるように2本1組として組み込まれる。このステータ30は、上記のように曲げ加工した電線セグメント34を、その2つの末端である開放端部34aを互い違いに接続してなるコイル33が、ステータコア31のスロット32に収納されている。このとき、電線セグメント34の開放端部34aを接続してからスロット32に収納してもよく、また、絶縁セグメント34をスロット32に収納した後に、電線セグメント34の開放端部34aを折り曲げ加工して接続してもよい。
There is no particular limitation on the electric/electronic device using this coil. A preferred embodiment of such an electric/electronic device is a transformer. Another example is a rotating electric machine (particularly a drive motor for HVs and EVs) equipped with a stator 30 shown in Figs. 1 and 2. This rotating electric machine can have the same configuration as a conventional rotating electric machine, except that it is equipped with the stator 30.
The stator 30 may have the same configuration as a conventional stator, except that the electric wire segment 34 is formed of the insulated electric wire of the present invention. That is, the stator 30 has a stator core 31 and a coil 33 formed by inserting an electric wire segment 34 made of the insulated electric wire of the present invention into a slot 32 of the stator core 31 and electrically connecting the open end 34a, as shown in FIG. 1 for example. The coil 33 is fixed by fixing adjacent fusion layers to each other or to the fusion layer and the slot 32. Here, the electric wire segment 34 may be inserted into the slot 32 by itself, but is preferably inserted into a pair as shown in FIG. 2. In the stator 30, the coil 33 formed by connecting the open end 34a, which is the two ends of the electric wire segment 34 bent as described above, alternately is housed in the slot 32 of the stator core 31. At this time, the open end 34a of the wire segment 34 may be connected before being stored in the slot 32, or the insulating segment 34 may be stored in the slot 32 and then the open end 34a of the wire segment 34 may be bent and connected.

以下に、本発明を実施例に基づいて、さらに詳細に説明するが、本発明はこれらの形態に限定されるものではない。下記実施例において、「ppm」は質量基準である。 The present invention will be described in more detail below based on examples, but the present invention is not limited to these embodiments. In the following examples, "ppm" is based on mass.

[絶縁被覆用芳香族ポリイミド樹脂ワニスの調製]
絶縁被覆用芳香族ポリイミド樹脂ワニス(以下単に「樹脂ワニス」とも称す。)の調製に用いるポリイミド(PI)ワニスとして、下記PIワニスA、及びPIワニスBを調製して用いた。PIワニスA及びBに含まれる樹脂は、芳香族ポリイミド樹脂の前駆体である芳香族ポリアミック酸である。なお、PIワニスA及びPIワニスBのイミド化率は、いずれも3%未満であった。

・PIワニスA(溶剤:DMAc、芳香族カルボン酸二無水物成分:PMDA、芳香族ジアミン成分:ODA)
・PIワニスB(溶剤:NMP、芳香族カルボン酸二無水物成分:PMDA、芳香族ジアミン成分:ODA)

これらのPIワニスについて、下記加熱処理又は化学的処理により部分的に脱水・環化反応(イミド化反応)を促進させることでイミド化率を調整し、調製例1~5及び比較調製例1~3の樹脂ワニスを調製した。なお、調製例1~4並びに比較調製例1及び2の樹脂ワニスはPIワニスA由来の樹脂ワニスであり、調製例5及び比較調製例3の樹脂ワニスはPIワニスB由来の樹脂ワニスである。
[Preparation of aromatic polyimide resin varnish for insulating coating]
The following PI varnishes A and B were prepared as polyimide (PI) varnishes for use in preparing aromatic polyimide resin varnishes for insulating coating (hereinafter also simply referred to as "resin varnishes"). The resins contained in PI varnishes A and B are aromatic polyamic acids, which are precursors of aromatic polyimide resins. The imidization rates of PI varnishes A and B were both less than 3%.

PI Varnish A (solvent: DMAc, aromatic carboxylic dianhydride component: PMDA, aromatic diamine component: ODA)
PI Varnish B (solvent: NMP, aromatic carboxylic dianhydride component: PMDA, aromatic diamine component: ODA)

The imidization rate of these PI varnishes was adjusted by partially promoting the dehydration/cyclization reaction (imidization reaction) by the heat treatment or chemical treatment described below, to prepare the resin varnishes of Preparation Examples 1 to 5 and Comparative Preparation Examples 1 to 3. The resin varnishes of Preparation Examples 1 to 4 and Comparative Preparation Examples 1 and 2 are resin varnishes derived from PI varnish A, and the resin varnishes of Preparation Example 5 and Comparative Preparation Example 3 are resin varnishes derived from PI varnish B.

(加熱処理:加熱イミド化法)
PIワニスA及びBを、下記表1に記載の条件で加熱し、芳香族ポリアミック酸のイミド化を促進させた。

(化学的処理:化学的イミド化法)
PIワニスAに対し、塩基性条件下で無水酢酸を3質量%添加して撹拌し、芳香族ポリアミック酸のイミド化を促進させた。
(Heat treatment: thermal imidization method)
The PI varnishes A and B were heated under the conditions shown in Table 1 below to promote the imidization of the aromatic polyamic acid.

(Chemical treatment: chemical imidization method)
To the PI varnish A, 3% by mass of acetic anhydride was added and stirred under basic conditions to promote imidization of the aromatic polyamic acid.

得られた調製例1~5及び比較調製例1~3の樹脂ワニスの性状、物性を、下記試験によりそれぞれ決定した。結果をまとめて表1に示す。 The properties and characteristics of the resin varnishes obtained in Preparation Examples 1 to 5 and Comparative Preparation Examples 1 to 3 were determined by the following tests. The results are summarized in Table 1.

<イミド化率>
調製例1~5及び比較調製例1~3の樹脂ワニスのFT-IRスペクトルを、島津社製のフーリエ変換赤外分光光度計(FT-IR、商品名:IRAffinity-1S)を用い、ATR(減衰全反射:Attenuated Total Reflection)法により測定した。なお、参照サンプルとしてPIワニスA又はBを300℃で1時間加熱して調製したPIフィルム(イミド化率:100%)を用い、上記樹脂ワニスと同様に測定した。得られたFT-IRスペクトル(波形データ)を4000cm-1の値を用いてベースライン補正を行い、その後1495cm-1付近のピーク強度を用いて規格化した。規格化後の波形データについて、調製例1~5及び比較調製例1~3の樹脂ワニスの1774cm-1付近のピーク強度(A1774cm-1/A1495cm-1)と、参照サンプルにおける1774cm-1付近のピーク強度(A1774cm-1/A1495cm-1)を比較することにより、上記の通り、イミド化率を算出した。
<Imidization rate>
The FT-IR spectra of the resin varnishes of Preparation Examples 1 to 5 and Comparative Preparation Examples 1 to 3 were measured by the ATR (attenuated total reflection) method using a Shimadzu Fourier transform infrared spectrophotometer (FT-IR, product name: IRAffinity-1S). As a reference sample, a PI film (imidization rate: 100%) prepared by heating PI varnish A or B at 300°C for 1 hour was used, and the measurements were performed in the same manner as for the above resin varnishes. The obtained FT-IR spectra (waveform data) were subjected to baseline correction using the value at 4000 cm -1 , and then normalized using the peak intensity near 1495 cm -1 . For the normalized waveform data, the peak intensities (A1774 cm -1 /A1495 cm -1 ) near 1774 cm -1 of the resin varnishes of Preparation Examples 1 to 5 and Comparative Preparation Examples 1 to 3 were compared with the peak intensity (A1774 cm -1 /A1495 cm -1 ) near 1774 cm -1 of the reference sample, and the imidization rate was calculated as described above.

<不揮発分率>
調製例1~5及び比較調製例1~3の樹脂ワニスの不揮発分率(固形分量、質量%)を、JIS K 5601-1-2:2008に準じた方法により測定した。なお、不揮発分率の測定における加熱条件は200℃、2時間とした。
<Non-volatile content>
The non-volatile content (solid content, mass%) of the resin varnishes of Preparation Examples 1 to 5 and Comparative Preparation Examples 1 to 3 was measured by a method according to JIS K 5601-1-2: 2008. The heating conditions for measuring the non-volatile content were 200° C. and 2 hours.

<重量減少率>
調製例1~5及び比較調製例1~3の樹脂ワニスの重量減少率(質量%)を、島津社製の示差熱・熱重量同時測定装置(商品名:DTG-60AH)を用いて測定した。上述の通り、前記樹脂ワニスの試料重量を10mgとし、加熱条件は、昇温速度20℃/分、窒素雰囲気下、ガス流量100ml/分とした。測定開始時(35℃)の重量減少率を0質量%とし、加熱温度が前記樹脂ワニスの含有する溶剤の沸点(DMAc:沸点165℃、NMP:沸点202℃)に達した時の重量を測定することで、上述の通り重量減少率(質量%)を算出した。なお、測定前における前記樹脂ワニスの不揮発分率はいずれも25質量%であった。
<Weight reduction rate>
The weight loss rate (mass%) of the resin varnishes of Preparation Examples 1 to 5 and Comparative Preparation Examples 1 to 3 was measured using a Shimadzu differential thermal and thermogravimetric simultaneous measurement device (product name: DTG-60AH). As described above, the sample weight of the resin varnish was 10 mg, and the heating conditions were a temperature rise rate of 20°C/min, a nitrogen atmosphere, and a gas flow rate of 100 ml/min. The weight loss rate at the start of the measurement (35°C) was set to 0 mass%, and the weight was measured when the heating temperature reached the boiling point of the solvent contained in the resin varnish (DMAc: boiling point 165°C, NMP: boiling point 202°C), to calculate the weight loss rate (mass%) as described above. The non-volatile content rate of the resin varnish before the measurement was 25 mass% in all cases.

<流動性>
調製例1~5及び比較調製例1~3の樹脂ワニスの、30℃条件下における粘度を、E型デジタル粘度計(型番:TVE25L、東機産業社製)を用いて測定し、下記評価基準により評価した。なお、粘度測定前における前記樹脂ワニスの不揮発分率はいずれも25質量%であった。

-評価基準-
〇:粘度が15000mPa・s以下
×:粘度が15000mPa・s越え
<Liquidity>
The viscosity of the resin varnishes of Preparation Examples 1 to 5 and Comparative Preparation Examples 1 to 3 at 30°C was measured using an E-type digital viscometer (model number: TVE25L, manufactured by Toki Sangyo Co., Ltd.) and evaluated according to the following evaluation criteria. The non-volatile content of each of the resin varnishes before the viscosity measurement was 25% by mass.

-Evaluation criteria-
◯: Viscosity is 15,000 mPa·s or less ×: Viscosity is over 15,000 mPa·s

Figure 2024118558000003
Figure 2024118558000003

表1から明らかなように、比較調製例1~3の樹脂ワニスは、不揮発分率が25質量%のときの重量減少率がいずれも35質量%以下であった。イミド化率が3%と低い比較調製例1の樹脂ワニスの場合、ポリアミック酸に配位している溶剤の割合が多く、溶剤が揮発(蒸発)しにくかったものと考えられた。また、イミド化率が65%、70%と高い比較調製例2及び3の樹脂ワニスの場合、ポリアミック酸に配位している溶剤の割合が少ないものの、高粘度であり、絶縁層内部の溶剤が揮発(蒸発)しにくかったものと考えられた。
これに対し、イミド化率が特定の範囲となるように調整された本発明の調製例1~5の樹脂ワニス(イミド化率:15~60%)は、不揮発分率が25質量%のときの重量減少率がいずれも40質量%以上であった。すなわち、本発明の調製例1~5の樹脂ワニスは、比較調製例1~3の樹脂ワニスと比較して、より速乾性に優れることが示された。
As is clear from Table 1, the weight loss rate of the resin varnishes of Comparative Preparation Examples 1 to 3 was 35% by mass or less when the nonvolatile content was 25% by mass. In the case of the resin varnish of Comparative Preparation Example 1, which had a low imidization rate of 3%, it was believed that the proportion of the solvent coordinated to the polyamic acid was high, and the solvent was difficult to volatilize (evaporate). In the case of the resin varnishes of Comparative Preparation Examples 2 and 3, which had high imidization rates of 65% and 70%, respectively, the proportion of the solvent coordinated to the polyamic acid was low, but the viscosity was high, and it was believed that the solvent inside the insulating layer was difficult to volatilize (evaporate).
In contrast, the resin varnishes of Preparation Examples 1 to 5 of the present invention, in which the imidization rate was adjusted to be within a specific range (imidization rate: 15 to 60%), all had weight loss rates of 40% by mass or more when the non-volatile content was 25% by mass. In other words, the resin varnishes of Preparation Examples 1 to 5 of the present invention were shown to have a superior quick-drying property compared to the resin varnishes of Comparative Preparation Examples 1 to 3.

[実施例1~10及び比較例1~6]
調製例1~5及び比較調製例1~3の樹脂ワニスを用いて、下記の方法により、導体と絶縁皮膜からなる絶縁電線を作製した。
導体として、断面平角(横3.5mm×縦2.0mmで、四隅の面取りの曲率半径r=0.3mm)の平角導体(酸素含有量15ppmの銅)を用いた。
絶縁層を形成するための樹脂ワニスとして、上記調製例1~5及び比較調製例1~3の樹脂ワニスを用いた。当該樹脂ワニスの不揮発分率を調整した後に、導体に接する最も内側の絶縁層の断面の外形の形状が導体断面形状と相似形のダイスを使用して、各絶縁層の1層あたりの平均厚さが下記表2及び3に記載の厚さとなるように、当該樹脂ワニスを導体の表面に塗布し、500℃に設定した炉長8mの焼付け炉内を通過時間20秒となる速度で通過させ、この塗布・焼付けを計20回行い、多層のポリイミド絶縁層からなる絶縁皮膜(厚さ:80μm)を形成した。このようにして実施例1~10及び比較例1~6の絶縁電線を得た。
なお、上記調製例1~5及び比較調製例1~3の樹脂ワニスを実施例6~10、比較例4~6の絶縁電線に用いる際の不揮発分率は、調製例1~5及び比較調製例1~3の樹脂ワニスの含有する溶剤と同じ溶剤を用いて希釈することにより調整した。
[Examples 1 to 10 and Comparative Examples 1 to 6]
Using the resin varnishes of Preparation Examples 1 to 5 and Comparative Preparation Examples 1 to 3, insulated wires each consisting of a conductor and an insulating coating were produced by the following method.
The conductor used was a rectangular conductor (copper with an oxygen content of 15 ppm) having a rectangular cross section (3.5 mm wide x 2.0 mm long, with a chamfered corner radius of curvature r = 0.3 mm).
The resin varnishes used for forming the insulating layer were the resin varnishes of Preparation Examples 1 to 5 and Comparative Preparation Examples 1 to 3. After adjusting the non-volatile content of the resin varnish, the resin varnish was applied to the surface of the conductor using a die in which the outer shape of the cross section of the innermost insulating layer in contact with the conductor is similar to the cross-sectional shape of the conductor, so that the average thickness of each insulating layer was the thickness shown in Tables 2 and 3 below. The wire was passed through a baking furnace with a length of 8 m set at 500° C. at a speed that gave a passing time of 20 seconds. This application and baking was performed a total of 20 times to form an insulating coating (thickness: 80 μm) consisting of multiple polyimide insulating layers. In this way, the insulated electric wires of Examples 1 to 10 and Comparative Examples 1 to 6 were obtained.
The non-volatile content when the resin varnishes of Preparation Examples 1 to 5 and Comparative Preparation Examples 1 to 3 were used for the insulated wires of Examples 6 to 10 and Comparative Preparation Examples 4 to 6 was adjusted by diluting the resin varnishes of Preparation Examples 1 to 5 and Comparative Preparation Examples 1 to 3 with the same solvent as the solvent contained in the resin varnishes of Preparation Examples 1 to 5 and Comparative Preparation Examples 1 to 3.

得られた各絶縁電線に対して、下記のようにして、絶縁皮膜中の残留溶剤量及び絶縁電線の外観の評価を行った。得られた結果を、下記表2及び3にまとめて示す。 The amount of residual solvent in the insulating film and the appearance of the insulated wire were evaluated for each of the insulated wires obtained as described below. The results are summarized in Tables 2 and 3 below.

<残留溶剤量>
実施例1~10及び比較例1~6の絶縁電線から絶縁皮膜のみを剥離し、剥離した絶縁皮膜の2mg分について、ガスクロマトグラフ(型式:GC-2010 Plus、島津社製、キャリアガス:窒素)を用いて絶縁皮膜中の残留溶剤量を測定した。測定結果を、下記評価基準に基づき評価した。

-評価基準-
A:残留溶剤量が2800ppm越え、3200ppm以下
B:残留溶剤量が3200ppm越え、3600ppm以下
C:残留溶剤量が3600ppm越え、4000ppm以下
D:残留溶剤量が4000ppm越え、4400ppm以下
E:残留溶剤量が4400ppm越え、4800ppm以下
F:残留溶剤量が4800ppm越え
<Residual Solvent Amount>
Only the insulating coating was peeled off from the insulated wires of Examples 1 to 10 and Comparative Examples 1 to 6, and the amount of residual solvent in the insulating coating was measured for 2 mg of the peeled insulating coating using a gas chromatograph (model: GC-2010 Plus, manufactured by Shimadzu Corporation, carrier gas: nitrogen). The measurement results were evaluated based on the following evaluation criteria.

-Evaluation criteria-
A: Residual solvent amount is more than 2800 ppm and less than 3200 ppm. B: Residual solvent amount is more than 3200 ppm and less than 3600 ppm. C: Residual solvent amount is more than 3600 ppm and less than 4000 ppm. D: Residual solvent amount is more than 4000 ppm and less than 4400 ppm. E: Residual solvent amount is more than 4400 ppm and less than 4800 ppm. F: Residual solvent amount is more than 4800 ppm.

<外観評価>
実施例1~10及び比較例1~6の各絶縁電線を10cmに切り出したものを2本用意し、目視により、当該絶縁電線の絶縁皮膜上に生じたブツ(絶縁皮膜の異常発泡)の個数(ブツ点数)を全てカウントし、絶縁電線1本あたりのブツ点数(平均ブツ点数)を算出して、下記評価基準に基づき評価した。

-評価基準-
A:平均ブツ点数が0個
B:平均ブツ点数が1~2個
C:平均ブツ点数が3~5個
D:平均ブツ点数が6~9個
E:平均ブツ点数が10個以上
<Appearance Evaluation>
Two 10 cm pieces were cut from each of the insulated wires of Examples 1 to 10 and Comparative Examples 1 to 6, and the number of bumps (abnormal foaming of the insulating coating) that had occurred on the insulating coating of the insulated wires (number of bumps) was visually counted. The number of bumps per insulated wire (average number of bumps) was calculated and evaluated based on the following evaluation criteria.

-Evaluation criteria-
A: Average number of spots is 0 B: Average number of spots is 1-2 C: Average number of spots is 3-5 D: Average number of spots is 6-9 E: Average number of spots is 10 or more

Figure 2024118558000004
Figure 2024118558000004
Figure 2024118558000005
Figure 2024118558000005

イミド化率が本発明の規定よりも低い範囲である比較調製例1の樹脂ワニスを、不揮発分率をそれぞれ25質量%、10質量%として用いて作製した比較例1及び4の絶縁電線では、いずれも絶縁皮膜中に残留溶剤が蓄積しやすく、さらに絶縁電線の外観において異常発泡が多数観察された。またイミド化率が本発明の規定よりも高い範囲である比較調製例2及び3の樹脂ワニスを、不揮発分率がそれぞれ25質量%、10質量%として用いて作製した比較例2、3、5及び6の絶縁電線でも、絶縁皮膜中の残留溶剤量が多く、また絶縁電線の外観に異常発泡が多数生じた。 In the insulated wires of Comparative Examples 1 and 4, which were prepared using the resin varnish of Comparative Preparation Example 1, which has an imidization rate lower than the range specified in the present invention, with a non-volatile content of 25% by mass and 10% by mass, respectively, residual solvents were easily accumulated in the insulating film, and many abnormal bubbles were observed in the external appearance of the insulated wire. In addition, in the insulated wires of Comparative Examples 2, 3, 5, and 6, which were prepared using the resin varnish of Comparative Preparation Examples 2 and 3, which has an imidization rate higher than the range specified in the present invention, with a non-volatile content of 25% by mass and 10% by mass, respectively, the amount of residual solvents in the insulating film was large, and many abnormal bubbles were observed in the external appearance of the insulated wire.

これに対し、本発明の規定を全て満たす樹脂ワニスである調製例1~5の樹脂ワニスを用いて製造した絶縁電線(実施例1~10)は、いずれも絶縁皮膜中の残留溶剤量が一定程度抑えられており、かつ絶縁電線の外観にも優れることが示された。 In contrast, the insulated wires (Examples 1 to 10) manufactured using the resin varnishes of Preparation Examples 1 to 5, which are resin varnishes that meet all of the requirements of the present invention, all had a certain level of residual solvent in the insulating film that was suppressed, and the insulated wires also had excellent appearance.

30 ステータ
31 ステータコア
32 スロット
33 コイル
34 電線セグメント
34a 開放端部
30 Stator 31 Stator core 32 Slot 33 Coil 34 Electric wire segment 34a Open end

Claims (8)

イミド化率が10~60%である芳香族ポリアミック酸を含む、絶縁被覆用芳香族ポリイミド樹脂ワニス。 An aromatic polyimide resin varnish for insulating coating, containing aromatic polyamic acid with an imidization rate of 10 to 60%. 前記樹脂ワニスの不揮発分率を25質量%に調整した試料10mgを、ガス流量100ml/分の窒素雰囲気下で35℃から速度20℃/分で昇温した場合に、前記溶剤の沸点到達時点における重量減少率が40質量%以上である、請求項1に記載の絶縁被覆用芳香族ポリイミド樹脂ワニス。 The aromatic polyimide resin varnish for insulating coating according to claim 1, in which a 10 mg sample of the resin varnish, in which the non-volatile content is adjusted to 25 mass %, is heated from 35°C at a rate of 20°C/min in a nitrogen atmosphere with a gas flow rate of 100 ml/min, the weight loss rate at the time the boiling point of the solvent is reached is 40 mass % or more. 前記重量減少率が50質量%以上である、請求項2に記載の絶縁被覆用芳香族ポリイミド樹脂ワニス。 The aromatic polyimide resin varnish for insulating coating according to claim 2, wherein the weight loss rate is 50% by mass or more. 前記樹脂ワニスの不揮発分率が10質量%以上である、請求項3に記載の絶縁被覆用芳香族ポリイミド樹脂ワニス。 The aromatic polyimide resin varnish for insulating coating according to claim 3, wherein the non-volatile content of the resin varnish is 10% by mass or more. 導体と、導体の外周を覆う絶縁皮膜とを有する絶縁電線であって、
前記絶縁皮膜が、請求項1~4のいずれか1項に記載の絶縁被覆用芳香族ポリイミド樹脂ワニスの塗布・焼付けを繰り返して形成された積層絶縁層を含む、絶縁電線。
An insulated wire having a conductor and an insulating coating covering the outer periphery of the conductor,
An insulated wire, wherein the insulating coating comprises a laminated insulating layer formed by repeatedly applying and baking the aromatic polyimide resin varnish for insulating coating according to any one of claims 1 to 4.
前記積層絶縁層を構成する各絶縁層の1層あたりの平均厚さが4μm以上である、請求項5に記載の絶縁電線。 The insulated wire according to claim 5, wherein the average thickness of each insulating layer constituting the laminated insulating layer is 4 μm or more. 請求項6に記載の絶縁電線を用いたコイル。 A coil using the insulated wire according to claim 6. 請求項7に記載のコイルを有する電気・電子機器。 An electric/electronic device having the coil according to claim 7.
JP2023024901A 2023-02-21 2023-02-21 Aromatic polyimide resin varnish for insulating coating, and insulated wire, coil, rotating electric machine, and electric/electronic device using the same Pending JP2024118558A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023024901A JP2024118558A (en) 2023-02-21 2023-02-21 Aromatic polyimide resin varnish for insulating coating, and insulated wire, coil, rotating electric machine, and electric/electronic device using the same
PCT/JP2024/001985 WO2024176695A1 (en) 2023-02-21 2024-01-24 Aromatic polyimide resin varnish for insulating coating and insulated electrical wire using same, coil, rotating electrical machine, and electrical/electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2023024901A JP2024118558A (en) 2023-02-21 2023-02-21 Aromatic polyimide resin varnish for insulating coating, and insulated wire, coil, rotating electric machine, and electric/electronic device using the same

Publications (1)

Publication Number Publication Date
JP2024118558A true JP2024118558A (en) 2024-09-02

Family

ID=92500709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023024901A Pending JP2024118558A (en) 2023-02-21 2023-02-21 Aromatic polyimide resin varnish for insulating coating, and insulated wire, coil, rotating electric machine, and electric/electronic device using the same

Country Status (2)

Country Link
JP (1) JP2024118558A (en)
WO (1) WO2024176695A1 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3478094B2 (en) * 1997-11-28 2003-12-10 東レ株式会社 Method for dehydration ring closure of heat-resistant polymer precursor
JP5477327B2 (en) * 2011-04-08 2014-04-23 日立金属株式会社 Method for producing polyimide resin
US20160137787A1 (en) * 2013-06-27 2016-05-19 Ube Industries, Ltd. Polymide precursor and polymide
JP7407501B2 (en) * 2017-03-17 2024-01-04 三菱ケミカル株式会社 polyimide laminate
JP7247604B2 (en) * 2019-01-29 2023-03-29 三菱ケミカル株式会社 Resin composition for insulating coating material and insulating coating material
JP2024016303A (en) * 2020-12-17 2024-02-07 三菱ケミカル株式会社 Resin composition for insulative coating material, and metal coating material
CN117677672A (en) * 2021-10-05 2024-03-08 住友电气工业株式会社 Resin composition and insulated wire

Also Published As

Publication number Publication date
WO2024176695A1 (en) 2024-08-29

Similar Documents

Publication Publication Date Title
CN108369839B (en) Insulated wire, coil, and electric/electronic device
KR20130141348A (en) Polyimide resin varnish, and insulated electrical wire, electrical coil, and motor using same
WO2015137254A1 (en) Flat-type insulated wire, coil, and electric/electronic equipment
WO2015098639A1 (en) Multilayer insulated wire, coil and electrical/electronic device
EP3163584B1 (en) Insulated electric wire and coil
JP2013253124A (en) Polyimide resin vanish, and insulated electric wire, electric coil and motor using the same
JP2012233123A (en) Polyimide resin varnish, insulated electric wire using the same, electric machine coil, and motor
WO2014141322A1 (en) Square electric wire for motor winding of vehicle/ship, wound coil, and motor
WO2020203193A1 (en) Insulated electrical wire, coil, and electrical/electronic appliance
JP2017214501A (en) Electromagnetic wave-shielding adhesive, electromagnetic wave-shielding material, and coaxial cable, and method for producing coaxial cable
JP2013051030A (en) Insulated wire and armature coil using the same, motor
JP2012234625A (en) Insulation wire, electric machine coil using the same, and motor
CN102985982A (en) Insulated electric wire
WO2024176695A1 (en) Aromatic polyimide resin varnish for insulating coating and insulated electrical wire using same, coil, rotating electrical machine, and electrical/electronic device
JP2013101759A (en) Insulation wire, electric machine coil using the same, and motor
JP6515571B2 (en) Polyimide paint and insulated wire
JP5990233B2 (en) Insulated wire
JP5941866B2 (en) Insulated wire
JP2005068226A (en) Polyamide-imide resin, flexible metal-clad laminate and flexible printed wiring board using the same
JP5837397B2 (en) Insulated wire and electric coil and motor using the same
JP2013155281A (en) Insulating coating, insulated wire using the insulating coating, and coil using the insulated wire
JP6964412B2 (en) Insulated wire and its manufacturing method
JP6439062B2 (en) Insulated wire manufacturing method
JP5712661B2 (en) Polyamideimide resin insulating paint and insulated wire using the same
JP2015209457A (en) Polyamic acid coating material and insulation electric wire