JP2024062110A - Apparatus and method for electrically heating a fluid - Google Patents

Apparatus and method for electrically heating a fluid Download PDF

Info

Publication number
JP2024062110A
JP2024062110A JP2022169891A JP2022169891A JP2024062110A JP 2024062110 A JP2024062110 A JP 2024062110A JP 2022169891 A JP2022169891 A JP 2022169891A JP 2022169891 A JP2022169891 A JP 2022169891A JP 2024062110 A JP2024062110 A JP 2024062110A
Authority
JP
Japan
Prior art keywords
heating
fluid
tube
tubes
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022169891A
Other languages
Japanese (ja)
Inventor
芳明 廣田
芳章 末松
まどか 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2022169891A priority Critical patent/JP2024062110A/en
Publication of JP2024062110A publication Critical patent/JP2024062110A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Resistance Heating (AREA)
  • Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)
  • Control Of Resistance Heating (AREA)

Abstract

【課題】流体の加熱効率の高効率化と加熱装置の小型化とを可能にする、流体の電気加熱装置及び流体の電気加熱方法を提供する。【解決手段】本発明は、導電性の加熱管が略相似形断面の複数本で大断面加熱管に小断面加熱管が挿通される多重管構造の加熱部をなし、加熱管同士の間の環状の間隙を、最内加熱管の管内とともに被加熱流体の流体流路とする、通電加熱による流体の電気加熱装置及び電気加熱方法であって、加熱部を往復する一つの流体流路を形成する流体流路形成手段として、(1)加熱管を両端部で支持し、電気絶縁性を持たせつつ密閉構造とする管端支持閉塞板と、(2)内外方向の加熱管同士で、一方の端部と他方の端部とで互い違いの端部位置に配設され、管壁の両側の流体流路を互いに導通させる流体導通孔と、(3)最内加熱管では流体導通孔の反対側の端部に配設され、最外加熱管では流体導通孔相当位置に配設される流体入出口と、を備える。【選択図】図1[Problem] To provide an electric heating device and an electric heating method for a fluid that enable high fluid heating efficiency and miniaturization of the heating device. [Solution] The present invention provides an electric heating device and an electric heating method for a fluid by electrical heating, in which a heating section is made of a multiple-pipe structure in which a large-cross-section heating tube is inserted into a small-cross-section heating tube, and an annular gap between the heating tubes, together with the inside of the innermost heating tube, serves as a fluid flow path for the heated fluid, and includes, as fluid flow path forming means for forming one fluid flow path going back and forth through the heating section, (1) a tube end support closing plate that supports the heating tube at both ends and provides electrical insulation while providing a sealed structure, (2) fluid introduction holes that are arranged at alternate end positions between one end and the other end of the heating tubes in the inner and outer directions and that connect the fluid flow paths on both sides of the tube wall to each other, and (3) a fluid inlet/outlet that is arranged at the end opposite the fluid introduction hole in the innermost heating tube and at a position equivalent to the fluid introduction hole in the outermost heating tube. [Selected Figure] Figure 1

Description

本発明は、流体の電気加熱装置および流体の電気加熱方法に関し、詳しくは高い加熱効率を有して小型化可能な流体の電気加熱装置および流体の電気加熱方法に関するものである。 The present invention relates to an electric fluid heating device and an electric fluid heating method, and more particularly to an electric fluid heating device and an electric fluid heating method that have high heating efficiency and can be miniaturized.

近年、地球温暖化対策のために、エネルギー効率の高効率化や二酸化炭素排出量の少ない燃料への転換が進められている。大規模で大容量の流体の加熱装置の分野では、従来より、種々なものが使用されており、数百度というような高温加熱を行うには、通常、燃焼ガスを利用したボイラ等の加熱装置が使用されている。しかし、燃焼ガスを使用するボイラ等の加熱装置は、設備が大型化するだけでなく、加熱効率が高効率のものでも35%程度と高効率化に限界があるという問題がある。 In recent years, efforts to improve energy efficiency and switch to fuels with less carbon dioxide emissions have been promoted as a measure against global warming. In the field of large-scale, large-capacity fluid heating equipment, various types have been used up to now, and heating equipment such as boilers that use combustion gas are usually used to perform high-temperature heating of several hundred degrees. However, heating equipment such as boilers that use combustion gas not only requires large equipment, but also has the problem that even the most efficient heating equipment has a heating efficiency of around 35%, which means that there is a limit to how efficient it can be.

このような加熱設備の小型化および加熱効率の高効率化のいずれの問題に対しても、大電力を限られた空間に投入できる電気加熱手段が有利であるといえる。例えば、特許文献1には、図7の(a)縦断面図と(b)横断面図とで示すような、誘導加熱による流体の電気加熱装置60が開示されている。具体的には、発熱体62は、例えばSUS304からなる非磁性管62aおよび例えばSUS430からなる磁性体としての磁性管62b(62b1、62b2、62b3)によって構成される。非磁性管62aには、被加熱流体(矢印A)の流路をU字状に湾曲させる湾曲部62c(62c1、62c2)と、湾曲部62cの両側に互いに平行になって反対方向に延びる平行部とが、形成される。非磁性管62aは、湾曲部62cを経由して反対方向に延びることにより、誘導加熱コイル72内(コイル軸に直交する面)を複数回通過する。非磁性管62aの平行部には、非磁性管62aの外径と略同一の内径を有する3本の磁性管(62b1、62b2、62b3)が配置されている。非磁性管62aの両端は、板状の管支え板64、66に形成された孔に挿入された状態で固定支持される。 In order to address both the problems of miniaturizing the heating equipment and increasing the heating efficiency, an electric heating means capable of inputting a large amount of power into a limited space is advantageous. For example, Patent Document 1 discloses an electric heating device 60 for fluids by induction heating, as shown in the longitudinal section (a) and transverse section (b) of FIG. 7. Specifically, the heating element 62 is composed of a non-magnetic tube 62a made of, for example, SUS304 and a magnetic tube 62b (62b1, 62b2, 62b3) made of, for example, SUS430 as a magnetic body. The non-magnetic tube 62a is formed with a curved portion 62c (62c1, 62c2) that curves the flow path of the heated fluid (arrow A) into a U-shape, and parallel portions extending in opposite directions on both sides of the curved portion 62c. The non-magnetic tube 62a passes through the induction heating coil 72 (a plane perpendicular to the coil axis) multiple times by extending in the opposite direction via the curved portion 62c. Three magnetic tubes (62b1, 62b2, 62b3) with an inner diameter substantially equal to the outer diameter of the non-magnetic tube 62a are arranged in the parallel portion of the non-magnetic tube 62a. Both ends of the non-magnetic tube 62a are fixed and supported in a state where they are inserted into holes formed in the plate-shaped tube support plates 64 and 66.

また、発熱体62の外側周囲には、図示しない交流電源に接続された誘導加熱コイル72が配設される。この誘導加熱コイル72は、円筒形状の内側断熱材68と外側断熱材70との間に介在し、内側断熱材68の両端が、管支え板64、66に固定支持されることにより、位置決めされる。管支え板64、66には、それぞれ流体入口ヘッダー74、流体出口ヘッダー76が設けられ、気体または液体の被加熱流体(矢印A)は、流体入口ヘッダー74から非磁性管62aを通って加熱されて流体出口ヘッダー76へと導かれる。 An induction heating coil 72 connected to an AC power source (not shown) is disposed around the outside of the heating element 62. The induction heating coil 72 is interposed between a cylindrical inner insulation material 68 and an outer insulation material 70, and is positioned by fixing both ends of the inner insulation material 68 to the tube support plates 64, 66. A fluid inlet header 74 and a fluid outlet header 76 are provided on the tube support plates 64, 66, respectively, and the heated gas or liquid fluid (arrow A) is heated through the fluid inlet header 74 and non-magnetic tube 62a before being directed to the fluid outlet header 76.

特許文献1に記載の発明では、磁性管62bは、被加熱流体(矢印A)が流れる非磁性管62aの外周面に接触しており、誘導加熱により磁性管62bにおいて生じた熱は磁性管62bから非磁性管62aに、非磁性管62aから被加熱流体に熱伝導している。そのため、非磁性管62aに比べ耐食性に劣る磁性管62bに被加熱流体が接触することがなく、耐食性が向上するとする。また、被加熱流体(矢印A)が流れる非磁性管62aは、誘導加熱コイル72内を複数回通過している。これにより、1本の非磁性管62aで複数の管を配置したのと同等の発熱量が得られるため、誘導加熱コイル72を長く或いは高周波にする必要や非磁性管62aを厚くする必要がないとする。また、非磁性管62aの本数を減らすことで、被加熱流体(矢印A)の温度バラつきが抑えられると共に温度制御が容易になるとする。 In the invention described in Patent Document 1, the magnetic tube 62b is in contact with the outer circumferential surface of the non-magnetic tube 62a through which the heated fluid (arrow A) flows, and the heat generated in the magnetic tube 62b by induction heating is thermally conducted from the magnetic tube 62b to the non-magnetic tube 62a, and from the non-magnetic tube 62a to the heated fluid. Therefore, the heated fluid does not come into contact with the magnetic tube 62b, which has inferior corrosion resistance compared to the non-magnetic tube 62a, and the corrosion resistance is improved. In addition, the non-magnetic tube 62a through which the heated fluid (arrow A) flows passes through the induction heating coil 72 multiple times. As a result, the same amount of heat can be obtained with one non-magnetic tube 62a as with multiple tubes, so there is no need to make the induction heating coil 72 longer or more frequent, or to make the non-magnetic tube 62a thicker. In addition, by reducing the number of non-magnetic tubes 62a, the temperature variation of the heated fluid (arrow A) is suppressed and temperature control becomes easier.

また、特許文献2には、図8に示すような通電加熱による流体の電気加熱装置80が開示されている。その基本的な構成は、図8(a)に示すように、加熱管体82と、非加熱管体84と、管体継ぎ手86と、交流電源88とから「一加熱管体一電源」の構成である。加熱管体82は、通電により発熱する金属で形成される。この加熱管体82には、その一方の端部から他方の端部に電流を流す交流電源88が接続される。非加熱管体84は、加熱管体82の両端部に接続され、加熱管体82と同じ径寸法を有して、被加熱流体の流路をなす。管体継ぎ手86は、加熱管体82と非加熱管体84、84とを機械的に接続して流路を形成すると共に加熱管体82と非加熱管体84、84とを電気的に絶縁する。なお、加熱管体82を保持する支持台を必要とする場合には、図9(a)に示すように、支持台90と加熱管体82との間に電気絶縁体92を介在させる。 Patent Document 2 also discloses an electric heating device 80 for fluids by electrical heating as shown in FIG. 8. Its basic configuration is a "one heating tube, one power source" configuration, consisting of a heated tube 82, a non-heated tube 84, a tube joint 86, and an AC power source 88, as shown in FIG. 8(a). The heated tube 82 is made of a metal that generates heat when electricity is passed through it. An AC power source 88 that passes current from one end to the other end of the heated tube 82 is connected to the heated tube 82. The non-heated tube 84 is connected to both ends of the heated tube 82, has the same diameter as the heated tube 82, and forms a flow path for the heated fluid. The tube joint 86 mechanically connects the heated tube 82 and the non-heated tubes 84, 84 to form a flow path, and electrically insulates the heated tube 82 from the non-heated tubes 84, 84. If a support stand is required to hold the heating tube 82, an electrical insulator 92 is placed between the support stand 90 and the heating tube 82, as shown in FIG. 9(a).

特許文献2には、図8(b)、(c)に示すように、複数本の加熱管体82同士を接続する場合の実施形態も開示している。図8(b)は、電気的絶縁性を有する管体継ぎ手86を使って加熱管体82同士を連結し、ジャンパー94によって加熱管体82同士を電気的に接続する場合の一例である。また、別法として、機械的に連結し且つ電気的にも接続するフランジを使って、加熱管体82同士を接続してもよいとする。あるいは、図8(c)に示すように、各加熱管体82を管体継ぎ手86で電気的に絶縁して、各加熱管体82毎に交流電源88を設けてもよいとする。 Patent Document 2 also discloses an embodiment in which multiple heating tubes 82 are connected together, as shown in Figures 8(b) and (c). Figure 8(b) shows an example in which the heating tubes 82 are connected together using electrically insulating tube joints 86, and electrically connected together using jumpers 94. Alternatively, the heating tubes 82 may be connected together using flanges that mechanically and electrically connect the heating tubes 82. Alternatively, as shown in Figure 8(c), each heating tube 82 may be electrically insulated by a tube joint 86, and an AC power source 88 may be provided for each heating tube 82.

このように、特許文献2に記載の流体の電気加熱装置80によれば、加熱管体82で被加熱流体の流路の少なくとも一部を構成するとともに、流体の流路自体を発熱手段として流体を直接電気加熱することにより、高いエネルギー効率で流体を加熱昇温することができるとする。具体的なエネルギー効率についての実験例としては、内径7mm、外形10.5mm、長さ8mのステンレス鋼管製の加熱管体に、60V、180Aの交流を流しながら、汚泥スラリーを流量80リットル/時間で流した例が示されている。この実験では、20℃から200℃まで約180℃昇温させることができ、加熱管体に与えた電気エネルギーの80~90%が汚泥スラリーの加熱に利用できたとしている。 In this way, according to the electric fluid heating device 80 described in Patent Document 2, the heating tube 82 constitutes at least a part of the flow path of the heated fluid, and the fluid flow path itself serves as a heat generating means to directly electrically heat the fluid, thereby making it possible to heat and increase the temperature of the fluid with high energy efficiency. As a specific experimental example of energy efficiency, an example is shown in which sludge slurry was passed at a flow rate of 80 liters/hour while passing an alternating current of 60 V and 180 A through a heating tube made of stainless steel pipe with an inner diameter of 7 mm, an outer diameter of 10.5 mm, and a length of 8 m. In this experiment, the temperature could be raised by approximately 180°C from 20°C to 200°C, and it is said that 80 to 90% of the electrical energy given to the heating tube was used to heat the sludge slurry.

特開2008-232606号公報JP 2008-232606 A 特開2000-213807号公報JP 2000-213807 A

しかしながら、特許文献1に記載のようなソレノイドコイル状の誘導加熱コイル72の内側の発熱体62(磁性管62b)を加熱する場合には、次のような理由により、その加熱効率を向上させるには、限界があった。これは、誘導加熱コイル72により生じる磁束は、誘導加熱コイル72に近接した発熱体62(導体)の表層を貫通して誘導電流を起こすが、図7(b)に示される様に、有効な磁束が貫通して有効な加熱ができる発熱体62の部位が限られるからである。例えば、発熱体(磁性管)62b1および62b3の誘導加熱コイル72に面する部位は全周の半分程度であり、62b1および62b3の誘導加熱コイル72と反対の面、および中心部の62b2は、誘導加熱コイル72から離れており、有効な磁束の貫通および有効な加熱が生じ難い。また、誘導加熱コイル72の外側の磁束は自由に放射されるため、発熱体62以外の周囲の金属を貫通する磁束も相当程度多いからである。その結果、ソレノイドコイル直下の被加熱材に磁束を集中しにくく、加熱効率が高められないためである。 However, when heating the heating element 62 (magnetic tube 62b) inside the solenoid-shaped induction heating coil 72 as described in Patent Document 1, there is a limit to improving the heating efficiency for the following reasons. This is because the magnetic flux generated by the induction heating coil 72 penetrates the surface layer of the heating element 62 (conductor) close to the induction heating coil 72 to cause an induced current, but as shown in Figure 7 (b), the part of the heating element 62 through which the effective magnetic flux penetrates and can effectively heat is limited. For example, the part of the heating elements (magnetic tubes) 62b1 and 62b3 facing the induction heating coil 72 is about half of the entire circumference, and the sides of 62b1 and 62b3 opposite the induction heating coil 72 and the central part 62b2 are away from the induction heating coil 72, making it difficult for the effective magnetic flux to penetrate and effective heating to occur. In addition, because the magnetic flux outside the induction heating coil 72 is freely radiated, there is a considerable amount of magnetic flux penetrating the surrounding metal other than the heating element 62. As a result, it is difficult to concentrate the magnetic flux on the material to be heated directly below the solenoid coil, and heating efficiency cannot be improved.

また、特許文献2に記載のような流体の電気加熱装置80では、加熱管体82から被加熱流体への伝熱は、加熱管体82の内面だけとなる。そのため、このような加熱装置で高温加熱を行う場合には、加熱管体を延長して伝熱面積を大きくするとともに加熱時間を確保する必要があり、加熱管体の延長が必要となる。しかし、加熱管体の延長は加熱装置の大型化に結びつきやすいことから、特許文献2に記載の発明による加熱装置の小型化には限界があるという問題がある。 In addition, in the electric heating device 80 for fluids as described in Patent Document 2, heat is transferred from the heating tube 82 to the heated fluid only via the inner surface of the heating tube 82. Therefore, when performing high-temperature heating with such a heating device, it is necessary to extend the heating tube to increase the heat transfer area and ensure the heating time, which necessitates the extension of the heating tube. However, since extending the heating tube tends to lead to an increase in the size of the heating device, there is a problem in that there is a limit to the miniaturization of the heating device according to the invention described in Patent Document 2.

本発明は、上記のような問題に鑑みてなされたものであり、流体の電気加熱による加熱効率の高効率化および大容量の加熱装置の小型化を可能にする、流体の電気加熱装置および流体の電気加熱方法を提供することを目的とする。 The present invention was made in consideration of the above problems, and aims to provide an electric fluid heating device and an electric fluid heating method that can improve the heating efficiency of electric fluid heating and reduce the size of a large-capacity heating device.

[1]導電性の加熱管が、互いに略相似形断面の複数本で、大断面の加熱管に小断面の加熱管が非接触で挿通されるようにして多重管構造の加熱部をなし、前記加熱管同士の間の環状の間隙を、最内加熱管の管内とともに被加熱流体の流体流路とする、通電加熱による多重管式の流体の電気加熱装置であって、
(a)前記環状の間隙を形成する前記加熱管の管壁とともに一つの流体流路を形成する流体流路形成手段として、さらに、
(a1)前記加熱管の各々を両端部で支持し、且つ両端部を電気絶縁性を持たせながら密閉構造とする管端支持閉塞板と、
(a2)内外方向の前記加熱管同士で、一方の端部と他方の端部とで互い違いとなる端部位置に配設され、前記管壁の内外方向両側の前記環状の流体流路を互いに導通させる流体導通孔と、
(a3)前記加熱管のうちの最内加熱管では前記流体導通孔の反対側の端部に配設され、前記加熱管のうちの最外加熱管では前記流体導通孔相当位置に配設される流体入出口と、
を有する、流体の電気加熱装置。
[2]前記多重管構造の加熱部をなす前記加熱管を、内外方向で連続した複数本で加熱管群として複数の加熱管群に分け、前記加熱管群毎に給電回路を配設した、[1]に記載の流体の電気加熱装置。
[3]前記多重管構造の加熱部をなす前記加熱管の給電回路、または前記多重管構造の加熱部をなす前記複数の加熱管群毎の給電回路が、
(b1)前記多重管構造の加熱部の一方の端部および他方の端部で、給電電極が相互に電気的に短絡されて、前記加熱管が単一の電源に並列接続される単一の並列給電回路、
(b2)前記多重管構造の加熱部の一方の端部および他方の端部で、給電電極が一つおきに電気的に短絡されて、前記加熱管が単一の電源に直列接続される単一の直列給電回路、
および、
(b3)前記多重管構造の加熱部をなす前記加熱管がそれぞれ一の電源に接続される、一加熱管一電源の給電回路の組からなる一群の給電回路、
のうちのいずれかの給電回路である、[1]または[2]に記載の流体の電気加熱装置。
[4]前記多重管構造の加熱部をなす前記加熱管は、横断面外形寸法の異なる内外方向の前記加熱管同士の間で、または、同一横断面外形寸法で長手方向に相互に接合された部分加熱管同士の間で、少なくとも一部に他と異なる発熱特性を有する、[1]~[3]のいずれかに記載の流体の電気加熱装置。
[5]前記多重管構造の加熱部をなす前記加熱管は、横断面外形寸法の異なる内外方向の前記加熱管同士、および、同一横断面外形寸法で長手方向に相互に接合された部分加熱管同士、のいずれか一方または双方で、比抵抗および断面積のいずれか一方または双方を変数にしてそれぞれ異なる所定の管壁単位面積当たりの単位発熱量を有する、[1]~[4]のいずれかに記載の流体の電気加熱装置。
[6]前記加熱管の略相似形断面の形状が、円形または多角形である、[1]~[5]のいずれかに記載の流体の電気加熱装置。
[7]前記最内加熱管の管内の流体流路を除く前記流体流路内に、電気的な絶縁層を有する振れ止め部材を配設する、[1]~[6]のいずれかに記載の流体の電気加熱装置。
[8]前記加熱管の内周面および外周面のいずれか一方または双方に電気的な絶縁層を有する、[1]~[7]のいずれかに記載の流体の電気加熱装置。
[9]前記最外加熱管の外周面に断熱材が配設される、[1]~[8]のいずれかに記載の流体の電気加熱装置。
[10]前記多重管構造の加熱部の少なくとも片側の全ての給電電極のそれぞれと給電回路側との接続部には、前記加熱管の熱変形に追従する可撓性導体または摺動接点が配設される、[1]~[2]のいずれかに記載の流体の電気加熱装置。
[11]前記流体流路の一方の流体入出口および他方の流体入出口のそれぞれに接続され、前記被加熱流体を供給し且つ排出させる流体給排手段が、流体供給ヘッダーおよび流体排出ヘッダーを備える、[1]~[10]のいずれかに記載の流体の電気加熱装置。
[12]前記被加熱流体の少なくとも温度および流量を含む物理量、ならびに前記加熱管の少なくとも管壁単位面積当たりの単位発熱量を含む設備能力に基づいて、前記加熱管への投入電力を制御する制御装置を備える、[1]~[11]のいずれかに記載の流体の電気加熱装置。
[13][1]~[12]のいずれかに記載の流体の電気加熱装置を用いて、被加熱流体を加熱する、流体の電気加熱方法。
[1] A multi-tube type fluid electric heating device using electrical heating, in which a plurality of electrically conductive heating tubes have cross sections that are approximately similar to each other, a heating tube having a small cross section is inserted into a heating tube having a large cross section without contacting each other to form a heating section having a multi-tube structure, and an annular gap between the heating tubes is used as a fluid flow path for a heated fluid together with an interior of the innermost heating tube,
(a) as a fluid flow path forming means for forming one fluid flow path together with a tube wall of the heating tube forming the annular gap,
(a1) a tube end support closing plate that supports each of the heating tubes at both ends and seals both ends while providing electrical insulation;
(a2) fluid introducing holes that are arranged at end positions that are staggered between one end and the other end of the heating tubes in the inner and outer directions and that connect the annular fluid flow paths on both sides in the inner and outer directions of the tube wall to each other;
(a3) a fluid inlet/outlet that is disposed at an end of an innermost heating tube among the heating tubes opposite to the fluid introducing hole, and that is disposed at a position corresponding to the fluid introducing hole in an outermost heating tube among the heating tubes;
1. An apparatus for electrically heating a fluid comprising:
[2] The electric heating device for a fluid according to [1], wherein the heating tubes constituting the heating portion of the multi-tube structure are divided into a plurality of heating tube groups each consisting of a plurality of heating tubes connected in an inner and outer direction, and a power supply circuit is provided for each of the heating tube groups.
[3] A power supply circuit for the heating tube constituting the heating portion of the multi-tube structure, or a power supply circuit for each of the plurality of heating tube groups constituting the heating portion of the multi-tube structure,
(b1) a single parallel power supply circuit in which power supply electrodes are electrically short-circuited to each other at one end and the other end of the heating section of the multi-tube structure, and the heating tubes are connected in parallel to a single power source;
(b2) a single series power supply circuit in which every other power supply electrode is electrically short-circuited at one end and the other end of the heating section of the multi-tube structure, and the heating tubes are connected in series to a single power source;
and,
(b3) a group of power supply circuits each consisting of a set of power supply circuits for one heating tube and one power source, in which the heating tubes constituting the heating portion of the multi-tube structure are each connected to one power source;
The electrical heating device for a fluid according to [1] or [2], wherein the electrical supply circuit is any one of the above.
[4] The electric heating device for a fluid according to any one of [1] to [3], wherein the heating tubes constituting the heating part of the multi-tube structure have at least some heat generation characteristics different from others between the heating tubes in the inner and outer directions having different cross-sectional outside dimensions, or between partial heating tubes having the same cross-sectional outside dimensions and joined to each other in the longitudinal direction.
[5] The electric heating device for a fluid according to any one of [1] to [4], wherein the heating tubes constituting the heating part of the multi-tube structure are either or both of the heating tubes in the inner and outer directions having different cross-sectional outside dimensions, and partial heating tubes having the same cross-sectional outside dimensions and joined to each other in the longitudinal direction, and have different unit heat values per predetermined unit area of the tube wall with either or both of a specific resistance and a cross-sectional area as variables.
[6] The electric heating device for a fluid according to any one of [1] to [5], wherein the shape of a substantially similar cross section of the heating tube is circular or polygonal.
[7] The electric heating device for a fluid according to any one of [1] to [6], wherein a vibration-proof member having an electrical insulating layer is disposed in the fluid flow path except for the fluid flow path in the innermost heating pipe.
[8] The electric heating device for a fluid according to any one of [1] to [7], wherein the heating tube has an electrically insulating layer on either or both of an inner circumferential surface and an outer circumferential surface.
[9] The electric heating device for a fluid according to any one of [1] to [8], wherein a heat insulating material is arranged on an outer peripheral surface of the outermost heating pipe.
[10] The electrically heating device for a fluid according to any one of [1] to [2], wherein a flexible conductor or a sliding contact that follows thermal deformation of the heating tube is provided at a connection portion between each of all of the power supply electrodes on at least one side of the heating section of the multi-tube structure and a power supply circuit side.
[11] An electrical heating device for a fluid described in any one of [1] to [10], wherein a fluid supply/discharge means for supplying and discharging the heated fluid is connected to one fluid inlet/outlet and the other fluid inlet/outlet of the fluid flow path, and comprises a fluid supply header and a fluid discharge header.
[12] The electric heating device for a fluid according to any one of [1] to [11], further comprising a control device that controls the input power to the heating tube based on physical quantities including at least the temperature and flow rate of the heated fluid, and on equipment capacity including at least the unit heat generation amount per unit area of the tube wall of the heating tube.
[13] A method for electrically heating a fluid, comprising heating a fluid to be heated using the electric heating device for a fluid according to any one of [1] to [12].

本発明によれば、流体の電気加熱装置の導電性の加熱管を多重管構造とし、加熱管同士の間の環状の間隙を被加熱流体の流路とすることで、大きな伝熱面積の確保と空間的な小型化とを同時に達成できる。また、通電加熱を採用することで、誘導加熱とは異なり、そもそも磁束漏れによる効率低下がなく、高い加熱効率を確保することができる。本発明は、以上のように、伝熱面積拡大を含む空間的な加熱装置の小型化と電気的な高効率化とが相まって大容量の流体の加熱設備の小型化を有利に達成することができる流体の電気加熱装置とそれによる流体の電気加熱方法を提供することができる。 According to the present invention, by forming the conductive heating tubes of the electric fluid heating device into a multi-tube structure and using the annular gaps between the heating tubes as a flow path for the heated fluid, it is possible to simultaneously secure a large heat transfer area and reduce the spatial size. Furthermore, by adopting electrical heating, unlike induction heating, there is no efficiency loss due to magnetic flux leakage in the first place, and it is possible to ensure high heating efficiency. As described above, the present invention can provide an electric fluid heating device and an electric fluid heating method using the same that can advantageously achieve the miniaturization of large-capacity fluid heating equipment by combining the spatial miniaturization of the heating device, including the expansion of the heat transfer area, and high electrical efficiency.

実施の形態1に係る流体の電気加熱装置100を模式的に示す縦断面図である。1 is a vertical cross-sectional view that shows a schematic view of an electric heating device 100 for a fluid according to a first embodiment. 実施の形態1の変形例に係る流体の電気加熱装置110を模式的に示す縦断面図である。FIG. 2 is a vertical cross-sectional view that illustrates a schematic diagram of an electric heating device 110 for a fluid according to a modified example of the first embodiment. 実施の形態1の他の変形例に係る流体の電気加熱装置120を模式的に示す縦断面図である。FIG. 13 is a vertical cross-sectional view that shows a schematic diagram of an electric heating device 120 for a fluid according to another modified example of the first embodiment. 実施の形態1のさらに他の変形例に係る流体の電気加熱装置130を模式的に示す縦断面図である。FIG. 13 is a vertical cross-sectional view that illustrates a schematic view of an electric heating device 130 for a fluid according to still another modified example of the first embodiment. 実施の形態2に係る流体の電気加熱装置200を模式的に示す縦断面図である。FIG. 11 is a vertical cross-sectional view that shows a schematic view of an electric heating device 200 for a fluid according to a second embodiment. 実施の形態3に係る流体の電気加熱装置300を模式的に示す縦断面図である。FIG. 11 is a vertical cross-sectional view that shows a schematic view of an electric heating device 300 for a fluid according to a third embodiment. 従来技術に係る誘導加熱による流体の電気加熱装置を、(a)縦断面図と(b)横断面図とで模式的に示す図である。1A and 1B are schematic diagrams illustrating a conventional electric heating device for fluid by induction heating, in which (a) is a longitudinal sectional view and (b) is a transverse sectional view. 従来技術に係る通電加熱による流体の電気加熱装置を、(a)一加熱管体一電源の基本構成例、(b)加熱管体を複数直列配置した構成例、および(c)基本構成を複数直列に配した構成例で、それぞれ模式的に示す図である。1A and 1B are schematic diagrams showing a conventional electrical heating device for a fluid by electrical heating, in which (a) an example of a basic configuration with one heating tube and one power source, (b) an example of a configuration with multiple heating tubes arranged in series, and (c) an example of a configuration with multiple basic configurations arranged in series.

以下、本発明の実施の形態について、図を参照して詳細に説明する。以下に示す実施の形態においては、同一のまたは共通する部分について図中同一の符号を付し、その説明は繰り返さない。なお、本発明は、以下の実施形態に限定されるものではない。 The following describes in detail the embodiments of the present invention with reference to the drawings. In the embodiments described below, identical or common parts are given the same reference numerals in the drawings, and their description will not be repeated. Note that the present invention is not limited to the following embodiments.

(実施の形態1)
図1は、実施の形態1に係る流体の電気加熱装置100を模式的に示す縦断面図である。また、図2は、実施の形態1の変形例に係る流体の電気加熱装置110を模式的に示す縦断面図である。図3は、実施の形態1の他の変形例に係る流体の電気加熱装置120を模式的に示す縦断面図である。図4は、実施の形態1のさらに他の変形例に係る流体の電気加熱装置130を模式的に示す縦断面図である。図1~図4を参照して、実施の形態1に係る流体の電気加熱装置について説明する。
(Embodiment 1)
Fig. 1 is a longitudinal sectional view that typically shows an electric heating device 100 for fluid according to the first embodiment. Fig. 2 is a longitudinal sectional view that typically shows an electric heating device 110 for fluid according to a modified example of the first embodiment. Fig. 3 is a longitudinal sectional view that typically shows an electric heating device 120 for fluid according to another modified example of the first embodiment. Fig. 4 is a longitudinal sectional view that typically shows an electric heating device 130 for fluid according to yet another modified example of the first embodiment. The electric heating device for fluid according to the first embodiment will be described with reference to Figs. 1 to 4.

図1に示すように、本実施の形態に係る流体の電気加熱装置100は、通電加熱による多重管式の流体の電気加熱装置である。多重管構造の加熱部(以下、単に加熱部ともいう。)10は、導電性の加熱管10aが、互いに略相似形断面の複数本で、大断面の加熱管に小断面の加熱管が非接触で挿通されるようにして多重管構造をなしている。また、加熱管同士の間の環状の間隙を、最内加熱管の管内とともに被加熱流体の流体流路とする。なお、最内加熱管および環状流路の典型的な流路間隔は、例えば化学反応用途での加熱の場合で2~3mm程度、気体加熱用途で10mm程度である。 As shown in FIG. 1, the fluid electric heating device 100 according to this embodiment is a multi-tube type fluid electric heating device that uses electrical heating. The multi-tube structure heating section (hereinafter also simply referred to as the heating section) 10 has multiple conductive heating tubes 10a with roughly similar cross sections, with the smaller cross-section heating tubes inserted without contact into the larger cross-section heating tubes. The annular gap between the heating tubes, together with the inside of the innermost heating tube, forms a fluid flow path for the heated fluid. The typical flow path spacing between the innermost heating tube and the annular flow path is, for example, about 2 to 3 mm in the case of heating for chemical reactions, and about 10 mm in the case of gas heating.

また、本実施の形態に係る流体の電気加熱装置100は、(a)環状の間隙を形成する加熱管10aとともに一つの流体流路を形成する次の流体流路形成手段をさらに有する。具体的には、さらに、(a1)管端支持閉塞板18と、(a2)流体導通孔30と、(a3)流体入出口20とからなる流体流路形成手段を有する。 The electric heating device 100 for fluid according to this embodiment further includes (a) a fluid flow path forming means for forming one fluid flow path together with the heating tube 10a forming the annular gap. Specifically, the fluid flow path forming means further includes (a1) a tube end support closing plate 18, (a2) a fluid guide hole 30, and (a3) a fluid inlet/outlet 20.

(a1)管端支持閉塞板18は、加熱管10aの各々を両端部で支持、固定して、内外方向の加熱管10a同士の間の環状の間隔を所定の間隔に維持するとともに、多重管構造の加熱部10の端部を区画する壁としても機能する。また、管端支持閉塞板18は、電気絶縁性を持たせることにより、内外方向で隣り合う加熱管10a同士が電気的に短絡しないようにして、加熱管10aと電源40とを結ぶ給電回路の形成の障害とならないようにする。さらに、管端支持閉塞板18と加熱管10aの端部との間を密閉構造とすることで、管端支持閉塞板18を流体流路壁の一部として機能させることができる。 (a1) The tube end support closing plate 18 supports and fixes each of the heating tubes 10a at both ends, maintaining a predetermined annular spacing between the heating tubes 10a in the inside-outside direction, and also functions as a wall that divides the end of the heating section 10 of the multi-tube structure. In addition, the tube end support closing plate 18 is electrically insulating to prevent electrical shorting between adjacent heating tubes 10a in the inside-outside direction, so as not to impede the formation of a power supply circuit connecting the heating tubes 10a and the power source 40. Furthermore, by forming a sealed structure between the tube end support closing plate 18 and the end of the heating tube 10a, the tube end support closing plate 18 can function as part of the fluid flow path wall.

(a2)流体導通孔30は、内外方向の加熱管10a同士で、一方の端部と他方の端部とで互い違いとなる端部位置に配設される。これにより、管壁の内外方向両側の環状の流体流路が互いに導通して、流体流路の加熱管10aの端部での折り返しを可能にする。また、(a3)流体入出口20は、加熱管10aのうちの最内加熱管11では流体導通孔30と反対側の端部に配設され、加熱管10aのうちの最外加熱管14では流体導通孔相当位置に配設される。図1に示す本実施形態の例では、最内加熱管11に流体入口20aが、また、最外加熱管14に流体出口20bが配設された流体流路の例を示しているが、被加熱流体が流れる流路方向はこれに限定されず、逆方向であってもよい。 (a2) The fluid introduction hole 30 is arranged at the end positions of the heating tubes 10a in the inner and outer directions, alternating between one end and the other end. This allows the annular fluid flow paths on both sides of the tube wall in the inner and outer directions to be connected to each other, enabling the fluid flow path to be turned back at the end of the heating tube 10a. In addition, (a3) the fluid inlet/outlet 20 is arranged at the end opposite the fluid introduction hole 30 in the innermost heating tube 11 of the heating tubes 10a, and is arranged at a position equivalent to the fluid introduction hole in the outermost heating tube 14 of the heating tubes 10a. In the example of this embodiment shown in FIG. 1, an example of a fluid flow path in which a fluid inlet 20a is arranged in the innermost heating tube 11 and a fluid outlet 20b is arranged in the outermost heating tube 14 is shown, but the flow path direction in which the heated fluid flows is not limited to this and may be the opposite direction.

また、本実施形態に係る流体の電気加熱装置100は、流体流路の一方の流体入出口および他方の流体入出口のそれぞれに接続され、被加熱流体を供給し且つ排出させる流体給排手段(図示せず。)を有する。この流体給排手段は、流体流路への被加熱流体の供給と、流体流路からの被加熱流体の排出を安定的に行うために、公知の流体供給ヘッダーおよび流体排出ヘッダーを備えるのが好ましい。また、流体供給ヘッダーおよび流体排出ヘッダーと、通電される加熱管10aとは、電気的な絶縁を確保して被加熱流体を流通させるために、公知の絶縁継手を介して接続するのが好ましい。 The fluid electric heating device 100 according to this embodiment also has a fluid supply/discharge means (not shown) that is connected to one fluid inlet/outlet and the other fluid inlet/outlet of the fluid flow path, and supplies and discharges the heated fluid. This fluid supply/discharge means is preferably equipped with a known fluid supply header and a fluid discharge header in order to stably supply the heated fluid to the fluid flow path and discharge the heated fluid from the fluid flow path. In addition, the fluid supply header and the fluid discharge header are preferably connected to the energized heating tube 10a via a known insulating joint in order to ensure electrical insulation and allow the heated fluid to flow.

本実施形態に係る多重管構造の加熱部10をなす加熱管10aは、導電性を有し、被加熱流体の加熱温度に耐える耐熱性および耐食性を有し、管体に成形できるものである等の要件を満たすものであれば特にその材質は限定されない。このような要件を満たす好ましい材質として、例えば、公知のCr合金鋼(炭素鋼に1質量%前後のCrが添加された合金鋼から、さらに高合金のCr系ステンレス鋼も含む。)がある。また他の合金鋼として、Cr-Ni合金鋼(炭素鋼に0.2~1.0質量%程度のCr、および、1.0~3.5質量%程度のNiが添加された合金鋼から、さらに高合金のCr-Ni系ステンレス鋼も含む。)が例示できる。さらに、特に1000℃超での使用に耐える、人造黒鉛、または導電性セラミックスが例示できる。これらの材質は、比較的固有抵抗が大きいので、発熱管として好ましい材質である。導電性セラミックスとしては、公知のSiC、TiC、またはTiN等の導電性セラミックスを採用すればよい。その他、被加熱流体や設置場所等によっては、必要に応じて公知のタングステン、モリブデン等の高融点金属またはこれらの合金を用いてもよい。 The heating tube 10a constituting the heating section 10 of the multi-tube structure according to this embodiment is not particularly limited in material, as long as it satisfies the requirements of being conductive, having heat resistance and corrosion resistance to withstand the heating temperature of the heated fluid, and being moldable into a tube body. A preferred material that satisfies such requirements is, for example, a known Cr alloy steel (including alloy steel with about 1 mass% Cr added to carbon steel, and even higher alloy Cr-based stainless steel). Another example of an alloy steel is Cr-Ni alloy steel (including alloy steel with about 0.2 to 1.0 mass% Cr and about 1.0 to 3.5 mass% Ni added to carbon steel, and even higher alloy Cr-Ni-based stainless steel). Another example is artificial graphite or conductive ceramics, which can withstand use at temperatures above 1000°C. These materials have a relatively high specific resistance, and are therefore preferred materials for heating tubes. As the conductive ceramics, known conductive ceramics such as SiC, TiC, or TiN may be used. In addition, depending on the fluid to be heated and the installation location, known high melting point metals such as tungsten and molybdenum or alloys of these may be used as necessary.

さらに、本実施形態に係る多重管構造の加熱部10をなす加熱管10aは、横断面外形寸法の異なる内外方向の加熱管10a毎に、上記で例示した種々の材質のものが配設されてもよい。また、加熱部10をなす加熱管10aは、同一横断面外形寸法で長手方向に相互に接合された部分加熱管毎に、上記で例示した種々の材質のものが配設されてもよい。このようにすれば、流体流路での加熱開始から終了までのそれぞれの温度域に応じて、加熱管10aの全長で、または部分ごとに、適切な耐熱性および耐食性を有する材質の加熱管10aとすることができる。例えば、流体流路の入口付近の常温域から600℃程度までの比較的低温域では、Cr合金鋼等を、耐熱性および耐食性の問題なく採用することができる。さらに、1000℃程度までの高温域では、Cr-Ni系ステンレス鋼等を採用することができる。1000℃超のさらなる高温域では、人造黒鉛、または、SiC、TiC、もしくはTiN等の導電性セラミックスを採用することができる。このようにして、環境の過酷化に応じた材料の選択をすることで、加熱管10aの材料費を低く抑えることができる。 Furthermore, the heating tubes 10a constituting the heating section 10 of the multi-tube structure according to this embodiment may be made of the various materials exemplified above for each of the heating tubes 10a in the inner and outer directions having different cross-sectional outside dimensions. Also, the heating tubes 10a constituting the heating section 10 may be made of the various materials exemplified above for each of the partial heating tubes joined to each other in the longitudinal direction with the same cross-sectional outside dimensions. In this way, the heating tubes 10a can be made of a material having appropriate heat resistance and corrosion resistance for the entire length of the heating tube 10a or for each part, depending on each temperature range from the start to the end of heating in the fluid flow path. For example, in the relatively low temperature range from the room temperature range near the inlet of the fluid flow path to about 600 ° C, Cr alloy steel or the like can be used without problems in heat resistance and corrosion resistance. Furthermore, in the high temperature range up to about 1000 ° C, Cr-Ni stainless steel or the like can be used. At higher temperatures above 1000°C, artificial graphite or conductive ceramics such as SiC, TiC, or TiN can be used. In this way, by selecting materials according to the severity of the environment, the material cost of the heating tube 10a can be kept low.

また、本実施形態に係る加熱管10aは、横断面外形寸法の異なる内外方向の加熱管10a同士の間で、比抵抗および断面積のいずれか一方または双方を変数にして、それぞれ異なる所定の管壁単位面積当たりの単位発熱量を有するものとしてもよい。また、加熱部10をなす加熱管10aは、同一横断面外形寸法で長手方向に相互に接合された部分加熱管同士の間で、比抵抗および断面積のいずれか一方または双方を変数にして、それぞれ異なる所定の管壁単位面積当たりの単位発熱量を有するものとしてもよい。このようにすれば、例えば、加熱初期から中期にかけては単位発熱量を高め、加熱後期には単位発熱量が低くなる加熱パターンを採用する等して、加熱温度の的中率を高めることもできる。 The heating tube 10a according to this embodiment may have different unit heat generation amounts per unit area of the tube wall between the heating tubes 10a in the inner and outer directions having different cross-sectional external dimensions, with either or both of the resistivity and the cross-sectional area being variables. The heating tube 10a constituting the heating section 10 may have different unit heat generation amounts per unit area of the tube wall between partial heating tubes joined to each other in the longitudinal direction with the same cross-sectional external dimensions, with either or both of the resistivity and the cross-sectional area being variables. In this way, for example, the hit rate of the heating temperature can be increased by adopting a heating pattern in which the unit heat generation amount is increased from the early to middle heating stages and the unit heat generation amount is decreased in the later heating stages.

本実施形態に係る多重管構造の加熱部10は、例えば図8に示すような従来技術に係る単管構造の加熱管からなる流体の電気加熱装置80と比較して、同等の加熱部容積の条件では、広い伝熱面(発熱面、加熱面ともいう。)面積の確保の点で有利である。すなわち、本実施形態では、挿通される複数の加熱管10aの管壁の内外周面分だけ広い伝熱面積を確保することができる。また、本実施形態では、多重管とすることにより、被加熱流体は、狭い空間を通らざるを得なくなり、乱流となりやすくなることから、伝熱能力が向上する。乱流による伝熱促進を高めるために、加熱管10aの管壁の表面粗度を粗くしたり、凹凸、ギザギザ等の流体が乱れやすい形状を管壁に付与することで、更に伝熱効率を向上させることができる。そのため、本実施形態に係る流体の電気加熱装置100においては、装置を大型化させることなく加熱能力を大幅に増大させることができる。また逆に、本実施形態に係る流体の電気加熱装置100によれば、単管構造の加熱管からなる流体の電気加熱装置を、加熱能力を損なうことなく小型化した加熱装置に置き換えることもできる。 The heating section 10 of the multi-tube structure according to this embodiment is advantageous in terms of securing a large heat transfer surface (also called a heat generating surface or a heating surface) area under the same heating section volume conditions as the electric heating device 80 of the fluid consisting of a single-tube heating tube according to the conventional technology as shown in FIG. 8, for example. That is, in this embodiment, a heat transfer area as large as the inner and outer circumferential surfaces of the tube walls of the multiple heating tubes 10a inserted can be secured. In addition, in this embodiment, by making the tubes multi-tube, the heated fluid is forced to pass through a narrow space and is likely to become turbulent, so that the heat transfer capacity is improved. In order to enhance the heat transfer promotion by turbulence, the surface roughness of the tube wall of the heating tube 10a is made rough, or a shape that easily disturbs the fluid, such as unevenness or jagged edges, is given to the tube wall, so that the heat transfer efficiency can be further improved. Therefore, in the electric heating device 100 of the fluid according to this embodiment, the heating capacity can be significantly increased without increasing the size of the device. Conversely, according to the electric fluid heating device 100 of this embodiment, an electric fluid heating device consisting of a heating tube with a single-tube structure can be replaced with a smaller heating device without compromising the heating capacity.

また、本実施形態に係る多重管構造の加熱部10では、本質的に周囲への熱放散による熱損失を低く抑えることができる。これは、多重管構造では、最外加熱管14を除き、他の加熱管10a(最内加熱管11および中間加熱管12、13)は、その外周側を他の加熱管10aで囲まれるからである。すなわち、本実施形態では、加熱管10aからの熱損失は最外加熱管14の外周面からの熱放散による熱損失が主体であり、他の加熱管10aでは、外周面も被加熱流体の加熱面となり熱損失は殆ど生じないからである。 In addition, in the heating section 10 of the multi-tube structure according to this embodiment, the heat loss due to heat dissipation to the surroundings can be essentially kept low. This is because, in the multi-tube structure, except for the outermost heating tube 14, the other heating tubes 10a (the innermost heating tube 11 and the intermediate heating tubes 12, 13) are surrounded on their outer periphery by the other heating tubes 10a. That is, in this embodiment, the heat loss from the heating tube 10a is mainly due to heat dissipation from the outer periphery of the outermost heating tube 14, and in the other heating tubes 10a, the outer periphery also becomes the heating surface of the heated fluid, so there is almost no heat loss.

多重管構造の加熱部10をなす加熱管10aが互いに略相似形断面を有するようにするのは、内外方向で隣接する加熱管10a同士の間の環状の間隙を、加熱管10aのいずれの周面位置でも略同一間隔にするためである。これにより、被加熱流体が流速のばらつきや偏流を起こすことなく安定して流れる流体流路を形成することができる。併せて、通電加熱される加熱管10a同士が接触して電気的に短絡することで発生するスパークを回避することもできる。なお、被加熱流体が気体で流路方向に沿った加熱量(昇温量)が大きく、流体流路の断面積が流路方向で変わらない場合に、被加熱流体の体積膨張のために流路方向に沿って被加熱流体の流速が漸次増速して問題となる場合がある。このような場合は、その増速効果を相殺するために、加熱管10aの断面形状は略相似形を維持しながら断面積を流路方向に沿って漸次拡大させるようにしてもよい。 The reason why the heating tubes 10a constituting the heating section 10 of the multi-tube structure have substantially similar cross sections is to make the annular gaps between the heating tubes 10a adjacent in the inner and outer directions substantially the same at any circumferential position of the heating tubes 10a. This makes it possible to form a fluid flow path in which the heated fluid flows stably without causing variations in flow speed or drift. In addition, it is also possible to avoid sparks that occur when the heating tubes 10a heated by electricity come into contact with each other and short-circuit electrically. In addition, when the heated fluid is a gas and the amount of heat (amount of temperature rise) along the flow path direction is large and the cross-sectional area of the fluid flow path does not change along the flow path direction, the volume expansion of the heated fluid may cause a gradual increase in the flow speed of the heated fluid along the flow path direction, which may cause a problem. In such a case, in order to offset the effect of the increase in speed, the cross-sectional area of the heating tubes 10a may be gradually enlarged along the flow path direction while maintaining a substantially similar cross-sectional shape.

加熱管10aの略相似形断面の形状は、円形または多角形であることが好ましい。円形の場合は、加熱管10aの製造および環状の流体流路の形成ならびに偏流の回避が他の形状と比較して有利だからである。また、多角形の場合も円形の場合に準じて、加熱管10aの製造および環状の流体流路の形成ならびに偏流の回避が比較的有利となる。さらに多角形のなかでも四角形の場合は、電気加熱装置の設置スペースが限られている場合に、周囲の設備等との干渉を避けながら加熱部10のスペースを最大化することが比較的容易であり、好ましい。 The approximately similar cross-sectional shape of the heating tube 10a is preferably circular or polygonal. This is because a circular shape is more advantageous than other shapes in terms of manufacturing the heating tube 10a, forming an annular fluid flow path, and avoiding drift. Similarly to the circular shape, a polygonal shape is also relatively advantageous in terms of manufacturing the heating tube 10a, forming an annular fluid flow path, and avoiding drift. Furthermore, among polygonal shapes, a square shape is preferable because it is relatively easy to maximize the space of the heating section 10 while avoiding interference with surrounding equipment when the installation space for the electric heating device is limited.

最内加熱管11の管内の流体流路を除く流体流路内には、電気的な絶縁層を有する振れ止め部材56を配設して、両側の加熱管10aの横振れを防止するようにするのが好ましい。電磁力および流体流動起因の加熱管の振動、または加熱管の熱変形等で、加熱管同士の接触が懸念される場合、この振れ止め部材56により、内外方向で隣接する加熱管10a同士の間隙を、いずれの位置でもより確実に略同一間隔にできるからである。また、この振れ止め部材56は、被加熱流体の体積膨張による流路方向に沿った被加熱流体の漸次増速の対策として、加熱管10aの断面積を流路方向に沿って漸次拡大させる場合にも、流路方向で漸次拡大される流路幅を維持するために用いることができる。なお、振れ止め部材56の大きさ、配設位置および配設数等の流路内への配設条件については、振れ止めの目的からすれば限定的な配設で十分であるため、振れ止め部材56が被加熱流体の流れの阻害要因となることはない。また、振れ止め部材56には、それぞれ独立して通電される両側の加熱管10aが互いに電気的に短絡しないようにするため、公知の電気的な絶縁層を有する耐火物またはセラミックスを配設する。振れ止め部材56のその他の構成材料についても、被加熱流体の加熱温度に耐える耐熱性、耐食性、および耐化学反応性を有し、部材成形できるものである等の要件を満たすものであれば特にその材料は限定されない。 In the fluid flow paths except for the fluid flow path in the innermost heating tube 11, it is preferable to provide anti-vibration members 56 having an electrically insulating layer to prevent lateral vibration of the heating tubes 10a on both sides. When there is concern about contact between the heating tubes due to vibration of the heating tube caused by electromagnetic force and fluid flow, or thermal deformation of the heating tube, this anti-vibration member 56 can more reliably make the gap between the adjacent heating tubes 10a in the inner and outer directions approximately the same at any position. In addition, this anti-vibration member 56 can be used to maintain the flow path width that gradually expands in the flow path direction even when the cross-sectional area of the heating tube 10a is gradually expanded along the flow path direction as a measure against the gradual increase in the speed of the heated fluid along the flow path direction due to the volume expansion of the heated fluid. In addition, the size, position, and number of anti-vibration members 56 and other conditions for their placement in the flow path are sufficient for the purpose of vibration prevention, so the anti-vibration members 56 do not become a factor that impedes the flow of the heated fluid. In addition, the anti-vibration member 56 is provided with a refractory material or ceramics having a known electrically insulating layer to prevent the heating tubes 10a on both sides, which are independently energized, from being electrically shorted to each other. There are no particular limitations on the other constituent materials of the anti-vibration member 56, so long as they meet the requirements of having heat resistance, corrosion resistance, and chemical reactivity resistance to withstand the heating temperature of the heated fluid, and can be molded into components.

また、加熱管10aの内周面および外周面のいずれか一方または双方に電気的な絶縁層を有するようにするのが好ましい。通電加熱される加熱管10a同士が接触してスパークが発生したり、加熱管の破裂が生じる等のトラブルを、このような電気的な絶縁層により回避できるからである。また、このような電気的な絶縁層を設けることで、電気導電性を有する被加熱流体も、通電加熱による加熱が可能になるからである。なお、この電気的な絶縁層の材料については、電気的な絶縁性の他、被加熱流体の加熱温度に耐える耐熱性および耐食性を有するものである等の要件を満たすものであれば特にその材料は限定されない。例えば、アルミナ等の絶縁性酸化物セラミックスを溶射するなど公知の素材、および被覆方法を用いればよい。 It is also preferable to provide an electrical insulating layer on either or both of the inner and outer circumferential surfaces of the heating tube 10a. This is because such an electrical insulating layer can prevent problems such as sparks caused by contact between the electrically heated heating tubes 10a or bursting of the heating tube. In addition, by providing such an electrical insulating layer, it is possible to heat the electrically conductive fluid to be heated by electrical heating. The material of this electrical insulating layer is not particularly limited as long as it satisfies the requirements of electrical insulation, heat resistance and corrosion resistance to withstand the heating temperature of the heated fluid. For example, a known material and coating method such as spraying insulating oxide ceramics such as alumina may be used.

また、図1に示すように、本実施形態に係る流体の電気加熱装置100は、加熱管10aへの給電のために、給電電極50、電源40、およびこれらを結ぶ給電回路を有する。給電電極50は、加熱管10aの一方の端部および他方の端部のそれぞれの管壁に配設される。これにより、加熱管10aの両端部の給電電極50の間の有効加熱範囲を加熱管10aの管壁のほぼ全域とするためである。また、給電電極50は、給電回路を構成するうえで、管端支持閉塞板18を貫通させるように設けるのが好ましい。なお、図示はしていないが、本発明の加熱管または被加熱流体に対しては熱電対等の測温手段が設けられ、電源の投入電力、電流、および電圧等の制御により、加熱管の温度および被加熱流体の温度等が制御される。 As shown in FIG. 1, the fluid electric heating device 100 according to this embodiment has a power supply electrode 50, a power source 40, and a power supply circuit connecting them to supply power to the heating tube 10a. The power supply electrode 50 is disposed on each of the tube walls at one end and the other end of the heating tube 10a. This allows the effective heating range between the power supply electrodes 50 at both ends of the heating tube 10a to be almost the entire tube wall of the heating tube 10a. In addition, it is preferable that the power supply electrode 50 is disposed so as to penetrate the tube end support closing plate 18 in constructing the power supply circuit. Although not shown, a temperature measuring means such as a thermocouple is provided for the heating tube or the heated fluid of the present invention, and the temperature of the heating tube and the temperature of the heated fluid are controlled by controlling the input power, current, and voltage of the power source.

電源40は、給電電極50を通して、加熱管10aの一本または複数本に給電する。ここでの電源40は、直流電源でも交流電源でもよい。加熱管の電流分布の均一性が必要であれば、表皮効果の影響がない直流電源が望ましい。逆に表皮効果により、加熱管表層を加熱する目的であったり、電源の設備費等を重視するのであれば、交流電源とするのが好ましい。交流電源の場合の加熱周波数帯域は、通常の誘導加熱の場合と同じ加熱周波数帯域1kHz~400kHzでよく、表皮効果を抑える場合には、これより低い周波数帯域である1kHz未満の加熱周波数とするのが好ましい。この1kHz未満の加熱周波数帯域の交流電源であれば、加熱管の電流分布への表皮効果の影響が小さく、電源コストが低い、等のメリットが得られやすいからである。 The power source 40 supplies power to one or more heating tubes 10a through the power supply electrode 50. The power source 40 here may be a DC power source or an AC power source. If uniformity of the current distribution in the heating tube is required, a DC power source that is not affected by the skin effect is preferable. Conversely, if the purpose is to heat the surface of the heating tube by the skin effect or if the equipment cost of the power source is important, an AC power source is preferable. The heating frequency band in the case of an AC power source may be the same heating frequency band of 1 kHz to 400 kHz as in the case of normal induction heating, and if the skin effect is to be suppressed, a heating frequency of less than 1 kHz, which is a lower frequency band, is preferable. This is because an AC power source with a heating frequency band of less than 1 kHz is likely to have advantages such as a small effect of the skin effect on the current distribution in the heating tube and low power source costs.

本実施形態では、加熱管10aと電源40とを、給電電極50、導体(バスバー、電線等)51、および電線52等を介して結ぶ給電回路の一つとして、図1に示すような(b1)加熱管10aが単一の電源40に並列接続される単一の並列給電回路を採用する。また、本実施形態では、加熱管10aと電源40とを、給電電極50、導体51、および電線52等を介して結ぶ他の給電回路として、図2に示すような(b2)加熱管10aが単一の電源40に直列接続される単一の直列給電回路を採用してもよい。これらの給電回路を構成するには、(b1)では、多重管構造の加熱部10の一方の端部および他方の端部で、給電電極50が相互に電気的に短絡されるようにすればよい。また、(b2)では、多重管構造の加熱部10の一方の端部および他方の端部で、給電電極50が一つおきに電気的に短絡されるようにすればよい。なお、いずれの給電回路においても、電流、電圧、および電力等を制御する公知技術に基づいて、本実施形態に係る流体の電気加熱装置100(110)の加熱制御を行うことができる。並列接続とするか直列接続とするかは、各加熱管の抵抗、発熱量、および被加熱流体の昇温量等を勘案して設計すればよい。 In this embodiment, as one of the power supply circuits connecting the heating tube 10a and the power source 40 via the power supply electrode 50, the conductor (bus bar, electric wire, etc.) 51, and the electric wire 52, a single parallel power supply circuit (b1) in which the heating tube 10a is connected in parallel to a single power source 40 as shown in FIG. 1 is adopted. In addition, in this embodiment, as another power supply circuit connecting the heating tube 10a and the power source 40 via the power supply electrode 50, the conductor 51, and the electric wire 52, a single series power supply circuit (b2) in which the heating tube 10a is connected in series to a single power source 40 as shown in FIG. 2 may be adopted. To configure these power supply circuits, in (b1), the power supply electrodes 50 are electrically shorted to each other at one end and the other end of the heating section 10 of the multi-tube structure. In addition, in (b2), the power supply electrodes 50 are electrically shorted to every other end of the heating section 10 of the multi-tube structure. In any of the power supply circuits, heating control of the electric fluid heating device 100 (110) according to this embodiment can be performed based on known technology for controlling current, voltage, power, etc. Whether to use parallel or series connection can be designed taking into account the resistance of each heating tube, the amount of heat generated, the amount of temperature rise of the heated fluid, etc.

本実施形態では、被加熱流体の少なくとも温度および流量を含む物理量、ならびに加熱管10aの少なくとも管壁単位面積当たりの単位発熱量を含む設備能力に基づいて、加熱管10aへの投入電力を制御する制御装置(図示せず。)を備えるのが好ましい。この制御装置により、電源40から加熱管10aへ投入する電力を制御しながら、加熱管10aを通電加熱することができる。多重管構造の加熱部10全体でみると、投入電力を制御しながら、最外加熱管14では、管内側の管壁から被加熱流体を加熱し、最外加熱管14を除く全ての加熱管(最内加熱管11および中間加熱管12、13)では、管壁の両側を流れる被加熱流体を加熱する。なお、ここでの制御装置は、演算装置、記憶装置、入出力装置等を含む公知の制御装置でよく、その詳細な説明は省略する。 In this embodiment, it is preferable to provide a control device (not shown) that controls the input power to the heating tube 10a based on the physical quantities including at least the temperature and flow rate of the heated fluid, and the equipment capacity including at least the unit heat generation amount per unit area of the tube wall of the heating tube 10a. This control device allows the heating tube 10a to be electrically heated while controlling the power input from the power source 40 to the heating tube 10a. Looking at the entire heating section 10 with a multi-tube structure, the outermost heating tube 14 heats the heated fluid from the tube wall on the inside of the tube while controlling the input power, and all heating tubes other than the outermost heating tube 14 (the innermost heating tube 11 and the intermediate heating tubes 12 and 13) heat the heated fluid flowing on both sides of the tube wall. The control device here may be a known control device including a calculation device, a storage device, an input/output device, etc., and a detailed description thereof will be omitted.

加熱制御に用いる、被加熱流体の温度および流量を含む、所定の物理量は、多重管構造の加熱部10の被加熱流体の入口および/または出口の近傍で測定するのが好ましい。入口近傍および/または出口近傍での被加熱流体の物理量の測定結果は、投入電力、電流、および電圧等の電源へのフィードフォワード制御および/またはフィードバック制御による被加熱流体温度制御の高精度化に寄与できるからである。なお、電気加熱では制御の応答性が高いため、多重管構造の加熱部10の被加熱流体入口近傍のみで、被加熱流体の物理量を測定し、フィードフォワード制御のみを行うようにしてもよい。加熱管10aの少なくとも管壁単位面積当たりの単位発熱量を含む設備能力は、上記のフィードバック制御およびフィードフォワード制御のいずれにおいても、加熱管10aへの投入電力、電流、および電圧等の電源の制御をするための基礎データとして用いられる。ここでの被加熱流体、加熱管の温度測定手段としては、公知の熱電対による温度測定等が例示できる。また、被加熱流体の流量測定手段としては、公知の電磁流量計、羽根車式流量計、超音波流量計、および差圧式流量計(オリフィス流量計)等が例示できる。 It is preferable that the predetermined physical quantities, including the temperature and flow rate of the heated fluid, used for heating control are measured near the inlet and/or outlet of the heated fluid of the heating section 10 of the multi-tube structure. This is because the measurement results of the physical quantities of the heated fluid near the inlet and/or outlet can contribute to high accuracy of the heated fluid temperature control by feedforward control and/or feedback control to the power source such as input power, current, and voltage. In addition, since the control response is high in electric heating, the physical quantities of the heated fluid may be measured only near the inlet of the heated fluid of the heating section 10 of the multi-tube structure, and only feedforward control may be performed. The equipment capacity, including at least the unit heat generation amount per unit area of the tube wall of the heating tube 10a, is used as basic data for controlling the power source such as input power, current, and voltage to the heating tube 10a in both the above feedback control and feedforward control. Examples of temperature measurement means for the heated fluid and the heating tube here include temperature measurement using a known thermocouple. Examples of flow rate measurement means for the heated fluid include known electromagnetic flow meters, impeller flow meters, ultrasonic flow meters, and differential pressure flow meters (orifice flow meters).

図3に示すように、本実施形態に係る流体の電気加熱装置120は、最外加熱管14の外周面に断熱材58が被覆されるようにしてもよい。最外加熱管14を除く他の加熱管(最内加熱管11および中間加熱管12、13)では、その外周面が他の加熱管10aで囲まれ被加熱流体の流路となるため、熱損失の懸念がないのに対し、最外加熱管14の外周面からの熱放散はそのまま熱損失となるからである。また、多重管構造の加熱部10の周囲の設備等の保護のためにも、最外加熱管14の外周面からの熱放散を軽減するのが好ましいためである。なお、断熱材としては、公知の低熱伝導のセラミックスファイバーなどの断熱材を用いることができる。 As shown in FIG. 3, the electric fluid heating device 120 according to this embodiment may be configured so that the outer peripheral surface of the outermost heating tube 14 is covered with a heat insulating material 58. The outer peripheral surfaces of the other heating tubes (the innermost heating tube 11 and the intermediate heating tubes 12 and 13) other than the outermost heating tube 14 are surrounded by the other heating tubes 10a and become the flow path of the heated fluid, so there is no concern about heat loss, whereas heat dissipation from the outer peripheral surface of the outermost heating tube 14 directly results in heat loss. In addition, in order to protect the equipment around the heating section 10 of the multi-tube structure, it is preferable to reduce heat dissipation from the outer peripheral surface of the outermost heating tube 14. As the heat insulating material, a known heat insulating material such as ceramic fiber with low thermal conductivity can be used.

また、本実施形態では、図4に示す流体の電気加熱装置130のように、多重管構造の加熱部10をなす加熱管10aが加熱条件に応じて熱膨張または熱収縮しても、給電回路での断線トラブル等を回避できる手段が配設されるようにしてもよい。例えば、多重管構造の加熱部10の少なくとも片側の全ての給電電極50のそれぞれと給電回路側との接続部には、少なくとも加熱管10aの熱変形が及ぶ範囲に、該熱変形に追従する可撓性導体54または摺動接点(図示せず)が配設されるようにしてもよい。これにより、多重管構造の加熱部10をなす加熱管10aが、加熱条件に応じて熱膨張または熱収縮しても、電極部の変形および位置の変化に追従することができ好ましい。なお、可撓性導体とは、導体そのものが外力を受けても柔軟に折り曲がる等して熱膨張または熱収縮を吸収できる、いわゆる編組線、または水冷ケーブル、ばね式の導体等である。また、摺動接点とは、給電側の接点と受電側の接点とが、一定以上の圧力、接触面積を確保して通電状態を維持しながら摺動することで、熱膨張または熱収縮に追従できるカーボンブラシ等の公知の接点である。 In this embodiment, as in the fluid electric heating device 130 shown in FIG. 4, even if the heating tube 10a constituting the heating section 10 of the multi-tube structure thermally expands or contracts depending on the heating conditions, a means for avoiding disconnection troubles in the power supply circuit may be provided. For example, a flexible conductor 54 or a sliding contact (not shown) that follows the thermal deformation of the heating tube 10a may be provided at least in the range of the thermal deformation of the heating tube 10a at the connection part between each of all the power supply electrodes 50 on at least one side of the heating section 10 of the multi-tube structure and the power supply circuit side. This is preferable because the heating tube 10a constituting the heating section 10 of the multi-tube structure can follow the deformation and position change of the electrode part even if it thermally expands or contracts depending on the heating conditions. The flexible conductor is a so-called braided wire, a water-cooled cable, a spring-type conductor, etc., which can absorb thermal expansion or thermal contraction by flexibly bending even when the conductor itself is subjected to an external force. A sliding contact is a well-known contact such as a carbon brush that can follow thermal expansion or contraction by sliding between the contact on the power supply side and the contact on the power receiving side while maintaining a certain level of pressure and contact area and maintaining a current-carrying state.

次に、主に図1に基づいて、本実施形態に係る流体の電気加熱装置100を用いた流体の電気加熱方法について説明する。本実施形態では、図1に示すように、被加熱流体は、多重管構造の加熱部10の一つの流体流路の入口、すなわち、最内加熱管11の一方の端部に設けられた流体入口20aから供給される。最内加熱管11を他方の端部まで流れた被加熱流体は、最内加熱管11の端部の管壁に設けられた流体導通孔30を通過して隣接する流体流路に移り、折り返して中間加熱管12の他の端部に設けられた流体導通孔30まで流れる。このようにして、被加熱流体は、多重管構造の加熱部10内の複数層の環状の流体流路を往復しながら、最外加熱管14の端部に設けられた流体出口20bまで流れる。なお、最外加熱管14の端部に設けられる流体出口20bの端部位置は、図1と図6とで流体入口20aとの位置関係が異なるが、隣接する中間加熱管12(13)に設けられる流体導通孔30側の端部と反対側の端部に設けられる点で共通している。また、被加熱流体を流す方向は、図1の例に限定されるものではなく、図1と逆向きに流してもよい。 Next, mainly based on FIG. 1, a method for electrically heating a fluid using the electric heating device 100 for a fluid according to this embodiment will be described. In this embodiment, as shown in FIG. 1, the heated fluid is supplied from the inlet of one fluid flow path of the heating section 10 of the multi-tube structure, that is, the fluid inlet 20a provided at one end of the innermost heating tube 11. The heated fluid that has flowed to the other end of the innermost heating tube 11 passes through a fluid introduction hole 30 provided in the tube wall at the end of the innermost heating tube 11, moves to an adjacent fluid flow path, and turns back and flows to the fluid introduction hole 30 provided at the other end of the intermediate heating tube 12. In this way, the heated fluid flows back and forth through the multiple layers of annular fluid flow paths in the heating section 10 of the multi-tube structure to the fluid outlet 20b provided at the end of the outermost heating tube 14. The end position of the fluid outlet 20b provided at the end of the outermost heating tube 14 differs in positional relationship with the fluid inlet 20a between FIG. 1 and FIG. 6, but is common in that it is provided at the end opposite to the end on the side of the fluid introduction hole 30 provided in the adjacent intermediate heating tube 12 (13). Also, the direction in which the heated fluid flows is not limited to the example in FIG. 1, and it may flow in the opposite direction to that in FIG. 1.

本実施形態では、流体流路を形成する加熱管10a(最内加熱管11、中間加熱管12、および最外加熱管14)が通電加熱されて、その管壁が発熱面となりそのまま加熱面として働くことから、被加熱流体が流体流路を通過中に効率的に加熱される。なお細かく見れば、最外加熱管14では管内側の管壁から被加熱流体を加熱し、最外加熱管14を除く全ての加熱管10aでは、管壁の両側を流れる被加熱流体を加熱することになる。 In this embodiment, the heating tubes 10a (the innermost heating tube 11, the intermediate heating tube 12, and the outermost heating tube 14) that form the fluid flow path are electrically heated, and the tube walls become heat generating surfaces and act as heating surfaces, so that the heated fluid is efficiently heated while passing through the fluid flow path. Looking more closely, the outermost heating tube 14 heats the heated fluid from the tube wall on the inside of the tube, and all heating tubes 10a except the outermost heating tube 14 heat the heated fluid flowing on both sides of the tube wall.

被加熱流体の加熱制御では、不図示の制御装置により、加熱目標温度および加熱流量等の物理量、ならびに加熱管10aの単位発熱量等の設備能力に基づいた加熱部10への投入電力制御がなされる。これに加えて、加熱後の被加熱流体の温度および流量に基づくフィードバック制御等が行われるのが好ましい。 In the heating control of the heated fluid, a control device (not shown) controls the input power to the heating section 10 based on physical quantities such as the heating target temperature and heating flow rate, as well as the equipment capacity such as the unit heat value of the heating tube 10a. In addition, it is preferable to perform feedback control based on the temperature and flow rate of the heated fluid after heating.

具体的な被加熱流体の加熱用途の例としては、燃焼装置へ送られる燃料および燃焼用空気の予熱、または重油アトマイズのための重油およびアトマイズ蒸気の加熱、等を例示できるが、これに限定されない。 Specific examples of applications for heating the heated fluid include, but are not limited to, preheating fuel and combustion air sent to a combustion device, or heating heavy oil and atomization steam for heavy oil atomization.

(実施の形態2)
図5は、実施の形態2に係る流体の電気加熱装置200を模式的に示す縦断面図である。図5を参照して、実施の形態2に係る流体の電気加熱装置200について説明する。
(Embodiment 2)
Fig. 5 is a vertical cross-sectional view that typically shows an electric heating device 200 for fluid according to embodiment 2. The electric heating device 200 for fluid according to embodiment 2 will be described with reference to Fig. 5 .

図5に示すように、実施の形態2に係る流体の電気加熱装置200は、実施の形態1に係る流体の電気加熱装置と比較した場合に、加熱管10aと電源40とを結ぶ給電回路において相違する。具体的には、流体の電気加熱装置200は、実施の形態1とは、(b3)多重管構造の加熱部10をなす加熱管10aがそれぞれ一の電源40に接続される、一加熱管一電源の給電回路の組からなる一群の給電回路を備える点において相違する。図5に示す例は、最内加熱管11と専用の電源41、中間加熱管12と専用の電源42、および最外加熱管14と専用の電源44というような、それぞれの一加熱管一電源の給電回路が3つで組となって一群の給電回路をなす例である。その他の構成については、実施の形態1とほぼ同様である。 As shown in FIG. 5, the fluid electric heating device 200 according to the second embodiment differs from the fluid electric heating device according to the first embodiment in the power supply circuit connecting the heating tube 10a and the power source 40. Specifically, the fluid electric heating device 200 differs from the first embodiment in that (b3) the heating tubes 10a constituting the heating section 10 of the multi-tube structure are each connected to one power source 40, and the device is provided with a group of power supply circuits consisting of a set of power supply circuits for one heating tube and one power source. The example shown in FIG. 5 is an example in which a group of power supply circuits is formed by a set of three power supply circuits for one heating tube and one power source, such as the innermost heating tube 11 and a dedicated power source 41, the intermediate heating tube 12 and a dedicated power source 42, and the outermost heating tube 14 and a dedicated power source 44. The other configurations are almost the same as those of the first embodiment.

以上のように構成される場合であっても、実施の形態2に係る流体の電気加熱装置200は、実施の形態1に係る流体の電気加熱装置とほぼ同様の効果が得られる。 Even when configured as described above, the fluid electric heating device 200 according to the second embodiment can achieve substantially the same effects as the fluid electric heating device according to the first embodiment.

加えて、加熱管10a毎に専用の電源40(41、42、43)が配設されているため、加熱管10a毎のきめ細かな加熱制御をとおして、多重管構造の加熱部10全体としての加熱制御のさらなる高精度化が可能になる。 In addition, a dedicated power source 40 (41, 42, 43) is provided for each heating tube 10a, so that detailed heating control for each heating tube 10a can be achieved, enabling even more precise heating control for the entire heating section 10 with a multi-tube structure.

(実施の形態3)
図6は、実施の形態3に係る流体の電気加熱装置300を模式的に示す縦断面図である。図6を参照して、実施の形態3に係る流体の電気加熱装置300について説明する。
(Embodiment 3)
Fig. 6 is a vertical cross-sectional view that typically shows an electric fluid heating device 300 according to embodiment 3. The electric fluid heating device 300 according to embodiment 3 will be described with reference to Fig. 6 .

図6に示すように、実施の形態3に係る流体の電気加熱装置300は、実施の形態1、2に係る流体の電気加熱装置と比較した場合に、次のような相違点を有する。すなわち、本実施形態は、多重管構造の加熱部10をなす加熱管10aを、内外方向で連続した複数本で加熱管群として複数の加熱管群に分け、加熱管群毎に並列給電回路を備える点において実施の形態1、2と相違する。その他の構成については、実施の形態1、2とほぼ同様である。 As shown in FIG. 6, the fluid electric heating device 300 according to the third embodiment has the following differences when compared with the fluid electric heating devices according to the first and second embodiments. That is, this embodiment differs from the first and second embodiments in that the heating tubes 10a constituting the heating section 10 of the multi-tube structure are divided into a plurality of heating tube groups, each of which is made up of a plurality of heating tubes connected in the inner and outer directions, and each heating tube group is provided with a parallel power supply circuit. The other configurations are substantially the same as those of the first and second embodiments.

図6に示す例では、多重管構造の加熱部10をなす加熱管10aを、最内加熱管11と中間加熱管12とで小断面の加熱管群15とし、その外側に連続して、中間加熱管13と最外加熱管14とで大断面の加熱管群16として、2つの加熱管群に分けている。この2つの加熱管群には、それぞれ並列給電回路により、小断面の加熱管群15には小断面の加熱管群用の電源45が連結され、また、大断面の加熱管群16には大断面の加熱管群用の電源46が連結されている。 In the example shown in FIG. 6, the heating tubes 10a constituting the heating section 10 of the multi-tube structure are divided into two heating tube groups: the innermost heating tube 11 and the intermediate heating tube 12 form a small cross-section heating tube group 15, and the intermediate heating tube 13 and the outermost heating tube 14 form a large cross-section heating tube group 16, which continues from the innermost heating tube 11 and the intermediate heating tube 12 and the outermost heating tube 14. A power supply 45 for the small cross-section heating tube group is connected to the small cross-section heating tube group 15, and a power supply 46 for the large cross-section heating tube group is connected to the large cross-section heating tube group 16 by parallel power supply circuits.

なお、図6に示す例は一例であって、本実施形態では、加熱管群毎に、(b1)並列給電回路、(b2)直列給電回路、および(b3)一群の給電回路のうちのいずれかを備えるようする。例えば、加熱管群毎に別々の給電回路が配設され、結果的にこれら3種の給電回路全てが配設されてもよい。また、図6に示す例では、中間加熱管12、13が2本記載されているが、さらに多くの中間加熱管が配設されてもよい。 Note that the example shown in FIG. 6 is just one example, and in this embodiment, each heating tube group is provided with any one of (b1) a parallel power supply circuit, (b2) a series power supply circuit, and (b3) a group of power supply circuits. For example, a separate power supply circuit may be provided for each heating tube group, resulting in all three types of power supply circuits being provided. Also, in the example shown in FIG. 6, two intermediate heating tubes 12 and 13 are shown, but more intermediate heating tubes may be provided.

以上のように構成される場合であっても、実施の形態3に係る流体の電気加熱装置300は、実施の形態1、2に係る流体の電気加熱装置とほぼ同様の効果が得られる。 Even when configured as described above, the fluid electric heating device 300 according to embodiment 3 provides substantially the same effects as the fluid electric heating devices according to embodiments 1 and 2.

加えて、加熱管群毎に専用の電源40(45、46)が配設されているため、加熱管群毎のきめ細かな加熱制御をとおして、多重管構造の加熱部10全体としての加熱制御もさらに高精度化することができる。 In addition, since a dedicated power source 40 (45, 46) is provided for each heating tube group, the heating control of the entire heating section 10 with a multi-tube structure can be made even more precise through detailed heating control for each heating tube group.

以上、本発明に係る種々の実施形態の流体の電気加熱装置100、110、120、130、200、および300について説明してきたが、これらを同一の実施形態同士でまたは異なる実施形態同士で、流路方向に直列にまたは並列に連結して配設してもよい。これにより、限られた加熱装置の配設スペースのなかで、上流側と下流側とで流体の電気加熱装置の加熱能力の最適化を行う等、設備設計の自由度を高めることができる。 Various embodiments of the fluid electric heating devices 100, 110, 120, 130, 200, and 300 according to the present invention have been described above, but these may be connected in series or in parallel in the flow path direction with the same or different embodiments. This increases the freedom of facility design, such as optimizing the heating capacity of the fluid electric heating device on the upstream and downstream sides within the limited installation space of the heating device.

10 多重管構造の加熱部
10a 加熱管
11 最内加熱管
12、13 中間加熱管
14 最外加熱管
15 小断面の加熱管群
16 大断面の加熱管群
18 管端支持閉塞板
20 流体入出口
20a 流体入口
20b 流体出口
30 流体導通孔
40 電源
41 最内加熱管用の電源
42 中間加熱管用の電源
44 最外加熱管用の電源
45 小断面の加熱管群用の電源
46 大断面の加熱管群用の電源
50 給電電極
51 導体(バスバー、電線)
52 電線
54 可撓性導体
56 振れ止め部材(スペーサー)
58 断熱材
60 流体の電気加熱装置
62 発熱体
62a 非磁性管
62b、62b1、62b2、62b3 磁性管
62c、62c1、62c2 湾曲部
64、66 管支え板
68 内側断熱材
70 外側断熱材
72 誘導加熱コイル
74 流体入口ヘッダー
76 流体出口ヘッダー
80 流体の電気加熱装置
82 加熱管体
84 非加熱管体
86 管体継ぎ手
88 交流電源
90 支持台
92 電気絶縁体
94 ジャンパー
100、110、120、130、200、300 流体の電気加熱装置

10 Heating section with multi-tube structure 10a Heating tube 11 Innermost heating tube 12, 13 Intermediate heating tube 14 Outermost heating tube 15 Group of small cross-section heating tubes 16 Group of large cross-section heating tubes 18 Tube end support closing plate 20 Fluid inlet/outlet 20a Fluid inlet 20b Fluid outlet 30 Fluid guide hole 40 Power source 41 Power source for innermost heating tube 42 Power source for intermediate heating tube 44 Power source for outermost heating tube 45 Power source for group of small cross-section heating tubes 46 Power source for group of large cross-section heating tubes 50 Power supply electrode 51 Conductor (bus bar, electric wire)
52 Electric wire 54 Flexible conductor 56 Vibration prevention member (spacer)
Description of the Related Art 58 Insulation material 60 Fluid electric heating device 62 Heating element 62a Non-magnetic pipe 62b, 62b1, 62b2, 62b3 Magnetic pipe 62c, 62c1, 62c2 Curved portion 64, 66 Pipe support plate 68 Inner insulation material 70 Outer insulation material 72 Induction heating coil 74 Fluid inlet header 76 Fluid outlet header 80 Fluid electric heating device 82 Heated pipe body 84 Non-heated pipe body 86 Pipe joint 88 AC power source 90 Support base 92 Electrical insulator 94 Jumper 100, 110, 120, 130, 200, 300 Fluid electric heating device

Claims (13)

導電性の加熱管が、互いに略相似形断面の複数本で、大断面の加熱管に小断面の加熱管が非接触で挿通されるようにして多重管構造の加熱部をなし、前記加熱管同士の間の環状の間隙を、最内加熱管の管内とともに被加熱流体の流体流路とする、通電加熱による多重管式の流体の電気加熱装置であって、
(a)前記環状の間隙を形成する前記加熱管の管壁とともに一つの流体流路を形成する流体流路形成手段として、さらに、
(a1)前記加熱管の各々を両端部で支持し、且つ両端部を電気絶縁性を持たせながら密閉構造とする管端支持閉塞板と、
(a2)内外方向の前記加熱管同士で、一方の端部と他方の端部とで互い違いとなる端部位置に配設され、前記管壁の内外方向両側の前記環状の流体流路を互いに導通させる流体導通孔と、
(a3)前記加熱管のうちの最内加熱管では前記流体導通孔の反対側の端部に配設され、前記加熱管のうちの最外加熱管では前記流体導通孔相当位置に配設される流体入出口と、
を有する、流体の電気加熱装置。
A multi-tube type fluid electric heating device using electrical heating, comprising a plurality of electrically conductive heating tubes each having a cross section substantially similar to one another, a heating tube having a smaller cross section being inserted into a heating tube having a larger cross section without contacting each other to form a heating section having a multi-tube structure, and an annular gap between the heating tubes, together with an interior of the innermost heating tube, is used as a fluid flow path for a fluid to be heated,
(a) as a fluid flow path forming means for forming one fluid flow path together with a tube wall of the heating tube forming the annular gap,
(a1) a tube end support closing plate that supports each of the heating tubes at both ends and seals both ends while providing electrical insulation;
(a2) fluid introducing holes that are arranged at end positions that are staggered between one end and the other end of the heating tubes in the inner and outer directions and that connect the annular fluid flow paths on both sides in the inner and outer directions of the tube wall to each other;
(a3) a fluid inlet/outlet that is disposed at an end of an innermost heating tube among the heating tubes opposite to the fluid introducing hole, and that is disposed at a position corresponding to the fluid introducing hole in an outermost heating tube among the heating tubes;
1. An apparatus for electrically heating a fluid comprising:
前記多重管構造の加熱部をなす前記加熱管を、内外方向で連続した複数本で加熱管群として複数の加熱管群に分け、前記加熱管群毎に給電回路を配設した、請求項1に記載の流体の電気加熱装置。 The fluid electric heating device according to claim 1, in which the heating tubes constituting the heating section of the multi-tube structure are divided into a plurality of heating tube groups each consisting of a plurality of heating tubes connected in the inner and outer directions, and a power supply circuit is provided for each heating tube group. 前記多重管構造の加熱部をなす前記加熱管の給電回路、または前記多重管構造の加熱部をなす前記複数の加熱管群毎の給電回路が、
(b1)前記多重管構造の加熱部の一方の端部および他方の端部で、給電電極が相互に電気的に短絡されて、前記加熱管が単一の電源に並列接続される単一の並列給電回路、
(b2)前記多重管構造の加熱部の一方の端部および他方の端部で、給電電極が一つおきに電気的に短絡されて、前記加熱管が単一の電源に直列接続される単一の直列給電回路、
および、
(b3)前記多重管構造の加熱部をなす前記加熱管がそれぞれ一の電源に接続される、一加熱管一電源の給電回路の組からなる一群の給電回路、
のうちのいずれかの給電回路である、請求項1または請求項2に記載の流体の電気加熱装置。
A power supply circuit for the heating tube constituting the heating portion of the multi-tube structure, or a power supply circuit for each of the plurality of heating tube groups constituting the heating portion of the multi-tube structure,
(b1) a single parallel power supply circuit in which power supply electrodes are electrically short-circuited to each other at one end and the other end of the heating section of the multi-tube structure, and the heating tubes are connected in parallel to a single power source;
(b2) a single series power supply circuit in which every other power supply electrode is electrically short-circuited at one end and the other end of the heating section of the multi-tube structure, and the heating tubes are connected in series to a single power source;
and,
(b3) a group of power supply circuits each consisting of a set of power supply circuits for one heating tube and one power source, in which the heating tubes constituting the heating portion of the multi-tube structure are each connected to one power source;
3. The electric heating device for fluid according to claim 1 or 2, wherein the electric supply circuit is any one of the above.
前記多重管構造の加熱部をなす前記加熱管は、横断面外形寸法の異なる内外方向の前記加熱管同士の間で、または、同一横断面外形寸法で長手方向に相互に接合された部分加熱管同士の間で、少なくとも一部に他と異なる発熱特性を有する、請求項1または請求項2に記載の流体の電気加熱装置。 The electric heating device for fluids according to claim 1 or 2, wherein the heating tubes constituting the heating portion of the multi-tube structure have at least some heat generating characteristics different from the others between the heating tubes in the inner and outer directions having different cross-sectional external dimensions, or between partial heating tubes with the same cross-sectional external dimensions joined to each other in the longitudinal direction. 前記多重管構造の加熱部をなす前記加熱管は、横断面外形寸法の異なる内外方向の前記加熱管同士、および、同一横断面外形寸法で長手方向に相互に接合された部分加熱管同士、のいずれか一方または双方で、比抵抗および断面積のいずれか一方または双方を変数にしてそれぞれ異なる所定の管壁単位面積当たりの単位発熱量を有する、請求項1または請求項2に記載の流体の電気加熱装置。 The heating tubes constituting the heating section of the multi-tube structure are either or both of the heating tubes in the inner and outer directions having different cross-sectional outside dimensions, and partial heating tubes with the same cross-sectional outside dimensions joined to each other in the longitudinal direction, and each of these has a different unit heat value per unit area of the tube wall with either or both of the resistivity and the cross-sectional area as variables. The electric heating device for fluids according to claim 1 or 2. 前記加熱管の略相似形断面の形状が、円形または多角形である、請求項1または請求項2に記載の流体の電気加熱装置。 The fluid electric heating device according to claim 1 or 2, wherein the shape of the approximately similar cross section of the heating tube is circular or polygonal. 前記最内加熱管の管内の流体流路を除く前記流体流路内に、電気的な絶縁層を有する振れ止め部材を配設する、請求項1または請求項2に記載の流体の電気加熱装置。 The electric heating device for fluid according to claim 1 or 2, in which a vibration-stopping member having an electrically insulating layer is disposed in the fluid flow path except for the fluid flow path in the innermost heating tube. 前記加熱管の内周面および外周面のいずれか一方または双方に電気的な絶縁層を有する、請求項1または請求項2に記載の流体の電気加熱装置。 The fluid electric heating device according to claim 1 or 2, wherein the heating tube has an electrically insulating layer on either or both of its inner and outer circumferential surfaces. 前記最外加熱管の外周面に断熱材が配設される、請求項1または請求項2に記載の流体の電気加熱装置。 The electric heating device for fluids according to claim 1 or 2, in which a heat insulating material is provided on the outer peripheral surface of the outermost heating tube. 前記多重管構造の加熱部の少なくとも片側の全ての給電電極のそれぞれと給電回路側との接続部には、前記加熱管の熱変形に追従する可撓性導体または摺動接点が配設される、請求項1または請求項2に記載の流体の電気加熱装置。 The fluid electric heating device according to claim 1 or 2, wherein a flexible conductor or sliding contact that follows the thermal deformation of the heating tube is provided at the connection between each of all power supply electrodes on at least one side of the heating section of the multi-tube structure and the power supply circuit side. 前記流体流路の一方の流体入出口および他方の流体入出口のそれぞれに接続され、前記被加熱流体を供給し且つ排出させる流体給排手段が、流体供給ヘッダーおよび流体排出ヘッダーを備える、請求項1または請求項2に記載の流体の電気加熱装置。 The electric heating device for fluid according to claim 1 or 2, wherein the fluid supply/discharge means for supplying and discharging the heated fluid, which is connected to one fluid inlet/outlet and the other fluid inlet/outlet of the fluid flow path, comprises a fluid supply header and a fluid discharge header. 前記被加熱流体の少なくとも温度および流量を含む物理量、ならびに前記加熱管の少なくとも管壁単位面積当たりの単位発熱量を含む設備能力に基づいて、前記加熱管への投入電力を制御する制御装置を備える、請求項1または請求項2に記載の流体の電気加熱装置。 The electric heating device for fluid according to claim 1 or 2, further comprising a control device that controls the input power to the heating tube based on physical quantities including at least the temperature and flow rate of the heated fluid, and the equipment capacity including at least the unit heat generation amount per unit area of the tube wall of the heating tube. 請求項1または請求項2に記載の流体の電気加熱装置を用いて、被加熱流体を加熱する、流体の電気加熱方法。

A method for electrically heating a fluid, comprising heating a fluid to be heated by using the electrically heating device for a fluid according to claim 1 or 2.

JP2022169891A 2022-10-24 2022-10-24 Apparatus and method for electrically heating a fluid Pending JP2024062110A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022169891A JP2024062110A (en) 2022-10-24 2022-10-24 Apparatus and method for electrically heating a fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022169891A JP2024062110A (en) 2022-10-24 2022-10-24 Apparatus and method for electrically heating a fluid

Publications (1)

Publication Number Publication Date
JP2024062110A true JP2024062110A (en) 2024-05-09

Family

ID=90970656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022169891A Pending JP2024062110A (en) 2022-10-24 2022-10-24 Apparatus and method for electrically heating a fluid

Country Status (1)

Country Link
JP (1) JP2024062110A (en)

Similar Documents

Publication Publication Date Title
KR100827468B1 (en) Electric boiler using high frequency induction heaing
JP5310832B2 (en) Fluid heating device
CN210921360U (en) Superheated steam generator
CN103096527A (en) Electrical heating rod device
JP2024062110A (en) Apparatus and method for electrically heating a fluid
JP3642415B2 (en) Fluid heating device
JP2024062109A (en) Apparatus and method for electrically heating a fluid
US20240123421A1 (en) Reactor for Carrying Out a Chemical Reaction in a Process Fluid and Method
JP2024062105A (en) Electrical heating of fluids
JP2024062104A (en) Electrical heating of fluids
JP2015007528A (en) Fluid heating device
RU183968U1 (en) ELECTRIC GAS AND LIQUID HEATERS
JP2023517136A (en) Reactor and method for carrying out chemical reactions
JP6290067B2 (en) Fluid heating device
JP2009079821A (en) Fluid heating device
JP2005050691A (en) Gas flow rate control device for fuel cell
JPH09153392A (en) Insertion type induction heating coil
US20240125513A1 (en) Electric air heater
CN219164762U (en) Electromagnetic spiral tube type electric heater
JP2004331999A (en) Method and apparatus for heat-treating pipe
RU2044415C1 (en) Electric water heater
US20240032154A1 (en) Energy efficient twin reversed spiral configured heating element and gas heater using the same
JP2003151736A (en) Fluid heating device by electromagnetic induction
US10050497B2 (en) Method of assembling rotary electric machine
KR920000885Y1 (en) Electric fluid heater