JP2024098614A - Method for controlling the amount of seawater intake supplied to a feed production device - Google Patents

Method for controlling the amount of seawater intake supplied to a feed production device Download PDF

Info

Publication number
JP2024098614A
JP2024098614A JP2023002206A JP2023002206A JP2024098614A JP 2024098614 A JP2024098614 A JP 2024098614A JP 2023002206 A JP2023002206 A JP 2023002206A JP 2023002206 A JP2023002206 A JP 2023002206A JP 2024098614 A JP2024098614 A JP 2024098614A
Authority
JP
Japan
Prior art keywords
amount
seawater
sewage discharge
supplied
biomass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023002206A
Other languages
Japanese (ja)
Inventor
康隆 末次
Yasutaka Suetsugu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishigaki Co Ltd
Original Assignee
Ishigaki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishigaki Co Ltd filed Critical Ishigaki Co Ltd
Priority to JP2023002206A priority Critical patent/JP2024098614A/en
Publication of JP2024098614A publication Critical patent/JP2024098614A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Filtration Of Liquid (AREA)
  • Cultivation Of Seaweed (AREA)
  • Farming Of Fish And Shellfish (AREA)
  • Physical Water Treatments (AREA)

Abstract

To provide a control method for an intake amount of sea water for controlling an intake amount of sea water in a sewage discharge zone where sewage discharge water is discharged, and supplying sea water with a constant vegetable biomass quantity to a feed production device.SOLUTION: In a method for feeding marine organisms in which sea water is taken in from a sewage discharge zone where sewage discharge water treated at a water treatment facility is discharged and is subjected to filtration treatment, treatment liquid after the filtration treatment is supplied to a seaweed culture zone, and suspension substances separated at the time of filter material backwashing are supplied to a shellfish culture zone together with washing waste liquid, a reference value Pn0 of a biomass quantity is set beforehand with a latitude given and the quantity of the biomass contained in the sea water taken in from the sewage discharge zone is measured at the time of filtration treatment process; the speed of a sea water pump 13 is slowed down gradually when a measurement value Pn is higher than the reference value Pn0; the speed of the sea water pump 13 is increased gradually when the measurement value Pn is lower than the reference value Pn0; feed can be supplied to shellfish and seaweeds stably by controlling the quantity of biomass within a range of the reference value Pn0.SELECTED DRAWING: Figure 1

Description

本発明は、貝類や海藻類等の海洋生物の餌料生成装置に供給する海水の取水量制御方法に関する。 The present invention relates to a method for controlling the amount of seawater intake supplied to a food production device for marine organisms such as shellfish and seaweed.

従来、貝類や海藻類等の海洋生物が生息する海域において、窒素やリン等の栄養塩類が不足することにより貧栄養化が生じている。貧栄養化によって植物プランクトンが減少し、植物プランクトンを餌とする牡蠣が十分に成長しないといった問題や、栄養塩類を吸収して成長する海苔の色落ちが発生する等の問題が生じており、養殖業に支障をきたしている。 In the past, oligotrophy has occurred in marine areas where shellfish, seaweed, and other marine organisms live due to a lack of nutrients such as nitrogen and phosphorus. This oligotrophy causes a decrease in phytoplankton, which leads to problems such as the insufficient growth of oysters, which feed on phytoplankton, and the discoloration of seaweed, which grows by absorbing nutrients, causing problems for the aquaculture industry.

特許文献1には、海藻類及び貝類を同時に養殖する技術が開示してあり、海藻類培養槽及び貝類養殖槽の各々の飽和溶存酸素量に応じて、海藻類培養槽から貝類養殖槽へ供給する海水の供給量を制御することが記載されている。 Patent Document 1 discloses a technology for simultaneously cultivating seaweed and shellfish, and describes controlling the amount of seawater supplied from the seaweed culture tank to the shellfish culture tank depending on the amount of saturated dissolved oxygen in each tank.

特許文献2には、海水中の栄養塩濃度をもとに栄養塩投入量を調整してプランクトンの生産量を制御し、プランクトンを捕食する海洋水産物の増殖を図る技術が開示されている。 Patent Document 2 discloses a technology that controls the amount of plankton production by adjusting the amount of nutrients input based on the concentration of nutrients in seawater, thereby promoting the proliferation of marine fishery products that feed on plankton.

特開2022-114928号公報JP 2022-114928 A 特開2001-211777号公報JP 2001-211777 A

従来、海苔は栄養塩類を吸収して成長するため、栄養塩類を餌とする植物プランクトンを捕食する牡蠣と生育上密接な関係にあるといえる。そこで、各海洋生物の餌料である栄養塩類及び植物プランクトンを1つの餌料生成装置で生成し、同時に給餌して効率的に養殖を行える方法がないか検討していた。 Conventionally, seaweed grows by absorbing nutrients, so it can be said that in terms of growth it has a close relationship with oysters, which feed on phytoplankton that feeds on nutrients. Therefore, we were investigating whether there was a way to efficiently cultivate seaweed by producing the nutrients and phytoplankton that are the food for each marine organism in a single feed production device and feeding them simultaneously.

特許文献1は、海藻類培養槽及び貝類養殖槽内の飽和溶存酸素量に基づいて、貝類養殖槽への海水供給量を制御する技術であるが、測定された溶存酸素量を制御の指標として用いるものであり、溶存酸素量を用いて算出された植物プランクトン量をもとに海水供給量を制御する技術ではない。また、制御の目的として海藻類及び貝類の餌料を安定的に得る等の記載はなく、単なる養殖場の溶存酸素量の制御にすぎない。さらに、海藻類及び貝類に餌料を給餌する場合は、各槽それぞれに餌料給餌装置を設置する必要がある。 Patent Document 1 describes a technology for controlling the amount of seawater supplied to a shellfish culture tank based on the amount of saturated dissolved oxygen in the seaweed culture tank and the shellfish culture tank, but it uses the measured amount of dissolved oxygen as an index for control, and is not a technology for controlling the amount of seawater supplied based on the amount of phytoplankton calculated using the amount of dissolved oxygen. In addition, there is no mention of a purpose for control such as obtaining a stable supply of food for the seaweed and shellfish, and it is merely a matter of controlling the amount of dissolved oxygen in the farm. Furthermore, when feeding food to the seaweed and shellfish, a feed feeding device needs to be installed in each tank.

特許文献2は、測定された栄養塩濃度をもとに、海洋に供給する栄養塩の投入量を調整する技術であるが、海洋の濃度調整に使用される栄養塩は淡水に溶解させたものであり、水処理施設から放流された栄養塩を含む下水放流水ではない。そのため、別途、栄養塩を用意しなければならない。 Patent Document 2 describes a technology that adjusts the amount of nutrients supplied to the ocean based on the measured nutrient concentration, but the nutrients used to adjust the concentration in the ocean are dissolved in fresh water, and are not sewage effluent containing nutrients discharged from water treatment facilities. Therefore, nutrients must be prepared separately.

本発明は、上記課題に鑑みてなされたものであり、下水放流水を放流した下水放流域内の溶存酸素濃度をろ過処理工程時に連続的に測定し、測定値をもとに算出された植物系バイオマスの純生産量を用いて海水の取水量を制御することで、常時一定量の植物系バイオマスを餌料生成装置に供給可能となり、貝類及び海藻類に安定的に餌料を供給できることを特徴とする餌料生成装置に供給する海水の取水量制御方法を提供する。 The present invention has been made in consideration of the above problems, and provides a method for controlling the amount of seawater intake supplied to a feed production device, which is characterized by continuously measuring the dissolved oxygen concentration in the sewage discharge area into which the sewage effluent is discharged during the filtration process, and controlling the amount of seawater intake using the net production amount of plant biomass calculated based on the measured value, thereby making it possible to constantly supply a constant amount of plant biomass to the feed production device, and to provide a stable supply of feed to shellfish and seaweed.

水処理施設で処理された下水放流水を放流した下水放流域から海水を取水してろ過処理し、ろ過処理後の処理液を海藻類養殖域に給餌するとともに、ろ材逆洗浄時に剥離した懸濁物質を洗浄排液とともに貝類養殖域に給餌する海洋生物の餌料給餌方法において、予め幅を持たせたバイオマス量の基準値Pn0を設定し、ろ過処理工程時に下水放流域から取水する海水に含まれるバイオマス量を測定し、測定値Pnが基準値Pn0より高い場合は、海水ポンプの回転数を段階的に減少させるとともに、測定値Pnが基準値Pn0より低い場合は、海水ポンプの回転数を段階的に増加させ、バイオマス量を基準値Pn0の範囲内に制御することで、下水放流域からバイオマス量一定の海水を取水できる。 In a method for feeding marine organisms, seawater is taken from a sewage discharge area into which sewage effluent treated at a water treatment facility is discharged, filtered, the filtered liquid is fed to a seaweed cultivation area, and suspended matter detached during backwashing of the filter media is fed to a shellfish cultivation area together with the washing effluent. A reference value Pn0 for the amount of biomass with a predetermined range is set, and the amount of biomass contained in the seawater taken from the sewage discharge area during the filtration process is measured, and if the measured value Pn is higher than the reference value Pn0, the speed of the seawater pump is gradually decreased, and if the measured value Pn is lower than the reference value Pn0, the speed of the seawater pump is gradually increased, thereby controlling the amount of biomass to be within the range of the reference value Pn0, and seawater with a constant amount of biomass can be taken from the sewage discharge area.

前記バイオマス量は、ろ過処理工程時に測定された下水放流域の溶存酸素濃度を用いて下記(式1)より算出される植物系バイオマスの純生産量であることで、ろ過処理工程時に植物系バイオマス量一定の海水を餌料生成装置に供給できる。
Pn=(12L+12D)-0TIME・・・(式1)
Pn:植物系バイオマスの純生産量
12L+12D:12時間明条件下における溶存酸素濃度測定値+12時間暗条件下における溶存酸素濃度測定値
0TIME:初期の溶存酸素濃度測定値
The amount of biomass is the net production amount of plant biomass calculated from the following (Equation 1) using the dissolved oxygen concentration in the sewage discharge area measured during the filtration treatment process, so that seawater with a constant amount of plant biomass can be supplied to the feed production device during the filtration treatment process.
Pn=(12L+12D)-0TIME...(Formula 1)
Pn: Net production of plant biomass 12L+12D: Dissolved oxygen concentration measured under 12 hours of light + dissolved oxygen concentration measured under 12 hours of dark 0TIME: Initial dissolved oxygen concentration measured

前記バイオマス量は、ろ過処理工程時に測定されたクロロフィル蛍光強度または撮像した画像のうち少なくとも一方の測定データから算出される植物系バイオマス量であることで、ろ過処理工程時に植物系バイオマス量一定の海水を餌料生成装置に供給できる。 The amount of biomass is the amount of plant biomass calculated from at least one of the measurement data of the chlorophyll fluorescence intensity measured during the filtration process or the captured image, so that seawater with a constant amount of plant biomass can be supplied to the feed production device during the filtration process.

前記下水放流域から取水した海水を一時的に貯留する貯留槽を設置し、海水を貯留槽からろ過装置に供給することで、津波等の自然災害が発生した場合であっても、餌料の供給を継続的に行える。 By installing a storage tank to temporarily store seawater taken from the sewage discharge area and supplying the seawater from the storage tank to the filtration device, it is possible to continuously supply feed even in the event of a natural disaster such as a tsunami.

本発明によれば、下水放流域から取水した海水中に含まれる植物系バイオマス量を測定し、測定値に応じて取水量を調整することで、常時一定量の植物系バイオマスを含む海水を餌料生成装置に供給できる。具体的には、下水放流域内における溶存酸素濃度をリアルタイムで測定し、それをもとに算出した植物系バイオマスの純生産量を用いて制御を実施するため、季節変動等により下水放流域内の水質が変化した場合であっても給餌効率が低下しない。また、植物系バイオマスが貝類養殖域に過剰に供給されることもないため、周辺海域の赤潮対策が可能となる。さらに、下水放流域には水処理施設で処理された下水放流水が放流されるため、別途、栄養塩類や植物系バイオマスを用意する必要がない。貝類及び海藻類への餌料の給餌を1つの装置で行うため、養殖の効率化を図ることができる。 According to the present invention, the amount of plant biomass contained in seawater taken from the sewage discharge area is measured, and the amount of water taken is adjusted according to the measured value, so that seawater containing a constant amount of plant biomass can be supplied to the feed production device at all times. Specifically, the dissolved oxygen concentration in the sewage discharge area is measured in real time, and the net production amount of plant biomass calculated based on the concentration is used for control, so that the feeding efficiency does not decrease even if the water quality in the sewage discharge area changes due to seasonal fluctuations, etc. In addition, since there is no excessive supply of plant biomass to the shellfish culture area, it is possible to take measures against red tides in the surrounding sea areas. Furthermore, since sewage discharge water treated at a water treatment facility is discharged into the sewage discharge area, there is no need to prepare nutrients or plant biomass separately. Since the feeding of shellfish and seaweed is performed by a single device, the efficiency of aquaculture can be improved.

本発明に係る餌料生成装置の概略構成図である。1 is a schematic diagram of a feed production device according to the present invention; FIG. 同じく、下向流式のろ過装置である。This is also a downflow filtration device.

図1は本発明に係る餌料生成装置の概略構成図であり、図2は本発明に係る下向流式のろ過装置である。
図1に示すように、本実施形態に係る餌料生成装置1は、水処理施設で処理された下水放流水が放流された下水放流域内の被処理液(海水)を取水してろ過装置2に供給する搬送部3と、海水を懸濁物質と処理液に分離するろ過装置2と、処理液を海藻類養殖域内の海藻類に給餌する給餌部4Aと、ろ過装置2に接続した洗浄流体供給管5から供給された洗浄流体によって剥離した懸濁物質を洗浄排液とともに貝類養殖域内の貝類に給餌する給餌部4Bと、を備える。各構成要素について、以下に詳述する。
FIG. 1 is a schematic diagram of a feed production apparatus according to the present invention, and FIG. 2 is a downflow type filtration apparatus according to the present invention.
As shown in Fig. 1, the feed production device 1 according to this embodiment includes a transport unit 3 that takes in treated liquid (seawater) from a sewage discharge area into which sewage discharge water treated in a water treatment facility is discharged and supplies it to a filtration device 2, the filtration device 2 that separates seawater into suspended matter and a treated liquid, a feeding unit 4A that feeds the treated liquid to seaweed in a seaweed cultivation area, and a feeding unit 4B that feeds suspended matter detached by a cleaning fluid supplied from a cleaning fluid supply pipe 5 connected to the filtration device 2 together with the cleaning effluent to shellfish in the shellfish cultivation area. Each component will be described in detail below.

搬送部3は、下水放流域内に設置した海水ポンプ13と、一端を海水ポンプ13に接続し、他端をろ過装置2に接続した海水供給管6からなり、下水放流域内の海水をくみ上げてろ過装置2に供給する構成としている。本実施形態では、海水ポンプ13で取水した海水を直接ろ過装置2に供給する形態としたが、別途貯留槽(図示しない)を設置し、くみ上げた海水を一時的に貯留できる形態としてもよい。この場合、下水放流水が放流された後の海水を貯留しても、下水放流水放流前の海水を下水放流水とは別々に貯留槽に供給し貯留してもよい。 The transport section 3 is composed of a seawater pump 13 installed in the sewage discharge area and a seawater supply pipe 6 connected at one end to the seawater pump 13 and at the other end to the filtration device 2, and is configured to pump up seawater in the sewage discharge area and supply it to the filtration device 2. In this embodiment, the seawater taken in by the seawater pump 13 is directly supplied to the filtration device 2, but a separate storage tank (not shown) may be installed to temporarily store the pumped up seawater. In this case, the seawater after the sewage discharge water is discharged may be stored, or the seawater before the sewage discharge water is discharged may be supplied to the storage tank and stored separately from the sewage discharge water.

下水放流域に放流される下水放流水は、し尿、下水、食品生産加工排水等の栄養塩類(窒素やリン等)を含む排水を一次処理して固形物を取り除いた後、生物処理した処理液である。具体的には、下水処理場に流入する被処理液を最初沈殿池にて沈降分離し、分離した上澄み液を酸素が供給された反応槽にて生物処理した後、さらに、最終沈殿池にて沈降分離して得られた上澄み液である。上澄み液は消毒した後、使用してもよい。 Sewage effluent discharged into a sewage discharge area is a treated liquid that has been biologically treated after primary treatment of wastewater containing nutrients (nitrogen, phosphorus, etc.) such as human waste, sewage, and wastewater from food production and processing to remove solids. Specifically, the liquid to be treated flowing into a sewage treatment plant is separated by settling in a first settling tank, the separated supernatant is biologically treated in a reaction tank supplied with oxygen, and then further separated by settling in a final settling tank to obtain the supernatant. The supernatant may be disinfected before use.

水処理施設から排出される上澄み液は、一般的に海域等に放流されるが、前述した処理方法によって、被処理液中に含まれる栄養塩類を完全に除去することはできない。このことから、下水放流水が放流された下水放流域は、他の海域と比較して相対的に栄養塩類濃度が高くなっているといえる。加えて、栄養塩類濃度が高い下水放流域は、栄養塩類を餌料とする植物プランクトン(以下、植物系バイオマスと称する)も増殖するため、植物系バイオマス量も多くなっている。 The supernatant liquid discharged from water treatment facilities is generally discharged into the ocean, but the above-mentioned treatment methods cannot completely remove the nutrients contained in the treated liquid. For this reason, it can be said that the sewage discharge area into which sewage effluent is discharged has a relatively high concentration of nutrients compared to other ocean areas. In addition, sewage discharge areas with high nutrient concentrations also have a large amount of plant biomass because phytoplankton (hereinafter referred to as plant biomass), which feeds on nutrients, proliferate there.

本実施形態では、栄養塩類濃度及び植物系バイオマス量の多い下水放流域内より海水をくみ上げ、くみ上げた海水をろ過装置2に供給する構成としている。なお、本実施形態における下水放流域は、外部からの水の流出入の少ない閉鎖性水域であり、栄養塩類が滞留しやすい海域である。 In this embodiment, seawater is pumped from a sewage discharge area where the nutrient concentration and plant biomass amount are high, and the pumped seawater is supplied to the filtration device 2. Note that the sewage discharge area in this embodiment is a closed water area with little water flowing in and out from the outside, and is a sea area where nutrients tend to accumulate.

ろ過装置2は、図2に示す通り、ろ過槽7に海水供給管6を接続した下向流式ろ過装置であり、ろ過槽7上方から供給した海水を下方から排出する形態としている。ろ過槽7の内部には、槽の底部から所定の高さに配設したろ材流出防止スクリーン8を配設しており、スクリーンの上側には所定の厚みを有するろ材層9を形成している。 As shown in FIG. 2, the filtration device 2 is a downward flow filtration device in which a seawater supply pipe 6 is connected to a filtration tank 7, and seawater is supplied from above the filtration tank 7 and discharged from below. Inside the filtration tank 7, a filter media outflow prevention screen 8 is disposed at a predetermined height from the bottom of the tank, and a filter media layer 9 having a predetermined thickness is formed on the upper side of the screen.

ろ材層9は、不定形の粒状繊維ろ材を充填して形成しており、ろ材層9の上方から供給された海水中に含まれる懸濁物質を捕捉する。海水中の懸濁物質には植物系バイオマスが含まれているため、海水をろ過処理することにより、ろ過槽7内で植物系バイオマスを得ることができる。海水中の懸濁物質には、生物の死骸や糞に由来する有機物等も含まれているが、本実施形態では海洋生物(二枚貝)の餌料となる植物系バイオマスを得ることを目的としている。 The filter layer 9 is formed by filling it with irregular granular fiber filter media, and captures suspended matter contained in seawater supplied from above the filter layer 9. The suspended matter in the seawater contains plant biomass, so by filtering the seawater, plant biomass can be obtained in the filter tank 7. The suspended matter in the seawater also contains organic matter derived from the remains and feces of living organisms, but in this embodiment, the purpose is to obtain plant biomass that can be used as food for marine organisms (bivalves).

なお、ろ材は繊維ろ材に特定されず、樹脂製ろ材、砂等、その他のろ材を使用してもよい。径や形状等に関しても用途に応じて適宜選択する。また、条件に応じてろ過装置2をいかだ等に載置し、浮体式としてもよい。 The filter medium is not limited to fiber filter medium, and other filter mediums such as resin filter medium, sand, etc. may be used. The diameter, shape, etc. are also selected appropriately depending on the application. Depending on the conditions, the filter device 2 may be placed on a raft or the like to make it a floating type.

ろ過槽7の下方には、洗浄流体供給管5を接続してあり、ろ材洗浄時にろ過槽7の下方から洗浄流体を供給できる構成としている。本実施形態では、洗浄流体供給管5として洗浄液供給管を用いており、ろ過槽7下方から海水(洗浄液)を供給してろ材を洗浄する形態としているが、必要に応じて、圧縮空気や撹拌羽根等を併用してろ材を撹拌洗浄してもよい。また、洗浄流体は海水に限定されない。 A cleaning fluid supply pipe 5 is connected below the filtration tank 7, so that cleaning fluid can be supplied from below the filtration tank 7 when cleaning the filter media. In this embodiment, a cleaning liquid supply pipe is used as the cleaning fluid supply pipe 5, and seawater (cleaning liquid) is supplied from below the filtration tank 7 to clean the filter media, but if necessary, compressed air, agitating blades, etc. may also be used in combination to agitate and clean the filter media. Also, the cleaning fluid is not limited to seawater.

さらにろ過装置2は、ろ過槽7上方に泡沫分離装置10を内設している。泡沫分離装置10は、ろ過槽7に接続された海水供給管6の下方に配置してあり、海水供給管6から供給された海水を泡沫分離する構成としている。 The filtration device 2 further includes a foam separator 10 disposed above the filtration tank 7. The foam separator 10 is disposed below the seawater supply pipe 6 connected to the filtration tank 7, and is configured to perform foam separation on the seawater supplied from the seawater supply pipe 6.

泡沫分離装置10は、一端を図示しないブロアやコンプレッサー等の空気供給源に接続した散気管で構成してあり、空気供給源を駆動することで、散気管上部に形成された多数の噴出孔12から海水に向かって微細気泡が噴出される。海水に微細気泡を供給することで海水中の懸濁物質が浮上分離され、水面に安定泡沫を形成する。 The foam separation device 10 is composed of an air diffuser tube with one end connected to an air supply source such as a blower or compressor (not shown), and by driving the air supply source, fine air bubbles are sprayed into the seawater from numerous nozzle holes 12 formed at the top of the air diffuser tube. By supplying fine air bubbles to the seawater, suspended matter in the seawater is separated by floating, forming stable foam on the water surface.

安定泡沫は、後段で詳述する給餌部4Bから貝類養殖域に向かって供給されるが、この安定泡沫には植物系バイオマスが含まれているため、泡沫分離を行うことで植物系バイオマスの回収率を高めることができる。なお、泡沫分離装置10は、微細気泡を発生するものであればよく、散気管式に限定されない。 The stable foam is supplied to the shellfish cultivation area from the feeding section 4B, which will be described in detail later. Since this stable foam contains plant biomass, the recovery rate of the plant biomass can be increased by performing foam separation. Note that the foam separation device 10 is not limited to the aeration tube type, and can be any device that generates fine bubbles.

給餌部4Aは、一端をろ過槽7の下方に接続し、他端を海藻類養殖域に接続した配管であり、ろ過処理後に排出される海水(処理液)を海藻類養殖域に供給する構成としている。海藻類養殖域に供給される処理液は、栄養塩類濃度が相対的に高くなっている下水放流域よりくみ上げた海水をろ過処理したものであるため、栄養塩類濃度が高い。 The feeding section 4A is a pipe connected at one end to the bottom of the filtration tank 7 and at the other end to the seaweed cultivation area, and is configured to supply seawater (treated liquid) discharged after filtration to the seaweed cultivation area. The treated liquid supplied to the seaweed cultivation area has a high concentration of nutrients because it is seawater pumped up from a sewage discharge area and filtered, where the concentration of nutrients is relatively high.

海藻類養殖域内で養殖している海苔は栄養塩類を吸収して成長するため、栄養塩類濃度が高い処理液を供給することで、海苔の成長を促進する。そのため、色落ちのない良質な海苔を得ることができる。 Since seaweed grown in seaweed farming areas grows by absorbing nutrients, supplying a treatment solution with a high concentration of nutrients promotes the growth of the seaweed. This allows the production of high-quality seaweed that does not fade.

なお、必要に応じて、図1に示すように給餌部4Aに返送管16を接続してもよい。返送管16の他方を海水供給管6に接続することで、処理液を海水供給管6から供給される被処理液(海水)に供給できるため、被処理液の濃度調整が可能となる。これによって、取水した海水中に植物系バイオマス以外の懸濁物質が含まれていた場合であっても、ろ過装置2への固形物負荷を軽減することができる。 If necessary, a return pipe 16 may be connected to the feeding section 4A as shown in FIG. 1. By connecting the other end of the return pipe 16 to the seawater supply pipe 6, the treatment liquid can be supplied to the liquid to be treated (seawater) supplied from the seawater supply pipe 6, making it possible to adjust the concentration of the liquid to be treated. This makes it possible to reduce the solids load on the filtration device 2 even if the seawater taken contains suspended matter other than plant biomass.

一方、給餌部4Bは、一端をろ過槽7の上方に接続し、他端を貝類養殖域に接続した配管であり、安定泡沫に含まれる植物系バイオマスと、ろ材層9の洗浄時に剥離した植物系バイオマスを洗浄排液とともに貝類養殖域に供給できる構成としている。貝類養殖域に供給される洗浄排液は、植物系バイオマス量が相対的に多くなっている下水放流域よりくみ上げた海水をろ過処理したものであるため、植物系バイオマス量が多い。 On the other hand, the feeding section 4B is a pipe with one end connected to the top of the filtration tank 7 and the other end connected to the shellfish cultivation area, and is configured so that the plant biomass contained in the stable foam and the plant biomass detached during cleaning of the filter layer 9 can be supplied to the shellfish cultivation area together with the cleaning effluent. The cleaning effluent supplied to the shellfish cultivation area contains a large amount of plant biomass because it is seawater pumped up from a sewage discharge area and filtered, where the amount of plant biomass is relatively large.

貝類養殖域内で養殖している牡蠣は植物系バイオマスを捕捉して成長するため、この植物系バイオマス量が多い洗浄排液を供給することで、牡蠣の成長を促進する。 Oysters cultivated in shellfish farming areas grow by capturing plant biomass, so supplying them with washing effluent, which contains a high amount of plant biomass, promotes oyster growth.

本実施形態では、上述したろ過装置2を用いてろ過処理を行う際に、図1に示す海水ポンプ13にて取水される海水中に含まれる植物系バイオマスの純生産量を把握し、純生産量に基づいて取水量を決定している。下水放流域内に設置された溶存酸素計からなる測定部14で測定した溶存酸素濃度の測定値が制御部15に送信されて、制御部15から海水ポンプ13に指令が送られる。なお、測定部14はろ過装置2へ供給される被処理液の溶存酸素濃度を測定できればよいため、海水供給管6に設置してもよい。また、溶存酸素濃度の測定のタイミングは、ろ過処理工程開始と同時であってもろ過処理工程の前段であってもよい。 In this embodiment, when performing filtration using the above-mentioned filtration device 2, the net production amount of plant biomass contained in the seawater taken by the seawater pump 13 shown in FIG. 1 is determined, and the amount of water taken is determined based on the net production amount. The value of the dissolved oxygen concentration measured by the measurement unit 14 consisting of a dissolved oxygen meter installed in the sewage discharge area is sent to the control unit 15, and the control unit 15 sends a command to the seawater pump 13. Note that the measurement unit 14 may be installed in the seawater supply pipe 6 as it is only necessary to measure the dissolved oxygen concentration of the liquid to be treated supplied to the filtration device 2. The timing of measuring the dissolved oxygen concentration may be simultaneous with the start of the filtration process or prior to the filtration process.

以下、図1、図2に基づき、本実施形態における餌料生成方法を詳述する。 The feed production method in this embodiment will be described in detail below with reference to Figures 1 and 2.

<放流工程>
放流工程では、水処理施設の最終沈殿池で重力沈殿した後に得られる下水放流水(上澄み液)を任意の海域(下水放流域)に放流する。
<Discharge process>
In the discharge process, the sewage effluent (supernatant) obtained after gravity settling in the final settling tank of the water treatment facility is discharged into any sea area (sewage discharge area).

<搬送工程>
搬送工程では、下水放流域内の海水をくみ上げる。下水放流域内に設置した海水ポンプ13を駆動して海水をくみ上げ、海水供給管6を介して海水をろ過装置2に供給する。このとき、海水供給管6に介装する弁V1及び給餌部4Aに介装する弁V2は開放している。
<Transportation process>
In the transport process, seawater is pumped up from the sewage discharge area by driving a seawater pump 13 installed in the sewage discharge area, and the seawater is supplied to the filtration device 2 via the seawater supply pipe 6. At this time, the valve V1 installed in the seawater supply pipe 6 and the valve V2 installed in the feeding section 4A are open.

<ろ過処理工程>
ろ過処理工程では、くみ上げた海水をろ過装置2に供給してろ過処理を行う。海水供給管6からろ過槽7内に海水を供給し、泡沫分離装置10の噴出孔12からろ過槽7上方に向けて微細気泡を供給しつつ、ろ過槽7内に充填されたろ材層9にて懸濁物質を捕捉する。このとき、給餌部4Bに介装する弁V3は開放している。
<Filtration process>
In the filtration process, the pumped seawater is supplied to the filtration device 2 for filtration. Seawater is supplied from the seawater supply pipe 6 into the filtration tank 7, and fine air bubbles are supplied from the nozzles 12 of the foam separator 10 toward the upper part of the filtration tank 7, while suspended matter is captured by the filter layer 9 filled in the filtration tank 7. At this time, the valve V3 installed in the feeding section 4B is open.

噴出された多数の微細気泡は、上方から供給された海水に混在する懸濁物質や、水圧等の影響を受けてろ材層9から自然に剥離した懸濁物質を吸着し、水面に向かって浮上する。そして、次々と浮上してくる懸濁物質を吸着した気泡が水面に集まって、水面に安定泡沫を形成する。 The many fine bubbles that are ejected adsorb suspended matter mixed in the seawater supplied from above, and suspended matter that has naturally detached from the filter layer 9 due to the effects of water pressure, etc., and rise to the water surface. Then, the bubbles that adsorb the suspended matter that rise one after another gather at the water surface, forming a stable foam on the water surface.

水面に形成された安定泡沫は、ろ過槽7上方に接続された給餌部4Bから貝類養殖域に供給されるが、安定泡沫には貝類の餌料となる植物系バイオマスが含まれていることから、ろ過工程中に泡沫分離を行うことで、餌料を効率よく貝類へ給餌できるといえる。 The stable foam formed on the water surface is supplied to the shellfish cultivation area from the feeding section 4B connected above the filtration tank 7. Since the stable foam contains plant biomass that serves as food for the shellfish, it can be said that by performing foam separation during the filtration process, the food can be efficiently fed to the shellfish.

泡沫分離は、ろ過処理工程中に継続的に行うが、圧縮空気の供給を開始するタイミングは、適宜決定する。また、給餌部4Bから貝類養殖域への安定泡沫の供給方法は、例えば、ろ過処理工程中に、ろ過槽7内の水位を常時一定にしてオーバーフローさせながら排出させる等、排出方法は適宜選択する。条件に応じて、泡沫分離装置10を省略して通常のろ過処理工程のみ実施してもよい。 Foam separation is performed continuously during the filtration process, but the timing for starting the supply of compressed air is determined appropriately. The method of supplying stable foam from the feeding section 4B to the shellfish cultivation area can be selected as appropriate, for example by discharging the water by overflowing while keeping the water level in the filtration tank 7 constant during the filtration process. Depending on the conditions, the foam separation device 10 may be omitted and only the normal filtration process may be performed.

ろ過処理工程中、ろ材層9を通過する海水中に含まれる植物系バイオマスがろ材層9に徐々に堆積する。一方、ろ材層9を通過した海水は処理液として給餌部4Aから海藻類養殖域に供給される。給餌部4Aから海藻類養殖域に供給される処理液は、泡沫分離装置10より噴出される微細気泡を含んでおり、この処理液を海藻類養殖域に供給することで、海苔の成長を促進する。 During the filtration process, plant biomass contained in the seawater passing through the filter layer 9 gradually accumulates on the filter layer 9. Meanwhile, the seawater that has passed through the filter layer 9 is supplied as a treatment liquid from the feeding section 4A to the seaweed cultivation area. The treatment liquid supplied to the seaweed cultivation area from the feeding section 4A contains fine air bubbles sprayed from the foam separation device 10, and supplying this treatment liquid to the seaweed cultivation area promotes the growth of seaweed.

なお、上向流式ろ過装置を用いてろ過処理を行ってもよい。その際には、ろ過槽7下方から被処理液(海水)を供給し、ろ過槽7上方から排出される処理液を海藻類養殖域に供給するとともに、上方から供給された洗浄液(海水)によってろ材から剥離した植物系バイオマスをろ過槽7下方から貝類養殖域に供給する。 Filtration may also be performed using an upflow filtration device. In this case, the liquid to be treated (seawater) is supplied from the bottom of the filtration tank 7, the treated liquid discharged from the top of the filtration tank 7 is supplied to the seaweed cultivation area, and the plant biomass detached from the filter material by the cleaning liquid (seawater) supplied from above is supplied to the shellfish cultivation area from the bottom of the filtration tank 7.

本実施形態では、ろ過処理工程時に下水放流域内の溶存酸素濃度をリアルタイムで測定し、測定値を用いて植物系バイオマスの純生産量Pnを算出する。そして、算出された純生産量Pnに基づいて海水ポンプ13を制御して海水の取水量を調整する。以下、植物系バイオマスの純生産量Pnの算出方法及び海水の取水量制御方法を詳述する。 In this embodiment, the dissolved oxygen concentration in the sewage discharge area is measured in real time during the filtration process, and the measured value is used to calculate the net production amount Pn of plant biomass. Then, based on the calculated net production amount Pn, the seawater pump 13 is controlled to adjust the amount of seawater intake. The method for calculating the net production amount Pn of plant biomass and the method for controlling the amount of seawater intake are described in detail below.

まず、植物系バイオマスの純生産量Pnは、下記(式1)より算出する。

Pn=(12L+12D)-0TIME…(式1)

Pn:植物系バイオマスの純生産量
12L+12D:12時間明条件下における溶存酸素濃度測定値+12時間暗条件下における溶存酸素濃度測定値
0TIME:初期の溶存酸素濃度測定値
First, the net production amount Pn of plant biomass is calculated by the following formula (1).

Pn=(12L+12D)-0TIME...(Formula 1)

Pn: Net production of plant biomass 12L+12D: Dissolved oxygen concentration measured under 12 hours of light + dissolved oxygen concentration measured under 12 hours of dark 0TIME: Initial dissolved oxygen concentration measured

12L+12Dは、ろ過処理工程時に12時間明条件下にある下水放流域内で測定された溶存酸素濃度の測定値と12時間暗条件下にある下水放流域内で測定された溶存酸素濃度の測定値を足し合わせた値である。また、0TIMEは、12L+12D条件下における下水放流域内の溶存酸素濃度の測定を開始する前に、下水放流域内で測定された初期の溶存酸素濃度を示す。算出された12L+12Dの値から初期の溶存酸素濃度(0TIME)を差し引くことによって、下水放流域内で生息する植物系バイオマスの1日当たりの純生産量Pnを算出できる。 12L+12D is the sum of the dissolved oxygen concentration measured in the sewage discharge area under 12 hours of light conditions during the filtration process and the dissolved oxygen concentration measured in the sewage discharge area under 12 hours of dark conditions. 0TIME indicates the initial dissolved oxygen concentration measured in the sewage discharge area before starting to measure the dissolved oxygen concentration in the sewage discharge area under 12L+12D conditions. By subtracting the initial dissolved oxygen concentration (0TIME) from the calculated 12L+12D value, the net daily production Pn of plant biomass living in the sewage discharge area can be calculated.

続いて、海水の取水量制御方法を詳述する。予め所定の幅を持たせた植物系バイオマスの純生産量の基準値Pn0を設定しておく。そして、上述した方法で算出された純生産量Pnを予め設定した基準値Pn0と比較判断し、算出値Pnが基準値Pn0より高い場合は、海水ポンプ13の回転数を段階的に減少させて取水量を減らす。一方、算出値Pnが基準値Pn0より低い場合は、海水ポンプ13の回転数を段階的に増加させて取水量を増やす。算出値Pnが基準値Pn0の範囲内に収まるまで上記制御を繰り返す。 Next, a method for controlling the amount of seawater intake will be described in detail. A reference value Pn0 for the net production amount of plant biomass with a predetermined range is set in advance. The net production amount Pn calculated by the above-mentioned method is then compared with the preset reference value Pn0, and if the calculated value Pn is higher than the reference value Pn0, the rotation speed of the seawater pump 13 is gradually decreased to reduce the amount of water intake. On the other hand, if the calculated value Pn is lower than the reference value Pn0, the rotation speed of the seawater pump 13 is gradually increased to increase the amount of water intake. The above control is repeated until the calculated value Pn falls within the range of the reference value Pn0.

算出値Pnが基準値Pn0の範囲内にある場合は、海水ポンプ13の回転数を維持した状態で運転を継続する。なお、制御はPID制御を用いて、算出値Pnが基準値Pn0の範囲内に収まるように、事前に定めた調整量αを段階的に増加もしくは減少させる。 If the calculated value Pn is within the range of the reference value Pn0, the seawater pump 13 continues to operate while maintaining its rotation speed. Note that the control uses PID control to gradually increase or decrease a predetermined adjustment amount α so that the calculated value Pn falls within the range of the reference value Pn0.

このように、下水放流域内の海水中に含まれる植物系バイオマスの純生産量Pnをもとに海水の取水量を調整することで、常時一定量の植物系バイオマスを餌料生成装置1に供給できる。餌料生成装置1を構成するろ過装置2に一定量の植物系バイオマスを含む海水を連続的に供給し、ろ過処理することで常時一定量の植物系バイオマスを得ることができる。得られた植物系バイオマスはろ材層9に堆積し、後述する逆洗浄によって剥離されて貝類養殖域に供給されるため、貝類に餌料を安定的に供給できる。 In this way, by adjusting the amount of seawater intake based on the net production amount Pn of plant biomass contained in the seawater in the sewage discharge area, a constant amount of plant biomass can be constantly supplied to the feed production device 1. By continuously supplying seawater containing a constant amount of plant biomass to the filtration device 2 that constitutes the feed production device 1 and filtering it, a constant amount of plant biomass can be constantly obtained. The obtained plant biomass is deposited on the filter layer 9, peeled off by backwashing, which will be described later, and supplied to the shellfish cultivation area, allowing a stable supply of feed to the shellfish.

加えて、後述する洗浄工程時にろ過装置2にて常時一定量の固形物(植物系バイオマス)を洗浄回収することで、ろ過効率が低下しないため、長時間にわたってろ過処理を継続できる。これにより、一定量の処理液が海藻類養殖槽内に供給され続けるため、海藻類に餌料を安定的に供給できる。 In addition, by constantly cleaning and recovering a constant amount of solid matter (plant biomass) in the filtration device 2 during the cleaning process described below, the filtration efficiency does not decrease, and the filtration process can be continued for a long period of time. This allows a constant amount of treatment liquid to be continuously supplied to the seaweed cultivation tank, allowing a stable supply of food to the seaweed.

本実施形態では、下水放流域に含まれる植物系バイオマス量を上述した式を用いて算出したが、植物系バイオマス量を把握するために、公知のクロロフィル蛍光センサを用いてクロロフィル蛍光強度の測定値と予め定めた基準値を比較判断して制御を行っても、公知の画像検出装置を用いて撮像した画像データをもとに制御を行ってもよい。クロロフィル蛍光センサ及び画像検出装置を併用してもよい。なお、クロロフィル蛍光強度及び撮像画像は、下水放流域からろ過装置2の間の任意の箇所で測定する。 In this embodiment, the amount of plant biomass contained in the sewage discharge area was calculated using the above formula, but to grasp the amount of plant biomass, control may be performed by comparing the measured value of chlorophyll fluorescence intensity with a predetermined reference value using a known chlorophyll fluorescence sensor, or control may be performed based on image data captured using a known image detection device. The chlorophyll fluorescence sensor and the image detection device may be used together. The chlorophyll fluorescence intensity and captured image are measured at any point between the sewage discharge area and the filtration device 2.

また、純生産量Pnを一定量とするために、下水放流域における海水の取水量を制御したが、水処理施設から放流される下水放流水量を制御してもよい。下水放流水には、植物系バイオマスの餌となる窒素やリン等の栄養塩類が含まれているため、下水放流水量を制御することで植物系バイオマスの純生産量を調整可能である。 In addition, to maintain a constant net production volume Pn, the amount of seawater taken from the sewage discharge area was controlled, but the amount of sewage effluent discharged from the water treatment facility may also be controlled. Since sewage effluent contains nutrients such as nitrogen and phosphorus that serve as food for plant biomass, the net production volume of plant biomass can be adjusted by controlling the amount of sewage effluent.

さらに、本実施形態では、ろ過処理工程時に連続的に測定された溶存酸素濃度を用いたリアルタイム制御としたが、連続する2つの測定値を所定間隔ごとに把握し、2つの測定値を用いて純生産量Pnをそれぞれ算出し、算出した純生産量Pnを用いて総生産量Pgと呼吸量Rを算出して、純生産量Pnが増加傾向にあるか、減少傾向にあるか、を予測する制御方法を用いてもよい。増減の予測制御方法を以下に詳述する。 Furthermore, in this embodiment, real-time control is performed using the dissolved oxygen concentration continuously measured during the filtration process, but a control method may also be used in which two consecutive measured values are obtained at a predetermined interval, the two measured values are used to calculate the net production volume Pn, and the calculated net production volume Pn is used to calculate the total production volume Pg and the respiration volume R, and whether the net production volume Pn is on an increasing or decreasing trend is predicted. The increase/decrease prediction control method is described in detail below.

まず、連続する2つの溶存酸素濃度の測定値を把握するために、所定の測定時間Tn及びその直後Tn+1における溶存酸素濃度を測定する。そして、各測定値を用いて上記(式1)より純生産量Pn及びPn+1をそれぞれ算出する。 First, to obtain two consecutive dissolved oxygen concentration measurements, the dissolved oxygen concentration is measured at a given measurement time Tn and immediately thereafter at Tn+1. Then, using each measurement value, the net production volumes Pn and Pn+1 are calculated using the above formula (1).

続いて、下記(式2)より、総生産量Pgn及び総生産量Pgn+1を算出する。ここで、各総生産量Pgを算出するために下記(式3)より呼吸量Rn及びRn+1を算出しておく。なお、(式2)は純生産量を算出する下記(式4)を移行した式である。

Pg=Pn+R…(式2)
R=0TIME-24D…(式3)
Pn=Pg-R…(式4)

Pg:植物系バイオマスの総生産量
Pn:(式1)より算出した植物系バイオマスの純生産量
R:植物系バイオマスの呼吸量
0TIME:初期の溶存酸素濃度測定値
24D:24時間暗条件下における溶存酸素濃度測定値
Next, the total production Pgn and the total production Pgn+1 are calculated from the following (Equation 2). Here, in order to calculate each total production Pg, the respiration rates Rn and Rn+1 are calculated from the following (Equation 3). Note that (Equation 2) is a formula derived from the following (Equation 4) for calculating the net production.

Pg=Pn+R...(Formula 2)
R=0TIME-24D...(Formula 3)
Pn=Pg-R...(Formula 4)

Pg: Total production of plant biomass Pn: Net production of plant biomass calculated from (Equation 1) R: Respiration rate of plant biomass 0TIME: Initial dissolved oxygen concentration measurement value 24D: Dissolved oxygen concentration measurement value under dark conditions for 24 hours

呼吸量Rn及びRn+1は、下水放流域内の初期の溶存酸素濃度の測定値から24時間暗条件下における溶存酸素濃度の測定値を差し引いたものである。初期の溶存酸素濃度から測定した溶存酸素濃度を差し引くことで、植物系バイオマスの呼吸量を把握できる。呼吸量Rn及びRn+1を算出した後、これらの値および上記(式1)にて算出された純生産量Pn及びPn+1を用いて、総生産量Pg及びPg+1を算出する。各総生産量Pgは、純生産量の算出値Pnに呼吸量Rを足し合わせて求める。 The respiration rates Rn and Rn+1 are calculated by subtracting the measured dissolved oxygen concentration under 24-hour dark conditions from the initial dissolved oxygen concentration measured in the sewage discharge area. The respiration rate of the plant biomass can be determined by subtracting the measured dissolved oxygen concentration from the initial dissolved oxygen concentration. After calculating the respiration rates Rn and Rn+1, these values and the net production rates Pn and Pn+1 calculated above (Equation 1) are used to calculate the total production rates Pg and Pg+1. Each total production rate Pg is calculated by adding the respiration rate R to the calculated net production rate Pn.

上記(式1~3)から各測定時間における総生産量Pgn、Pgn+1と呼吸量Rn、Rn+1を算出し、算出された総生産量PgnとPgn+1を比較する。さらに、時間Tnにおける総生産量Pgnに対する呼吸量Rnの割合と時間Tn+1における総生産量Pgnに対する呼吸量Rnの割合を比較する。 The total production volumes Pgn, Pgn+1 and respiration volumes Rn, Rn+1 at each measurement time are calculated from the above (Equations 1-3), and the calculated total production volumes Pgn and Pgn+1 are compared. Furthermore, the ratio of respiration volume Rn to total production volume Pgn at time Tn is compared with the ratio of respiration volume Rn to total production volume Pgn at time Tn+1.

下記(式5)に示すように、例えば、総生産量Pgn+1が総生産量Pgnより大きい結果が得られた場合、時間Tn+1では、下水放流域内では植物系バイオマスの光合成が活発に行われており、光合成によって植物系バイオマスが大量に増殖していることがわかる。また、下記(式6)に示すように、総生産量Pgn+1に対する呼吸量Rn+1の割合が総生産量Pgnに対する呼吸量Rnの割合より大きい結果が得られた場合、時間Tn+1では、植物系バイオマスが光合成を活発に行っている一方で呼吸割合が高いことから、光合成で得られたエネルギーを大量に消費していることがわかる。

Pgn<Pgn+1…(式5)
Rn/Pgn<Rn+1/Pgn+1…(式6)
As shown in the following (Formula 5), for example, if the total production Pgn+1 is greater than the total production Pgn, it is understood that at time Tn+1, photosynthesis of the plant biomass is actively taking place in the sewage discharge area, and the plant biomass is growing in large quantities through photosynthesis. Also, as shown in the following (Formula 6), if the ratio of the respiration rate Rn+1 to the total production Pgn+1 is greater than the ratio of the respiration rate Rn to the total production Pgn, it is understood that at time Tn+1, the plant biomass is actively photosynthesizing, but the respiration rate is high, so that a large amount of the energy obtained by photosynthesis is being consumed.

Pgn<Pgn+1...(Formula 5)
Rn/Pgn<Rn+1/Pgn+1...(Formula 6)

上記(式5、6)より、総生産量Pg及び総生産量Pgに占める呼吸量Rが多い場合、植物系バイオマスのエネルギー消費量が大きいことから、総生産量から呼吸量を差し引いて算出される植物系バイオマスの純生産量Pnは、減少傾向に転じると予測される。一方、総生産量Pg及び総生産量Pgに占める呼吸量Rが時間Tn+1より小さい時間Tnは、植物系バイオマス量が少なく、エネルギー消費量も小さいことから植物系バイオマスの純生産量Pnは増加傾向に転じると予測される。 From the above (Equations 5 and 6), when the total production Pg and the respiration rate R as a percentage of the total production Pg are large, the energy consumption of the plant biomass is large, so the net production Pn of the plant biomass calculated by subtracting the respiration rate from the total production is predicted to tend to decrease. On the other hand, at a time Tn when the total production Pg and the respiration rate R as a percentage of the total production Pg are smaller than time Tn+1, the amount of plant biomass is small and the energy consumption is also small, so the net production Pn of the plant biomass is predicted to tend to increase.

このように、所定時刻Tn及びTn+1における純生産量Pn、Pn+1が増加傾向にあるか、減少傾向にあるか予測することで、下水放流域内の植物系バイオマスの純生産量の状態を把握できる。そして予測結果より、増加傾向にある場合は、海水ポンプ13の回転数を段階的に減少させて取水量を減らし、減少傾向にある場合は海水ポンプ13の回転数を段階的に増加させて取水量を増やすことで、一定量の植物系バイオマスをろ過装置2に供給できる。 In this way, by predicting whether the net production volumes Pn, Pn+1 at specific times Tn and Tn+1 are increasing or decreasing, the state of the net production volume of plant biomass in the sewage discharge area can be grasped. If the prediction results show an increasing trend, the speed of the seawater pump 13 is gradually decreased to reduce the amount of water taken in, and if the prediction shows a decreasing trend, the speed of the seawater pump 13 is gradually increased to increase the amount of water taken in, thereby supplying a constant amount of plant biomass to the filtration device 2.

<ろ材洗浄工程>
ろ材洗浄工程では、ろ過槽7内に充填されたろ材層9を洗浄する。ろ材層9の下流側から洗浄液を供給してろ材層9を通水させた後、上流側より排出させる。この逆洗浄によってろ材層9で捕捉された植物系バイオマスが剥離する。剥離した植物系バイオマスは、ろ材層9上流から排出される洗浄排液(ろ材層9通過後の海水)とともに、給餌部4Bを介して貝類養殖域へ供給される。
<Filter media cleaning process>
In the filter media washing step, the filter media layer 9 filled in the filtration tank 7 is washed. A washing liquid is supplied from the downstream side of the filter media layer 9 to pass the water through the filter media layer 9, and then discharged from the upstream side. This backwashing peels off the plant biomass captured by the filter media layer 9. The peeled plant biomass is supplied to the shellfish cultivation area via the feeding section 4B together with the washing wastewater (seawater that has passed through the filter media layer 9) discharged from the upstream of the filter media layer 9.

ろ材洗浄工程は、例えば、ろ過処理時にろ材層9で捕捉された懸濁物質による目詰まりによりろ過圧力が上昇した場合、または、累積稼働時間が所定時間や所定時刻に達した場合、または、処理液が所定の基準に達しなくなった場合に行う。ろ材洗浄時には、弁V1及び弁V2を閉とし、洗浄液供給管17に介装した弁V4を開放する。 The filter media cleaning process is performed, for example, when the filtration pressure increases due to clogging caused by suspended matter captured in the filter media layer 9 during the filtration process, when the cumulative operating time reaches a specified time or time, or when the treatment liquid no longer meets a specified standard. When cleaning the filter media, valves V1 and V2 are closed, and valve V4 installed in the cleaning liquid supply pipe 17 is opened.

洗浄は、海水を用いて行うため、圧縮空気供給ラインを洗浄流体供給管5の下方に追加した場合には、撹拌洗浄時と同時に洗浄流体供給管5から供給された海水の泡沫分離が行われる。撹拌洗浄によって植物系バイオマスをろ材から剥離しつつ、植物系バイオマスを含む安定泡沫を給餌部4Bから貝類養殖域へ供給できるため、餌料を効率よく生成できる。 Since the cleaning is performed using seawater, if a compressed air supply line is added below the cleaning fluid supply pipe 5, foam separation of the seawater supplied from the cleaning fluid supply pipe 5 is performed simultaneously with the stirring and cleaning. The stirring and cleaning peels the plant biomass off the filter medium, while a stable foam containing the plant biomass can be supplied from the feeding section 4B to the shellfish cultivation area, allowing for efficient production of feed.

本実施形態では、海苔及び牡蠣を列挙したが、栄養塩類及び植物系バイオマスを餌料とするその他の海洋生物に適用可能である。 In this embodiment, seaweed and oysters are listed, but the invention can be applied to other marine organisms that feed on nutrients and plant biomass.

本発明は、以上に詳述した実施形態に限られるものではない。本発明の趣旨を逸脱しない範囲で適宜変形実施可能である。 The present invention is not limited to the embodiment described above. Modifications can be made as appropriate without departing from the spirit of the present invention.

本発明は、常時一定濃度の植物系バイオマスを含む海水を餌料生成装置に供給可能であり、複数の海洋生物の餌料を安定的に得られるため、複数の海洋生物の養殖を行う上で有用な技術である。また、餌料生成装置を所定に海域に設置するだけで本技術を実施できるため、あらゆる海域で使用することができる。 The present invention is capable of constantly supplying seawater containing a constant concentration of plant biomass to a feed production device, and is therefore a useful technology for cultivating multiple marine organisms, as it can steadily obtain feed for multiple marine organisms. In addition, the technology can be implemented simply by installing the feed production device in a designated sea area, and therefore can be used in any sea area.

2 ろ過装置
13 海水ポンプ
Pn0 植物系バイオマスの純生産量の基準値
Pn 植物系バイオマスの純生産量の測定値
2 Filtration device 13 Seawater pump Pn0 Reference value of net production of plant biomass Pn Measured value of net production of plant biomass

Claims (4)

水処理施設で処理された下水放流水を放流した下水放流域から海水を取水してろ過処理し、ろ過処理後の処理液を海藻類養殖域に給餌するとともに、ろ材逆洗浄時に剥離した懸濁物質を洗浄排液とともに貝類養殖域に給餌する海洋生物の餌料給餌方法において、
予め幅を持たせたバイオマス量の基準値(Pn0)を設定し、
ろ過処理工程時に下水放流域から取水する海水に含まれるバイオマス量を測定し、
測定値(Pn)が基準値(Pn0)より高い場合は、海水ポンプ(13)の回転数を段階的に減少させるとともに、
測定値(Pn)が基準値(Pn0)より低い場合は、海水ポンプ(13)の回転数を段階的に増加させ、
バイオマス量を基準値(Pn0)の範囲内に制御する
ことを特徴とする餌料生成装置に供給する海水の取水量制御方法。
A method for feeding marine organisms, comprising the steps of: taking seawater from a sewage discharge area into which sewage discharge water treated at a water treatment facility is discharged, filtering the filtered liquid, feeding the treated liquid to a seaweed culture area, and feeding suspended matter detached during backwashing of a filter medium together with the washing effluent to a shellfish culture area,
A reference value (Pn0) of the amount of biomass having a certain range is set in advance,
The amount of biomass contained in seawater taken from the sewage discharge area during the filtration process is measured,
If the measured value (Pn) is higher than the reference value (Pn0), the rotational speed of the seawater pump (13) is gradually reduced,
If the measured value (Pn) is lower than the reference value (Pn0), the rotation speed of the seawater pump (13) is increased stepwise.
A method for controlling the amount of seawater intake supplied to a feed production apparatus, comprising controlling the amount of biomass within a range of a reference value (Pn0).
前記バイオマス量は、ろ過処理工程時に測定された下水放流域の溶存酸素濃度を用いて下記(式1)より算出される植物系バイオマスの純生産量である
ことを特徴とする請求項1に記載の餌料生成装置に供給する海水の取水量制御方法。
Pn=(12L+12D)-0TIME・・・(式1)
Pn:植物系バイオマスの純生産量
12L+12D:12時間明条件下における溶存酸素濃度測定値+12時間暗条件下における溶存酸素濃度測定値
0TIME:初期の溶存酸素濃度測定値
A method for controlling the amount of seawater intake supplied to a feed production device as described in claim 1, characterized in that the amount of biomass is the net production amount of plant biomass calculated from the following (Equation 1) using the dissolved oxygen concentration in the sewage discharge area measured during the filtration treatment process.
Pn=(12L+12D)-0TIME...(Formula 1)
Pn: Net production of plant biomass 12L+12D: Dissolved oxygen concentration measured under 12 hours of light + dissolved oxygen concentration measured under 12 hours of dark 0TIME: Initial dissolved oxygen concentration measured
前記バイオマス量は、ろ過処理工程時に測定されたクロロフィル蛍光強度または撮像した画像のうち少なくとも一方の測定データから算出される植物系バイオマス量である
ことを特徴とする請求項1に記載の餌料生成装置に供給する海水の取水量制御方法。
A method for controlling the amount of seawater intake supplied to a feed production device as described in claim 1, characterized in that the biomass amount is a plant biomass amount calculated from at least one of measurement data of chlorophyll fluorescence intensity measured during a filtration treatment process or an image captured.
前記下水放流域から取水した海水を一時的に貯留する貯留槽を設置し、海水を貯留槽からろ過装置(2)に供給する
ことを特徴とする請求項1から請求項3までのいずれか一項に記載の餌料生成装置に供給する海水の取水量制御方法。
A method for controlling the amount of seawater taken in and supplied to a feed production apparatus described in any one of claims 1 to 3, characterized in that a storage tank is provided for temporarily storing the seawater taken in from the sewage discharge area, and the seawater is supplied from the storage tank to a filtration apparatus (2).
JP2023002206A 2023-01-11 2023-01-11 Method for controlling the amount of seawater intake supplied to a feed production device Pending JP2024098614A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023002206A JP2024098614A (en) 2023-01-11 2023-01-11 Method for controlling the amount of seawater intake supplied to a feed production device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2023002206A JP2024098614A (en) 2023-01-11 2023-01-11 Method for controlling the amount of seawater intake supplied to a feed production device

Publications (1)

Publication Number Publication Date
JP2024098614A true JP2024098614A (en) 2024-07-24

Family

ID=91957441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023002206A Pending JP2024098614A (en) 2023-01-11 2023-01-11 Method for controlling the amount of seawater intake supplied to a feed production device

Country Status (1)

Country Link
JP (1) JP2024098614A (en)

Similar Documents

Publication Publication Date Title
US5778823A (en) Method of raising fish by use of algal turf
US6851387B2 (en) Aquaculture method and system for producing aquatic species
CN107251830B (en) Circulating aquaculture process and system
US5097795A (en) Water purification system and apparatus
KR102242705B1 (en) Recirculating aquaculture system use of Biofloc Technology
US6615767B1 (en) Aquaculture method and system for producing aquatic species
EP0428583A4 (en) Water purification system and apparatus
US20150230439A1 (en) Aquaponics Systems, Apparatus, and Methods
WO2013132481A1 (en) Aquaculture system
EP0936876A1 (en) Animal feedstocks comprising harvested algal turf
US5692455A (en) Fluidized bed production of oysters and other filter feeding bivalve mollusks using shrimp pond water
MXPA03011026A (en) Decentralized oxygen supply system for aquaculture.
KR101934267B1 (en) Internal TSS(Total Suspended Solids) Removal Filter for Biofloc Technology System
CN210726401U (en) Aquaculture intelligent monitoring system
JP2009060830A (en) Circulating aquarium and method for breeding fish and shellfish using the same
JP2016208890A (en) Abalone culturing method and system for same
JP6860764B2 (en) Aquaculture method and aquaculture equipment
CN110301393A (en) A kind of feeding shrimp system of the recirculated water of SBR water process
JP2024098614A (en) Method for controlling the amount of seawater intake supplied to a feed production device
TW201529843A (en) System for mass cultivation of microorganisms and products therefrom
WO2010017172A2 (en) Marine aquaculture system
CN105613433B (en) Freshwater rotifer breeding method and system
JP6973832B1 (en) Aquatic animal farming equipment and farming methods
CN212813627U (en) Multilayer is bred in segmentation and is fed environmental protection aquaculture case
JP2024073689A (en) Feed generation device for marine organism

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20241227