JP2024078333A - Supply method of copper smelting raw material - Google Patents

Supply method of copper smelting raw material Download PDF

Info

Publication number
JP2024078333A
JP2024078333A JP2022190831A JP2022190831A JP2024078333A JP 2024078333 A JP2024078333 A JP 2024078333A JP 2022190831 A JP2022190831 A JP 2022190831A JP 2022190831 A JP2022190831 A JP 2022190831A JP 2024078333 A JP2024078333 A JP 2024078333A
Authority
JP
Japan
Prior art keywords
raw materials
copper
bin
copper concentrate
flash
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022190831A
Other languages
Japanese (ja)
Inventor
優貴 本村
Yuki Motomura
勝弘 森
Katsuhiro Mori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2022190831A priority Critical patent/JP2024078333A/en
Publication of JP2024078333A publication Critical patent/JP2024078333A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for supplying copper smelting raw materials capable of stably operating by suppressing thermal load fluctuation of a self-fluxing furnace due to charging of miscellaneous raw materials.
SOLUTION: A method of supplying copper concentrate, silicate cooling material, and miscellaneous raw materials as copper smelting raw materials to a self-melting furnace 6, of the two bins 1 and 2 provided above a belt conveyor 3 running toward the self-melting furnace 6, from the first bin 1, the copper concentrate is cut out, and from the second bin 2, the silicate-containing cold charge and the miscellaneous raw materials are cut out, and based on the calorific value at the time of combustion in the self-melting furnace 6 of the copper concentrate cut from the first bin 1, a cut out amount from the second bin 2 is controlled.
SELECTED DRAWING: Figure 2
COPYRIGHT: (C)2024,JPO&INPIT

Description

本発明は、銅精鉱、冷材及び雑原料を含む銅製錬原料の供給方法に関する。 The present invention relates to a method for supplying copper smelting raw materials, including copper concentrate, cold material, and miscellaneous raw materials.

乾式銅製錬では、主として黄銅鉱からなる硫化鉱に対して浮遊選鉱などの前処理を施すことにより銅品位30%程度の銅精鉱を生成した後、主として珪石からなるフラックス(溶剤)及び自熔炉内の熔体の温度を下げる役割を担う冷材と共にこの銅精鉱を自熔炉に装入し、これにより生じる銅精鉱中の硫黄分の酸化反応によりスラグを生成させ、これを比重差で分離することで銅品位60~65%程度のマットを生成している。このマットを後段の転炉及び精製炉で更に濃縮することで銅品位99.8%程度の精製粗銅を生成した後、アノードの形態に鋳造して電解精製することにより、銅品位99.99%の電気銅が製造される。 In dry copper smelting, sulfide ore, mainly made of chalcopyrite, is subjected to pretreatment such as flotation to produce copper concentrate with a copper content of about 30%. This copper concentrate is then charged into a flash smelting furnace together with a flux (solvent) mainly made of silica and a cooling material that lowers the temperature of the molten metal in the flash smelting furnace. The resulting oxidation reaction of the sulfur in the copper concentrate produces slag, which is then separated based on its specific gravity to produce matte with a copper content of about 60-65%. This matte is then further concentrated in a converter and refining furnace in the subsequent stages to produce refined crude copper with a copper content of about 99.8%, which is then cast into the form of an anode and electrolytically refined to produce electrolytic copper with a copper content of 99.99%.

上記の自熔炉では、銅精鉱に含まれる硫黄分に由来する二酸化硫黄を多く含む高温の排ガスが発生するので、廃熱ボイラーにこの排ガスを導入して熱回収した後、硫酸工場において硫酸の原料として処理している。この硫酸工場内では、上記自熔炉から排出される排ガスに含まれるダスト分を除去する設備や、精製系プロセスで副生する廃酸を処理する設備において、不純物が濃縮した泥状の澱物が発生する。また、銅製錬工場内でも例えば上記の電解精製で使用した電解液を浄液する設備から不純物の濃縮した泥状の澱物や粒状物が発生する。 The flash smelting furnace generates high-temperature exhaust gas containing a large amount of sulfur dioxide derived from the sulfur content in the copper concentrate. This exhaust gas is introduced into a waste heat boiler to recover heat, and then processed as a raw material for sulfuric acid in a sulfuric acid plant. In this sulfuric acid plant, muddy sediment containing concentrated impurities is generated in equipment that removes dust contained in the exhaust gas discharged from the flash smelting furnace, and in equipment that treats waste acid produced as a by-product in the refining process. In copper smelting plants, muddy sediment and granular material containing concentrated impurities are also generated, for example, from equipment that purifies the electrolyte used in the electrolytic refining.

上記のように銅製錬工場や硫酸工場で発生する澱物や粒状物は一般的に銅等の有価金属を含んでいるので、通常はこれら澱物を回収して繰り返し物として上記銅精鉱と共に自熔炉に装入している。また、廃棄された携帯電話やパソコン等から回収した廃電子基板に代表されるいわゆる都市鉱山を処理することで回収される有価金属を含んだスラッジからなる金銀滓、銅箔や鋳物メーカーで発生する銅を含んだスラッジからなる銅滓などのリサイクル原料も、二次原料として上記自熔炉で処理している。これら繰り返し物や二次原料はまとめて雑原料又は雑物と称されており、組成のみならず、泥状、湿潤ケーキ状、粒状、又はフレーク状などの形態、粒径(大きさ)、含水率、反応熱量等の性状が銅精鉱と比較して大きくばらついているため、これら雑原料を自熔炉に装入したときに製錬炉の操業が不安定になることがあった。 As mentioned above, the sediments and granular materials generated in copper smelting plants and sulfuric acid plants generally contain valuable metals such as copper, so these sediments are usually collected and charged into the flash furnace as recycle materials together with the copper concentrate. In addition, recycled materials such as gold and silver slag, which is a sludge containing valuable metals recovered by processing so-called urban mines, such as waste electronic circuit boards recovered from discarded mobile phones and personal computers, and copper slag, which is a sludge containing copper generated by copper foil and casting manufacturers, are also processed in the flash furnace as secondary materials. These recycle materials and secondary materials are collectively called miscellaneous materials or miscellaneous materials, and not only the composition but also the form (mud, wet cake, granular, or flake shape, etc.), particle size (size), moisture content, reaction heat, and other properties vary greatly compared to copper concentrate, so when these miscellaneous materials are charged into the flash furnace, the operation of the smelting furnace can become unstable.

そこで、自熔炉への装入前に銅精鉱と雑原料とをできるだけ均一に混合する技術が提案されている。例えば特許文献1には、銅精鉱と雑原料との混合物の性状がほぼ均一になるように、複数銘柄の銅精鉱を調合する調合設備に向けてベルトコンベアによって搬送中の各銘柄の銅精鉱の上に、雑原料を定量的に切り出して添加する技術が提案されている。 Therefore, a technology has been proposed to mix copper concentrate and miscellaneous raw materials as uniformly as possible before charging into a flash smelting furnace. For example, Patent Document 1 proposes a technology in which miscellaneous raw materials are quantitatively cut and added onto each brand of copper concentrate being transported by a conveyer belt to a blending facility that blends multiple brands of copper concentrate, so that the properties of the mixture of copper concentrate and miscellaneous raw materials are approximately uniform.

特開平09-087760号公報Japanese Patent Application Laid-Open No. 09-087760

前述したように、銅精鉱は硫黄分を含むため、その燃焼により発熱反応が生じる。一方、雑原料に含まれる繰り返し物は、CaSO(HO)、Fe(OH)、Ni(OH)などのように大半が硫酸塩や水酸化物であるため、自熔炉内で吸熱反応を起こす。また、銅滓や金銀滓などの二次原料も自熔炉内で吸熱するものが大半である。そのため、特許文献1の技術を採用することにより、銅精鉱と雑原料とをある程度均一に混合することはできるものの、例えば銅精鉱に添加する雑原料のロットが切り替わったり、組成が大きく変動したりすると自熔炉内の操業が不安定になることがあった。すなわち、銅精鉱と共に自熔炉に装入する雑原料中の吸熱反応を生じさせる物質の含有率が少なくなると発熱量が増大し、逆に雑原料中の吸熱反応を生じさせる物質の含有率が多くなると発熱量が減少する。 As mentioned above, copper concentrate contains sulfur, so its combustion causes an exothermic reaction. On the other hand, most of the repeating materials contained in the miscellaneous raw materials are sulfates or hydroxides, such as CaSO 4 (H 2 O) 2 , Fe(OH) 3 , and Ni(OH) 2 , and therefore cause endothermic reactions in the flash smelting furnace. In addition, most secondary raw materials, such as copper slag and gold and silver slag, also endotherm in the flash smelting furnace. Therefore, although it is possible to mix copper concentrate and miscellaneous raw materials to a certain degree uniformly by adopting the technology of Patent Document 1, for example, when the lot of the miscellaneous raw materials added to the copper concentrate is changed or the composition changes significantly, the operation in the flash smelting furnace may become unstable. That is, when the content of the substance that causes an endothermic reaction in the miscellaneous raw materials charged into the flash smelting furnace together with the copper concentrate decreases, the amount of heat generated increases, and conversely, when the content of the substance that causes an endothermic reaction in the miscellaneous raw materials increases, the amount of heat generated decreases.

このように、雑原料に含まれる吸熱反応を生じる物質の含有率の変動に伴って熱負荷が大きく変動するので自熔炉での操業が不安定になり、自熔炉から抜き出したスラグを流水により砂状に破砕することで得られる水砕スラグ中の銅品位が所望の品位よりも高くなる問題を生じることがあった。本発明は上記の自熔炉が抱える問題点に鑑みてなされたものであり、雑原料の装入に起因する自熔炉の熱負荷変動を抑制して安定的に操業することが可能な銅製錬原料の供給方法を提供することを目的としている。 As described above, the heat load fluctuates greatly with the fluctuation in the content of substances that cause endothermic reactions contained in miscellaneous raw materials, which can cause unstable operation in the flash furnace, resulting in a problem that the copper grade in the granulated slag obtained by crushing the slag extracted from the flash furnace into sand-like material using running water is higher than the desired grade. The present invention was made in consideration of the problems associated with the above-mentioned flash furnace, and aims to provide a method for supplying copper smelting raw materials that can suppress fluctuations in the heat load of the flash furnace caused by the charging of miscellaneous raw materials, enabling stable operation.

上記目的を達成するため、本発明に係る銅製錬原料の供給方法は、銅製錬原料としての銅精鉱、含珪酸塩冷材、及び雑原料を自熔炉に供給する方法であって、前記自熔炉に向かって走行する搬送手段の上方に設けた少なくとも2基のビンのうち、第1のビンから前記銅精鉱を切り出すと共に第2のビンから前記含珪酸塩冷材及び前記雑原料を切り出し、前記第1のビンから切り出した銅精鉱の前記自熔炉での燃焼時の発熱量に基づいて前記第2のビンからの切り出し量を制御することを特徴とする。 In order to achieve the above object, the method for supplying copper smelting raw materials according to the present invention is a method for supplying copper concentrate, silicate-containing cooling material, and miscellaneous raw materials as copper smelting raw materials to a flash smelting furnace, and is characterized in that, of at least two bins provided above a conveying means traveling toward the flash smelting furnace, the copper concentrate is cut out from a first bin and the silicate-containing cooling material and the miscellaneous raw materials are cut out from a second bin, and the amount cut out from the second bin is controlled based on the amount of heat generated when the copper concentrate cut out from the first bin is burned in the flash smelting furnace.

本発明によれば、自熔炉の操業を安定化できるので、水砕スラグ中の銅品位を所望のレベル以下に低減することができる。 The present invention makes it possible to stabilize the operation of the flash melting furnace, thereby reducing the copper content in the granulated slag to a desired level or lower.

本発明の実施形態の銅製錬原料の供給方法のフロー図である。FIG. 1 is a flow diagram of a method for supplying copper smelting raw material according to an embodiment of the present invention. 図1のフロー図に示す2基のビンからそれぞれ切り出し量を制御しながら銅製錬原料を切り出してベルトコンベアのベルト面上に広げる様子を示すフロー図である。FIG. 2 is a flow diagram showing how copper smelting raw material is cut out from each of the two bins shown in the flow diagram of FIG. 1 while controlling the amount of the raw material to be cut out and spread out on the belt surface of a belt conveyor.

以下、本発明に係る銅製錬原料の供給方法の実施形態について詳細に説明する。この本発明の実施形態の銅製錬原料の供給方法は、銅製錬原料としての銅精鉱、含珪酸塩冷材、及び雑原料を少なくとも2基のビンからベルトコンベアに代表される搬送手段に切り出して、主として珪砂からなるフラックスと共に自熔炉に供給する方法である。具体的に説明すると、乾式銅製錬工場では、図1に示すように、複数のビン1、2から切り出された銅製錬原料をベルトコンベア3で搬送してロータリードライヤー4に装入し、ここで所定の処理条件で乾燥した後、気流搬送装置5で自熔炉6のリアクションシャフト上方に位置するサイクロン7に向けて搬送することが行われている。サイクロン7で気流から分離された銅製錬原料は、乾鉱庫8に一時的に貯められた後、自熔炉6にフラックスと共に吹き込まれて処理される。 The embodiment of the method for supplying copper smelting raw materials according to the present invention will be described in detail below. The method for supplying copper smelting raw materials according to the embodiment of the present invention is a method in which copper concentrate, silicate-containing coolant, and miscellaneous raw materials as copper smelting raw materials are cut out from at least two bins onto a conveying means such as a belt conveyor, and then supplied to a flash smelting furnace together with a flux mainly consisting of silica sand. To be more specific, in a dry copper smelting plant, as shown in FIG. 1, copper smelting raw materials cut out from multiple bins 1 and 2 are conveyed by a belt conveyor 3 and charged into a rotary dryer 4, where they are dried under predetermined processing conditions, and then conveyed by an air flow conveying device 5 to a cyclone 7 located above the reaction shaft of the flash smelting furnace 6. The copper smelting raw materials separated from the air flow by the cyclone 7 are temporarily stored in a dry ore storage 8, and then blown into the flash smelting furnace 6 together with the flux for processing.

このベルトコンベア3への複数のビン1、2からの銅製錬原料の切り出しに際して、本発明の実施形態においては下記の供給方法を採用している。すなわち、ベルトコンベア3の上方にその走行方向に沿って直列に設けられている第1のビン1及び第2のビン2のうち、ベルトコンベア3の搬送方向に関して上流側に位置する第1のビン1においては、その頂部から投入した銅精鉱のみを下部排出口から切り出してベルトコンベア3のベルト面上に広げ、第1のビンよりも該搬送方向に関して下流側に位置する第2のビン2においては、その頂部から投入した含珪酸塩冷材及び雑原料を下部排出口から切り出して上記のベルトコンベア3のベルト面上に広げた銅精鉱の上に更に広げる。なお、ベルトコンベア3の搬送方向に関して図1とは逆の順番でビンを配置(すなわち、第1のビン1を下流側に配置し、第2のビン2を上流側に配置する)しても差し支えない。 In the embodiment of the present invention, the following supply method is adopted when copper smelting raw materials are fed from the multiple bins 1 and 2 to the belt conveyor 3. That is, of the first bin 1 and the second bin 2 that are arranged in series above the belt conveyor 3 along its running direction, in the first bin 1 located upstream in the conveying direction of the belt conveyor 3, only the copper concentrate fed from the top is fed from the lower outlet and spread on the belt surface of the belt conveyor 3, and in the second bin 2 located downstream of the first bin in the conveying direction, the silicate-containing coolant and miscellaneous raw materials fed from the top are fed from the lower outlet and further spread on the copper concentrate spread on the belt surface of the belt conveyor 3. Note that the bins may be arranged in the reverse order to that in FIG. 1 with respect to the conveying direction of the belt conveyor 3 (i.e., the first bin 1 is arranged downstream and the second bin 2 is arranged upstream).

上記の第1のビン1からの銅精鉱の切り出しでは、その下部排出口の設けたロータリーフィーダー等の第1切出装置1aを用いてその切り出し量が調節される。同様に、上記の第2のビン2からの含珪酸塩冷材及び雑原料の切り出しでは、その下部排出口に設けたロータリーフィーダー等の第2切出装置2aを用いてその切り出し量が調節される。更に、第1のビン1から切り出した銅精鉱の自熔炉6での燃焼時の単位時間あたりの発熱量に基づいて第2のビン2からの上記切り出し量が制御される。これにより、自熔炉6における熱負荷変動を抑制することが可能となり、結果的に自熔炉の操業が安定するので水砕スラグ中の銅品位を所望のレベル以下に抑えることが可能になる。 When copper concentrate is cut from the first bin 1, the amount of the copper concentrate cut is adjusted using a first cut-out device 1a such as a rotary feeder provided at the lower outlet. Similarly, when silicate-containing coolant and miscellaneous raw materials are cut from the second bin 2, the amount of the copper concentrate cut is adjusted using a second cut-out device 2a such as a rotary feeder provided at the lower outlet. Furthermore, the amount of the copper concentrate cut from the second bin 2 is controlled based on the amount of heat generated per unit time during combustion in the flash smelting furnace 6 of the copper concentrate cut from the first bin 1. This makes it possible to suppress the thermal load fluctuation in the flash smelting furnace 6, and as a result, the operation of the flash smelting furnace is stabilized, making it possible to suppress the copper content in the granulated slag to a desired level or lower.

具体的に説明すると、前述したように自熔炉6内での銅精鉱の燃焼では発熱反応が生じるので、過剰な発熱による炉体への熱負荷を抑制するため、副原料として含珪酸塩冷材を自熔炉6が適温となるようにその装入量を調節しながら自熔炉6に装入している。このように、珪酸塩を含んだ物質を冷材に用いる理由は、Fe(SiO)に代表される珪酸塩は吸熱反応を生じるため、自熔炉6の冷材として良好に利用できるからである。 More specifically, as described above, an exothermic reaction occurs during the combustion of copper concentrate in the flash furnace 6, and therefore, in order to suppress the thermal load on the furnace body due to excessive heat generation, a silicate-containing coolant is charged into the flash furnace 6 as an auxiliary raw material while adjusting the amount of the coolant charged so that the flash furnace 6 is at an appropriate temperature. The reason for using a substance containing silicate as the coolant in this way is that silicates, typified by Fe2 ( SiO4 ), cause endothermic reactions and can therefore be suitably used as a coolant for the flash furnace 6.

自熔炉6には、副原料として更に雑原料を装入している。雑原料は、前述したように硫酸工場で排出される廃酸にアルカリを添加することで生成される析出物、電解精製や電解採取の際の電解液の浄液処理で生じる脱銅スライム、鋳造アノードを冷却槽で急冷する際に飛散・剥落する酸化銅などの銅滓、その他工場各所からの酸性排水にアルカリを添加することで生成される析出物などが挙げられる。これらは一般的に中和槽などの槽内の液中において小粒径の形態で生成されるものがほとんどであることから、泥状又は湿潤ケーキ状の形態を有しているため自熔炉6に装入されると吸熱反応を生じる。このため、発熱反応を生じる銅精鉱と、中和澱物からなる雑原料とを1つのビンから切り出して自熔炉6に装入すると自熔炉6の操業が不安定になることがあった。 Miscellaneous raw materials are also charged into the flash furnace 6 as auxiliary raw materials. As mentioned above, the miscellaneous raw materials include precipitates generated by adding alkali to waste acid discharged from sulfuric acid plants, copper-removed slime generated during the purification process of electrolyte during electrolytic refining and electrolytic winning, copper slag such as copper oxide that scatters and peels off when casting anodes are quenched in a cooling tank, and precipitates generated by adding alkali to acidic wastewater from various parts of the factory. These are generally mostly generated in the form of small particle size in the liquid in a tank such as a neutralization tank, and therefore have a muddy or wet cake-like form, causing an endothermic reaction when charged into the flash furnace 6. For this reason, if copper concentrate, which causes an exothermic reaction, and miscellaneous raw materials consisting of neutralized sediment are cut out from one bottle and charged into the flash furnace 6, the operation of the flash furnace 6 may become unstable.

これに対して、本発明の実施形態の銅製錬原料の供給方法では、上記のように第1のビン1からは銅精鉱のみを切り出すので、従来の熱負荷変動の要因の一つであった、銅精鉱中の吸熱反応を生じる物質の含有率の変動といった外乱をなくすことが可能になる。更に、第2のビン2からは自熔炉内で共に吸熱反応を生じる含珪酸塩冷材と雑原料とを切り出し、この第2のビン2からの切り出し量を、銅精鉱の自熔炉6での燃焼時の単位時間あたりの発熱量に基づいて制御するので、吸熱反応を生じさせる物質の切り出し量の制御を発熱反応を生じさせる物質の切り出し量の制御から独立でき、その結果、制御性を高めることができるので自熔炉の操業をより安定化させることが可能になる。 In contrast, in the copper smelting raw material supply method according to the embodiment of the present invention, only copper concentrate is excavated from the first bin 1 as described above, which makes it possible to eliminate disturbances such as fluctuations in the content of substances that cause endothermic reactions in the copper concentrate, which was one of the causes of thermal load fluctuations in the past. Furthermore, silicate-containing coolant and miscellaneous raw materials, both of which cause endothermic reactions in the flash smelting furnace, are excavated from the second bin 2, and the amount excavated from the second bin 2 is controlled based on the amount of heat generated per unit time during combustion of the copper concentrate in the flash smelting furnace 6. This makes it possible to separate the control of the amount of excavation of the substance that causes the endothermic reaction from the control of the amount of excavation of the substance that causes the exothermic reaction, which results in improved controllability and makes it possible to further stabilize the operation of the flash smelting furnace.

上記の銅精鉱が自熔炉6で燃焼される時の単位時間あたりの発熱量に基づく第2のビン2からの切り出し量の制御は、図2に示すように、単位時間あたり第1のビン1から切り出される銅精鉱の切り出し量で間接的に制御するのが好ましい。その理由は、銅精鉱の組成はほぼ安定しているので、自熔炉6での燃焼時の単位時間あたりの発熱量に代えて第1のビン1からの切り出し量を採用することで、簡易且つ安定して制御することができるからである。このように、銅精鉱の切り出し量に基づいて共に吸熱反応を生じる中和澱物と含珪酸塩冷材との切り出し量で制御することで、比較的簡素な設備構成と制御系を用いて銅精鉱による自熔炉6における発熱量を間接的に制御(相殺)することができるので、自熔炉6が吸熱反応で冷えすぎたり、逆に発熱反応で過熱したりする不安定な操業を防ぐことができる。また、雑原料及び含珪酸塩冷材のどちらか一方の在庫が偏って消費されることも防止できる。 As shown in FIG. 2, the control of the amount of copper concentrate cut from the second bin 2 based on the amount of heat generated per unit time when the copper concentrate is burned in the flash smelting furnace 6 is preferably indirectly controlled by the amount of copper concentrate cut from the first bin 1 per unit time. The reason for this is that the composition of copper concentrate is almost stable, so that simple and stable control can be achieved by adopting the amount of copper concentrate cut from the first bin 1 instead of the amount of heat generated per unit time when the copper concentrate is burned in the flash smelting furnace 6. In this way, by controlling the amount of neutralized precipitate and silicate-containing cooling material, which both cause an endothermic reaction, based on the amount of copper concentrate cut, the amount of heat generated in the flash smelting furnace 6 by the copper concentrate can be indirectly controlled (offset) using a relatively simple equipment configuration and control system, so that unstable operation in which the flash smelting furnace 6 is cooled too much by the endothermic reaction or overheated by the exothermic reaction can be prevented. In addition, uneven consumption of either the stock of miscellaneous raw materials or the stock of silicate-containing cooling material can be prevented.

上記の中和澱物は石膏を含有するものを用いるのが好ましい。また、上記含珪酸塩は酸化物を含有するものを用いるのが好ましい。銅製錬工場で得られる中和澱物は、硫酸を石灰で中和することで生成される石膏を含有しているものが多く、石膏は分解して吸熱量が大きいため、吸熱性の雑原料として切り出し量を制御することで、その吸熱能を過不足なく発揮することができる。一方、酸化物を含有する含珪酸塩は金属元素を捕集する二酸化ケイ素が少ないため、珪石の添加量の過不足を把握しやすいという効果も得られる。これらを同一箇所から切り出すことで、自熔炉6から産出されるスラグ中の組成(たとえばCaO:SiO比など)を安定させることができる。 The neutralized precipitate preferably contains gypsum. The silicate preferably contains oxide. Many of the neutralized precipitates obtained in copper smelting plants contain gypsum, which is produced by neutralizing sulfuric acid with lime. Since gypsum decomposes and absorbs a large amount of heat, the amount of gypsum cut out as a miscellaneous heat absorbing material can be controlled to exert its heat absorbing ability without excess or deficiency. On the other hand, silicate containing oxide contains less silicon dioxide that captures metal elements, so it is easy to grasp the excess or deficiency of the amount of silica stone added. By cutting them out from the same place, the composition of the slag produced from the flash smelting furnace 6 (for example, CaO: SiO2 ratio) can be stabilized.

なお、少なくとも第1のビン1及び第2のビン2からのベルトコンベアへの切り出しは、図1の設備に限定されるものではなく、第1のビン1及び第2のビン2から2基のベルトコンベアにそれぞれ切り出してもよい。この場合は、これら2基のベルトコンベアの下流側先端部からそれぞれ落下する粉粒体が同じ場所に落下(通過)するように両ベルトコンベアを配置することが必要になる。また、少なくとも第1のビン1及び第2のビン2から切り出した銅製錬原料のベルトコンベアによる搬送先は図1に示すロータリードライヤー4に限定されるものではなく、その他の乾燥設備や、あるいは複数銘柄の銅精鉱を調合する調合ビンであってもよい。 The method of discharging the copper smelting raw material from at least the first bin 1 and the second bin 2 onto the belt conveyor is not limited to the equipment shown in FIG. 1, and the copper smelting raw material may be discharged from the first bin 1 and the second bin 2 onto two belt conveyors. In this case, it is necessary to position both belt conveyors so that the powder falling from the downstream ends of the two belt conveyors falls (passes) at the same place. In addition, the destination of the copper smelting raw material discharged from at least the first bin 1 and the second bin 2 by the belt conveyor is not limited to the rotary dryer 4 shown in FIG. 1, and may be other drying equipment or a blending bin for blending multiple brands of copper concentrate.

図1に示すような乾式銅製錬設備を用いた本発明の実施例の供給方法により銅製錬原料を自熔炉6に向けて供給し、主として珪石からなるフラックスと共に自熔炉6に装入して銅製錬を行なった。具体的には、図2に示すように、第1のビン1には銅精鉱のみを投入すると共に、第2のビン2には雑原料及び含珪酸塩冷材を投入した。その際、雑原料20tと含珪酸塩冷材のうちの20tとを重機のバケットですくって落下させる方法で混合し、得られた混合物40tと上記含珪酸塩冷材の残部とを該重機のバケットで1杯:3杯の比率ですくって第2のビン2に投入した。このようにして第1のビン1から切り出してベルトコンベア3のベルト面上に広げた銅精鉱の上に、第2のビン2から混合物及び含珪酸塩冷材を切り出して広げた。上記のようにして切り出した銅製錬原料をロータリードライヤー4で乾燥処理した後、自熔炉6に装入して処理した。 Copper smelting raw materials were supplied to the flash furnace 6 by the supply method of the embodiment of the present invention using a dry copper smelting facility as shown in Figure 1, and were charged into the flash furnace 6 together with a flux mainly composed of silica to perform copper smelting. Specifically, as shown in Figure 2, only copper concentrate was charged into the first bin 1, and miscellaneous raw materials and silicate-containing cooling material were charged into the second bin 2. At that time, 20t of the miscellaneous raw materials and 20t of the silicate-containing cooling material were mixed by scooping and dropping them with a bucket of heavy equipment, and the resulting mixture 40t and the remaining part of the silicate-containing cooling material were scooped with the bucket of the heavy equipment in a ratio of 1 cup:3 cups and charged into the second bin 2. In this way, the mixture and silicate-containing cooling material were cut out from the second bin 2 and spread on the copper concentrate cut out from the first bin 1 and spread on the belt surface of the belt conveyor 3. The copper smelting raw materials cut out as described above were dried with a rotary dryer 4, and then charged into the flash furnace 6 for processing.

比較例として、雑原料20tと銅精鉱のうちの20tとを重機のバケットですくって落下させる方法で混合し、得られた混合物40tと上記の銅精鉱の残部とを該重機のバケットで1杯:3杯の比率ですくって第1のビン1に投入した。一方、第2のビン2には含珪酸塩冷材のみを入れた。このようにして、第1のビン1から切り出してベルトコンベア3のベルト面上に広げた混合物及び銅精鉱の上に、第2のビン2から切り出した含珪酸塩冷材を広げた。以降は上記実施例と同様にして自熔炉6で処理した。 As a comparative example, 20 t of miscellaneous raw materials and 20 t of copper concentrate were mixed by scooping and dropping them into a bucket of heavy machinery, and the resulting mixture of 40 t and the remaining copper concentrate were scooped into the bucket of the heavy machinery in a ratio of 1:3 and poured into the first bin 1. Meanwhile, the second bin 2 contained only silicate-containing cooling material. In this way, the silicate-containing cooling material cut out from the second bin 2 was spread on top of the mixture and copper concentrate cut out from the first bin 1 and spread on the belt surface of the belt conveyor 3. Thereafter, the mixture was treated in the flash furnace 6 in the same manner as in the above example.

自熔炉6内の熱負荷が変動すると自熔炉6内のスラグ温度が変動するので、実施例及び比較例のそれぞれ1か月の操業期間中に該スラグ温度を1日5回の頻度で測定した。その結果、実施例におけるスラグ温度の標準偏差は6.7℃、比較例におけるスラグ温度の標準偏差は8.6℃であった。この結果は、有意水準5%のF検定では有意差ありに相当することから、本発明の要件を満たす方法に沿って銅製錬原料を供給することにより、自熔炉の温度ばらつきを低減する効果が得られることが分かった。また、水砕スラグ中のCu品位を分析したところ、実施例は比較例の約95%であった。この実施例における水砕スラグ中のCu品位の約5%の減少は、実施例における銅の生産量が比較例に比べて増加したことを示している。 When the heat load in the flash furnace 6 fluctuates, the slag temperature in the flash furnace 6 fluctuates, so the slag temperature was measured five times a day during the one-month operation period of each of the example and the comparative example. As a result, the standard deviation of the slag temperature in the example was 6.7°C, and the standard deviation of the slag temperature in the comparative example was 8.6°C. This result corresponds to a significant difference in the F-test with a significance level of 5%, so it was found that the effect of reducing the temperature variation in the flash furnace can be obtained by supplying copper smelting raw materials according to the method that satisfies the requirements of the present invention. In addition, when the Cu content in the granulated slag was analyzed, it was about 95% of that in the comparative example in the example. The decrease of about 5% in the Cu content in the granulated slag in this example indicates that the copper production volume in the example was increased compared to the comparative example.

1 第1のビン
1a 第1切出装置
2 第2のビン
2a 第2切出装置
3 ベルトコンベア
4 ロータリードライヤー
5 気流搬送装置
6 自熔炉
7 サイクロン
8 乾鉱庫
Reference Signs List 1 First bin 1a First excavation device 2 Second bin 2a Second excavation device 3 Belt conveyor 4 Rotary dryer 5 Air flow conveying device 6 Flash smelting furnace 7 Cyclone 8 Dry ore storage

Claims (3)

銅製錬原料としての銅精鉱、含珪酸塩冷材、及び雑原料を自熔炉に供給する方法であって、前記自熔炉に向かって走行する搬送手段の上方に設けた少なくとも2基のビンのうち、第1のビンから前記銅精鉱を切り出すと共に第2のビンから前記含珪酸塩冷材及び前記雑原料を切り出し、前記第1のビンから切り出した銅精鉱の前記自熔炉での燃焼時の発熱量に基づいて前記第2のビンからの切り出し量を制御することを特徴とする銅製錬原料の供給方法。 A method for supplying copper concentrate, silicate-containing cooling material, and miscellaneous raw materials as copper smelting raw materials to a flash smelting furnace, comprising: cutting the copper concentrate from a first bin and cutting the silicate-containing cooling material and miscellaneous raw materials from a second bin of at least two bins provided above a conveying means traveling toward the flash smelting furnace; and controlling the amount of copper concentrate cut from the second bin based on the amount of heat generated when the copper concentrate cut from the first bin is burned in the flash smelting furnace. 前記雑原料が石膏を含有し、前記含珪酸塩冷材が酸化物であることを特徴とする、請求項1に記載の銅製錬原料の供給方法。 The method for supplying copper smelting raw materials according to claim 1, characterized in that the miscellaneous raw materials contain gypsum and the silicate-containing coolant is an oxide. 前記発熱量に基づく前記第2のビンからの切り出し量の制御が、前記第1のビンから単位時間あたり切り出される前記銅精鉱の切り出し量による間接的な制御であることを特徴とする、請求項1又は2に記載の銅製錬原料の供給方法。 The method for supplying copper smelting raw materials according to claim 1 or 2, characterized in that the control of the amount of copper concentrate discharged from the second bin based on the amount of heat generated is an indirect control based on the amount of copper concentrate discharged from the first bin per unit time.
JP2022190831A 2022-11-29 2022-11-29 Supply method of copper smelting raw material Pending JP2024078333A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022190831A JP2024078333A (en) 2022-11-29 2022-11-29 Supply method of copper smelting raw material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022190831A JP2024078333A (en) 2022-11-29 2022-11-29 Supply method of copper smelting raw material

Publications (1)

Publication Number Publication Date
JP2024078333A true JP2024078333A (en) 2024-06-10

Family

ID=91377214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022190831A Pending JP2024078333A (en) 2022-11-29 2022-11-29 Supply method of copper smelting raw material

Country Status (1)

Country Link
JP (1) JP2024078333A (en)

Similar Documents

Publication Publication Date Title
CN106399699B (en) A kind of handling process of copper-contained sludge
CN101705367B (en) Copper nickel smelting process with oxygen-enriched side-blowing bath smelting method
FI64189C (en) FRAMEWORK FOR CONTAINING CONTAINER FRAMSTAELLNING AV RAOKOPPAR UR SULFIDKOPPARMALM
CN102154555B (en) Blast furnace reduction matte smelting method and device for cleanly treating lead scraps
RU2769534C1 (en) One-stage nickel melting system and one-stage nickel melting method
JP4350711B2 (en) Industrial waste melting process
CN101851704A (en) Method and system of dry processing of converter slag in copper smelting
JP2018109223A (en) Method for smelting high arsenic copper sulfide ore
CN109652653A (en) A kind of inorganic dangerous waste system process
JP5480502B2 (en) Method and apparatus for lead smelting
RU2359045C2 (en) Processing method of lead-bearing materials
US4005856A (en) Process for continuous smelting and converting of copper concentrates
CN106011496B (en) A kind of two-region bath smelting furnace and its slicker solder refine smelting process altogether
JP2024078333A (en) Supply method of copper smelting raw material
JPS58221241A (en) Smelting method in flash smelting furnace using coke breeze
Jacobs Process description and abbreviated history of Anglo Platinum’s Waterval Smelter
CN114686695A (en) Dilution smelting process for copper smelting slag
JP7257594B1 (en) Smelting furnace and its operation method
US9745643B2 (en) Method for treating combustible material and installation
CN114381606B (en) Recycling harmless treatment method for intermediate products containing lead and zinc in copper smelting
Siegmund Modern applied technologies for primary lead smelting at the beginning of the 21st century
KR800001299B1 (en) Continuous smelting method for sulfide minerals
Galevsky et al. Melting of crude antimony in the low-tonnage production
JP2022169284A (en) Preparation method of copper refining raw material
CN115679118A (en) Method for producing metallized nickel anode plate by side-blown molten pool smelting