JP2024063207A - キャビティ内コーティングを備えたパッシブqスイッチマイクロチップレーザー、及びそのマイクロチップレーザーを備えたハンドピース - Google Patents

キャビティ内コーティングを備えたパッシブqスイッチマイクロチップレーザー、及びそのマイクロチップレーザーを備えたハンドピース Download PDF

Info

Publication number
JP2024063207A
JP2024063207A JP2024034441A JP2024034441A JP2024063207A JP 2024063207 A JP2024063207 A JP 2024063207A JP 2024034441 A JP2024034441 A JP 2024034441A JP 2024034441 A JP2024034441 A JP 2024034441A JP 2024063207 A JP2024063207 A JP 2024063207A
Authority
JP
Japan
Prior art keywords
laser
microchip
microchip laser
handpiece
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2024034441A
Other languages
English (en)
Inventor
シャオミン シャン
クリストファー ジョーンズ
チ ファン
Original Assignee
キャンデラ コーポレイション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キャンデラ コーポレイション filed Critical キャンデラ コーポレイション
Publication of JP2024063207A publication Critical patent/JP2024063207A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0627Construction or shape of active medium the resonator being monolithic, e.g. microlaser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0619Coatings, e.g. AR, HR, passivation layer
    • H01S3/0621Coatings on the end-faces, e.g. input/output surfaces of the laser light
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B18/203Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser applying laser energy to the outside of the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N5/067Radiation therapy using light using laser light
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0602Crystal lasers or glass lasers
    • H01S3/0612Non-homogeneous structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0619Coatings, e.g. AR, HR, passivation layer
    • H01S3/0621Coatings on the end-faces, e.g. input/output surfaces of the laser light
    • H01S3/0623Antireflective [AR]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0619Coatings, e.g. AR, HR, passivation layer
    • H01S3/0625Coatings on surfaces other than the end-faces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094038End pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094084Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light with pump light recycling, i.e. with reinjection of the unused pump light, e.g. by reflectors or circulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/11Mode locking; Q-switching; Other giant-pulse techniques, e.g. cavity dumping
    • H01S3/1106Mode locking
    • H01S3/1112Passive mode locking
    • H01S3/1115Passive mode locking using intracavity saturable absorbers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/11Mode locking; Q-switching; Other giant-pulse techniques, e.g. cavity dumping
    • H01S3/1123Q-switching
    • H01S3/113Q-switching using intracavity saturable absorbers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/1611Solid materials characterised by an active (lasing) ion rare earth neodymium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/162Solid materials characterised by an active (lasing) ion transition metal
    • H01S3/1623Solid materials characterised by an active (lasing) ion transition metal chromium, e.g. Alexandrite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/163Solid materials characterised by a crystal matrix
    • H01S3/1631Solid materials characterised by a crystal matrix aluminate
    • H01S3/1633BeAl2O4, i.e. Chrysoberyl
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/163Solid materials characterised by a crystal matrix
    • H01S3/164Solid materials characterised by a crystal matrix garnet
    • H01S3/1643YAG
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1685Ceramics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B2018/2035Beam shaping or redirecting; Optical components therefor
    • A61B2018/20351Scanning mechanisms
    • A61B2018/20359Scanning mechanisms by movable mirrors, e.g. galvanometric
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N2005/063Radiation therapy using light comprising light transmitting means, e.g. optical fibres
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N2005/0635Radiation therapy using light characterised by the body area to be irradiated
    • A61N2005/0643Applicators, probes irradiating specific body areas in close proximity
    • A61N2005/0644Handheld applicators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N5/0613Apparatus adapted for a specific treatment
    • A61N5/0616Skin treatment other than tanning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0071Beam steering, e.g. whereby a mirror outside the cavity is present to change the beam direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0092Nonlinear frequency conversion, e.g. second harmonic generation [SHG] or sum- or difference-frequency generation outside the laser cavity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094049Guiding of the pump light
    • H01S3/094053Fibre coupled pump, e.g. delivering pump light using a fibre or a fibre bundle

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Pathology (AREA)
  • Surgery (AREA)
  • Sustainable Development (AREA)
  • Biophysics (AREA)
  • Inorganic Chemistry (AREA)
  • Otolaryngology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Ceramic Engineering (AREA)
  • Lasers (AREA)
  • General Physics & Mathematics (AREA)

Abstract

【課題】マルチステージ構成による複雑な光学配置及び高度な電子的同期を回避するレーザーを提供する。【解決手段】マイクロチップレーザー及びこのマイクロチップレーザーを備えたハンドピースが提供される。このマイクロチップレーザーは、入力面及び出力面を備えたレーザー媒質を有する。入力面は、マイクロチップレーザー波長において高反射性かつポンプ波長において高透過性の誘電体コーティングでコートされている。出力面は、マイクロチップレーザー波長において部分反射性の誘電体コーティングでコートされている。可飽和吸収体が、マイクロチップレーザーの出力面に分子間力によって取り付けられている。皮膚処置のためのハンドピースは、このマイクロチップレーザーを有する。【選択図】図2

Description

本システムは、ハンドピース内に包含されるパッシブQスイッチマイクロチップレーザーに関するものであり、特に、ダブルパスポンプ構成を備えたマイクロチップレーザーに関するものである。
皮膚疾患の非侵襲的処置のためのシステムが当該技術分野において知られている。典型的には、そのようなシステムは、その中にレーザーが配置されるキャビネットと、レーザーから処置対象の皮膚の一部へのレーザー照射を行うハンドピースに接続された連結式のアームと、を有する。そのようなシステムの機能は、選択されたレーザーの能力によって制限される。皮膚欠陥の処置は、通常1種類を超えるレーザーを必要とし、しばしば1種類を超えるレーザーがキャビネット内に配置される。これが、システムのサイズ、コスト及び複雑さを増大させる。
ある種の皮膚欠陥の処置は、かなりのレーザー出力(何十、更には何百MW)を必要とし、これは皮膚の損傷を避けるためにフェムト又はピコ秒の超短パルスで供給される。そのようなレーザー出力はファイバーを通して伝達することは困難であり、また連結式アームの使用が医療提供者の自由をかなり制限する。
マイクロチップレーザーは、活性レーザー媒質が各端部ミラーと直接接触してレーザー共振器を形成する、アライメントフリー(配列自由)でモノリシックなソリッドステートレーザーである。多くの場合、各ミラーは、誘電体コーティングであり、単に活性レーザー媒質の各端面上に配置(堆積)される。10Wの出力を発するマイクロチップレーザーの報告が公知であるが、マイクロチップレーザーは、通常レーザーダイオードで励起(ポンプ、ポンピング)され、また典型的には平均で数十又は数百ミリワットの出力を発する。マイクロチップレーザーの寸法は、小さく、それをシステムにおけるほぼすべての所望の場所に配置することを支援する。
典型的なQスイッチマイクロチップレーザーは、レーザー媒質と、パッシブQスイッチとしての可飽和吸収体とが、1つの素子として一緒に結合されてなる。マイクロチップレーザーは、誘電体でコートされた各キャビティミラーを備えた、小さい、直線状のキャビティの、モノリシックなソリッドステートレーザーである。典型的なキャビティ長さは、ミリメートルオーダーである。短いキャビティ長さは、極めて短いキャビティ寿命、及びより短いQスイッチパルスの可能性をもたらす。Qスイッチマイクロチップレーザーが、市販の大型のQスイッチシステムが生成するものと同様に、大型のモードロックされたレーザーが約10KWのピーク出力で生成するものと同程度に短い、300psよりも短い出力パルスを生成できることが実証された。
数十年にわたって、高エネルギーピコ秒レーザーの発生を求めて、多くの努力が投入されてきた。多くの技術が開発されてきた。これらの技術は、一般に、マルチステージ構成(多段構成)を含み、すなわち、低エネルギーピコ秒シードレーザー(例えば、nJ又はμJ)が増幅ステージ(再生増幅器又は/及びマルチパス増幅を含む)に与えられる。そのようなマルチステージ構成は、複雑な光学配置及び高度な電子的同期を必要とし、システムの複雑さ及びコストを更に増大させる[16,17、18、20、25、28]。
マイクロチップレーザー、及びダブルパス(二重通過)ポンプ構造を備えたパッシブQスイッチマイクロチップレーザーを有するハンドピースを実施する方法が開示される。レーザー媒質及び可飽和吸収体は、ポンプ波長において高反射性の誘電体コーティングで挟まれ、分子間力による光学的接触によって結合される。高反射性の誘電体コーティングは、ダブルパスポンプの達成を支援し、未吸収のポンプレーザーによるパッシブQスイッチの望まない退色を避ける。
マイクロチップレーザーの寸法は、複数の異なる用途、特に、皮膚疾患の処置において用いることのできるハンドピース内にマイクロチップレーザーを包含することを支援する。ハンドピースは、皮膚に適用され皮膚上をスライドするように適合される。ハンドピースは、マイクロチップレーザーによって発されたレーザービームを皮膚の一部を横切って走査するように構成された走査システムを有していてよい。走査システムは、1次元(1-D)の又は2次元(2-D)の処置される皮膚領域の範囲を提供してよい。分割マイクロドットラインビームパターンが支援される。マイクロチップレーザーハンドピースは、追加のレーザー波長を発生するための2次又はより高次の高調波発生器を収容していてよい。
マイクロチップレーザーに基づくシステムは、ポンプ光源としてアレキサンドライトレーザーを用いる。アレキサンドライトレーザーは、より高いパルスエネルギー発生のための1kWを超えるポンプ出力を供給する。高いポンプ出力は、エネルギー蓄積を促進し、これは低い初期透過の可飽和吸収体の使用によって更に促進される。約100MW以上の高いピーク出力を伴うピコ秒レーザーパルスの発生が実証された。
本開示及びその特徴のより完全な理解のために、添付の図面と共に下記の詳細な説明を参照する。各図面において同様の参照番号は同様の要素を示す。
マイクロチップレーザーの例を示す図である。 マイクロチップレーザーのレーザー媒質と可飽和吸収体との結合を例示する図である。 第二高調波発生(SHG)を支援するマイクロチップレーザーの例を示す図である。 和周波発生(SFG)を支援するマイクロチップレーザーの例を示す図である。 第五高調波発生(FHG)を支援するマイクロチップレーザーの例を示す図である。 分割皮膚処置のためのハンドピースの例を示す図である。 まばらな分割皮膚処置パターンの例を示す図である。 より密度が高い分割皮膚処置パターンの例を示す図である。 分割皮膚処置のためのハンドピースの別の例を示す図である。
本開示は、パッシブQスイッチマイクロチップレーザー(受動的にQスイッチされるマイクロチップレーザー)をハンドピースに搭載すること、それによってシステム全体のサイズ及び複雑さを低減し、電力利用効率を向上させることを提案する。本開示はまた、新規で、より頑丈なマイクロチップレーザーを提案する。このQスイッチマイクロチップレーザーは、数十及び数百MWのレーザー出力でピコ秒パルスを発する。
パッシブQスイッチマイクロスイッチレーザーは、スイッチング電子機器を必要とせず、それによってシステム全体のサイズ及び複雑さを低減し、電力効率を向上させる。加えて、キャビティ寸法の干渉法による制御の必要がなく、機器の製造を簡単にし、その使用中の温度制御における許容範囲を大きく緩和する。その結果、連結キャビティQスイッチマイクロチップレーザーのものに匹敵する能力を備えた、潜在的により安価、より小型、より頑丈、かつより信頼性のある、Qスイッチレーザーシステムが得られる。この特性の組み合わせをもって、パッシブQスイッチピコ秒マイクロチップレーザーは、高精度測距、ロボットの視覚、自動化生産、非線形周波数発生、環境モニタリング、マイクロマシニング、コスメティック及びマイクロサージェリー、イオン化分光法、並びに、自動車エンジンのイグニッションを含む、広範囲の応用のために魅力的である。
[マイクロチップレーザー]
パッシブQスイッチマイクロチップレーザーは、数十年にわたり広く研究されてきた。しかしながら、ほとんどの研究は、数ミリジュール未満のパルスエネルギー及び10MW未満のピーク出力の発生を報告している[1~15、19、21~26、28、29]。特に、いくつかのマイクロチップレーザーは、ナノ秒レーザーパルス幅(パルス持続時間)しか生成できなかった[3、4、7、13、23、及び24]。ごく最近、X. Guoらは、Yb:YAG/Cr:YAGマイクロチップレーザーからの12mJの出力の発生を実証した[1]。しかし、比較的長いパルス幅(1.8ns)に起因して、~3.7MWのピーク出力しか達成されなかった。さらに、そのレーザーは、極低温環境下(すなわち、77ケルビン)で動作させられなければならず、これが実用的な応用を問題のあるものとする。本発明者の知る限りにおいて、パッシブQスイッチマイクロチップレーザーから直接の100MWを超える(>100MW)ナノ秒未満(サブナノセカンド)のレーザーパルスの発生は報告されていない。
シングルパス(単一通過)ポンプマイクロチップレーザーは、いくつかの制限を有する。レーザー媒質におけるポンプエネルギーの十分な吸収を確保するためには、レーザー媒質は十分に長くなければならないが、より長いレーザー媒質はより長いパルス幅を発することにつながる。加えて、いくつかの特定のポンプ波長において、未吸収のポンプレーザーが、Qスイッチ動作の不具合を引き起こす可飽和吸収体の望まない退色(ブリーチング)をもたらすことがある。上記各問題を克服するために、本開示は、ダブルパスポンプを備えたマイクロチップレーザーを提案する。ダブルパスポンプはまた、ドープされにくい結晶(すなわち、Nd:YAG)から生成されたレーザー媒質、又は利用可能なポンプレーザー波長におけるレーザー媒質の吸収が弱い結晶から生成されたレーザー媒質の使用を促進する。ダブルパスポンプは、高反射性の誘電体コーティングを、レーザー媒質とパッシブQスイッチとの間に、2つの材料が一緒に結合されてマイクロチップレーザーが形成される際に適用することによって、可能とすることができる。ダブルパスポンプマイクロチップレーザーは、ポンプレーザー吸収と、より短いパルス幅及びよりコンパクトなレーザーレイアウト(配置)をもたらすより短い媒質長さと、を支援する。
本開示は、100MWを超える高ピーク出力を伴うナノ秒未満のレーザーパルスを生成するためのマイクロチップレーザーについて述べる。
マイクロチップレーザー100が図1に示されている。マイクロチップレーザー100は、例えばNd:YAG及びNdなどのレーザー媒質104と、レーザー媒質104と可飽和吸収体112との間に挟まれた、ポンプレーザー波長に対して高反射性の誘電体コーティング108と、を有する。また、図1には、アレキサンドライトレーザーポンプビーム116及びマイクロチップレーザー100の出力ビーム120が示されている。アレキサンドライトレーザー出力ビーム120は、例えば、波長が~752nmのビームであってよい。高反射性の誘電体コーティング108(ポンプレーザー波長である752nmにおいて高反射性、かつ、Qスイッチレーザー波長である1064nmにおいて高透過性)は、ダブルパスポンプの達成を支援し、パッシブQスイッチ112を通して漏れる未吸収のポンプレーザーによるパッシブQスイッチ112の望まない退色を避ける。
マイクロチップレーザー100の入力端部124(すなわち、レーザー媒質104の表面)は、例えば1064nmのマイクロチップレーザー100の波長において高反射性かつポンプ波長において高透過性の誘電体コーティングでコートされている。マイクロチップレーザー100の出力端部(すなわち、パッシブQスイッチ112の表面128)は、マイクロチップレーザー100から発されるレーザー波長において部分反射性の誘電体コーティングがコート(堆積)されている。マイクロチップレーザーの出力面のコーティングは、モノリシック材料が形成された際にコーティングが要求に応じて機能するように、レーザー媒質及び可飽和吸収体の屈折率を考慮して形成される。
これら2つの端部(124及び128)は、平行となるように配置され、誘電体コーティングでコートされており、レーザー発振が発生することを可能としている。
レーザー媒質とパッシブQスイッチ素子(すなわち、可飽和吸収体)とを結合してパッシブQスイッチマイクロチップレーザーを形成するためには、一般に、拡散接合が用いられる。この方法は、典型的には、接触配置された各材料が完全に溶融する温度の約50~70%といった、高温高圧で達成される。高温を伴うそのような製造工程は、いかなる誘電体コーティング(特に、ポンプレーザー波長において高反射性のコーティング)を2つの素子(すなわち、レーザー媒質及びQスイッチ素子)の間に設ける(堆積させる)ことも困難にする。したがって、シングルパスポンプを適用することだけが可能である。
本開示では、図2に示すように、矢印204で示すレーザー媒質104と可飽和吸収体112との間の結合は、ファンデルワールス力、水素結合、及び双極子間相互作用などの分子間力による光学的接触によって行われる。高温高圧を必要としないので、反射性誘電体コーティング108の完全性が保護される。
接触させられる2つの表面(すなわち、レーザー媒質104の表面208、及び可飽和吸収体112の表面212)は、安定した光学的接触を達成するために、光学的品質で処理される。レーザー媒質104と可飽和吸収体112との間の接合部分(界面)におけるポンプ波長において高反射性の誘電体コーティングは、ダブルパスポンプの達成を支援し、未吸収のポンプレーザーによるパッシブQスイッチの望まない退色を避ける。概して、表面品質は、20-10のスクラッチ-ディグよりも良くてよい。表面平面度及び表面精度(粗さ)は、それぞれ少なくともλ/4、10A rms、又はそれらよりも良くてよい。
マイクロチップレーザー媒質100及び可飽和吸収体112は、Ndドープ結晶、すなわち、YAG又はYLF又はセラミックであってよい。レーザー媒質のための材料と可飽和吸収体のための材料とは、同一の母材のもの又は異なる母材のものであってよい。この点は、2つの構成要素に関する材料の物理的特性(すなわち、融点、熱膨張係数など)が類似しているべきである拡散方法によって結合される現存するマイクロチップレーザーと大きく異なる。
ダブルパスポンプを備えたパッシブQスイッチマイクロチップレーザーは、より短いレーザー媒質が用いられることでより短いパルスを発生することによって、シングルパスポンプによるものに対する優位性を提供する。これは、Qスイッチパルス幅がおおよそキャビティ長さに比例することによるものである。さらに、ドーピング濃度が低い結晶あるいはポンプレーザー波長における吸収が低い結晶に関して、ダブルパスポンプは、よりコンパクトなレーザー設計をもたらすより短い結晶長さを維持しつつ、十分なポンプレーザー吸収を得ることを可能とする。
このシステムは、ポンプ光源としてアレキサンドライトレーザーを使用する。アレキサンドライトレーザーは、より高いパルスエネルギー発生のための1kWを超えるポンプ出力を供給することができる。この高いポンプ出力は、エネルギー蓄積を促進し、これは低い初期透過の可飽和吸収体の使用によって更に促進される。約100MW以上の高いピーク出力を伴うピコ秒レーザーパルスの発生が実証された。
高エネルギー/高ピーク出力で超短パルスのマイクロチップレーザーは、高調波発生(第二高調波発生、第三高調波発生、第四高調波発生、和周波発生、OPOなど)を含む効率的な非線形周波数変換、及び高ピーク出力が要求されるスーパーコンティニウム発生を促進する。現存する低エネルギーマイクロチップレーザーとは対照的に、この高エネルギーマイクロチップレーザーは、周波数変換された波長におけるより高いエネルギー/出力を供給することができ、その結果、信号対ノイズ比の向上によって測定精度を著しく高めることができる。最も重要なことに、光学配置が非常にコンパクト(小型)かつシンプル(簡素)であり、例えばハンドピース内などの制約されたスペース内にマイクロチップレーザーを搭載することを支援する。
図3は、第二高調波発生を支援するマイクロチップレーザーの一例である。安定した直線偏光Qスイッチレーザーを発生するために、<110>カットCr4+:YAGが用いられる。ニオブ酸リチウム(LiNbO)、チタンリン酸カリウム(KTP=KTiOPO)、及び三ホウ酸リチウム(LBO=LiB)など、又は他の任意の第二高調波発生結晶(SHG)であってよい第二高調波発生結晶(SHG)304は、波長が1064nmのマイクロチップレーザー100の出力ビーム120を受け、これを2つのビームに変換する。1つのビーム320は、1064nmの当初の波長(周波数)を維持し、もう1つのビーム312は、波長が532nmで当初のビーム120の2倍高い周波数を有する。ビームスプリッター308は、ビーム320とビーム312とを、分割し、異なる方向に向かわせて、それらの使用を促進する。
図4は、和周波発生(SFG)を支援するマイクロチップレーザーの一例である。和周波発生(SFG)又は差周波発生(DFG)は、波長が532nm及び1064nmであるポンプビーム312及び320の光周波数の和又は差をもって2つのレーザーポンプビームが別のビームを発生するようにして起き得る。例えば、SFG結晶404を用いて、1064nmのレーザービーム(レーザ光)の出力を、周波数が2倍された532nmのレーザービームと混合すると、355nmのUV光の出力光線(光ビーム)408をもたらし得る。
図5は、第四高調波発生(FHG)を支援するマイクロチップレーザーの一例である。第四高調波発生は、例えば266nm又は更に短い波長でUV放射を生成するためのプロセス設計である。例えば、波長が1064nmのレーザービームを生成するNd:YAGレーザーの第四高調波は、波長が266nmの光線となり得る。番号502は、FHG結晶を示し、番号506は、波長が266nmの出力ビームを示す。
上述のような周波数変換プロセスは、異なる分光学的応用のための十分なエネルギーを伴う広範囲のスペクトルを提供することができる。現存する低エネルギーマイクロチップレーザーとは対照的に、この高エネルギーマイクロチップレーザーは、周波数変換された波長におけるより高いエネルギー/出力を供給することができ、その結果、信号対ノイズ比の向上によって測定精度を著しく高めることができる。光学配置は、非常にコンパクトかつシンプルである。
本開示のピコ秒パルスを生成する高ピーク出力マイクロチップレーザーは、分光学(分光法)の分野に加えて多くの分野で用いられ得る。それらは、皮膚処置、マイクロマシニング、高調波発生(第二高調波発生、第三高調波発生、第四高調波発生、和周波発生、OPOなど)を含む効率的な非線形周波数変換、及び高ピーク出力が要求されるスーパーコンティニウム発生を含む。上述のような周波数変換プロセスは、分光学的応用のためのエネルギーを伴う広範囲のスペクトルを提供することができる。
[ハンドピース]
本開示のピコ秒レーザーパルスを生成する高ピーク出力マイクロチップレーザーの潜在的かつ有望な応用の1つは、コスメティック(美容)用及び医療用のレーザーシステムにおけるものであろう。高エネルギー短パルスマイクロチップレーザーは、有意義な美容処置、特に、分割(フラクショナル)皮膚若返り術を実施するためのハンドピース内にマイクロチップレーザーを包含することを支援する。1レーザービーム当たり4mJの数百ピコ秒のレーザーパルスが、レーザー誘起オプティカルブレイクダウン(LIOB)あるいはメラニン補助オプティカルブレイクダウンによって、組織あるいは皮膚の微小損傷を引き起こすのに十分であることが、臨床的に実証された。そのような微小損傷によって刺激されるその後のコラーゲン再構築が、皮膚の若返りをもたらし得る。本開示のマイクロチップレーザーは、波長が1064nmの40mJを超える300psのレーザーパルスを発生することができる。したがって、このマイクロチップレーザーからの出力エネルギーを、例えば、10個の微小ビーム(ただし、他の数の微小ビームも可能である)に分割することができる。各微小ビームは、効果的な皮膚処置のために十分な4mJを超えるエネルギーを有し得る。各微小ビームは、10個の微小ドットを発生するために、集束(フォーカシング)光学系によって集束されてよい。
皮膚処置は、通常、2次元の皮膚領域の照射を必要とする。2次元の微小ビームパターンを実現するための多くの手法がある。例えば、マイクロチップレーザービームを1次元の微小ビームのアレイに分割し、皮膚上でその1次元の微小ビームのアレイを手動によりスライドさせる手法がある。別の手法としては、微小ビームのアレイを1つ又は2つの方向/軸に走査する走査(スキャニング)システムを使用する手法がある。走査ミラー又は他の走査手段を伴う微小ビームあるいは分割ビームの使用は、分割皮膚処置を支援する。
図6は、分割皮膚処置のためのハンドピースの一例である。例えば、励起アレキサンドライトレーザーが、キャビネット内に、本件と同じ譲受人及び発明者に対する米国特許第9,722,392号(その全体が本明細書に組み込まれる)に開示されるようにして、配置されていてよい。矢印606で模式的に示すアレキサンドライトポンプレーザービームは、皮膚に適用されるように構成されたハンドピースボディー604内に配置されたシードマイクロチップレーザー610へと、光ファイバー接続部によって導かれてよい。ハンドピースボディー604は、上述のマイクロチップレーザーと同じ高エネルギーシードマイクロチップレーザー610と、走査ミラー群614又はポリゴンスピナーのユニット、あるいは1つ又は2つの方向又は軸(X、Y)へのレーザービーム120の走査を支援するその他のレーザービーム走査手段と、を収容していてよい。これは、分割皮膚処置の実施を促進し得る。シードマイクロチップレーザー610及び走査ミラー群614の全体のシステムは、ハンドピース604内に包含されるように十分に小型であり得る。そのようなハンドピースは、皮膚の若返りのための分割処置を可能とするピコ秒レーザーを発生することができる。
オプションの2次又はより高次の高調波発生器304がハンドピースボディー604内に配置されていてよい。マイクロチップレーザー610は、波長が1064nmのビームを発する。1064nmに加えて波長が必要な場合、追加のレーザー光波長を発生するために、第二高調波発生器304がマイクロチップレーザービーム経路中に導入されてよい。概して、必要な場合に、他の波長周波数逓倍器がタレット上に配置されて使用されてよい。
図7に示すように、皮膚処置のために、医療提供者又は使用者は、例えばホログラフィック1-Dビームスプリッター又はスキャナーなどの1次元(1-D)ビームスプリッターを備えたハンドピース604を、処置される皮膚領域上で手動によりスライドさせて、分割走査システムを形成することができる。スライド移動中に、マイクロチップシードレーザー610は、1-D分割微小ドット704のラインを形成するピコ秒レーザーパルスを発生する。
矢印708で示すような1-D分割微小トッドラインと直交する方向へのハンドピースの手動による移動は、2-D分割ビームパターン712を生成する。分割処置される皮膚領域の範囲は、1-Dライン中の分割微小ドット704の数及びハンドピース604の移動速度を変化させることで変更することができる。図7は、1-Dライン中に比較的まばらに配置された分割微小ドット704の一例である。ハンドピース604の移動速度708は、同じハンドピースの移動速度808(図8)よりも大きい。その結果、より密度が高い分割微小ドット704の2-Dパターン812が生成される。
図9には、分割皮膚処置のためのハンドピースの他の例が示されている。分割ビームパターンの生成は、レンズアレイ912上にレーザービーム120を投影又は走査する一対のガルバノメーターミラー904及び908の組み合わせによって提供される。レンズアレイ912は、レーザービーム120を、これもまた分割微小ビームであってよい複数の微小ビーム916に分割する。高調波発生器内に配置されていてよい2次又はより高次の高調波発生器304によって発生される追加の波長を分離するために、ミラー920が用いられてよい。ミラー920のコーティングは、要求される波長分離に従って形成される。高調波は、皮膚疾患類の組み合わせを含んでいる処置対象の皮膚部分へと伝達されてよい一方、未変換の赤外光120は、レーザー光線ダンプ924中に向けられて吸収されてよい。レーザー光線ダンプ924は、ダメージを受けることなく又はハンドピース900の他の構成要素の温度上昇を引き起こすことなく、未変換の赤外エネルギーを効果的に消散させるように設計されてよい。レーザー光線ダンプ924から熱を除去するために、必要に応じて、パッシブ(受動)及びアクティブ(能動)の冷却機構を用いることができる。
下記の例は、皮膚疾患処置のために用いられる典型的なハンドピースのいくつかの動作パラメータを提供する。シードレーザー610のエネルギーは、40mJ以上であってよい。システムは、各微小ビームのためのエネルギーが、1064nmで4mJまで、532nmで2mJまで、となるように設計される。
そのようなシードレーザーエネルギーは、そのシードレーザーからの各レーザービームが、9個の微小ドットを生成する少なくとも9個の小レンズをカバーできるようにするのに十分に高い。ガルバノメーターミラー対904及び908は、2-Dパターンを形成して少なくとも81個の小レンズをカバーするために、レーザービームを9回走査する。マイクロチップレーザーが20Hzの周波数で動作すると仮定すると、各走査には0.45秒(9/20)かかり、あるいは処置は2.2Hzまでで行うことができる。
当業者は、本開示が上述の特定の態様に限定されないことを理解するだろう。むしろ、本発明のマイクロチップレーザー及びハンドピースの範囲は、上述の種々の特徴のコンビネーション及びサブコンビネーションの両方、並びに、当業者が上述の詳細な説明及び従来技術に属さないものを読むことで起こり得るその変化及び変更を含む。
[参考文献の一覧]
(1) X. Guo, et.al, “12 mJ Yb:YAG/Cr:YAG microchip laser”, Opt. Lett., 43(3), 459, 2018
(2) L. Zheng, etc, “>MW peak power at 266 nm, low jitter kHz repetition rate from intense pumped microlaser”, Opt. Exp., 24(25), 28748, 2016
(3) H. He, et.al, Ming-Ming Zhang, Jun Dong1 and Ken-Ichi Ueda, “Linearly polarized pumped passivcly Q-switched Nd: YVO4 microchip laser for Ince-Gaussian laser modes with controllable orientations”, J. Opt., 18(12), 125202 (2016)
(4) V. Vitkin, et.al, “Compact 0.7 mJ/11 ns eye-safe erbium laser” Laser Physics, 26(12), 125801 (2016).
(5) J. Nikkinen, VILLE-MARKUS KORPIJARVI(VILLE-MARKUS KORPIJAERVI), IIRO LEINO, ANTTI HARKONEN(ANTTI HAERKOENEN), AND MIRCEA GUINA, “Frequency-doubled passively Q switched microchip laser producing 225 ps pulses at 671 nm”, 41(22), 5385(2016).
(6) C. Wang. et.al, “1.2 MW peak power, all-solid-state picosecond laser with a microchip laser seed and a high gain single-passing bounce geometry amplifier”, Optics & Laser Technology”, 85, 14 (2016)
(7) J. Dong. et.al, “A Cr4+:YAG passively Q-switched Nd:YVO4 microchip laser for controllable high-order Hermite-Gaussian modes”, Laser Physics, 26, 095004(2016)
(8) E. Turkyilmaz(E. Tuerkyilmaz), et.al, “Simple ps microchip Nd:YVO4 laser with 3.3-ps pulses at 0.2 to 1.4 MHz and single-stage amplification to the microjoule level”, Opt. Eng., 55(6), 0661296(2016).
(9) P. Loiko, et.al, “Sub-nanosecond Yb:KLu(WO4)2 microchip laser” Opt. Lett., 41(11), 2620(2016)
(10) A. C. Butler, et.al, “Scaling Q-switched microchip lasers for shortest pulses”, Appl. Phys., 109, 81(2012)
(11) M. Tsunekane, et.al, “High Peak Power, Passively Q-switched Microlaser for lgnition of Engines” IEEE J. Quan. Elec., 46(2), 277(2010).
(12) R. Bhandari, et.al, “> 6 MW peak power at 532 nm from passively Q-switched Nd:YAG/Cr4+:YAG microchip laser”, Optical Express, 19(20), 19135(2011)
(13) P. Peuser, et.al, “Miniaturized, high-power diode-pumped, Q-switched Nd:YAG laser oscillator-amplifier”, Appl. Opt., 50(4), 399(2011)
(14) N. Pavel, et.al, “Composite, all-ceramics, high-peak power Nd:YAG/Cr4+:YAG monolithic micro-laser with multiple-beam output for engine ignition” Opt. Express, 19(10), 9378(2011)
(15) R. Haring, et.al, “Passively Q-switched microchip laser at 1.5 mm”, J. Opt. Soc. Am. B., 18(12), 1805(2001)
(16) A. STRATAN, L. RUSEN*, R. DABU, C. FENIC, C. BLANARU “Picosecond laser system based on microchip oscillator”, J. Opto. Adv. Mat., 10(11), 3022(2008).
(17) A. H. Curtis, et.al, “Demonstration of a compact 100 Hz, 0.1 J diode-pumped picosecond laser” Opt. Lett, 36(11), 2164(2011)
(18) A. Agnesi, et.al, “50-mJ macro-pulses at 1064 nm from a diode-pumped picoscond laser system” Opt. Exp., 19(21), 20316(2011)
(19) G. Salamu, et.al, “High Peak Power, Passively QSwitched, Composite, All Poly Crystalline Ceramics Nd:YAG/Cr4+:YAG Laser and Generation of 532 nm Green Light” Solid State and Liquid Lasers, 22(1), 68(2012)
(20) Q. K. Aia, et.al, “Picosecond Nd:YLF FivePasses Laser Amplifier with 20 mJ Pulse Energy”, Solid State and Liquid Lasers, 22(7), 1169(2012)
(21) J. Zayhowski, “Q-switched operation of microchip lasers”, 16(8), 575(1991)
(22) W. Kong, “Diode edge-pumped passively Q-switched microchip laser”, Opt. Eng., 54(9), 090501(2015)
(23) C.Y. Cho, et. Al., “An energy adjustable lincarly polarized passively Q-switched bulk laser with a wedged diffusion bonded Nd:YAG/Cr4+:YAG crystal”, Optical Express, 23(6), 8162(2015)
(24) J. Dong, et.al “>1 MW peak power, an efficient Yb: YAG/Cr4:YAG composite crystal passively Q-switched laser”, Laser Physics, 24, 55801 (2014).
(25) A. Agnesi, et.al, “Low-power 100-ps microchip laser amplified by a two-stage Nd:YVO4 amplifier module”, Appl. Phys. B 109, 659(2012)
(26) R. Bhandari, et.al, “3 MW peak power at 266 nm using Nd:YAG/Cr4+:YAG microchip laser and fluxless-BBO”, Optical Material Express, 2(7), 907(2012)
(27) A. Steinmetz, “Sub-5-ps, multimegawatt peak-power pulse from a fiber-amplified and optically compressed passively Q-switched microchip laser”, Opt. Lett., 37(13), 2550(2012).
(28) O. Sandu, et.al, “High-peak power, passively Q-switched, composite, all-polycrystalline ceramic Nd:YAG/Cr4+: YAG lasers, Quan. Elec., 42(3), 211(2012)
(29) R. Bhandari, et.al, “> 6 MW peak power at 532 nm from passively Q-switched Nd:YAG/Cr4+:YAG microchip laser”, Opt. Exp., 19(20), 19135(2011)
本開示では、図2に示すように、矢印204で示すレーザー媒質104と可飽和吸収体112との間の結合は、ファンデルワールス力、水素結合、及び双極子間相互作用などの分子間力による光学的接触(オプティカルコンタクト)によって行われる。高温高圧を必要としないので、反射性誘電体コーティング108の完全性が保護される。

Claims (25)

  1. マイクロチップレーザーであって、
    入力面及び出力面を備えたレーザー媒質と、
    マイクロチップレーザー波長において高反射性かつポンプ波長において高透過性の誘電体コーティングでコートされた入力面と、
    ポンプ波長において高反射性かつQスイッチレーザー波長において高透過性の誘電体コーティングでコートされた出力面と、
    分子間力によってマイクロチップレーザーに取り付けられ、出力面がマイクロチップレーザー波長において部分反射性の誘電体コーティングによってコートされた可飽和吸収体と、
    を有するマイクロチップレーザー。
  2. 出力面のコーティングは、モノリシック材料が形成された際にコーティングが要求に応じて機能するように、レーザー媒質及び可飽和吸収体の屈折率を考慮してなる請求項1に記載のマイクロチップレーザー。
  3. レーザー媒質材料及び可飽和吸収体は、同一の母材で形成されている請求項1に記載のマイクロチップレーザー。
  4. レーザー媒質材料及び可飽和吸収体は、異なる母材で形成されている請求項1に記載のマイクロチップレーザー。
  5. レーザー媒質と可飽和吸収体との間の結合は、分子間力による光学的接触によって行われている請求項1に記載のマイクロチップレーザー。
  6. 前記マイクロチップレーザーは、ダブルパスポンプマイクロチップレーザーである請求項1に記載のマイクロチップレーザー。
  7. ダブルパスポンプマイクロチップレーザーが、ポンプレーザー吸収と、より短いパルス幅及びよりコンパクトなレーザーレイアウトをもたらすより短い媒質長さと、を支援する請求項1に記載のマクロチップレーザー。
  8. レーザー媒質と可飽和吸収体との間の接合部分におけるポンプ波長において高反射性の誘電体コーティングが、ダブルパスポンプの達成を支援し、未吸収のポンプレーザーによるパッシブQスイッチの望まない退色を避ける請求項1に記載のマイクロチップレーザー。
  9. ハンドピースボディーであって、
    ハンドピースボディー内に配置され皮膚に適用されるように構成されたマイクロチップレーザーと、
    ポンプレーザーに対する光ファイバー接続部と、
    マイクロチップレーザーによって発されたソリッドビームを分解して皮膚の一部を横切るマクロビームのアレイを形成するように構成された分割走査システムと、
    を収容するハンドピースボディーを有し、
    前記マイクロチップレーザーは、高出力ピコ秒短パルスエネルギーを発生するマイクロチップレーザーハンドピース。
  10. 前記ハンドピースボディーは、皮膚に適用され該皮膚上をスライドするように適合されている請求項9に記載のマイクロチップレーザーハンドピース。
  11. 走査システムは、一対のミラーを含む一群の走査システムのうちの1つである請求項9に記載のマイクロチップレーザーハンドピース。
  12. 走査ビームは、レンズアレイ上に入射してマイクロビームアレイを形成する請求項9に記載のマイクロチップレーザーハンドピース。
  13. レンズアレイ上のレーザースポットサイズは、各レンズが、1064nmにおいて4mJまで、及び532nmにおいて2mJまでを通すように決定される請求項10に記載のマイクロチップレーザーハンドピース。
  14. 前記ハンドピースは更に、1-D分割マイクロドットラインを生成するように構成されたホログラフィック1-Dビームスプリッターを有する請求項9に記載のマイクロチップレーザーハンドピース。
  15. 1-D分割マイクロドットラインと直交する方向に沿う前記ハンドピースの手動による移動が、2-D分割ビームパターンを生成する請求項14に記載のマイクロチップレーザーハンドピース。
  16. 前記ハンドピースボディーは、追加のレーザー光波長を発生するためのオプションの第二高調波発生器を収容する請求項9に記載のマイクロチップレーザーハンドピース。
  17. 前記ハンドピースボディーのスライド速度が、レーザービームによって処置される皮膚の範囲を決定する請求項9に記載のマイクロチップレーザーハンドピース。
  18. ポンプレーザービームを供給するように構成されたポンプレーザーと、
    ハンドピースであって、
    前記ポンプレーザービームを受けるように構成され、利得媒質及び可飽和吸収体によって形成されたキャビティを備えたマイクロチップレーザーと、
    前記マイクロチップレーザーによって発されたレーザービームによって活性化されるパッシブQスイッチ素子と、
    を備えたハンドピースと、
    を有し、
    超短高出力レーザーパルスを発生するレーザーシステム。
  19. 前記マイクロチップレーザーは、ダブルパスポンプマイクロチップレーザーである請求項15に記載のレーザーシステム。
  20. ダブルパスポンプマイクロチップレーザーが、十分なポンプレーザー吸収と、より短いパルス及びよりコンパクトなレーザーレイアウトをもたらすより短い媒質長さと、を支援する請求項16に記載のレーザーシステム。
  21. 前記マイクロチップレーザーの高反射性の誘電体コーティングフィルムが、ダブルパスポンプの達成を支援し、未吸収のポンプレーザーによるパッシブQスイッチの望まない退色を避ける請求項15に記載のレーザーシステム。
  22. レーザー媒質と可飽和吸収体との間の結合は、分子間力による光学的接触によって行われている請求項15に記載のレーザーシステム。
  23. 利得媒質及び可飽和吸収体は、同一の母材で形成されている請求項15に記載のレーザーシステム。
  24. 利得媒質及び可飽和吸収体は、異なる母材で形成されている請求項15に記載のレーザーシステム。
  25. 前記ポンプレーザーは、アレキサンドライトレーザーである請求項15に記載のレーザーシステム。
JP2024034441A 2018-06-22 2024-03-06 キャビティ内コーティングを備えたパッシブqスイッチマイクロチップレーザー、及びそのマイクロチップレーザーを備えたハンドピース Pending JP2024063207A (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US16/015,249 US10622780B2 (en) 2018-06-22 2018-06-22 Handpiece with a microchip laser
US16/015,249 2018-06-22
JP2021520086A JP2021530116A (ja) 2018-06-22 2019-06-17 キャビティ内コーティングを備えたパッシブqスイッチマイクロチップレーザー、及びそのマイクロチップレーザーを備えたハンドピース
PCT/US2019/037418 WO2019245937A1 (en) 2018-06-22 2019-06-17 Passively q-switched microchip laser with intra-cavity coating and hand piece with such a microchip laser

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2021520086A Division JP2021530116A (ja) 2018-06-22 2019-06-17 キャビティ内コーティングを備えたパッシブqスイッチマイクロチップレーザー、及びそのマイクロチップレーザーを備えたハンドピース

Publications (1)

Publication Number Publication Date
JP2024063207A true JP2024063207A (ja) 2024-05-10

Family

ID=67108227

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2021520086A Pending JP2021530116A (ja) 2018-06-22 2019-06-17 キャビティ内コーティングを備えたパッシブqスイッチマイクロチップレーザー、及びそのマイクロチップレーザーを備えたハンドピース
JP2024034441A Pending JP2024063207A (ja) 2018-06-22 2024-03-06 キャビティ内コーティングを備えたパッシブqスイッチマイクロチップレーザー、及びそのマイクロチップレーザーを備えたハンドピース

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2021520086A Pending JP2021530116A (ja) 2018-06-22 2019-06-17 キャビティ内コーティングを備えたパッシブqスイッチマイクロチップレーザー、及びそのマイクロチップレーザーを備えたハンドピース

Country Status (7)

Country Link
US (2) US10622780B2 (ja)
EP (3) EP4336678A3 (ja)
JP (2) JP2021530116A (ja)
KR (1) KR20210021345A (ja)
CN (1) CN112425014A (ja)
IL (3) IL310192B1 (ja)
WO (1) WO2019245937A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170123862A (ko) * 2016-04-29 2017-11-09 주식회사 루트로닉 레이저 빔 장치 및 이를 갖는 레이저 빔 핸드피스
US11253720B2 (en) 2020-02-29 2022-02-22 Cutera, Inc. Dermatological systems and methods with handpiece for coaxial pulse delivery and temperature sensing
US10864380B1 (en) 2020-02-29 2020-12-15 Cutera, Inc. Systems and methods for controlling therapeutic laser pulse duration
CN111478166A (zh) * 2020-04-21 2020-07-31 纬达星辰(深圳)科技有限公司 一种高能量皮秒级输出的固体脉冲激光器
US11532919B2 (en) * 2020-05-27 2022-12-20 Candela Corporation Fractional handpiece with a passively Q-switched laser assembly
CN111769434A (zh) * 2020-06-15 2020-10-13 北京工业大学 一种避免泵浦光漂白被动调q晶体的微片激光器
CN116667122A (zh) * 2023-07-31 2023-08-29 中国科学院长春光学精密机械与物理研究所 1.5μm波段芯片级半导体/固体垂直集成被动调Q激光器
CN116683269A (zh) * 2023-07-31 2023-09-01 中国科学院长春光学精密机械与物理研究所 1.06μm波段芯片级半导体/固体垂直集成被动调Q激光器

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2685135B1 (fr) * 1991-12-16 1994-02-04 Commissariat A Energie Atomique Mini cavite laser pompee optiquement, son procede de fabrication et laser utilisant cette cavite.
US5394413A (en) * 1994-02-08 1995-02-28 Massachusetts Institute Of Technology Passively Q-switched picosecond microlaser
FR2758915B1 (fr) * 1997-01-30 1999-03-05 Commissariat Energie Atomique Microlaser solide declenche passivement par absorbant saturable et son procede de fabrication
US20030039274A1 (en) * 2000-06-08 2003-02-27 Joseph Neev Method and apparatus for tissue treatment and modification
US6501772B1 (en) * 2000-08-11 2002-12-31 Litton Systems, Inc. Microlaser assembly having a microresonator and aligned electro-optic components
JP2004121417A (ja) * 2002-09-30 2004-04-22 Nidek Co Ltd レーザ治療装置
KR100649890B1 (ko) * 2006-03-27 2006-11-28 주식회사 루트로닉 접촉 센서를 이용한 레이저 빔 컨트롤 장치 및 컨트롤 방법
KR100649889B1 (ko) * 2006-03-27 2006-11-28 주식회사 루트로닉 미세 부분 박피를 위한 마이크로 레이저 빔의 조사 장치 및 조사 방법
US20090227995A1 (en) * 2006-09-29 2009-09-10 Bhawalkar Jayant D Precision Tube Assembly
WO2008042854A1 (en) * 2006-09-29 2008-04-10 Candela Corporation Treatment of skin by a solid-state laser
US7649920B2 (en) * 2007-04-03 2010-01-19 Topcon Corporation Q-switched microlaser apparatus and method for use
US8366703B2 (en) * 2008-04-02 2013-02-05 Cutera, Inc. Fractional scanner for dermatological treatments
JP5281922B2 (ja) * 2009-02-25 2013-09-04 浜松ホトニクス株式会社 パルスレーザ装置
JP5986586B2 (ja) * 2011-02-03 2016-09-06 トリア ビューティ インコーポレイテッド 放射線ベースの皮膚科治療のデバイスおよび方法
US20120283712A1 (en) * 2011-02-03 2012-11-08 TRIA Beauty Devices and Methods for Radiation-Based Dermatological Treatments
IT1403871B1 (it) * 2011-02-11 2013-11-08 El En Spa "dispositivo e metodo di trattamento laser della pelle"
US9337609B2 (en) * 2012-05-09 2016-05-10 Mitsubishi Electric Corporation Passively Q-switched element and passively Q-switched laser device
JP2014135421A (ja) * 2013-01-11 2014-07-24 Hamamatsu Photonics Kk 固体レーザデバイス及びその製造方法
ES2886515T3 (es) * 2013-11-28 2021-12-20 Candela Corp Sistema láser
AT515789B1 (de) * 2014-07-07 2015-12-15 Daniel Dr Kopf Microchip-Laser
JP6456080B2 (ja) * 2014-09-18 2019-01-23 株式会社トプコン レーザ発振装置
US9843157B2 (en) * 2015-04-06 2017-12-12 Voxtel, Inc. Solid state laser system
CN205831906U (zh) * 2015-09-30 2016-12-28 济南晶众光电科技有限公司 一种手持激光器
JP2017220652A (ja) * 2016-06-10 2017-12-14 大学共同利用機関法人自然科学研究機構 レーザ装置とその製造方法
JP2018094155A (ja) * 2016-12-14 2018-06-21 株式会社ユニタック 皮膚レーザ治療器
US9810786B1 (en) * 2017-03-16 2017-11-07 Luminar Technologies, Inc. Optical parametric oscillator for lidar system
US9810775B1 (en) * 2017-03-16 2017-11-07 Luminar Technologies, Inc. Q-switched laser for LIDAR system

Also Published As

Publication number Publication date
US20200203913A1 (en) 2020-06-25
EP4336678A2 (en) 2024-03-13
IL279555A (en) 2021-01-31
US11271356B2 (en) 2022-03-08
IL310191B1 (en) 2024-04-01
IL310192B1 (en) 2024-04-01
US20190393668A1 (en) 2019-12-26
EP4340139A3 (en) 2024-06-05
IL310192A (en) 2024-03-01
JP2021530116A (ja) 2021-11-04
IL310191A (en) 2024-03-01
KR20210021345A (ko) 2021-02-25
EP4340139A2 (en) 2024-03-20
EP3811472A1 (en) 2021-04-28
WO2019245937A1 (en) 2019-12-26
EP4336678A3 (en) 2024-06-05
US10622780B2 (en) 2020-04-14
CN112425014A (zh) 2021-02-26

Similar Documents

Publication Publication Date Title
JP2024063207A (ja) キャビティ内コーティングを備えたパッシブqスイッチマイクロチップレーザー、及びそのマイクロチップレーザーを備えたハンドピース
JP3843374B2 (ja) 受動的qスイッチピコ秒マイクロレーザー
AU2005287885B2 (en) A selectable multiwavelength laser for outputting visible light
USRE45177E1 (en) Quasi-phase-matched parametric chirped pulse amplification systems
US7876803B1 (en) High-power, pulsed ring fiber oscillator and method
EP2066253B1 (en) Treatment of skin by a solid-state laser
US6631153B2 (en) Light generating device and laser device using said light generating device
US20080261382A1 (en) Wafer dicing using a fiber mopa
Stolzenburg et al. 700W intracavity-frequency doubled Yb: YAG thin-disk laser at 100 kHz repetition rate
JP2020127000A (ja) 圧縮パルス幅を有する受動qスイッチ型固体レーザ
US11532919B2 (en) Fractional handpiece with a passively Q-switched laser assembly
US20230048178A1 (en) Fractional handpiece with a passively q-switched laser assembly
CN212485790U (zh) 一种全固态拉曼倍频深红色激光器
EP4002609A1 (en) Solid-state laser system
Yuan et al. High power fiber-coupled acousto-optically Q-switched 532 nm laser with a side-pumped Nd: YAG laser module
RU2211715C2 (ru) Ультрафиолетовая лазерная установка для лечения заболеваний, сопровождающихся гнойными процессами
Radmard et al. Folded-Resonator Design of Thin-Disk Laser with Variable Thermally-Induced Intra-Cavity Dioptric Power
Wintner Ultrashort pulse solid-state lasers and modern applications
Spiekermann et al. Ultraviolet single-frequency pulses with 485 mW average power
WO2010058315A1 (en) A secondary laser source and a laser device
Dabu et al. Single frequency green nanosecond Nd: YAG microlaser-oscillator power-amplifier system
Barnes et al. Frequency-doubled 0.946-/spl mu/m Nd: YAG laser
Pinto et al. Picosecond 2-um Tm: YAG laser
SINGH et al. 1. Lasers & Sources Photonics Products: Femtosecond Lasers-Femtosecond fiber lasers probe and process materials in new ways Aug. 10, 2016 The earliest fiber lasers had a few tens of milliwatts of single-mode CW output. Today, multi-kilowatt-class fiber lasers have megahertz repetition rates and femtosecond pulse durations, extending materials research and processing capabilities.

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240404

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240404