JP2022169284A - Preparation method of copper refining raw material - Google Patents

Preparation method of copper refining raw material Download PDF

Info

Publication number
JP2022169284A
JP2022169284A JP2021075219A JP2021075219A JP2022169284A JP 2022169284 A JP2022169284 A JP 2022169284A JP 2021075219 A JP2021075219 A JP 2021075219A JP 2021075219 A JP2021075219 A JP 2021075219A JP 2022169284 A JP2022169284 A JP 2022169284A
Authority
JP
Japan
Prior art keywords
raw material
miscellaneous
copper
raw materials
wet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021075219A
Other languages
Japanese (ja)
Inventor
優貴 本村
Yuki Motomura
勝弘 森
Katsuhiro Mori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2021075219A priority Critical patent/JP2022169284A/en
Publication of JP2022169284A publication Critical patent/JP2022169284A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

To provide a preparation method of a copper refining raw material, capable of suppressing instability of the operation of a copper refining furnace caused by drying failure of a miscellaneous raw material in a wet state.SOLUTION: A preparation method of a copper refining raw material comprising a copper concentrate and a miscellaneous raw material in a wet state includes steps of: expanding the miscellaneous raw material in a wet state in a layering state on a surface, and scattering so as to cover from above the miscellaneous raw material in a wet state, a moisture absorbent which preferably contains copper represented by flue cinder recovered from exhaust gas of a copper refining furnace, and has a particle size smaller than that of the miscellaneous raw material in a wet state; keeping for a predetermined time a state that the miscellaneous raw material and the moisture absorbent are brought into contact with each other; and mixing the moisture absorbent with the copper concentrate while disintegrating the miscellaneous raw material whose moisture percentage is lowered due to being kept.SELECTED DRAWING: Figure 1

Description

本発明は、銅精鉱と湿潤状態の雑原料とからなる銅製錬原料の調製方法に関する。 The present invention relates to a method for preparing a copper smelting raw material comprising a copper concentrate and wet miscellaneous raw materials.

乾式銅製錬では、浮遊選鉱などの前処理により銅品位を30%程度に高めた主に黄銅鉱からなる銅精鉱を原料として自溶炉などの製錬炉に装入し、ここで燃焼等の処理を施すことで銅品位98%程度の高品位の粗銅を製造している。この粗銅を鋳造して作製したアノードを電解精製することにより電気銅が製造される。上記の製錬炉では、二酸化硫黄を多く含む高温の排ガスが発生するので、この排ガスは廃熱ボイラーで熱回収された後、硫酸の原料として硫酸工場に送られる。この硫酸工場では、上記製錬炉から排出される排ガスに含まれるダスト分の除去工程や、精製系プロセスで副生する廃酸の処理工程において、不純物が濃縮した泥状の澱物が発生する。また、上記の電解精製で使用した電解液の浄液工程においても、不純物が濃縮した泥状の澱物が発生する。 In pyrometallurgical copper smelting, the copper grade is raised to about 30% by pretreatment such as flotation, and the copper concentrate is mainly composed of chalcopyrite. This process produces high-grade blister copper with a copper grade of about 98%. Electrolytic copper is produced by electrolytically refining an anode produced by casting this blister copper. The above-mentioned smelting furnace generates high-temperature exhaust gas containing a large amount of sulfur dioxide. After the heat of this exhaust gas is recovered by a waste heat boiler, it is sent to a sulfuric acid plant as a raw material for sulfuric acid. In this sulfuric acid plant, mud-like sediment in which impurities are concentrated is generated in the process of removing the dust contained in the exhaust gas discharged from the smelting furnace and in the process of treating the waste acid produced as a by-product in the refining process. . Also in the step of purifying the electrolytic solution used in the electrorefining described above, muddy sediment in which impurities are concentrated is generated.

上記の硫酸工場や電解精製において発生する泥状の澱物は銅を含んでいるので、通常はこれら澱物を回収して雑原料として上記銅精鉱と混合して製錬炉に装入している。その際、上記雑原料は組成や粒径等の性状が銅精鉱とは異なるので、単に混合して製錬炉に装入すると製錬炉の操業が不安定になることがあった。そこで、混合後の混合原料の性状がほぼ均一になるように調整しながらこれら雑原料と銅精鉱とを混合することが望ましい。 Since the muddy sediments generated in the above-mentioned sulfuric acid plants and electrolytic refining contain copper, these sediments are usually collected and mixed with the above-mentioned copper concentrate as miscellaneous raw materials and charged into a smelting furnace. ing. At that time, since the miscellaneous raw materials differ from the copper concentrate in properties such as composition and particle size, simply mixing them and charging them into the smelting furnace sometimes makes the operation of the smelting furnace unstable. Therefore, it is desirable to mix these miscellaneous raw materials with the copper concentrate while adjusting the properties of the mixed raw material after mixing to be substantially uniform.

例えば特許文献1には、原料の性状がほぼ均一になるように銅精鉱と雑原料とを混合する方法として、ベルトコンベアで搬送中の銅精鉱の上に雑原料を定量的に切り出して添加する技術が提案されている。また、特許文献2には、泥状の澱物を対象とするものではないが、複数のベルトコンベアのコンベア面上に種類の異なる固体粒子をそれぞれ展開させ、これらのベルトコンベアの各々の下流側の端部から同じ位置に向かってこれら固体粒子を落とす技術が提案されている。 For example, in Patent Document 1, as a method of mixing copper concentrate and miscellaneous raw materials so that the properties of the raw materials are almost uniform, miscellaneous raw materials are quantitatively cut out on the copper concentrate being conveyed by a belt conveyor. Techniques for adding are proposed. In addition, in Patent Document 2, although it is not intended for muddy sediments, solid particles of different types are developed on the conveyor surfaces of a plurality of belt conveyors, and the downstream side of each of these belt conveyors Techniques have been proposed to drop these solid particles from the edge of the tube toward the same location.

特開平09-087760号公報Japanese Patent Application Laid-Open No. 09-087760 特開2011-011105号公報Japanese Unexamined Patent Application Publication No. 2011-011105

上記の泥状の澱物のような湿潤原料は、時間が経過すると表面部において付着水が蒸発して硬化し、内部はこの硬化した表面部によって蒸発が妨げられるため高い水分率を保持したままの状態になる。このため、上記の湿潤原料は乾燥設備で予熱しても内部の水分を十分に蒸発させることができず、残留水分を含んだ乾燥不良の状態で乾燥設備から排出されることになる。その結果、この予熱した湿潤原料を製錬炉に装入すると、製錬炉内で該残留水分が蒸発して銅精鉱の反応を阻害したり、蒸発する水分量が経時変動したりすることで製錬炉の操業が不安定になる。更に、上記の湿潤原料は一般に質量が大きい塊状の形態を有しているため、粉粒体の形態を有する銅精鉱に対して、管内を流れる気体流を利用して搬送する方式の空気搬送設備において搬送不良が生じるおそれがある。 In wet materials such as the above muddy sediment, as time elapses, adhering water evaporates and hardens on the surface, and the hardened surface prevents evaporation, so the inside retains a high moisture content. state. For this reason, even if the wet raw material is preheated in the drying equipment, the moisture inside cannot be sufficiently evaporated, and the wet raw material is discharged from the drying equipment in an unsatisfactory state containing residual moisture. As a result, when this preheated wet raw material is charged into a smelting furnace, the residual moisture evaporates in the smelting furnace, hindering the reaction of the copper concentrate, and the amount of evaporated water fluctuates over time. The operation of the smelting furnace becomes unstable. Furthermore, since the wet raw material generally has a bulky form with a large mass, the pneumatic conveying method of conveying the copper concentrate in the form of powder or grain using a gas flow flowing in a pipe is used. There is a risk of transportation failure occurring in the facility.

上記の問題の対策として、湿潤原料に対してショベルローダーのバケットを押し付けて荷重を加えたり、該湿潤原料をバケットで掬い取って4~5m程度の高さから床面に落としたりすることで上記の硬化した殻状部分を割ることが行われている。これら対策を施すことにより銅精鉱との混合の際に水分率の高い湿潤原料の内部を分散させることができるので、気体流による空気搬送設備を用いて製錬炉内に装入することが可能になる。しかしながら、上記の作業は多大な労力を要するうえ、銅精鉱と湿潤原料との混合物の調製に2~3日程度かかっていた。また、作業の個人差によって混合後の混合物の性状に大きなばらつきが生じることがあった。本発明は上記した事情に鑑みてなされたものであり、湿潤状態の雑原料の乾燥不良に起因して製錬炉の操業が不安定になるのを抑制可能な銅製錬原料の調製方法を提供することを目的としている。 As a countermeasure for the above problem, the bucket of the shovel loader is pressed against the wet raw material to apply a load, or the wet raw material is scooped with a bucket and dropped on the floor from a height of about 4 to 5 m. Cracking the hardened shell-like part of By taking these measures, it is possible to disperse the inside of the wet raw material with a high moisture content when mixing with the copper concentrate, so it is possible to charge the raw material into the smelting furnace using air conveying equipment by gas flow. be possible. However, the above work required a lot of labor, and it took about 2 to 3 days to prepare the mixture of the copper concentrate and the wet raw material. In addition, the properties of the mixture after mixing may vary greatly due to individual differences in work. The present invention has been made in view of the above circumstances, and provides a method for preparing raw materials for copper smelting that can suppress unstable operation of a smelting furnace due to poor drying of miscellaneous raw materials in a wet state. It is intended to

本発明者らは、湿潤状態の雑原料の塊が乾燥することで形成される表面の殻状部分は塊の表面を全面的に覆うものではなく、雑原料の成分のばらつきや、日当り、温度などの貯蔵場所の条件により湿潤部分が露出している箇所があると考えた。そこで山状に積み重ねた状態で貯蔵されている湿潤状態の雑原料から、該山状部分の内部の雑原料を抜き取り、吸湿剤と混ぜ合わせてしばらく保持させた後、これを銅精鉱と混合して乾燥設備や製錬設備に装入したところ、それら設備での運転を安定化できることを見出し本発明を完成するに至った。 The inventors of the present invention found that the surface shell-shaped portion formed by drying the wet lump of miscellaneous raw materials does not cover the entire surface of the lump, and that the composition of the miscellaneous raw materials varies and the sunshine and temperature change. It was thought that there are places where wet parts are exposed due to storage conditions such as. Therefore, from the miscellaneous raw materials in a wet state stored in a mountain-like state, the miscellaneous raw materials inside the mountain-shaped portion are extracted, mixed with a moisture absorbent and held for a while, and then mixed with copper concentrate. Then, the inventors found that the operation of these facilities can be stabilized and completed the present invention.

すなわち、本発明に係る銅製錬原料の調製方法は、銅精鉱と湿潤状態の雑原料とからなる銅製錬原料の調製方法であって、該湿潤状態の雑原料を面上に層状に拡げると共に、その上から覆うように吸湿剤を散布する工程と、これら雑原料と吸湿剤とを互いに接触させた状態で所定の時間保持する工程と、該保持することで水分率が低下した雑原料を解砕しながら該吸湿剤及び銅精鉱と混合する工程とからなることを特徴とする。 That is, the method for preparing a copper smelting raw material according to the present invention is a method for preparing a copper smelting raw material comprising a copper concentrate and a wet miscellaneous raw material, wherein the wet miscellaneous raw material is spread on a surface in a layered manner and , a step of spraying a moisture absorbent so as to cover it, a step of holding the miscellaneous material and the moisture absorbent in contact with each other for a predetermined time, and a miscellaneous material whose moisture content has been reduced by the holding. and mixing with the moisture absorbent and the copper concentrate while crushing.

本発明によれば、湿潤状態の雑原料の乾燥不良により製錬炉の操業が不安定になるのを抑制することができる。 According to the present invention, it is possible to prevent the operation of the smelting furnace from becoming unstable due to insufficient drying of miscellaneous raw materials in a wet state.

本発明の実施形態の銅製錬原料の調製方法の工程フロー図である。1 is a process flow diagram of a method for preparing raw materials for copper smelting according to an embodiment of the present invention. FIG. 本発明の実施形態の銅製錬原料の調製方法に含まれる混合工程の一具体例の構成図である。1 is a configuration diagram of one specific example of a mixing step included in a method for preparing raw materials for copper smelting according to an embodiment of the present invention. FIG. 本発明の実施形態の銅製錬原料の調製方法に含まれる混合工程の他の具体例の構成図である。FIG. 4 is a configuration diagram of another specific example of the mixing step included in the method for preparing raw materials for copper smelting according to the embodiment of the present invention. 本発明の実施形態の銅製錬原料の調製方法に含まれる搬送工程の一具体例の構成図である。1 is a configuration diagram of one specific example of a transporting step included in a method for preparing raw materials for copper smelting according to an embodiment of the present invention. FIG. 本発明の実施例で調製した湿潤状態の雑原料及び吸湿剤の水分率の経時変化を示すグラフである。1 is a graph showing changes over time in the moisture content of miscellaneous raw materials and moisture absorbents in a wet state prepared in Examples of the present invention. 本発明の実施例及び比較例で調製した混合原料を製錬炉に装入することでそれぞれ生成されるスラグ中のFeの品位の経時変化を示すグラフである。4 is a graph showing changes over time in the quality of Fe 3 O 4 in slag produced by charging mixed raw materials prepared in Examples and Comparative Examples of the present invention into a smelting furnace.

以下、本発明に係る銅製錬原料の調製方法の実施形態について詳細に説明する。この本発明の実施形態の銅製錬原料の調製方法は、乾式銅製錬において処理される2種類の粒状原料を対象としており、それらのうちの一方は、水分を含んで湿潤状態にある雑原料であって、これは例えば硫酸工場から排出される廃酸に硫化剤を添加することで生成される析出物を挙げることができる。また、上記2種類の粒状原料のもう一方は、通常は乾燥状態にある主原料の銅精鉱である。なお、上記の湿潤状態の雑原料は、硫酸工場で生成される析出物に限定されるものではなく、電解精製工程や電解採取工程、電解液の浄液工程等で生じる脱銅スライムや銅滓等のように、銅製錬工場の他の工程から生じる銅含有物が含まれていてもよい。 Hereinafter, an embodiment of the method for preparing raw materials for copper smelting according to the present invention will be described in detail. The method for preparing raw materials for copper smelting according to this embodiment of the present invention is directed to two types of granular raw materials to be processed in dry copper smelting, one of which is miscellaneous raw materials that contain water and are in a wet state. For example, a precipitate produced by adding a sulfiding agent to waste acid discharged from a sulfuric acid factory can be mentioned. The other of the two types of granular raw materials is the main raw material, copper concentrate, which is usually in a dry state. In addition, the above-mentioned miscellaneous raw materials in a wet state are not limited to the deposits generated in the sulfuric acid factory, but are copper removal slime and copper slag generated in the electrolytic refining process, the electrolytic winning process, the electrolytic solution purification process, etc. etc., may contain copper inclusions from other processes in the copper smelting plant.

本発明の実施形態に係る銅製錬原料の調製方法は、図1に示すように、上記の湿潤状態の雑原料を床面等の面上に層状に拡げる分散工程S1と、この層状に拡げられた湿潤状態の雑原料の上から覆うように(必ずしも覆いつくさなくてもよく、隙間から雑原料が見える程度で十分である)吸湿剤を散布する接触工程S2と、これら湿潤状態の雑原料と吸湿剤とを互いに接触させた状態で所定の時間保持する保持工程S3と、該保持することで水分率が低下した雑原料を解砕しながら上記の吸湿剤及び別途用意した銅精鉱と混合する混合工程S4と、該混合した混合原料を搬送する搬送工程S5とを有している。以下、これら工程の各々について詳細に説明する。 The method for preparing copper smelting raw materials according to the embodiment of the present invention comprises, as shown in FIG. A contact step S2 in which a moisture absorbent is sprayed so as to cover the wet miscellaneous materials (it is not necessary to completely cover the miscellaneous materials, it is sufficient that the miscellaneous materials can be seen through the gaps), and these wet miscellaneous materials. Holding step S3 in which the hygroscopic agent is held in contact with each other for a predetermined time, and the miscellaneous raw materials whose moisture content is reduced by the holding are crushed and mixed with the above hygroscopic agent and separately prepared copper concentrate. and a conveying step S5 for conveying the mixed raw material. Each of these steps will be described in detail below.

1.分散工程
分散工程S1は、一般的に原料貯蔵エリアに山状に積み重ねられている湿潤状態の雑原料を、ショベルローダーなどを用いて床面などの平坦な場所に、好ましくは厚み2~10cm程度の層状に拡げて分散させる工程である。これにより、上記の山状に積み重ねる場合に比べて露出面積を大きくすることができるので、該湿潤状態の雑原料の水分率の低下を促進させることができるうえ、次工程の接触工程S2において吸湿剤をより均質に湿潤状態の雑原料に接触させることが可能になる。なお、排水やショベルローダー運転の都合を勘案して、湿潤状態の雑原料は幾分傾斜した床面に広げて分散させるのが好ましい。また、他の原料の上や乾燥原料の上など、多少起伏のある場所に広げて分散させてもよい。
1. Dispersion step In the dispersion step S1, wet miscellaneous raw materials that are generally piled up in a raw material storage area are placed on a flat place such as a floor surface using a shovel loader or the like, preferably with a thickness of about 2 to 10 cm. It is a step of spreading and dispersing in layers. As a result, the exposed area can be increased compared to the case of stacking in the above-described mountain shape, so that the moisture content of the miscellaneous raw materials in the wet state can be reduced, and moisture absorption can be achieved in the contact step S2, which is the next step. This allows the agent to more evenly contact the wet miscellaneous ingredients. In consideration of drainage and operation of the shovel loader, it is preferable to disperse the wet miscellaneous materials on a slightly inclined floor surface. It may also be spread and dispersed on a slightly undulating place such as on top of other raw materials or dry raw materials.

2.接触工程
接触工程S2は、上記分散工程S1で平坦な場所に拡げられた湿潤状態の雑原料に対して、上方からショベルローダー等を用いて吸湿剤を散布することで接触させる工程である。その際、層状に拡げられている湿潤状態の雑原料をショベルローダー等を用いて上下反転させてもよく、これにより、湿潤状態の雑原料により均質に吸湿剤を接触させることができる。
2. Contacting Step The contacting step S2 is a step of contacting the wet miscellaneous raw materials spread on a flat surface in the dispersion step S1 by spraying a moisture absorbent from above using a shovel loader or the like. At that time, the wet miscellaneous material spread in a layer may be turned upside down using a shovel loader or the like, so that the wet miscellaneous material can more uniformly come into contact with the moisture absorbent.

この接触工程S2に用いる吸湿剤としては、上記雑原料よりも粒度が細かく、かつ湿潤状態にある雑原料よりも水分率が低い吸湿性を有する材料であれば特に限定はないが、銅を含有していれば製錬炉において銅原料としても利用できるので特に有用である。なお、上記の粒度には、レーザー回折散乱法で測定した体積基準での累積50%の粒子径(D50)を指標とするのが好ましい。上記の吸湿剤としては、例えば銅滓粉などの銅粉や、自熔炉や転炉から排出される排ガスが導入される廃熱ボイラーや電気集塵機などで捕集される煙灰を挙げることができる。 The hygroscopic agent used in the contact step S2 is not particularly limited as long as it is a material having a finer grain size than the miscellaneous raw material and a hygroscopicity with a lower moisture content than the miscellaneous raw material in a wet state, but it contains copper. If so, it is particularly useful because it can be used as a copper raw material in a smelting furnace. It should be noted that it is preferable to use, as an index, the above-described particle size based on a cumulative 50% particle size (D50) on a volume basis measured by a laser diffraction scattering method. Examples of the hygroscopic agent include copper powder such as copper slag powder, and flue dust collected by a waste heat boiler, an electric dust collector, or the like into which exhaust gas discharged from a flash furnace or a converter is introduced.

上記の吸湿剤の散布量は、上記の湿潤状態の雑原料の乾物基準100質量部に対して、乾物基準で30~300質量部程度が好ましい。この散布量が30質量部未満では吸湿の効果が得られにくくなり、逆に300質量部を超える量を散布しても、それ以上の吸湿の効果はあまり得られないのでコスト面から不利になる。 The amount of the moisture absorbent to be sprayed is preferably about 30 to 300 parts by weight on a dry matter basis with respect to 100 parts by weight on a dry matter basis of the miscellaneous raw materials in a wet state. If the amount to be applied is less than 30 parts by mass, it is difficult to obtain the effect of moisture absorption. Conversely, even if the amount to be applied exceeds 300 parts by mass, no further effect of moisture absorption can be obtained, which is disadvantageous in terms of cost. .

3.保持工程
保持工程S3は、上記の吸湿剤と湿潤状態の雑原料とを互いに接触させた状態で所定の時間保持することで該湿潤状態の雑原料に含まれる水分率を低下させる工程である。この保持工程S3では、必要に応じて湿潤状態の雑原料に向けて送風したり、ショベルローダー等を用いて湿潤状態の雑原料をかき混ぜたりしてもよい。
3. Holding Step The holding step S3 is a step for reducing the moisture percentage contained in the wet miscellaneous raw material by keeping the moisture absorbent and the wet miscellaneous raw material in contact with each other for a predetermined time. In this holding step S3, if necessary, air may be blown toward the wet miscellaneous materials, or the wet miscellaneous materials may be stirred using a shovel loader or the like.

この保持工程S3の保持時間は特に限定はないが、本発明の実施形態の調製方法の対象となる湿潤状態の雑原料は、保持工程S3の保持時間が長ければ長いほど水分率が低下する傾向があり、開始から約8時間経過後でも水分率は顕著に低下する。しかしながら開始からの経過時間が約24時間を超えると、水分率の低下の速度が極めて遅くなるので、上記の所定の保持時間としては8~24時間程度が適切である。 The holding time of this holding step S3 is not particularly limited, but the moisture content of miscellaneous raw materials in a wet state, which is the target of the preparation method of the embodiment of the present invention, tends to decrease as the holding time of the holding step S3 increases. , and the moisture content drops significantly even after about 8 hours from the start. However, if the elapsed time from the start exceeds about 24 hours, the rate of decrease in moisture content becomes extremely slow, so that the predetermined holding time is appropriately about 8 to 24 hours.

なお、吸湿剤による湿潤状態の雑原料の水分率の低下は、湿潤状態の雑原料と吸湿剤との接触部分において生じる毛細管現象により水分が移動することによって主に生じるものと考えられる。また、銅製錬炉で生じる煙灰は、通常は銅製錬炉から飛散した硫化銅やそれが燃焼した硫酸銅を含んでおり、これは加熱により乾燥しているので硫酸銅無水和物の形態を有している。この煙灰中の硫酸銅無水和物は湿潤状態の雑原料中に含まれる付着水との水和反応が生じて発熱するので、該付着水の蒸発促進を期待できる。更に、硫酸銅無水和物は上記付着水を結晶水として取り込んで硫酸銅五水和物となるため、これにより湿潤状態の雑原料の水分率が低下することも期待できる。 It is considered that the decrease in the moisture content of the wet miscellaneous material due to the hygroscopic agent is mainly caused by the movement of water due to the capillary phenomenon that occurs at the contact portion between the wet miscellaneous material and the hygroscopic agent. Fumes produced in copper smelting furnaces usually contain copper sulfide scattered from the copper smelting furnace and copper sulfate that is burned by the copper sulfide. is doing. Since the anhydrous copper sulfate in the flue dust undergoes a hydration reaction with adhering water contained in the wet miscellaneous raw materials and generates heat, it can be expected to accelerate the evaporation of the adhering water. Furthermore, since copper sulfate anhydrate takes in the adhering water as water of crystallization to form copper sulfate pentahydrate, it can be expected that the water content of miscellaneous raw materials in a wet state will decrease.

4.混合工程
混合工程S4は、上記の保持工程S3で水分率が低下した雑原料を解砕しながら吸湿剤及び別途用意した銅精鉱と混合する工程である。この混合の際、吸湿剤を含んだ雑原料と銅精鉱との混合割合は、通常は乾物基準の銅精鉱100質量部に対して、雑原料を乾物基準で1~15質量部であるのが好ましい。この混合工程S4における混合方法には特に限定はなく、例えばショベルローダー等を用いてかき混ぜることで混合してもよいし、一般的な粉粒体の混合機を用いて混合してもよい。
4. Mixing Step The mixing step S4 is a step of crushing the miscellaneous raw materials whose moisture content has decreased in the holding step S3 and mixing them with a moisture absorbent and separately prepared copper concentrate. During this mixing, the mixing ratio of the miscellaneous raw material containing the moisture absorbent and the copper concentrate is usually 1 to 15 parts by mass of the miscellaneous raw material on a dry matter basis with respect to 100 parts by mass of the copper concentrate on a dry matter basis. is preferred. The mixing method in this mixing step S4 is not particularly limited. For example, mixing may be performed by stirring using a shovel loader or the like, or mixing may be performed using a general powder mixer.

あるいは、図2に示すように、1又は複数基のベルトコンベア1の上流側の端部の上方に設けた銅精鉱ホッパー2からロータリーフィーダー等の第1定量切出装置3を介して銅精鉱を一定量で切り出してベルトコンベア1のコンベア面上に拡げると共に、このコンベア1における搬送方向において銅精鉱ホッパー2よりも下流側に設けた雑原料ホッパー4からロータリーフィーダー等の第2定量切出装置5を介して雑原料を一定量で切り出して該コンベア面上の銅精鉱の上に拡げることで混合してもよい。この図2の場合は、両ホッパー2、4からの切り出し量を制御することで銅精鉱と雑原料との混合割合が調整された混合原料を混合ホッパー6に受け入れることができる。また、ベルトコンベア1は直列に設ける基数が多いほど混合の度合いが増すので2~4基程度が好ましい。 Alternatively, as shown in FIG. 2, from a copper concentrate hopper 2 provided above the upstream end of one or more belt conveyors 1, copper concentrate is fed through a first quantitative cutting device 3 such as a rotary feeder. A certain amount of ore is cut out and spread on the conveyor surface of the belt conveyor 1, and a secondary raw material hopper 4 provided downstream of the copper concentrate hopper 2 in the conveying direction of the conveyor 1 is fed to a second quantitative cutting such as a rotary feeder. A fixed amount of miscellaneous raw materials may be cut out through the dispensing device 5 and mixed by spreading on the copper concentrate on the conveyor surface. In the case of FIG. 2, the mixing hopper 6 can receive the mixed raw material in which the mixing ratio of the copper concentrate and the miscellaneous raw material is adjusted by controlling the amount of raw material discharged from both hoppers 2 and 4 . In addition, since the degree of mixing increases as the number of belt conveyors 1 provided in series increases, the number of belt conveyors 1 is preferably about 2 to 4.

また、図3に示すように、第1ベルトコンベア11Aの上流側の端部の上方に設けた銅精鉱ホッパー12からロータリーフィーダー等の第1定量切出装置13を介して銅精鉱を一定量で切り出して第1ベルトコンベア11Aのコンベア面上に拡げると共に、第2ベルトコンベア11Bの上流側の端部の上方に設けた雑原料ホッパー14からロータリーフィーダー等の第2定量切出装置15を介して雑原料を一定量で切り出して第2ベルトコンベア11Bのコンベア面上に拡げ、これら第1及び第2ベルトコンベア11A、11Bの両方の下流側端部からそれぞれ銅精鉱及び雑原料を同じ混合ホッパー16に落下させることで混合してもよい。その際、第1定量切出装置13及び第2定量切出装置15のうちの少なくとも一方を間欠的に運転したり、これらを交互に運転したりしてもよい。この図3の場合は、両ホッパー12、14からの切り出し量を制御したり、両ベルトコンベア11A、11Bの走行速度を制御したりすることで銅精鉱と雑原料との混合割合が調整された混合原料を混合ホッパー16に受け入れることができる。 In addition, as shown in FIG. 3, a copper concentrate is fed from a copper concentrate hopper 12 provided above the upstream end of the first belt conveyor 11A through a first quantitative cutting device 13 such as a rotary feeder. It is cut out by quantity and spread on the conveyor surface of the first belt conveyor 11A, and a second fixed quantity cutting device 15 such as a rotary feeder is fed from a miscellaneous raw material hopper 14 provided above the upstream end of the second belt conveyor 11B. A certain amount of miscellaneous raw materials are cut out through the feeder and spread on the conveyor surface of the second belt conveyor 11B, and the same copper concentrate and miscellaneous raw materials are respectively supplied from the downstream ends of both the first and second belt conveyors 11A and 11B. Mixing may be performed by dropping into the mixing hopper 16 . At that time, at least one of the first fixed-quantity cutting device 13 and the second fixed-quantity cutting device 15 may be operated intermittently, or these may be operated alternately. In the case of FIG. 3, the mixing ratio of the copper concentrate and miscellaneous raw materials is adjusted by controlling the amounts of the hoppers 12 and 14 and the traveling speed of the belt conveyors 11A and 11B. Mixed ingredients may be received in mixing hopper 16 .

なお、上記の図2及び図3のいずれの場合においても、ベルトコンベアのコンベア面上に向けて雑原料を落下させる時の落差、及びベルトコンベアの下流側端部から混合原料を落下させるときの落差を50cm以上確保するのが好ましい。これにより、雑原料の塊をほぐした状態で乾燥設備や製錬炉に装入することが可能になる。なお、脱水工程S3を経た雑原料は粒子同士の凝集力が低下しているため、上記のいずれの方法で混合する場合であっても塊状の雑原料を容易に解砕することができるうえ、雑原料は水分率が低下して粘着しにくくなっているので、銅精鉱と容易に混合させることができる。 2 and 3, the drop when the miscellaneous raw materials are dropped onto the conveyor surface of the belt conveyor, and the drop when the mixed raw materials are dropped from the downstream end of the belt conveyor. It is preferable to secure a drop of 50 cm or more. As a result, lumps of miscellaneous raw materials can be loosened and charged into a drying facility or a smelting furnace. In addition, since the cohesive force between the particles of the miscellaneous raw materials that have undergone the dehydration step S3 is reduced, the lumped miscellaneous raw materials can be easily crushed even when mixed by any of the above methods. Since the miscellaneous raw material has a low moisture content and is less sticky, it can be easily mixed with the copper concentrate.

5.搬送工程
搬送工程S5は、上記の混合工程S4で得た混合原料を製錬炉やその前段の乾燥設備に搬送する工程である。この乾燥設備は混合原料を予熱により乾燥処理してから製錬炉に装入するものであり、例えば、中心軸を水平方向からわずかに傾けた状態で回転可能に据付けられた円筒体からなるロータリースチームドライヤーを挙げることができる。このドライヤーは、その片方の端部から装入された乾燥対象物を該円筒体の回転により撹拌しながら該中心軸方向に移動させる間に蒸気配管により乾燥処理するものである。
5. Conveying Step The conveying step S5 is a step of conveying the mixed raw material obtained in the above-described mixing step S4 to a smelting furnace or a preceding drying facility. This drying equipment preheats and dries the mixed raw material before charging it into the smelting furnace. Steam dryers may be mentioned. This dryer dries the material to be dried, which is loaded from one end thereof, through a steam pipe while being stirred by the rotation of the cylindrical body and moved in the direction of the central axis.

上記の混合原料の搬送方法には特に限定はなく、ベルトコンベア、バケットコンベア等の一般的な機械的搬送方法によるものでもよいが、管内を流れる空気の気流を利用して搬送する空気搬送方式が好ましい。空気搬送方式は、高速の空気によって粉粒体を分散状態で搬送する低濃度搬送と、低速の気流によって粉粒体をプラグ状にして搬送する高濃度搬送とに大別することができる。これらのうち、銅製錬原料の場合は、輸送管の摩耗を抑えることができるうえ、混合原料を分離させることなく比較的少ない空気消費量で搬送することが可能な高濃度搬送が好ましい。 There are no particular restrictions on the method of conveying the mixed raw material, and general mechanical conveying methods such as belt conveyors and bucket conveyors may be used. preferable. The pneumatic conveying method can be broadly classified into low-concentration conveying, in which granular material is conveyed in a dispersed state by high-speed air, and high-concentration conveying, in which granular material is conveyed in a plug shape by low-speed air current. Among these, in the case of raw materials for copper smelting, high-concentration transportation is preferable because wear of the transportation pipe can be suppressed and the mixed raw materials can be conveyed with a relatively small amount of air consumption without separation.

上記の高濃度搬送の一般的な構成図を図4に示す。この図4に示す空気搬送設備は、前述した混合ホッパー6、16の底部に設けられている供給元タンク20と、供給元タンク20の底部に一端部が接続する輸送管21と、輸送管21の他端部に接続する供給先タンク22とから主に構成され、供給元タンク20に空気搬送用の圧縮空気が導入される。 FIG. 4 shows a general configuration diagram of the above-described high-density transportation. The pneumatic conveying equipment shown in FIG. Compressed air for conveying air is introduced into the supply source tank 20 .

以上説明したように、本発明の実施形態の銅製錬原料の調製方法を採用することにより、湿潤状態の雑原料の内部の水分率を低下させることができるので、製錬炉の操業が乾燥不良によって不安定になるのを防ぐことができる。また、湿潤状態の雑原料の水分率が低下することで粒子同士の凝集力を低下させて容易に解砕可能な状態にできるので、ベルトコンベアからの落下時の衝撃や空気搬送時の輸送管との摩擦などの物理的な力がかかることで、適度にほぐれた状態となり、よって乾燥設備における乾燥効率を高めることができる。更に、水分率の低下後に解砕された雑原料には粒子同士が凝集した塊状物がほとんど含まれなくなるので、空気搬送を採用しても搬送不良が発生しにくくなる。 As described above, by adopting the method for preparing raw materials for copper smelting according to the embodiment of the present invention, it is possible to reduce the moisture content in the inside of the miscellaneous raw materials in a wet state. can prevent instability. In addition, by reducing the moisture content of miscellaneous raw materials in a wet state, the cohesive force between particles can be reduced and the state can be easily crushed. By applying a physical force such as friction with the fiber, the fiber is appropriately loosened, and thus the drying efficiency in the drying equipment can be improved. Furthermore, since the miscellaneous raw material pulverized after the moisture content is reduced contains almost no agglomerated aggregates of particles, even if pneumatic conveying is employed, conveyance failures are less likely to occur.

(実施例)
硫酸製造工場の精製系プロセスで副生する廃酸に硫化剤を添加することで生成される析出物を湿潤状態の雑原料として用意し、これを銅精鉱と混ぜ合わせて乾燥設備に装入した。この銅精鉱との混ぜ合わせの前に、該湿潤状態の雑原料を床面に約2cmの厚みで層状に拡げ、その上に吸湿剤として乾物基準で該雑原料と同じ質量の銅含有粉(銅滓粉)をショベルローダーを用いて均一に散布した。吸湿剤の散布後は、そのままの状態で24時間保持することで湿潤状態の雑原料の水分率を低下させた。
(Example)
Precipitates generated by adding a sulfiding agent to the waste acid produced as a by-product in the refining process at a sulfuric acid manufacturing plant are prepared as wet miscellaneous raw materials, mixed with copper concentrates, and charged into drying equipment. did. Before mixing with the copper concentrate, the wet miscellaneous raw material is spread on a floor surface in a layer of about 2 cm thick, and a copper-containing powder having the same mass as the miscellaneous raw material on a dry matter basis as a moisture absorbent is spread thereon. (copper slag powder) was evenly dispersed using a shovel loader. After spraying the hygroscopic agent, the moisture content of the miscellaneous raw materials in the wet state was lowered by keeping the state as it was for 24 hours.

床面に拡げる前の湿潤状態の雑原料の水分率と、該床面に拡げてから24時間経過後の雑原料の水分率とを各々雰囲気温度105℃で30分かけて乾燥させたときの質量変化から求めたところ、図5に示すように、銅含有粉に接触した状態で24時間保持することにより、水分率が23.8質量%から8.6質量%に低下した。一方、銅含有粉は3.5質量%から5.2質量%に増加した。なお、低下した水分率のうち銅含有粉に取り込まれなかった部分は蒸発したか、または滴り落ちたものと考えられる。 The moisture content of the miscellaneous raw material in a wet state before spreading on the floor surface and the moisture content of the miscellaneous raw material after 24 hours after spreading on the floor surface were each dried at an ambient temperature of 105 ° C. for 30 minutes. As shown in FIG. 5, the moisture content decreased from 23.8% by mass to 8.6% by mass by keeping the powder in contact with the copper-containing powder for 24 hours. On the other hand, the copper-containing powder increased from 3.5% by mass to 5.2% by mass. In addition, it is considered that the portion of the decreased moisture content that was not incorporated into the copper-containing powder evaporated or dripped.

上記の24時間の保持が完了した後、雑原料を銅含有粉と一緒にショベルローダーのバケットで掬い取って約50cmの高さから床面に落下させた。その際、落下前の雑原料の塊の大きさと落下後の雑原料の塊の大きさとを比較すると、落下後の塊は落下前の塊に比べて平均して4分の1~8分の1程度に細かく解砕されていた。 After the 24-hour holding was completed, the miscellaneous raw materials were scooped out together with the copper-containing powder with a bucket of a shovel loader and dropped from a height of about 50 cm onto the floor. At that time, when comparing the size of the lump of miscellaneous raw materials before dropping and the size of the lump of miscellaneous raw materials after dropping, the lump after dropping is on average 1/4 to 8 times smaller than the lump before dropping. It was finely pulverized to about 1.

このようにして落下させた雑原料及び銅含有粉を掬い取って粉体混合機に投入し、更に銅精鉱を投入して混合した。その際、該銅精鉱100質量部(乾物基準)に対して雑原料が5質量部(乾物基準)の混合割合となるようにした。得られた混合原料の一部をベルトコンベアを介して乾燥炉へ装入し、乾燥炉からチェーンコンベア及び気流搬送器を介して製錬炉へ装入した。その結果、特に問題なくこれら乾燥炉及び製錬炉を安定的に運転することができた。 The miscellaneous raw materials and the copper-containing powder dropped in this way were scooped up and put into a powder mixer, and then the copper concentrate was put in and mixed. At that time, the miscellaneous raw material was mixed at a mixing ratio of 5 parts by mass (dry matter basis) to 100 parts by mass (dry matter basis) of the copper concentrate. A part of the obtained mixed raw material was charged into a drying furnace via a belt conveyor, and then charged from the drying furnace to a smelting furnace via a chain conveyor and a pneumatic carrier. As a result, the drying furnace and the smelting furnace could be stably operated without any particular problems.

(比較例1)
実施例と同量の湿潤状態の雑原料と銅含有粉とを用意したが、これらを床面に拡げたり24時間かけて保持したりせずに、単にショベルローダーのバケットで約50cmの高さから床面に落下させた。その結果、落下前の雑原料の塊の大きさと落下後の塊の大きさとはほぼ同じであった。以降は実施例と同様に銅精鉱と混合して乾燥炉を経由して製錬炉に装入することを試みたところ、チェーンコンベアにおいて電流値上昇による設備保護停止が発生し、気流搬送器において小塊による閉塞が発生した。
(Comparative example 1)
The same amount of wet miscellaneous materials and copper-containing powder as in the example was prepared, but without spreading them on the floor or holding them for 24 hours, they were simply placed in a bucket of a shovel loader to a height of about 50 cm. dropped to the floor. As a result, the size of the lumps of miscellaneous materials before dropping was almost the same as the size of the lumps after dropping. After that, when it was tried to mix with copper concentrate and charge it into the smelting furnace via the drying furnace in the same way as in the example, the equipment protection stop occurred due to the increase in the current value in the chain conveyor, and the air current conveyer Obstruction by nodules occurred at .

(比較例2)
湿潤状態の雑原料と銅含有粉を50cmの高さから落下させるのに代えて4~5mの高さから落下させたこと以外は上記の比較例1と同様にして銅製錬原料の調製を行ったところ、雑原料の塊の大きさは、落下前に比べて落下後は平均して2分の1程度に細かくなったが、落下前のものとほぼ同程度の大きさのものも多く含まれていた。
(Comparative example 2)
A copper smelting raw material was prepared in the same manner as in Comparative Example 1 above except that the wet miscellaneous raw materials and copper-containing powder were dropped from a height of 4 to 5 m instead of a height of 50 cm. As a result, the size of the lumps of miscellaneous raw materials was reduced to about half after the drop compared to before the drop, but many of them were about the same size as before the drop. It was

(比較例3)
実施例において約50cmの高さから落下させたときに得られた雑原料の大きさとほぼ同程度の大きさになるまで上記の比較例2と同様の条件で繰り返し湿潤状態の雑原料と銅含有粉を落下させた。以降は実施例と同様に銅精鉱と混合して乾燥炉を経由して製錬炉に装入した。そして、製錬炉から産出されるスラグを製錬炉での処理開始時、処理開始から8時間後、及び処理開始から16時間後の3回サンプリングしてそれらの四酸化三鉄(Fe)品位を分析した。このようにFe品位を分析する理由は、製錬炉の操業が不安定になると、反応の進行にばらつきが生じてスラグのFe品位が上昇するため、Fe品位を指標とすることで操業の安定性を評価できるからである。
(Comparative Example 3)
The same conditions as in Comparative Example 2 above were repeated until the size of the miscellaneous material obtained when the miscellaneous material was dropped from a height of about 50 cm in the example was approximately the same as that of the miscellaneous material. dropped the powder. Thereafter, it was mixed with copper concentrate and charged into a smelting furnace via a drying furnace in the same manner as in the Examples. Then, the slag produced from the smelting furnace was sampled three times at the start of treatment in the smelting furnace, 8 hours after the start of treatment, and 16 hours after the start of treatment, and their triiron tetroxide (Fe 3 O 4 ) The quality was analyzed. The reason for analyzing the Fe 3 O 4 quality in this way is that if the operation of the smelting furnace becomes unstable , the progress of the reaction will vary and the Fe 3 O 4 quality of the slag will increase . This is because the stability of operation can be evaluated by using as an index.

その分析結果を上記実施例において同様に分析した結果と共に図6に示す。なお、図6において、処理開始前のFe品位を1.0とした。この図6の結果から分かるように、比較例3では処理開始から8時間後及び16時間後において製錬炉から抜き出されるスラグ中のFe品位が基準値の約1.04倍に増加したが、実施例では処理開始から16時間後に約0.95倍まで減少した。従って、実施例は比較例3に比べて製錬炉の操業が安定していることが分かる。ここで基準値とは、湿潤状態の雑原料を含まない乾燥状態の銅精鉱のみを原料として製錬炉に装入したときにおいて、操業が定常状態にあるときにサンプリングしたスラグを分析した値である。 The analysis results are shown in FIG. 6 together with the results of the same analysis as in the above example. In addition, in FIG. 6, the Fe 3 O 4 quality before the start of treatment was set to 1.0. As can be seen from the results of FIG. 6, in Comparative Example 3, the Fe 3 O 4 quality in the slag extracted from the smelting furnace after 8 hours and 16 hours from the start of treatment was about 1.04 times the reference value. Although it increased, it decreased to about 0.95 times after 16 hours from the start of treatment in the example. Therefore, it can be seen that the operation of the smelting furnace in Example is more stable than in Comparative Example 3. Here, the standard value is the value obtained by analyzing the slag sampled when the operation is in a steady state when only the dry copper concentrate, which does not contain wet miscellaneous raw materials, is charged into the smelting furnace as a raw material. is.

1 ベルトコンベア
2、12 銅精鉱ホッパー
3、13 第1定量切出装置
4、14 雑原料ホッパー
5、15 第2定量切出装置
6、16 混合ホッパー
11A 第1ベルトコンベア
11B 第2ベルトコンベア
20 供給元タンク
21 輸送管
22 供給先タンク
1 Belt Conveyor 2, 12 Copper Concentrate Hopper 3, 13 First Quantitative Extraction Device 4, 14 Miscellaneous Material Hopper 5, 15 Second Quantitative Extraction Device 6, 16 Mixing Hopper 11A First Belt Conveyor 11B Second Belt Conveyor 20 Source tank 21 Transport pipe 22 Destination tank

Claims (3)

銅精鉱と湿潤状態の雑原料とからなる銅製錬原料の調製方法であって、該湿潤状態の雑原料を面上に層状に拡げると共に、その上から覆うように吸湿剤を散布する工程と、これら雑原料と吸湿剤とを互いに接触させた状態で所定の時間保持する工程と、該保持することで水分率が低下した雑原料を解砕しながら該吸湿剤及び銅精鉱と混合する工程とからなることを特徴とする銅製錬原料の調製方法。 A method for preparing a copper smelting raw material comprising a copper concentrate and a wet miscellaneous raw material, comprising a step of spreading the wet miscellaneous raw material on a surface in a layered manner and spraying a moisture absorbent so as to cover it from above. a step of holding the miscellaneous raw materials and the hygroscopic agent in contact with each other for a predetermined period of time; A method for preparing raw materials for copper smelting, characterized by comprising the steps of: 前記吸湿剤は、銅を含有し且つ前記湿潤状態の雑原料より粒度が小さいことを特徴とする、請求項1に記載の銅製錬原料の調製方法。 2. The method for preparing raw materials for copper smelting according to claim 1, wherein said desiccant contains copper and has a particle size smaller than that of said miscellaneous raw materials in a wet state. 前記吸湿剤が銅製錬炉の排ガスから回収した煙灰であることを特徴とする、請求項1又は2に記載の銅製錬原料の調製方法。 3. The method for preparing raw materials for copper smelting according to claim 1 or 2, wherein said desiccant is flue ash recovered from exhaust gas of a copper smelting furnace.
JP2021075219A 2021-04-27 2021-04-27 Preparation method of copper refining raw material Pending JP2022169284A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021075219A JP2022169284A (en) 2021-04-27 2021-04-27 Preparation method of copper refining raw material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021075219A JP2022169284A (en) 2021-04-27 2021-04-27 Preparation method of copper refining raw material

Publications (1)

Publication Number Publication Date
JP2022169284A true JP2022169284A (en) 2022-11-09

Family

ID=83944082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021075219A Pending JP2022169284A (en) 2021-04-27 2021-04-27 Preparation method of copper refining raw material

Country Status (1)

Country Link
JP (1) JP2022169284A (en)

Similar Documents

Publication Publication Date Title
US4372929A (en) Energy conservation and pollution abatement at phosphorus furnaces
WO2001096616A1 (en) Method and apparatus for producing desulfurizing agent for hot-metal
CN109652653A (en) A kind of inorganic dangerous waste system process
CN101365813A (en) Production of carbon containing metal graphite spherulite
JP2022169284A (en) Preparation method of copper refining raw material
KR100703112B1 (en) Method for reduction treatment of metal oxide or ironmaking waste, and method for concentration and/or recovery of zinc and/or lead
RU2359045C2 (en) Processing method of lead-bearing materials
JP4219057B2 (en) Method for processing steelmaking slag for cement
US6109913A (en) Method and apparatus for disposing of waste dust generated in the manufacture of cement clinker
BR112018014777B1 (en) METHOD AND APPARATUS TO TREAT A LEASH RESIDUE FROM A METALLIC CONCENTRATE CONTAINING SULFUR
US4373893A (en) Bench scale drum agglomerator and power means
JP7480556B2 (en) Method for preparing copper smelting raw materials
JP4130629B2 (en) High temperature metal recovery process
US4529439A (en) Energy conservation during the smelting of ores
JP2023044301A (en) Alkali metal removal method
US4670240A (en) Energy conservation during the smelting of ores
JP4889925B2 (en) Method and apparatus for treating sulfuric acid pitch
CA2388027C (en) Method and apparatus for disposing of waste dust generated in the manufacture of cement clinker
JP2024078333A (en) Supply method of copper smelting raw materials
EA039147B1 (en) Process, unit and precious metal extraction unit for improving the yield for precious metal extraction in a sorption-leaching process
JP2004225104A (en) Method of reducing metal oxide, and method of concentrating zinc and lead
US11247251B2 (en) Spent activated carbon and industrial by product treatment system and method
KR20240063102A (en) Processes and plants for recycling of zinc oxide residues
JP3817601B2 (en) Calami treatment method of wrought copper furnace in copper smelting
JP2003136035A (en) Method for treating soot and dust and treatment device for soot and dust

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240416