JP2024073617A - Wall structure and construction method of wall structure - Google Patents

Wall structure and construction method of wall structure Download PDF

Info

Publication number
JP2024073617A
JP2024073617A JP2024043624A JP2024043624A JP2024073617A JP 2024073617 A JP2024073617 A JP 2024073617A JP 2024043624 A JP2024043624 A JP 2024043624A JP 2024043624 A JP2024043624 A JP 2024043624A JP 2024073617 A JP2024073617 A JP 2024073617A
Authority
JP
Japan
Prior art keywords
frame
wooden
wall
perforated steel
steel plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2024043624A
Other languages
Japanese (ja)
Inventor
真次 高谷
裕樹 田中
尚広 羽田
直幸 佐々木
恭典 服部
有則 二村
淳 久保田
大樹 日向
寛明 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2020075353A external-priority patent/JP7510272B2/en
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2024043624A priority Critical patent/JP2024073617A/en
Publication of JP2024073617A publication Critical patent/JP2024073617A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Load-Bearing And Curtain Walls (AREA)

Abstract

【課題】施工性に優れた壁構造および壁構造の施工方法を提供する。【解決手段】壁構造は、柱21と梁を有するフレーム2と、フレーム2に囲まれた木質耐震壁3とを接合したものである。壁構造では、孔あき鋼板411を有し、フレーム2に固定された接合金物41を用いて木質耐震壁3とフレーム2とが接合される。木質耐震壁3は、2枚の木質板材31を板面同士が対向するように配置して形成される。フレーム2と木質耐震壁3の間には固化材43が充填され、フレーム2から2枚の木質板材31の間の空間に突出した孔あき鋼板411を介して、フレーム2と木質耐震壁3とが接合される。孔あき鋼板411は2枚の木質板材31の間に挟み込まれ、孔あき鋼板411と異なる位置で、2枚の木質板材31の間に空隙が設けられる。フレーム2の面外方向に沿って見た時に、接合金物41のフレーム2と木質耐震壁3の間の部分の全体が、固化材43によって覆われる。【選択図】図2[Problem] To provide a wall structure with excellent workability and a method for constructing the wall structure. [Solution] The wall structure is formed by joining a frame 2 having columns 21 and beams to a wooden earthquake-resistant wall 3 surrounded by the frame 2. In the wall structure, the wooden earthquake-resistant wall 3 and the frame 2 are joined using a joint metal 41 having a perforated steel plate 411 and fixed to the frame 2. The wooden earthquake-resistant wall 3 is formed by arranging two wooden boards 31 so that their plate surfaces face each other. A solidifying material 43 is filled between the frame 2 and the wooden earthquake-resistant wall 3, and the frame 2 and the wooden earthquake-resistant wall 3 are joined via a perforated steel plate 411 protruding from the frame 2 into the space between the two wooden boards 31. The perforated steel plate 411 is sandwiched between the two wooden boards 31, and a gap is provided between the two wooden boards 31 at a position different from the perforated steel plate 411. When viewed along the out-of-plane direction of the frame 2, the entire portion of the metal joint 41 between the frame 2 and the wooden earthquake-resistant wall 3 is covered with the solidification material 43. [Selected Figure] Figure 2

Description

本発明は壁構造および壁構造の施工方法に関する。 The present invention relates to a wall structure and a construction method for a wall structure.

近年、CLT(Cross Laminated Timber)やLVL(Laminated Veneer Lumber)などの木質系の板材を鉄骨造(S造)や鉄筋コンクリート造(RC)のフレームに嵌め込み、木質耐震壁として用いる事例が増えている。 In recent years, there has been an increase in the use of wooden panels such as CLT (Cross Laminated Timber) and LVL (Laminated Veneer Lumber) fitted into steel-framed (S-frame) or reinforced concrete (RC) frames as wooden earthquake-resistant walls.

その一例が特許文献1に開示されており、特許文献1では、鉄骨造の梁のフランジとCLTによる耐震壁とをボルトやナットを用いて連結し、梁と耐震壁を接合することが記載されている。 One example is disclosed in Patent Document 1, which describes how the flanges of steel-framed beams and CLT earthquake-resistant walls are connected with bolts and nuts to join the beams and earthquake-resistant walls.

このような壁構造は、施工時の低騒音、低振動および短工期、ローコストを実現し、且つコンクリートや鉄と同程度の強度を実現でき地球温暖化対策にも貢献するとして注目を集めている。 This type of wall structure is attracting attention because it reduces noise and vibration during construction, shortens construction times, and is low cost, while also achieving strength equivalent to that of concrete or steel, which contributes to combating global warming.

特開2019-65685号公報JP 2019-65685 A

CLTやLVL等の木質板材を耐震壁に利用しようとすると、工場加工可能な厚さに限度があることから、必要性能を満たす厚さの木質板材を製造できない場合がある。 When attempting to use wooden boards such as CLT or LVL for earthquake-resistant walls, there is a limit to the thickness that can be processed in factories, so it may not be possible to manufacture wooden boards of a thickness that meets the required performance.

また仮に必要性能を満たす厚さの木質板材を製造できたとしても、階高が高いなどの理由で木質板材の面積が増大し、1枚の木質板材が過度に重くなると、手運びができなかったり現場での微調整が困難になったりして施工性が低下する。 Even if it were possible to manufacture wooden boards of a thickness that meets the required performance, if the area of the wooden boards increases due to factors such as high floor height, and each wooden board becomes excessively heavy, it will be difficult to transport by hand or to fine-tune on-site, reducing workability.

さらに、ボルトやナットを用いてフレームと木質耐震壁を接合する一般的な木質耐震壁の施工方法では、木質耐震壁の払い込みを考慮してフレームと木質耐震壁との取り合い部に大きな隙間を確保することが必要である。この隙間は応力伝達を妨げるのでモルタル等の固化材で充填しなければならず、隙間が大きいほど充填作業に手間やコストがかかり、見栄えも良くない。 Furthermore, in the general construction method of wooden earthquake-resistant walls, where the frame and wooden earthquake-resistant wall are joined using bolts and nuts, it is necessary to leave a large gap at the joint between the frame and the wooden earthquake-resistant wall, taking into account the payment of the wooden earthquake-resistant wall. This gap prevents stress transmission and must be filled with a hardening material such as mortar, and the larger the gap, the more time and cost required for the filling work, and the less attractive it looks.

本発明は前述した問題点に鑑みてなされたものであり、その目的は、施工性に優れた壁構造および壁構造の施工方法を提供することである。 The present invention was made in consideration of the above-mentioned problems, and its purpose is to provide a wall structure and a construction method for a wall structure that are easy to construct.

前述した目的を達成するための第1の発明は、柱と梁を有するフレームと、前記フレームに囲まれた壁体とを接合した壁構造であって、孔あき鋼板を有し、前記フレームに固定された接合金物を用いて前記壁体と前記フレームとが接合され、前記壁体は、2枚の木質板材を板面同士が対向するように配置して形成され、前記フレームと前記壁体の間に固化材が充填され、前記フレームから2枚の前記木質板材の間の空間に突出した前記孔あき鋼板を介して、前記フレームと前記壁体とが接合され、前記孔あき鋼板が2枚の前記木質板材の間に挟み込まれ、前記孔あき鋼板と異なる位置で、2枚の前記木質板材の間に空隙が設けられ、前記フレームの面外方向に沿って見た時に、前記接合金物の前記フレームと前記壁体の間の部分の全体が、前記固化材によって覆われたことを特徴とする壁構造である。 The first invention for achieving the above-mentioned object is a wall structure in which a frame having columns and beams is joined to a wall body surrounded by the frame, the wall body and the frame are joined using a metal joint having a perforated steel plate and fixed to the frame, the wall body is formed by arranging two wooden boards so that their board surfaces face each other, a solidifying material is filled between the frame and the wall body, the frame and the wall body are joined via the perforated steel plate protruding from the frame into the space between the two wooden boards, the perforated steel plate is sandwiched between the two wooden boards, a gap is provided between the two wooden boards at a position different from the perforated steel plate, and the entire part of the metal joint between the frame and the wall body is covered with the solidifying material when viewed along the out-of-plane direction of the frame.

本発明では、2枚の木質板材を板面同士が対向するように配置して木質耐震壁を形成するので、木質耐震壁を1枚の木質板材で形成する場合と比較して木質板材の板厚を薄くすることができ、工場での加工厚の制約を受けにくく、軽量であり施工もしやすい。 In the present invention, a wooden earthquake-resistant wall is formed by arranging two wooden boards with their board surfaces facing each other, so the thickness of the wooden board can be made thinner than when a wooden earthquake-resistant wall is formed from a single wooden board, so it is less subject to restrictions on processing thickness at the factory, is lightweight, and is easy to install.

しかも本発明では、フレームから突出する孔あき鋼板をフレームと木質耐震壁の接合に用いており、2枚の木質板材をフレームの面外方向から移動させて孔あき鋼板を挟むように配置すればよいので、払い込みのためにフレームと木質耐震壁の取り合い部に大きな隙間を空ける必要が無く、隙間の充填が容易で施工性も向上し、見栄えもよい。 Moreover, in this invention, perforated steel plates protruding from the frame are used to join the frame and the wooden earthquake-resistant wall, and two wooden boards are moved from the outside of the frame's plane and positioned so that they sandwich the perforated steel plate. This eliminates the need to leave a large gap where the frame and the wooden earthquake-resistant wall meet for the purpose of sweeping, making it easier to fill the gap, improving workability, and improving the appearance.

前記接合金物は、前記フレームの前記壁体側の表面に設置されるベースプレートと、前記ベースプレートの前記壁体側の面に固定される前記孔あき鋼板と、を有し、前記ベースプレートは、前記ベースプレートの前記壁体側の面が前記フレームの前記壁体側の表面と同一面となるように配置されることが望ましい。 The metal joint has a base plate that is installed on the wall side surface of the frame, and the perforated steel plate that is fixed to the wall side surface of the base plate, and it is desirable that the base plate is positioned so that the wall side surface of the base plate is flush with the wall side surface of the frame.

前記フレームは鉄筋コンクリート造または鉄骨鉄筋コンクリート構造であり、前記接合金物は、前記フレームの前記壁体側の表面に設置されるベースプレートと、前記ベースプレートの前記壁体側の面に固定される前記孔あき鋼板と、前記ベースプレートの前記フレーム側の面に固定され、前記ベースプレートと反対側の端部が前記フレームのコンクリートに埋設される脚部と、を有することも望ましい。 It is also desirable that the frame be of reinforced concrete or steel-reinforced concrete construction, and that the metal joint have a base plate installed on the surface of the frame facing the wall, the perforated steel plate fixed to the surface of the base plate facing the wall, and legs fixed to the surface of the base plate facing the frame, with the ends opposite the base plate embedded in the concrete of the frame.

第2の発明は、柱と梁を有するフレームと、前記フレームに囲まれた壁体とを接合した壁構造であって、前記壁体は、2枚の木質板材を板面同士が対向するように配置して形成され、前記フレームと前記壁体の間に固化材が充填され、前記フレームから2枚の前記木質板材の間の空間に突出した孔あき鋼板を介して、前記フレームと前記壁体とが接合され、前記壁体の上下の端部が前記孔あき鋼板を介して前記フレームの上下の梁に接合され、且つ、前記壁体の左右の端部が前記孔あき鋼板を介して前記フレームの左右の柱に接合されたことを特徴とする壁構造である。 The second invention is a wall structure in which a frame having pillars and beams is joined to a wall surrounded by the frame, the wall being formed by arranging two wooden boards so that their board surfaces face each other, a solidifying material is filled between the frame and the wall, the frame and the wall are joined via a perforated steel plate protruding from the frame into the space between the two wooden boards, the upper and lower ends of the wall are joined to the upper and lower beams of the frame via the perforated steel plate, and the left and right ends of the wall are joined to the left and right pillars of the frame via the perforated steel plate.

第3の発明は、柱と梁を有するフレームと、前記フレームに囲まれた壁体とを接合した第1または第2の発明の壁構造の施工方法であって、前記壁体を、2枚の木質板材を板面同士が対向するように配置して形成する工程と、前記フレームと前記壁体の間に固化材を充填する工程と、を有し、前記フレームから2枚の前記木質板材の間の空間に突出した孔あき鋼板を介して、前記フレームと前記壁体とが接合されることを特徴とする壁構造の施工方法である。 The third invention is a construction method for a wall structure according to the first or second invention, in which a frame having columns and beams is joined to a wall body surrounded by the frame, and includes the steps of forming the wall body by arranging two wooden boards so that their board surfaces face each other, and filling the space between the frame and the wall body with a solidifying material, and is characterized in that the frame and the wall body are joined via a perforated steel plate protruding from the frame into the space between the two wooden boards.

本発明によれば、施工性に優れた壁構造および壁構造の施工方法を提供できる。 The present invention provides a wall structure and a method for constructing a wall structure that are easy to construct.

壁構造1を示す図。FIG. 接合構造4を示す図。FIG. 壁構造1の施工方法について説明する図。1A to 1C are diagrams illustrating a construction method for the wall structure 1. 接合構造4aを示す図。FIG. 接合構造4bを示す図。A diagram showing a joint structure 4b. 接合構造4cを示す図。A diagram showing a joint structure 4c. 壁構造1a、1a’を示す図。FIG. 2 shows wall structures 1a and 1a'. 接合構造5、5’を示す図。A diagram showing joint structures 5, 5'. 接合構造5aを示す図。A diagram showing a joint structure 5a. 接合構造5bを示す図。A diagram showing a joint structure 5b.

以下、図面に基づいて本発明の好適な実施形態について詳細に説明する。 The following describes in detail a preferred embodiment of the present invention with reference to the drawings.

[第1の実施形態]
(1.壁構造1)
図1は本発明の第1の実施形態に係る壁構造1を示す図である。図1に示すように、壁構造1は、柱21と梁22を有する枠状架構であるフレーム2と、フレーム2に囲まれた木質耐震壁3とを接合構造4によって接合したものである。
[First embodiment]
(1. Wall Structure 1)
Fig. 1 is a diagram showing a wall structure 1 according to a first embodiment of the present invention. As shown in Fig. 1, the wall structure 1 is formed by joining a frame 2, which is a frame-like framework having columns 21 and beams 22, to a wooden earthquake-resistant wall 3 surrounded by the frame 2, by a joint structure 4.

柱21と梁22はRC造またはSRC造(鉄骨鉄筋コンクリート構造)であり、木質耐震壁3は2枚の木質板材を面外方向に重ね合わせて形成される。木質板材にはCLTやLVLなどの木質系の板材を用いることができる。CLT、LVLについては既知であり、説明を省略する。 The columns 21 and beams 22 are made of reinforced concrete or steel reinforced concrete (SRC), and the wooden earthquake-resistant wall 3 is formed by stacking two wooden boards in the out-of-plane direction. The wooden boards can be wood-based boards such as CLT or LVL. CLT and LVL are well known, so a description of them will be omitted.

なお、面外方向はフレーム2に囲まれた面と直交する方向であり、図1の紙面法線方向に対応する。これに対し、上記面と平行な方向を面内方向と呼ぶものとする。 The out-of-plane direction is the direction perpendicular to the plane surrounded by the frame 2, and corresponds to the normal direction to the paper surface of FIG. 1. In contrast, the direction parallel to the above plane is called the in-plane direction.

(2.接合構造4)
図2は接合構造4の概要を示す図である。図2(a)は図1の線A-Aによる断面図であり、図2(b)は接合金物41の斜視図である。なお、図2はフレーム2のうち柱21と木質耐震壁3とを接合する接合構造4について示したものであるが、梁22と木質耐震壁3も同様の接合構造4により接合される。
(2. Joint Structure 4)
Fig. 2 is a diagram showing an overview of the joint structure 4. Fig. 2(a) is a cross-sectional view taken along line A-A in Fig. 1, and Fig. 2(b) is a perspective view of the joint metal 41. Note that Fig. 2 shows the joint structure 4 that joins the column 21 of the frame 2 to the wooden earthquake-resistant wall 3, but the beam 22 and the wooden earthquake-resistant wall 3 are also joined by the same joint structure 4.

図2の接合構造4では、接合金物41とドリフトピン42を用いて柱21と木質耐震壁3とが接合され、柱21と木質耐震壁3の隙間にモルタル等の固化材43が充填される。 In the joint structure 4 in FIG. 2, the pillar 21 and the wooden earthquake-resistant wall 3 are joined using a joint metal 41 and a drift pin 42, and a solidifying material 43 such as mortar is filled into the gap between the pillar 21 and the wooden earthquake-resistant wall 3.

接合金物41は、孔あき鋼板411、ベースプレート413、脚部414等を有する。 The metal joint 41 includes a perforated steel plate 411, a base plate 413, and legs 414.

孔あき鋼板411は、孔412を有する。孔あき鋼板411は、ベースプレート413の木質耐震壁3側の面に固定され、板面(最も広い面をいう。以下同様)が面内方向となるように配置される。 The perforated steel plate 411 has holes 412. The perforated steel plate 411 is fixed to the surface of the base plate 413 facing the wooden earthquake-resistant wall 3, and is positioned so that the plate surface (meaning the widest surface; the same applies below) is in the in-plane direction.

ベースプレート413は、柱21の木質耐震壁3側の表面に設置される鋼板である。脚部414は、ベースプレート413の柱21側の面に固定され、柱21のコンクリートに埋設される。脚部414にはアンカーボルトなど各種の鋼材を用いることができる。 The base plate 413 is a steel plate that is installed on the surface of the pillar 21 facing the wooden earthquake-resistant wall 3. The legs 414 are fixed to the surface of the base plate 413 facing the pillar 21 and embedded in the concrete of the pillar 21. Various types of steel materials such as anchor bolts can be used for the legs 414.

木質耐震壁3は、2枚の木質板材31を、板面同士が対向するように配置して形成される壁体である。前記したように、木質板材31にはCLTやLVL等を用いることができる。 The wooden earthquake-resistant wall 3 is a wall formed by arranging two wooden boards 31 so that their board surfaces face each other. As mentioned above, CLT, LVL, etc. can be used for the wooden boards 31.

各木質板材31は貫通孔32を有する。貫通孔32は、木質板材31を面外方向(図2(a)の上下方向に対応する)に貫通する。 Each wooden board 31 has a through hole 32. The through hole 32 penetrates the wooden board 31 in the out-of-plane direction (corresponding to the up-down direction in FIG. 2(a)).

孔あき鋼板411は柱21から突出し、2枚の木質板材31の間の空間に挟み込まれる。各木質板材31は、貫通孔32の位置を孔あき鋼板411の孔412の位置に合わせて配置され、2枚の木質板材31の貫通孔32と孔あき鋼板411の孔412が面外方向に連通する。 The perforated steel plate 411 protrudes from the pillar 21 and is sandwiched in the space between the two wooden boards 31. Each wooden board 31 is positioned so that the position of the through hole 32 matches the position of the hole 412 in the perforated steel plate 411, and the through holes 32 in the two wooden boards 31 communicate with the holes 412 in the perforated steel plate 411 in the out-of-plane direction.

各貫通孔32と孔412には面外方向のドリフトピン42が挿通され、これにより2枚の木質板材31および孔あき鋼板411が一体化され、柱21と木質耐震壁3が接合される。ドリフトピン42は金属製の棒材であり、各貫通孔32と孔412の径はドリフトピン42の径と同程度である。 An out-of-plane drift pin 42 is inserted into each through hole 32 and hole 412, thereby integrating the two wooden boards 31 and the perforated steel plate 411 and joining the column 21 and the wooden earthquake-resistant wall 3. The drift pin 42 is a metal rod, and the diameter of each through hole 32 and hole 412 is approximately the same as the diameter of the drift pin 42.

孔あき鋼板411の孔412の数や配置、および接合金物41の各部の寸法は、木質耐震壁3に生じる応力に応じて設計される。例えば図2(b)では孔412を縦2行横2列で計4個配置したが、孔412の数や配置(すなわちドリフトピン42の数や配置)が特に限定されることはない。 The number and arrangement of the holes 412 in the perforated steel plate 411 and the dimensions of each part of the metal joint 41 are designed according to the stress generated in the wooden earthquake-resistant wall 3. For example, in FIG. 2(b), a total of four holes 412 are arranged in two vertical rows and two horizontal columns, but the number and arrangement of the holes 412 (i.e., the number and arrangement of the drift pins 42) are not particularly limited.

図1に示すように、接合構造4は柱21や梁22の軸方向に所定の間隔をおいて複数形成されるが、その数や間隔も上記応力に応じて設計され、特に限定されない。柱21あるいは梁22のみに接合構造4を形成することも可能である。また固化材43は、フレーム2と木質耐震壁3との間の応力伝達のため、柱21の全高および梁22の全長にわたって充填される。これらは後述する実施形態においても同様である。 As shown in FIG. 1, multiple joint structures 4 are formed at a predetermined interval in the axial direction of the columns 21 and beams 22, but the number and intervals are also designed according to the above stress and are not particularly limited. It is also possible to form the joint structures 4 only on the columns 21 or beams 22. In addition, the solidification material 43 is filled over the entire height of the columns 21 and the entire length of the beams 22 to transmit stress between the frame 2 and the wooden earthquake-resistant wall 3. This is also the case in the embodiments described below.

壁構造1を施工する際は、図3(a)に示すように、フレーム2の構築時に接合金物41を柱21や梁22の所定の位置に固定しておく。そして、木質耐震壁3をフレーム2で囲まれた位置に形成する。このとき、2枚の木質板材31を、図3(b)の矢印aに示すように面外方向から移動させ、孔あき鋼板411を両木質板材31で挟み込むように配置する。 When constructing the wall structure 1, as shown in Figure 3(a), the metal joints 41 are fixed to the columns 21 and beams 22 in predetermined positions when the frame 2 is constructed. The wooden earthquake-resistant wall 3 is then formed in a position surrounded by the frame 2. At this time, the two wooden boards 31 are moved from the out-of-plane direction as shown by the arrow a in Figure 3(b), and the perforated steel plate 411 is positioned so that it is sandwiched between the two wooden boards 31.

この後、図3(c)に示すようにドリフトピン42を2枚の木質板材31の貫通孔32および孔あき鋼板411の孔412に挿通し、フレーム2と木質耐震壁3の隙間にモルタル等の固化材43を充填する。固化材43は、木質耐震壁3の面外方向の両側から当て板(不図示)をしたうえでフレーム2と木質耐震壁3の隙間に圧入充填すればよい。 After this, as shown in FIG. 3(c), the drift pins 42 are inserted through the through holes 32 in the two wooden boards 31 and the holes 412 in the perforated steel plate 411, and the gap between the frame 2 and the wooden earthquake-resistant wall 3 is filled with a solidifying material 43 such as mortar. The solidifying material 43 can be pressed into the gap between the frame 2 and the wooden earthquake-resistant wall 3 after backing plates (not shown) are placed on both sides of the wooden earthquake-resistant wall 3 in the out-of-plane direction.

このように、第1の実施形態では、2枚の木質板材31を板面同士が対向するように配置して木質耐震壁3を形成するので、木質耐震壁3を1枚の木質板材で形成する場合と比較して木質板材31の板厚を薄くすることができ、工場での加工厚の制約を受けにくく、軽量であり施工もしやすい。 In this way, in the first embodiment, the wooden earthquake-resistant wall 3 is formed by arranging two wooden boards 31 so that their board surfaces face each other. This allows the thickness of the wooden board 31 to be thinner than when the wooden earthquake-resistant wall 3 is formed from a single wooden board, making it less subject to restrictions on processing thickness in the factory, lightweight, and easy to install.

しかも本実施形態では、フレーム2から突出する孔あき鋼板411をフレーム2と木質板材31の接合に用いており、2枚の木質板材31をフレーム2の面外方向から移動させて孔あき鋼板411を挟むように配置すればよいので、払い込みのためにフレーム2と木質耐震壁3の取り合い部に大きな隙間を空ける必要が無く、隙間の充填が容易で施工性も向上し、見栄えもよい。 In addition, in this embodiment, the perforated steel plate 411 protruding from the frame 2 is used to join the frame 2 and the wooden board 31, and two wooden boards 31 can be moved from the outside of the frame 2's plane and positioned so that they sandwich the perforated steel plate 411. This eliminates the need to leave a large gap at the joint between the frame 2 and the wooden earthquake-resistant wall 3 for the board to be sunk, making it easier to fill the gap, improving workability, and improving appearance.

なお、第1の実施形態では柱21や梁22をRC造またはSRC造としたが、柱21や梁22の構造は特に限定されず、例えばS造、CFT造(コンクリート充填鋼管構造)、木造などとしてもよい。柱21や梁22がS造やCFT造である場合には、孔あき鋼板411を工場溶接または現場溶接によって柱21や梁22に固定することが可能である。 In the first embodiment, the columns 21 and beams 22 are made of reinforced concrete or reinforced concrete, but the structure of the columns 21 and beams 22 is not particularly limited, and they may be made of steel, concrete-filled steel tubes (CFT), wood, or other materials. When the columns 21 and beams 22 are made of steel or CFT, the perforated steel plate 411 can be fixed to the columns 21 and beams 22 by factory welding or on-site welding.

以下、本発明の別の例について、第2~第7の実施形態として説明する。各実施形態はそれまでに説明した実施形態と異なる点について説明し、同様の構成については図等で同じ符号を付すなどして説明を省略する。また、第1の実施形態も含め、各実施形態で説明する構成は必要に応じて組み合わせることができる。 Other examples of the present invention will be described below as the second to seventh embodiments. Each embodiment will be described in terms of the differences from the previously described embodiments, and similar configurations will be given the same reference numerals in the figures and the like, and their description will be omitted. In addition, the configurations described in each embodiment, including the first embodiment, can be combined as necessary.

[第2の実施形態]
第2の実施形態は、第1の実施形態の接合構造4と異なる接合構造を用いて木質耐震壁とフレーム2の接合を行う例である。
Second Embodiment
The second embodiment is an example in which a wooden earthquake-resistant wall and a frame 2 are joined using a joint structure different from the joint structure 4 of the first embodiment.

図4は第2の実施形態に係る接合構造4aの概要を示す図である。図4(a)は接合構造4aについて図2(a)と同様の断面を示したものであり、図4(b)、(c)はそれぞれ接合構造4aで用いる孔あき鋼板41a、44の斜視図である。 Figure 4 is a diagram showing an overview of a joint structure 4a according to the second embodiment. Figure 4(a) shows a cross section of the joint structure 4a similar to that of Figure 2(a), and Figures 4(b) and 4(c) are perspective views of perforated steel plates 41a and 44 used in the joint structure 4a, respectively.

接合構造4aでは、孔あき鋼板41a、44、ドリフトピン42、ボルト45を用いて柱21と木質耐震壁3aとが接合される。 In the joint structure 4a, the pillar 21 and the wooden earthquake-resistant wall 3a are joined using perforated steel plates 41a and 44, drift pins 42, and bolts 45.

孔あき鋼板41aは柱21に埋設され、孔412aを有する一部が柱21から突出する。孔あき鋼板41aは面内方向に配置される。 The perforated steel plate 41a is embedded in the pillar 21, and a portion having a hole 412a protrudes from the pillar 21. The perforated steel plate 41a is arranged in the in-plane direction.

孔あき鋼板44(別の孔あき鋼板)は、木質耐震壁3aを構成する2枚の木質板材31aの間に挟み込むようにして面内方向に配置される。孔あき鋼板44は、孔441、442を有する。 The perforated steel plate 44 (another perforated steel plate) is arranged in the in-plane direction so as to be sandwiched between the two wooden boards 31a that make up the wooden earthquake-resistant wall 3a. The perforated steel plate 44 has holes 441 and 442.

孔あき鋼板44の孔441は、第1の実施形態と同様にドリフトピン42を挿通するための孔であり、各木質板材31aの貫通孔32と連通する。これらの貫通孔32および孔441にドリフトピン42を挿通することで、2枚の木質板材31aと孔あき鋼板44が一体化する。 The holes 441 in the perforated steel plate 44 are holes for inserting the drift pins 42 as in the first embodiment, and communicate with the through holes 32 in each wooden board 31a. By inserting the drift pins 42 into these through holes 32 and holes 441, the two wooden boards 31a and the perforated steel plate 44 are integrated.

各木質板材31aの柱21側の端部には、L字状の欠き込み33が形成され、2枚の木質板材31aを板面同士が対向するように配置して木質耐震壁3aを形成した時に、両木質板材31aの欠き込み33により木質耐震壁3aの柱21側の端部に凹部が形成される。 An L-shaped notch 33 is formed in the end of each wooden board 31a facing the pillar 21, and when two wooden boards 31a are arranged with their board surfaces facing each other to form a wooden earthquake-resistant wall 3a, the notches 33 in both wooden boards 31a form recesses in the ends of the wooden earthquake-resistant wall 3a facing the pillar 21.

前記した孔あき鋼板41aの孔412aを有する一部はこの凹部(2枚の木質板材31aの間の空間)に突出し、孔あき鋼板44の孔442を有する一部も、木質板材31aの間から上記凹部に突出する。 A portion of the perforated steel plate 41a having the holes 412a protrudes into this recess (the space between the two wooden boards 31a), and a portion of the perforated steel plate 44 having the holes 442 also protrudes into the recess from between the wooden boards 31a.

孔あき鋼板41a、44は、孔412a、442の位置を合わせ、面外方向(図4(a)の上下方向に対応する)に重なるように配置される。これらの孔412a、442には面外方向のボルト45が挿通される。孔412a、412の径はボルト45よりも十分大きく、ボルト45の挿入が容易となっている。 The perforated steel plates 41a, 44 are positioned so that the holes 412a, 442 are aligned and overlap in the out-of-plane direction (corresponding to the up-down direction in FIG. 4(a)). A bolt 45 is inserted in the out-of-plane direction through these holes 412a, 442. The diameter of the holes 412a, 412 is sufficiently larger than the bolt 45, making it easy to insert the bolt 45.

木質耐震壁3aを構成する一方の木質板材31aの柱21側の端部にも、ボルト45を挿通するための貫通孔34が面外方向に設けられる。貫通孔34の径はボルト45より大きく、木質板材31aの貫通孔34から通したボルト45の先端が、凹部において孔あき鋼板41a、44の孔412a、442に挿通される。 A through hole 34 for inserting a bolt 45 is also provided in the out-of-plane direction at the end of one of the wooden boards 31a that constitute the wooden earthquake-resistant wall 3a, which is on the side of the pillar 21. The diameter of the through hole 34 is larger than that of the bolt 45, and the tip of the bolt 45 that passes through the through hole 34 of the wooden board 31a is inserted into the holes 412a, 442 of the perforated steel plates 41a, 44 in the recesses.

上記の凹部も含め、柱21と木質耐震壁3aの隙間には、モルタル等の固化材43が充填される。固化材43は孔あき鋼板41a、44の孔412a、442にも充填され、これにより孔あき鋼板41a、44の間で固化材43を介したせん断力の伝達が可能になり、柱21と木質耐震壁3aが一体化される。 The gap between the pillar 21 and the wooden earthquake-resistant wall 3a, including the recessed portion, is filled with a solidifying material 43 such as mortar. The solidifying material 43 is also filled into the holes 412a and 442 of the perforated steel plates 41a and 44, which allows the transmission of shear force between the perforated steel plates 41a and 44 via the solidifying material 43, and the pillar 21 and the wooden earthquake-resistant wall 3a are integrated.

また、孔あき鋼板41a、44の孔412a、442にボルト45が挿通されることでせん断耐力が大きくなり、より大きなせん断力の伝達を可能にして柱21と木質耐震壁3aの一体性が向上する。 In addition, the bolts 45 are inserted through the holes 412a, 442 in the perforated steel plates 41a, 44, increasing the shear resistance, allowing for the transmission of greater shear forces and improving the integrity of the pillars 21 and the wooden earthquake-resistant wall 3a.

なお、図4(b)、(c)の例では各孔あき鋼板41a、44の孔412a、442が縦に2個配置されているが、各孔あき鋼板41a、44における孔412a、442の数や配置は木質耐震壁3に生じる応力に応じて設計され、特に限定されることはない。これは孔あき鋼板44の孔441などについても同様である。 In the example of Figures 4(b) and (c), each perforated steel plate 41a, 44 has two holes 412a, 442 arranged vertically, but the number and arrangement of holes 412a, 442 in each perforated steel plate 41a, 44 is designed according to the stress generated in the wooden earthquake-resistant wall 3 and is not particularly limited. The same applies to the holes 441 in the perforated steel plate 44.

また図4(a)の例では面内方向の孔あき鋼板41aを1枚設置しているが、面内方向の孔あき鋼板41aを、面外方向に間隔を空けて複数枚設置することも可能である。さらに、ボルト45に代えてその他の棒材、例えばドリフトピンや鉄筋等を用いることも可能であり、ボルト45を省略することも可能である。 In the example of FIG. 4(a), one perforated steel plate 41a is installed in the in-plane direction, but it is also possible to install multiple perforated steel plates 41a in the in-plane direction at intervals in the out-of-plane direction. Furthermore, other rod materials, such as drift pins or reinforcing bars, can be used instead of the bolts 45, and the bolts 45 can be omitted.

この第2の実施形態においても、第1の実施形態と同様、施工性に優れた壁構造を提供できる。第2の実施形態では、孔あき鋼板41a、44を、せん断力を伝達する孔あき鋼板ジベルとして機能させ、孔あき鋼板41a、44の間で固化材43を介してせん断力を伝達することで簡易な構成によりフレーム2と木質耐震壁3とを一体化できる。また孔あき鋼板41a、44の孔412a、442は適宜大きく設計できるため、孔あき鋼板41a、44同士の位置ずれも吸収しやすい。 In this second embodiment, as in the first embodiment, a wall structure with excellent workability can be provided. In the second embodiment, the perforated steel plates 41a, 44 function as perforated steel plate dowels that transmit shear forces, and the frame 2 and the wooden earthquake-resistant wall 3 can be integrated with a simple structure by transmitting the shear forces between the perforated steel plates 41a, 44 via the solidifying material 43. In addition, the holes 412a, 442 in the perforated steel plates 41a, 44 can be designed to be appropriately large, so that misalignment between the perforated steel plates 41a, 44 can be easily absorbed.

一方、第1の実施形態では、2枚の木質板材31の貫通孔32と孔あき鋼板411の孔412にドリフトピン42を挿通してフレーム2と木質耐震壁3を接合するので、木質耐震壁3の小口面(フレーム2側の面)に欠き込み33等の特別な加工を施す必要がなく、簡易でありながら意匠性に優れた納まりを実現できるという利点がある。 On the other hand, in the first embodiment, the frame 2 and the wooden earthquake-resistant wall 3 are joined by inserting the drift pin 42 through the through holes 32 of the two wooden boards 31 and the holes 412 of the perforated steel plate 411, so there is no need to perform special processing such as notching 33 on the end surface (the surface facing the frame 2) of the wooden earthquake-resistant wall 3, which has the advantage of allowing for a simple yet aesthetically pleasing fit.

[第3の実施形態]
第3の実施形態は、第1、第2の実施形態の接合構造4、4aと異なる接合構造を用いて木質耐震壁とフレーム2の接合を行う例である。
[Third embodiment]
The third embodiment is an example in which a wooden earthquake-resistant wall and a frame 2 are joined using a joint structure different from the joint structures 4, 4a of the first and second embodiments.

図5は第3の実施形態に係る接合構造4bの概要を示す図である。図5(a)は接合構造4bについて図2(a)と同様の断面を示したものであり、図5(b)は図5(a)の線B-Bによる断面を示したものである。また、図5(c)は接合構造4bで用いる接合金物41b、46、ボルト47を示す斜視図である。 Figure 5 is a diagram showing an overview of joint structure 4b according to the third embodiment. Figure 5(a) shows a cross section of joint structure 4b similar to that of Figure 2(a), and Figure 5(b) shows a cross section taken along line B-B in Figure 5(a). Figure 5(c) is a perspective view showing joint metal fittings 41b, 46, and bolt 47 used in joint structure 4b.

接合構造4bでは、接合金物41b、46、ドリフトピン42、ボルト47を用いて柱21と木質耐震壁3bが接合される。 In the joint structure 4b, the column 21 and the wooden earthquake-resistant wall 3b are joined using joint metal fittings 41b, 46, drift pins 42, and bolts 47.

接合金物41bは、孔あき鋼板411b、ベースプレート413、脚部414等を有する。ベースプレート413、脚部414については第1の実施形態と同様であるが、孔あき鋼板411bは第1の実施形態とは異なり、板面が面外方向に沿って水平となるようにベースプレート413の木質耐震壁3b側の面に固定される。また孔あき鋼板411bは孔415を有する。 The joint metal 41b has a perforated steel plate 411b, a base plate 413, legs 414, etc. The base plate 413 and legs 414 are the same as in the first embodiment, but the perforated steel plate 411b is fixed to the surface of the base plate 413 facing the wooden earthquake-resistant wall 3b, unlike in the first embodiment, so that the plate surface is horizontal along the out-of-plane direction. The perforated steel plate 411b also has holes 415.

接合金物46は、孔あき鋼板461、462を十字状に組み合わせたものである。すなわち、孔あき鋼板461は板面が面内方向となるように配置され、孔あき鋼板462は、孔あき鋼板461と十字状に直交するように、板面が面外方向に沿って水平となるように配置される。 The metal joint 46 is a cross-shaped combination of perforated steel plates 461 and 462. That is, the perforated steel plate 461 is arranged so that its plate surface is in the in-plane direction, and the perforated steel plate 462 is arranged so that its plate surface is horizontal along the out-of-plane direction and perpendicular to the perforated steel plate 461 in the cross shape.

孔あき鋼板461は、孔463を有する。また、孔あき鋼板462の一部は孔あき鋼板461から柱21側に突出し、当該一部には孔464が設けられる。 The perforated steel plate 461 has a hole 463. A portion of the perforated steel plate 462 protrudes from the perforated steel plate 461 toward the column 21, and a hole 464 is provided in the portion.

図5(b)に示すように、接合金物46は木質耐震壁3bを構成する2枚の木質板材31bの間に挟み込むようにして配置される。各木質板材31bは、孔あき鋼板462を挿入するための溝35を有する。 As shown in FIG. 5(b), the metal joint 46 is sandwiched between two wooden boards 31b that make up the wooden earthquake-resistant wall 3b. Each wooden board 31b has a groove 35 for inserting a perforated steel plate 462.

孔あき鋼板461の孔463は、第1の実施形態と同様にドリフトピン42を挿通するための孔であり、各木質板材31bの貫通孔32と連通する。これらの貫通孔32および孔463にドリフトピン42を挿通することで、2枚の木質板材31bと接合金物46が一体化する。 The holes 463 in the perforated steel plate 461 are holes for inserting the drift pins 42 as in the first embodiment, and communicate with the through holes 32 in each wooden board 31b. By inserting the drift pins 42 through these through holes 32 and holes 463, the two wooden boards 31b and the connecting metal fittings 46 are integrated.

また第2の実施形態と同様、各木質板材31bの柱21側の端部にはL字状の欠き込み33が形成され、2枚の木質板材31bを板面同士が対向するように配置して木質耐震壁3bを形成した時に、両木質板材31bの欠き込み33により木質耐震壁3bの柱21側の端部に凹部が形成される。 As in the second embodiment, an L-shaped notch 33 is formed in the end of each wooden board 31b facing the pillar 21, and when two wooden boards 31b are arranged with their board surfaces facing each other to form a wooden earthquake-resistant wall 3b, the notches 33 in both wooden boards 31b form recesses in the ends of the wooden earthquake-resistant wall 3b facing the pillar 21.

前記した孔あき鋼板411bはこの凹部(2枚の木質板材31bの間の空間)に突出し、孔あき鋼板462の孔464を有する一部も、木質板材31bの間から上記凹部に突出する。 The perforated steel plate 411b protrudes into this recess (the space between the two wooden boards 31b), and a portion of the perforated steel plate 462 with holes 464 also protrudes into the recess from between the wooden boards 31b.

孔あき鋼板411b、462は、孔415、464の位置を合わせ、柱21の軸方向(図5(a)の紙面法線方向に対応する)に重なるように配置される。これらの孔415、464には柱21の軸方向のボルト47が挿通される。孔415、464の径はボルト47よりも十分大きく、ボルト47の挿入が容易となっている。 The perforated steel plates 411b, 462 are positioned so that the holes 415, 464 are aligned and overlap in the axial direction of the column 21 (corresponding to the normal direction to the paper surface of FIG. 5(a)). A bolt 47 in the axial direction of the column 21 is inserted through these holes 415, 464. The diameter of the holes 415, 464 is sufficiently larger than the bolt 47, making it easy to insert the bolt 47.

上記の凹部も含め、柱21と木質耐震壁3bの隙間には、モルタル等の固化材43が充填される。固化材43は孔あき鋼板411b、462の孔415、464にも充填され、これにより孔あき鋼板411b、462の間で固化材43を介したせん断力の伝達が可能になり、柱21と木質耐震壁3bが一体化される。 The gap between the pillar 21 and the wooden earthquake-resistant wall 3b, including the recessed portion, is filled with a solidifying material 43 such as mortar. The solidifying material 43 is also filled into the holes 415 and 464 of the perforated steel plates 411b and 462, which allows the transmission of shear force between the perforated steel plates 411b and 462 via the solidifying material 43, and the pillar 21 and the wooden earthquake-resistant wall 3b are integrated.

また、孔あき鋼板411b、462の孔415、464にボルト47が挿通されることでせん断耐力が大きくなり、より大きなせん断力の伝達を可能にして柱21と木質耐震壁3bの一体性が向上する。 In addition, the bolts 47 are inserted through the holes 415 and 464 in the perforated steel plates 411b and 462, increasing the shear resistance, allowing for the transmission of greater shear forces and improving the integrity of the pillars 21 and the wooden earthquake-resistant wall 3b.

なお、接合金物41b、46では孔あき鋼板411b、462が柱21の軸方向に複数枚(図5(a)~(c)の例では2枚)配置され、孔415、464が一枚の孔あき鋼板411b、462当たり1個設けられるが、孔あき鋼板411b、462の枚数、接合金物41b、46の各部の寸法、一枚の孔あき鋼板411b、462当たりの孔415、464の数、孔415、464の配置などは木質耐震壁3bに生じる応力に応じて設計され、特に限定されることはない。これは孔あき鋼板461の孔463などについても同様である。またボルト47に代えてその他の棒材、例えば鉄筋等を用いることも可能であり、ボルト47を省略することも可能である。 In addition, in the joint metal 41b, 46, multiple perforated steel plates 411b, 462 (two in the example of Figs. 5(a)-(c)) are arranged in the axial direction of the column 21, and one hole 415, 464 is provided per perforated steel plate 411b, 462, but the number of perforated steel plates 411b, 462, the dimensions of each part of the joint metal 41b, 46, the number of holes 415, 464 per perforated steel plate 411b, 462, the arrangement of the holes 415, 464, etc. are designed according to the stress generated in the wooden earthquake-resistant wall 3b and are not particularly limited. The same applies to the holes 463 of the perforated steel plate 461. In addition, other rod materials, such as reinforcing bars, can be used instead of the bolts 47, and the bolts 47 can be omitted.

この第3の実施形態においても、第1の実施形態と同様、施工性に優れた壁構造を提供できる。また第3の実施形態では、孔あき鋼板411b、462が面外方向に動こうとする場合に柱21の全高さ分(あるいは梁22の全長分)の厚さの固化材43が抵抗し、面外方向に割れようとする応力をおさえるため、強い拘束効果を得ることができ、接合構造4bの耐力向上が期待できる。 In this third embodiment, as in the first embodiment, a wall structure with excellent workability can be provided. In addition, in the third embodiment, when the perforated steel plates 411b, 462 attempt to move in an out-of-plane direction, the solidification material 43 with a thickness of the entire height of the column 21 (or the entire length of the beam 22) resists and suppresses the stress that tends to crack in the out-of-plane direction, so a strong restraining effect can be obtained and the strength of the joint structure 4b can be expected to be improved.

[第4の実施形態]
第4の実施形態は、第1~第3の実施形態の接合構造4、4a、4bと異なる接合構造を用いて木質耐震壁とフレーム2の接合を行う例である。図6は第4の実施形態に係る接合構造4cの概要を示す図である。図6(a)は接合構造4cについて図2(a)と同様の断面を示したものである。図6(b)は接合構造4cで用いる接合金物41cの斜視図であり、図6(c)は木質板材31cの欠き込み33を示す斜視断面図である。
[Fourth embodiment]
The fourth embodiment is an example in which a wooden earthquake-resistant wall and a frame 2 are joined using a joint structure different from the joint structures 4, 4a, and 4b of the first to third embodiments. Fig. 6 is a diagram showing an outline of a joint structure 4c according to the fourth embodiment. Fig. 6(a) shows a cross section of the joint structure 4c similar to Fig. 2(a). Fig. 6(b) is a perspective view of a joint metal 41c used in the joint structure 4c, and Fig. 6(c) is a perspective cross-sectional view showing a notch 33 in a wooden board 31c.

接合構造4cでは、接合金物41cを用いて柱21と木質耐震壁3cが接合される。 In the joint structure 4c, the column 21 and the wooden earthquake-resistant wall 3c are joined using a joint metal fitting 41c.

接合金物41cは、孔あき鋼板411c、ベースプレート413、脚部414等を有する。ベースプレート413、脚部414については第1の実施形態と同様である。孔あき鋼板411cは板面が面内方向となるようにベースプレート413の木質耐震壁3c側の面に固定され、固化材43を充填するための孔416が設けられる。 The joint metal 41c has a perforated steel plate 411c, a base plate 413, legs 414, etc. The base plate 413 and legs 414 are the same as those in the first embodiment. The perforated steel plate 411c is fixed to the surface of the base plate 413 facing the wooden earthquake-resistant wall 3c so that the plate surface is in the in-plane direction, and holes 416 are provided for filling the solidification material 43.

木質耐震壁3cは、2枚の木質板材31cを板面同士が対向するように配置して構成されたものであり、第2の実施形態と同様、柱21側の端部に、各木質板材31cのL字状の欠き込み33によって形成された凹部を有する。これらの欠き込み33の面内方向に沿った面には、図5(c)に示すように複数の窪み331が設けられる。 The wooden earthquake-resistant wall 3c is constructed by arranging two wooden boards 31c so that their board surfaces face each other, and like the second embodiment, each wooden board 31c has a recess formed by an L-shaped notch 33 at the end on the pillar 21 side. A number of depressions 331 are provided on the surfaces along the in-plane direction of these notches 33, as shown in FIG. 5(c).

前記した孔あき鋼板411cはこの凹部(2枚の木質板材31cの間の空間)に突出し、当該凹部も含め、柱21と木質耐震壁3cの隙間にはモルタル等の固化材43が充填される。上記の窪み331により固化材43と木質耐震壁3cの一体性が向上し、孔あき鋼板411cの孔416に固化材43が充填されることで、孔あき鋼板411cと木質耐震壁3cの間で固化材43を介したせん断力の伝達が可能になり、柱21と木質耐震壁3cが一体化される。 The aforementioned perforated steel plate 411c protrudes into this recess (the space between the two wooden boards 31c), and the gap between the pillar 21 and the wooden earthquake-resistant wall 3c, including this recess, is filled with a solidifying material 43 such as mortar. The recess 331 improves the integrity of the solidifying material 43 and the wooden earthquake-resistant wall 3c, and filling the holes 416 of the perforated steel plate 411c with the solidifying material 43 makes it possible to transmit shear force between the perforated steel plate 411c and the wooden earthquake-resistant wall 3c via the solidifying material 43, and the pillar 21 and the wooden earthquake-resistant wall 3c are integrated.

なお、図6(b)、(c)の例では接合金物41cにおいて孔あき鋼板411cが一枚設けられ、孔あき鋼板411cの孔416が横2列縦5行の計10個配置されているが、孔あき鋼板411cの枚数や接合金物41cの各部の寸法、孔あき鋼板411cにおける孔416の数や配置は木質耐震壁3cに生じる応力に応じて設計され、特に限定されることはない。これは木質板材31cの窪み331などについても同様である。 In the example of Figures 6(b) and (c), one perforated steel plate 411c is provided in the joint metal 41c, and the perforated steel plate 411c has a total of 10 holes 416 arranged in two horizontal columns and five vertical columns, but the number of perforated steel plates 411c, the dimensions of each part of the joint metal 41c, and the number and arrangement of the holes 416 in the perforated steel plate 411c are designed according to the stress generated in the wooden earthquake-resistant wall 3c and are not particularly limited. The same applies to the depressions 331 in the wooden board material 31c.

また本実施形態では、2枚の木質板材31cが、ボルト61(棒材)とナット62を用いて締結され、板面同士が接するように配置される。ボルト61は頭付きボルトであり、各木質板材31cにはボルト61の軸部を通すための貫通孔36が設けられる。貫通孔36は各木質板材31cを面外方向に貫通し、各木質板材31cの外面で拡径して凹部361を形成する。一方の木質板材31cの貫通孔36にボルト61の軸部を挿入し、他方の木質板材31cから突出する当該軸部の先端にナット62を締め込むことで、2枚の木質板材31cが締結される。上記の凹部361には、ボルト61の頭部またはナット62が収容される。 In this embodiment, two wooden boards 31c are fastened together using bolts 61 (rods) and nuts 62, and are arranged so that their board surfaces are in contact with each other. The bolts 61 are headed bolts, and each wooden board 31c is provided with a through hole 36 for passing the shaft of the bolt 61. The through hole 36 penetrates each wooden board 31c in the out-of-plane direction, and expands in diameter on the outer surface of each wooden board 31c to form a recess 361. The shaft of the bolt 61 is inserted into the through hole 36 of one wooden board 31c, and a nut 62 is fastened to the tip of the shaft protruding from the other wooden board 31c, thereby fastening the two wooden boards 31c. The head of the bolt 61 or the nut 62 is accommodated in the recess 361.

なお、ボルト61やナット62を省略し、他の手段により木質板材31cを保持して木質耐震壁3cを構成することも可能である。例えば木質耐震壁3cの面外方向の両側でアングルピース等の保持具をフレーム2に後付けし、これにより2枚の木質板材31cを面外方向に離れないように保持して木質耐震壁3cを構成することが可能である。 It is also possible to omit the bolts 61 and nuts 62 and use other means to hold the wooden boards 31c to form the wooden earthquake-resistant wall 3c. For example, angle pieces or other retaining fixtures can be attached to the frame 2 on both sides of the wooden earthquake-resistant wall 3c in the out-of-plane direction, thereby holding the two wooden boards 31c so that they do not separate in the out-of-plane direction to form the wooden earthquake-resistant wall 3c.

この第4の実施形態においても、第1の実施形態と同様、施工性に優れた壁構造を提供できる。また第4の実施形態では、孔あき鋼板411cを孔あき鋼板ジベルとして機能させて簡易な構成によりフレーム2と木質耐震壁3cを接合でき、また第1の実施形態のように孔あき鋼板411cにドリフトピン等の棒材を挿通して2枚の木質板材31cと孔あき鋼板411cを一体化する必要もないので施工が容易である。 In this fourth embodiment, as in the first embodiment, a wall structure with excellent workability can be provided. In addition, in the fourth embodiment, the perforated steel plate 411c functions as a perforated steel plate dowel, allowing the frame 2 and the wooden earthquake-resistant wall 3c to be joined with a simple structure, and there is no need to insert a rod such as a drift pin into the perforated steel plate 411c as in the first embodiment to integrate the two wooden boards 31c and the perforated steel plate 411c, making construction easy.

[第5の実施形態]
図7(a)は本発明の第5の実施形態に係る壁構造1aを示す図である。壁構造1aでは、複数の木質耐震壁3がフレーム2に囲まれるように配置される。これら複数の木質耐震壁3はフレーム2の面内において水平方向に並べて配置され、隣り合う木質耐震壁3同士が接合構造5によって接合される。各木質耐震壁3とフレーム2は第1の実施形態の接合構造4によって接合されるが、第2~第4の実施形態の接合構造4a~4cによって接合されていてもよい。
[Fifth embodiment]
7(a) is a diagram showing a wall structure 1a according to a fifth embodiment of the present invention. In the wall structure 1a, a plurality of wooden shear walls 3 are arranged so as to be surrounded by a frame 2. These plurality of wooden shear walls 3 are arranged side by side in the horizontal direction within the plane of the frame 2, and adjacent wooden shear walls 3 are joined by a joint structure 5. Each wooden shear wall 3 and the frame 2 are joined by the joint structure 4 of the first embodiment, but they may also be joined by the joint structures 4a to 4c of the second to fourth embodiments.

図8(a)、(b)は接合構造5の概要を示す図である。図8(a)は図7(a)の線C-Cによる断面図、図8(b)は接合構造5で用いる間柱51の斜視図である。 Figures 8(a) and (b) are diagrams showing an overview of joint structure 5. Figure 8(a) is a cross-sectional view taken along line C-C in Figure 7(a), and Figure 8(b) is a perspective view of a stud 51 used in joint structure 5.

接合構造5では、間柱51を用いて隣り合う2つの木質耐震壁3が接合される。間柱51は断面矩形状の鋼管であり、面内方向の面に孔511が設けられる。間柱51は木質耐震壁3と略同等の高さであり、上下の梁22と接する上下端をプレート512によって閉塞することで、遮煙性、遮炎性が確保される。 In the joint structure 5, two adjacent wooden earthquake-resistant walls 3 are joined using studs 51. The studs 51 are steel pipes with a rectangular cross section, and holes 511 are provided on the in-plane surface. The studs 51 are approximately the same height as the wooden earthquake-resistant walls 3, and the upper and lower ends that contact the upper and lower beams 22 are blocked by plates 512 to ensure smoke and fire resistance.

木質耐震壁3を構成する2枚の木質板材31の間柱51側の端部には、L字状の欠き込み37が形成され、2枚の木質板材31を板面同士が対向するように配置して木質耐震壁3を形成した時に、両木質板材31の欠き込み37により木質耐震壁3の間柱51側の端部に凹部が形成される。 The ends of the two wooden boards 31 that make up the wooden earthquake-resistant wall 3 that face the stud 51 have an L-shaped notch 37. When the two wooden boards 31 are arranged with their board surfaces facing each other to form the wooden earthquake-resistant wall 3, the notches 37 of both wooden boards 31 form recesses in the ends of the wooden earthquake-resistant wall 3 that face the stud 51.

本実施形態では、隣り合う木質耐震壁3の上記凹部により、木質耐震壁3の間に間柱51を配置するための空間が形成され、各木質板材31の欠き込み37の面外方向(図8(a)の上下方向に対応する)の面371が、間柱51の面外方向の面と面接触する。なお、隣り合う木質耐震壁3は、対向する先端同士の間に若干の隙間を空けて配置される。 In this embodiment, the recesses in the adjacent wooden earthquake-resistant walls 3 form a space between the wooden earthquake-resistant walls 3 for placing the partition 51, and the out-of-plane surface 371 (corresponding to the up-down direction in FIG. 8(a)) of the notch 37 of each wooden board 31 comes into surface contact with the out-of-plane surface of the partition 51. Note that the adjacent wooden earthquake-resistant walls 3 are placed with a small gap between the opposing tips.

間柱51の孔511は、ドリフトピン52を挿通するためのものである。各木質耐震壁3を構成する2枚の木質板材31の間柱51側の端部にも、ドリフトピン52を通すための面外方向の貫通孔38が設けられる。木質板材31の貫通孔38と間柱51の孔511の位置は対応しており、ドリフトピン52を2枚の木質板材31の貫通孔38および間柱51の孔511に挿通し、2枚の木質板材31と間柱51を貫通するように設けることで、木質耐震壁3を構成する2枚の木質板材31と間柱51が一体化し、隣り合う木質耐震壁3同士が間柱51を介して一体化する。 The holes 511 in the studs 51 are for inserting the drift pins 52. The ends of the two wooden boards 31 that make up each wooden earthquake-resistant wall 3 on the side of the studs 51 are also provided with through holes 38 in the out-of-plane direction for inserting the drift pins 52. The positions of the through holes 38 in the wooden boards 31 and the holes 511 in the studs 51 correspond to each other, and the drift pins 52 are inserted through the through holes 38 in the two wooden boards 31 and the holes 511 in the studs 51 and are arranged so as to penetrate the two wooden boards 31 and the studs 51, so that the two wooden boards 31 that make up the wooden earthquake-resistant wall 3 and the studs 51 are integrated, and adjacent wooden earthquake-resistant walls 3 are integrated via the studs 51.

ここで、壁構造1aでは、隣り合う木質耐震壁3が1つの木質耐震壁のように挙動することが求められるが、仮に図8(c)の接合構造5’に示すように間柱51の代わりに孔あき鋼板51’を用いると、木質耐震壁3にせん断力が加わった時に木質耐震壁3と孔あき鋼板51’の接合部でガタツキが発生する。これは、孔あき鋼板51’の孔511とドリフトピン52との間に施工上の理由で1~2mm程度の隙間が生じるためである。 In wall structure 1a, adjacent wooden shear walls 3 are required to behave as if they were a single wooden shear wall. However, if perforated steel plates 51' were used instead of studs 51 as in joint structure 5' in Figure 8(c), rattling would occur at the joints between the wooden shear walls 3 and the perforated steel plates 51' when a shear force is applied to the wooden shear walls 3. This is because a gap of about 1 to 2 mm occurs between the holes 511 in the perforated steel plates 51' and the drift pins 52 for construction reasons.

一方、本実施形態では、前記したように木質耐震壁3と間柱51とを面接触させるので、壁構造1aにせん断力が加わった時に、図8(a)の符号pで示す接触面の支圧(面圧)によりせん断変形初期の接合部のガタツキを最小限にすることができ、せん断力が加わったときに初期剛性と耐力を同時に確保することができる。 In contrast, in this embodiment, as described above, the wooden earthquake-resistant wall 3 and the studs 51 are in surface contact with each other, so when a shear force is applied to the wall structure 1a, the support pressure (surface pressure) of the contact surface shown by the symbol p in Figure 8(a) can minimize wobbling of the joint at the beginning of shear deformation, and initial rigidity and strength can be secured at the same time when a shear force is applied.

また、孔あき鋼板51’を用いて木質耐震壁3の接合を行う図8(c)の場合、せん断力発生時のドリフトピン52の降伏ヒンジが3箇所(図8(c)の符号b参照)となるが、本実施形態では、図8(a)に示すようにドリフトピン52が間柱51の離隔した一対の面を貫通するため、降伏ヒンジが4箇所(図8(a)の符号b参照)に分散して形成され、ドリフトピン1本当たりの耐力向上を見込むことができる。 In the case of Figure 8(c) where a perforated steel plate 51' is used to join a wooden earthquake-resistant wall 3, the drift pin 52 has three yield hinges (see symbol b in Figure 8(c)) when shear force is generated. However, in this embodiment, as shown in Figure 8(a), the drift pin 52 penetrates a pair of spaced apart surfaces of the stud 51, so that the yield hinges are formed in four dispersed locations (see symbol b in Figure 8(a)), and the strength of each drift pin can be expected to improve.

なお、間柱51に用いる鋼管の厚さ(面外方向の長さ)は、例えば、木質耐震壁3の厚さの1/3~1/4、鋼管の板厚は9~12mm程度とすることが可能だが、鋼管の寸法、板厚、断面形状、孔511の数や配置などは木質耐震壁3に生じる応力により設計され、特に限定されない。また、図7(b)の壁構造1a’に示すように3枚以上の木質耐震壁3をフレーム2の面内で水平方向に並べて配置してもよく、この場合、両端部以外の木質耐震壁3は、水平方向の両側において接合構造5により木質耐震壁3と接続される。 The thickness (length in the out-of-plane direction) of the steel pipes used for the studs 51 can be, for example, 1/3 to 1/4 of the thickness of the wooden earthquake-resistant wall 3, and the thickness of the steel pipes can be about 9 to 12 mm, but the dimensions, thickness, cross-sectional shape, and number and arrangement of the holes 511 of the steel pipes are designed according to the stress generated in the wooden earthquake-resistant wall 3 and are not particularly limited. As shown in the wall structure 1a' in Figure 7(b) , three or more wooden earthquake-resistant walls 3 may be arranged horizontally within the plane of the frame 2, and in this case, the wooden earthquake-resistant walls 3 other than those at both ends are connected to the wooden earthquake-resistant walls 3 by joint structures 5 on both horizontal sides.

[第6の実施形態]
第6の実施形態は、第5の実施形態の接合構造5と異なる接合構造を用いて木質耐震壁同士の接合を行う例である。図9は第6の実施形態に係る接合構造5aの概要を示す図である。図9(a)は接合構造5aについて図8(a)と同様の断面を示したものであり、図9(b)は図9(a)の線D-Dによる断面を示したものである。なお、本実施形態でも各木質耐震壁3とフレーム2とが第1の実施形態の接合構造4によって接合されるものとする。
Sixth embodiment
The sixth embodiment is an example in which wooden earthquake-resistant walls are joined together using a joint structure different from the joint structure 5 of the fifth embodiment. Fig. 9 is a diagram showing an outline of a joint structure 5a according to the sixth embodiment. Fig. 9(a) shows a cross section of the joint structure 5a similar to Fig. 8(a), and Fig. 9(b) shows a cross section taken along line D-D in Fig. 9(a). Note that in this embodiment, each wooden earthquake-resistant wall 3 and frame 2 are joined together using the joint structure 4 of the first embodiment.

接合構造5aでは、木製の間柱53を用いて隣り合う2つの木質耐震壁3が接合される。 In the joint structure 5a, two adjacent wooden earthquake-resistant walls 3 are joined using wooden studs 53.

間柱53はクランク軸状の形状を有する。すなわち、間柱53には鉛直方向において複数の突出部531が形成され、各突出部531が、各木質耐震壁3側に向けて交互に突出する。 The studs 53 have a crankshaft shape. That is, the studs 53 have multiple protrusions 531 formed in the vertical direction, and each protrusion 531 protrudes alternately toward each wooden earthquake-resistant wall 3.

木質板材31の欠き込み37の面外方向(図9(a)の上下方向に対応する)の面371は、図9(b)に示すように、上記した間柱53の形状に対応して鉛直方向に沿って凹凸状に形成され、間柱53の面外方向の面と面接触する。 The out-of-plane surface 371 of the notch 37 in the wooden board 31 (corresponding to the up-down direction in FIG. 9(a)) is formed unevenly along the vertical direction in accordance with the shape of the stud 53 described above, as shown in FIG. 9(b), and is in surface contact with the out-of-plane surface of the stud 53.

なお間柱53の突出部531の数、寸法等は木質耐震壁3に生じる応力に応じて設計され、特に限定されることはない。また間柱53は木製に限らず鋼管等で製造してもよいが、木製とすれば加工が容易であり、木質耐震壁3の間の空間に配置する際に現場でカンナで削って簡単に形状を調整することができる。 The number and dimensions of the protruding parts 531 of the studs 53 are designed according to the stress generated in the wooden earthquake-resistant walls 3, and are not particularly limited. The studs 53 are not limited to being made of wood, and may be made of steel pipes or the like. However, wood is easier to process, and the shape can be easily adjusted on-site by cutting with a plane when placing them in the spaces between the wooden earthquake-resistant walls 3.

本実施形態でも、第5の実施形態と同様、木質耐震壁3と間柱53と面接触させるので、図9(a)の符号pで示す接触面の支圧(面圧)によりせん断変形初期の接合部のガタツキを最小限にすることができる。また本実施形態では間柱53の凹凸により木質耐震壁3と間柱53の間でせん断力を伝達し、間柱53の両側の木質耐震壁3を一体化できるため、第5の実施形態のような木質耐震壁3と間柱53とのドリフトピン52を用いた接合を省略することができる。ただし第5の実施形態と同様に予め間柱53と木質板材31とに孔を形成しておいてドリフトピン52による接合を行うことは可能である。 In this embodiment, as in the fifth embodiment, the wooden earthquake-resistant wall 3 and the stud 53 are in surface contact, so that the support pressure (surface pressure) of the contact surface shown by the symbol p in FIG. 9(a) can minimize wobbling of the joint at the beginning of shear deformation. In addition, in this embodiment, the unevenness of the stud 53 transmits shear force between the wooden earthquake-resistant wall 3 and the stud 53, and the wooden earthquake-resistant walls 3 on both sides of the stud 53 can be integrated, so that the joining of the wooden earthquake-resistant wall 3 and the stud 53 using the drift pin 52 as in the fifth embodiment can be omitted. However, as in the fifth embodiment, it is possible to form holes in the stud 53 and the wooden board 31 in advance and join them using the drift pin 52.

[第7の実施形態]
第7の実施形態は、第5、第6の実施形態の接合構造5、5aと異なる接合構造を用いて木質耐震壁同士の接合を行う例である。図10(a)は第7の実施形態に係る接合構造5bの概要を示す図であり、接合構造5bについて図8(a)と同様の断面を示したものである。なお、本実施形態では各木質耐震壁3cとフレーム2とが、例えば第4の実施形態の接合構造4cによって接合される。
[Seventh embodiment]
The seventh embodiment is an example in which wooden earthquake-resistant walls are joined together using a joint structure different from the joint structures 5 and 5a of the fifth and sixth embodiments. Fig. 10(a) is a diagram showing an outline of a joint structure 5b according to the seventh embodiment, and shows a cross section of the joint structure 5b similar to that of Fig. 8(a). In this embodiment, each wooden earthquake-resistant wall 3c and the frame 2 are joined together by, for example, the joint structure 4c of the fourth embodiment.

接合構造5bでは、接着材54を用いて隣り合う2つの木質耐震壁3cが接合される。 In the joint structure 5b, two adjacent wooden earthquake-resistant walls 3c are joined using adhesive 54.

木質耐震壁3cは、第4の実施形態で説明したように、2枚の木質板材31cの板面同士を接触させ、これらの木質板材31cをボルト61とナット62を用いて締結することで構成される。前記したように、ボルト61やナット62を省略し、フレーム2にアングルピース等を後付けして木質板材31cを面外方向に離れないように保持させることも可能である。 As explained in the fourth embodiment, the wooden earthquake-resistant wall 3c is constructed by bringing the board surfaces of two wooden boards 31c into contact with each other and fastening these wooden boards 31c with bolts 61 and nuts 62. As mentioned above, it is also possible to omit the bolts 61 and nuts 62 and attach angle pieces or the like to the frame 2 later to hold the wooden boards 31c so that they do not separate in the out-of-plane direction.

本実施形態では、隣り合う木質耐震壁3cのうち一方の木質耐震壁3cにおいて、木質板材31cの他方の木質耐震壁3c側の端部にL字状の欠き込み39が設けられる。そして、2枚の木質板材31cを板面同士が対向するように配置して木質耐震壁3cを形成した時に、両木質板材31cの欠き込み39により、上記一方の木質耐震壁3cの他方の木質耐震壁3c側の端部に凹部が形成される。 In this embodiment, an L-shaped notch 39 is provided in one of the adjacent wooden earthquake-resistant walls 3c at the end of the wooden board 31c facing the other wooden earthquake-resistant wall 3c. When two wooden boards 31c are arranged with their board surfaces facing each other to form the wooden earthquake-resistant wall 3c, the notches 39 in both wooden boards 31c form a recess in the end of the one wooden earthquake-resistant wall 3c facing the other wooden earthquake-resistant wall 3c.

他方の木質耐震壁3cの上記一方の木質耐震壁3c側の端部には、上記凹部に対応する凸部が形成される。他方の木質耐震壁3cでは、木質板材31cの上記一方の木質耐震壁3c側の端部に突片40が設けられており、上記の凸部は、2枚の木質板材31cを板面同士が対向するように配置して木質耐震壁3cを形成した時に、両木質板材31cの突片40同士を重ね合わせることで形成される。 A convex portion corresponding to the concave portion is formed on the end of the other wooden earthquake-resistant wall 3c facing the one wooden earthquake-resistant wall 3c. In the other wooden earthquake-resistant wall 3c, a protrusion 40 is provided on the end of the wooden board 31c facing the one wooden earthquake-resistant wall 3c, and the convex portion is formed by overlapping the protrusions 40 of both wooden boards 31c when the two wooden boards 31c are arranged with their board surfaces facing each other to form the wooden earthquake-resistant wall 3c.

接合構造5bでは、一方の木質耐震壁3cの凹部に、他方の木質耐震壁3cの凸部が挿入される。そして、凹部と凸部の面内方向の面同士が、接着材54によって接着される。凹部と凸部の寸法等は木質耐震壁3cに生じる応力に応じて設計され、特に限定されることはない。 In the joint structure 5b, the convex portion of one wooden earthquake-resistant wall 3c is inserted into the concave portion of the other wooden earthquake-resistant wall 3c. The in-plane surfaces of the concave portion and the convex portion are then bonded together with adhesive 54. The dimensions of the concave portion and the convex portion are designed according to the stress generated in the wooden earthquake-resistant wall 3c and are not particularly limited.

この第7の実施形態によれば、隣り合う2つの木質耐震壁3を部材数の少ない簡易な機構で接合することができる。そのため施工性が高い。 According to the seventh embodiment, two adjacent wooden earthquake-resistant walls 3 can be joined using a simple mechanism with a small number of components. This makes it easy to install.

なお本実施形態では、各木質耐震壁3cが2枚の木質板材31cの板面同士を接触させて形成されるが、図10(b)に示すように、2枚の木質板材31cの板面同士が間隔を空けて配置されていてもよい。この場合、2枚の木質板材31cの間に板状のフィラー7を配置することにより、接着材54を用いた接合箇所にボルト61およびナット62の締め付けによる圧力を確実に加えることができ、フレーム2との接合に第1~第3の実施形態の接合構造4~4bを適用することもできる。フィラー7は、少なくともボルト61の近傍と上記接合箇所に配置される。 In this embodiment, each wooden earthquake-resistant wall 3c is formed by contacting the plate surfaces of two wooden boards 31c, but as shown in FIG. 10(b), the plate surfaces of the two wooden boards 31c may be spaced apart. In this case, by placing a plate-shaped filler 7 between the two wooden boards 31c, pressure can be reliably applied to the joints using the adhesive 54 by tightening the bolts 61 and nuts 62, and the joint structures 4 to 4b of the first to third embodiments can also be applied to the joints with the frame 2. The filler 7 is placed at least near the bolts 61 and at the joints.

以上、添付図面を参照しながら、本発明に係る好適な実施形態について説明したが、本発明はかかる例に限定されない。当業者であれば、本願で開示した技術的思想の範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。 The above describes preferred embodiments of the present invention with reference to the attached drawings, but the present invention is not limited to these examples. It is clear that a person skilled in the art can come up with various modified or revised examples within the scope of the technical ideas disclosed in this application, and it is understood that these also naturally fall within the technical scope of the present invention.

1、1a、1a’:壁構造
2:フレーム
3、3a、3b、3c:木質耐震壁
4、4a、4b、4c、5、5’、5a、5b:接合構造
7:フィラー
21:柱
22:梁
31、31a、31b、31c:木質板材
32、34、36、38:貫通孔
412、412a、415、416、441、442、463、464、511:孔
33、37、39:欠き込み
35:溝
40:突片
41、41b、41c、46:接合金物
41a、44、411、411b、411c、461、462:孔あき鋼板
42、52:ドリフトピン
43:固化材
45、47、61:ボルト
51、53:間柱
54:接着材
62:ナット
531:突出部
1, 1a, 1a': Wall structure 2: Frame 3, 3a, 3b, 3c: Wooden earthquake-resistant wall 4, 4a, 4b, 4c, 5, 5', 5a, 5b: Joint structure 7: Filler 21: Pillar 22: Beam 31, 31a, 31b, 31c: Wooden board 32, 34, 36, 38: Through hole 412, 412a, 415, 416, 441, 442, 463, 4 64, 511: Hole 33, 37, 39: Notch 35: Groove 40: Projection 41, 41b, 41c, 46: Joint metal 41a, 44, 411, 411b, 411c, 461, 462: Perforated steel plate 42, 52: Drift pin 43: Solidification material 45, 47, 61: Bolt 51, 53: Stud 54: Adhesive 62: Nut 531: Projection

Claims (5)

柱と梁を有するフレームと、前記フレームに囲まれた壁体とを接合した壁構造であって、
孔あき鋼板を有し、前記フレームに固定された接合金物を用いて前記壁体と前記フレームとが接合され、
前記壁体は、2枚の木質板材を板面同士が対向するように配置して形成され、
前記フレームと前記壁体の間に固化材が充填され、
前記フレームから2枚の前記木質板材の間の空間に突出した前記孔あき鋼板を介して、前記フレームと前記壁体とが接合され、
前記孔あき鋼板が2枚の前記木質板材の間に挟み込まれ、前記孔あき鋼板と異なる位置で、2枚の前記木質板材の間に空隙が設けられ、
前記フレームの面外方向に沿って見た時に、前記接合金物の前記フレームと前記壁体の間の部分の全体が、前記固化材によって覆われたことを特徴とする壁構造。
A wall structure in which a frame having columns and beams is joined to a wall body surrounded by the frame,
The wall body and the frame are joined together using a metal joint having a perforated steel plate and fixed to the frame,
The wall body is formed by arranging two wooden boards so that their board surfaces face each other,
A solidification material is filled between the frame and the wall body,
The frame and the wall are joined via the perforated steel plate protruding from the frame into the space between the two wooden boards,
The perforated steel plate is sandwiched between the two wooden boards, and a gap is provided between the two wooden boards at a position different from the perforated steel plate;
A wall structure characterized in that, when viewed along the out-of-plane direction of the frame, the entire portion of the connecting metal between the frame and the wall body is covered by the solidifying material.
前記接合金物は、
前記フレームの前記壁体側の表面に設置されるベースプレートと、
前記ベースプレートの前記壁体側の面に固定される前記孔あき鋼板と、
を有し、
前記ベースプレートは、前記ベースプレートの前記壁体側の面が前記フレームの前記壁体側の表面と同一面となるように配置されることを特徴とする請求項1記載の壁構造。
The joining metal fittings are
A base plate is installed on a surface of the frame on the wall side;
The perforated steel plate is fixed to the wall side surface of the base plate;
having
2. The wall structure according to claim 1, wherein the base plate is disposed so that a surface of the base plate facing the wall is flush with a surface of the frame facing the wall.
前記フレームは鉄筋コンクリート造または鉄骨鉄筋コンクリート構造であり、
前記接合金物は、
前記フレームの前記壁体側の表面に設置されるベースプレートと、
前記ベースプレートの前記壁体側の面に固定される前記孔あき鋼板と、
前記ベースプレートの前記フレーム側の面に固定され、前記ベースプレートと反対側の端部が前記フレームのコンクリートに埋設される脚部と、
を有することを特徴とする請求項1記載の壁構造。
The frame is made of reinforced concrete or steel-reinforced concrete,
The joining metal fittings are
A base plate is installed on a surface of the frame on the wall side;
The perforated steel plate is fixed to the wall side surface of the base plate;
A leg portion is fixed to a surface of the base plate on the frame side, and an end portion opposite the base plate is embedded in the concrete of the frame;
2. The wall structure of claim 1, further comprising:
柱と梁を有するフレームと、前記フレームに囲まれた壁体とを接合した壁構造であって、
前記壁体は、2枚の木質板材を板面同士が対向するように配置して形成され、
前記フレームと前記壁体の間に固化材が充填され、
前記フレームから2枚の前記木質板材の間の空間に突出した孔あき鋼板を介して、前記フレームと前記壁体とが接合され、
前記壁体の上下の端部が前記孔あき鋼板を介して前記フレームの上下の梁に接合され、且つ、
前記壁体の左右の端部が前記孔あき鋼板を介して前記フレームの左右の柱に接合されたことを特徴とする壁構造。
A wall structure in which a frame having columns and beams is joined to a wall body surrounded by the frame,
The wall body is formed by arranging two wooden boards so that their board surfaces face each other,
A solidification material is filled between the frame and the wall body,
The frame and the wall are joined via a perforated steel plate protruding from the frame into the space between the two wooden boards,
The upper and lower ends of the wall body are joined to the upper and lower beams of the frame via the perforated steel plate, and
A wall structure characterized in that the left and right ends of the wall body are joined to the left and right columns of the frame via the perforated steel plates.
柱と梁を有するフレームと、前記フレームに囲まれた壁体とを接合した請求項1から請求項4のいずれかに記載の壁構造の施工方法であって、
前記壁体を、2枚の木質板材を板面同士が対向するように配置して形成する工程と、
前記フレームと前記壁体の間に固化材を充填する工程と、
を有し、
前記フレームから2枚の前記木質板材の間の空間に突出した孔あき鋼板を介して、前記フレームと前記壁体とが接合されることを特徴とする壁構造の施工方法。
A construction method for a wall structure according to any one of claims 1 to 4, in which a frame having columns and beams is joined to a wall body surrounded by the frame,
forming the wall body by arranging two wooden boards so that their board surfaces face each other;
A step of filling a space between the frame and the wall body with a solidification material;
having
A method for constructing a wall structure, characterized in that the frame and the wall body are joined via a perforated steel plate protruding from the frame into the space between the two wooden boards.
JP2024043624A 2020-04-21 2024-03-19 Wall structure and construction method of wall structure Pending JP2024073617A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2024043624A JP2024073617A (en) 2020-04-21 2024-03-19 Wall structure and construction method of wall structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020075353A JP7510272B2 (en) 2020-04-21 Wall structure and construction method of wall structure
JP2024043624A JP2024073617A (en) 2020-04-21 2024-03-19 Wall structure and construction method of wall structure

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2020075353A Division JP7510272B2 (en) 2020-04-21 2020-04-21 Wall structure and construction method of wall structure

Publications (1)

Publication Number Publication Date
JP2024073617A true JP2024073617A (en) 2024-05-29

Family

ID=78279203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2024043624A Pending JP2024073617A (en) 2020-04-21 2024-03-19 Wall structure and construction method of wall structure

Country Status (1)

Country Link
JP (1) JP2024073617A (en)

Also Published As

Publication number Publication date
JP2021172993A (en) 2021-11-01

Similar Documents

Publication Publication Date Title
JP5324764B2 (en) Column reinforcement structure
JP4095946B2 (en) Joint structure of wood members
JP5507051B2 (en) Seismic wall
JP7499203B2 (en) Method for constructing wooden earthquake-resistant walls and wooden earthquake-resistant walls
JP2008163646A (en) Method and structure for reinforcing existing column
JP2016037797A (en) Column-beam joining structure
JP2006316611A (en) Column and beam joint structure
JP2007197936A (en) Wall unit, aseismatic wall and its construction method
JP6530959B2 (en) Seismic wall structure
JP7510272B2 (en) Wall structure and construction method of wall structure
JP2024073617A (en) Wall structure and construction method of wall structure
JP2009155870A (en) Reinforcing structure
JP6997609B2 (en) How to install wall structures, buildings, and connecting members
JP5445791B2 (en) Panel connection method
JP7308339B2 (en) bearing wall
JP7489261B2 (en) Wall structure
JP6994281B1 (en) Shafted panel members, wall panels and beam structures
JP5628546B2 (en) Surface material mounting structure
JP5650383B2 (en) Multistage braided joint shaft
JP5535468B2 (en) High-rigidity load-bearing wall device for wooden buildings
JP2023099996A (en) Wall structure and construction method of wall structure
JP2021161620A (en) Load-bearing wall structure
JP2024072463A (en) Load-bearing wall
JP2021113435A (en) Bearing wall structure
JP2022015239A (en) Lower end joint structure and lower end jointing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240319