JP2015007528A - Fluid heating device - Google Patents

Fluid heating device Download PDF

Info

Publication number
JP2015007528A
JP2015007528A JP2013195251A JP2013195251A JP2015007528A JP 2015007528 A JP2015007528 A JP 2015007528A JP 2013195251 A JP2013195251 A JP 2013195251A JP 2013195251 A JP2013195251 A JP 2013195251A JP 2015007528 A JP2015007528 A JP 2015007528A
Authority
JP
Japan
Prior art keywords
flow path
forming body
fluid
path forming
covering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013195251A
Other languages
Japanese (ja)
Other versions
JP6224971B2 (en
Inventor
北野 良夫
Yoshio Kitano
良夫 北野
外村 徹
Toru Tonomura
徹 外村
泰広 藤本
Yasuhiro Fujimoto
泰広 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuden Co Ltd Kyoto
Original Assignee
Tokuden Co Ltd Kyoto
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuden Co Ltd Kyoto filed Critical Tokuden Co Ltd Kyoto
Priority to JP2013195251A priority Critical patent/JP6224971B2/en
Publication of JP2015007528A publication Critical patent/JP2015007528A/en
Application granted granted Critical
Publication of JP6224971B2 publication Critical patent/JP6224971B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Control Of Resistance Heating (AREA)
  • Resistance Heating (AREA)
  • Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the circuit power factor to improve the facility efficiency in a fluid heating device which heats a fluid pipeline, in which a fluid flows, through energization to heat the fluid.SOLUTION: A linear flow passage R, in which a heated fluid flows, is formed in a flow passage formation body 2, and the flow passage formation body 2 is made of a conductive material. A fluid heating device 100 heats the flow passage formation body 2 through energization to heat the heated fluid. The fluid heating device 100 applies an alternating current to an area between a first power supply member 3 that is connected with one end side 2a of the flow passage of the flow passage formation body 2 and a second power supply member 4 that is connected with the other end side 2b of the flow passage of the flow passage formation body 2. The second power supply member 4 includes a cover body 43 which covers substantially an entire periphery of an outer peripheral surface in an area ranging from the other end side to the one side of the flow passage in the flow passage formation body 2. An end part of the cover body, which is located at the other side of the flow passage, is electrically connected with the flow passage formation body 2.

Description

本発明は、流体加熱装置に関するものである。   The present invention relates to a fluid heating apparatus.

流体加熱装置としては、特許文献1に示すように、中空導体管を通電加熱して、当該導体管の内部を流れる流体を加熱して加熱流体を発生するものがある。この流体加熱装置では、導体管の両端部に設けた電極から交流電圧が印加されて、導体管の側壁に交流電流が流れることにより、導体管の内部抵抗により発生するジュール熱によって導体管が自己発熱する。この導体管の自己発熱によって、当該導体管を流れる流体が加熱される。   As a fluid heating device, as shown in Patent Document 1, there is a device that energizes and heats a hollow conductor tube and heats a fluid flowing inside the conductor tube to generate a heated fluid. In this fluid heating apparatus, an AC voltage is applied from the electrodes provided at both ends of the conductor tube, and an AC current flows through the side wall of the conductor tube, so that the conductor tube self-acts due to Joule heat generated by the internal resistance of the conductor tube. Fever. The fluid flowing through the conductor tube is heated by the self-heating of the conductor tube.

しかしながら、導体管の両端部に交流電圧を印加するものでは、導体管が有するインダクタンスによって電圧降下が生じ、当該導体管に交流電圧を印加する回路の力率が低下するという問題がある。   However, when the AC voltage is applied to both ends of the conductor tube, there is a problem that a voltage drop occurs due to the inductance of the conductor tube, and the power factor of the circuit that applies the AC voltage to the conductor tube is reduced.

特開2011−86443号公報JP 2011-86443 A

そこで本発明は、上記問題点を一挙に解決するためになされたものであり、内部に流体が流れる流路形成体を通電加熱する流体加熱装置において、回路力率を改善して設備効率を向上させることをその主たる所期課題とするものである。   Accordingly, the present invention has been made to solve the above-mentioned problems all at once, and in a fluid heating apparatus that energizes and heats a flow path forming body through which a fluid flows, the circuit power factor is improved and the equipment efficiency is improved. The main intended task is to make it happen.

すなわち本発明に係る流体加熱装置は、内部に被加熱流体が流れる流路が形成された導電性材料からなる流路形成体を通電加熱して、前記流路を流れる被加熱流体を加熱する流体加熱装置であって、前記流路形成体の流路一端側に接続された第1の給電部材と、前記流路形成体の流路他端側に接続された第2の給電部材との間に交流電圧を印加するものであり、前記第2の給電部材が、前記流路形成体の流路他端側から流路一端側における外側周面の略全周を覆う被覆体を有し、前記被覆体の流路他端側端部が、前記流路形成体に電気的に接続されていることを特徴とする。   That is, the fluid heating device according to the present invention is a fluid that heats the heated fluid flowing through the flow path by energizing and heating the flow path forming body made of a conductive material in which the flow path through which the heated fluid flows is formed. A heating device between a first power supply member connected to one end side of the flow path forming body and a second power supply member connected to the other end side of the flow path forming body The second power supply member has a covering that covers substantially the entire circumference of the outer peripheral surface on the one end side of the flow path from the other end side of the flow path forming body, The other end of the flow path on the other side of the covering is electrically connected to the flow path forming body.

このようなものであれば、流路形成体に流れる電流と、第2給電部材、特に被覆体に流れる電流とが逆向きとなるので、それぞれの電流により発生する磁束が打ち消し合い、流路形成体に発生するリアクタンスが低減されて回路力率を改善することができる。したがって、流体加熱装置の設備効率を向上させることができる。また、前記流路形成体の流路他端側から流路一端側における外側周面の略全周が前記被覆体により覆われているので、前記被覆体が保温部材としても機能するので、前記流路形成体及び前記流路形成体の内部を流れる被加熱流体の温度低下を防止することができる。   In such a case, since the current flowing through the flow path forming body and the current flowing through the second power supply member, particularly the covering body, are in opposite directions, the magnetic fluxes generated by the respective currents cancel each other, thereby forming the flow path. The reactance generated in the body can be reduced and the circuit power factor can be improved. Therefore, the equipment efficiency of the fluid heating device can be improved. In addition, since the covering body covers almost the entire circumference of the outer peripheral surface from the other end side of the flow path forming body to the one end side of the flow path, the covering body also functions as a heat retaining member. It is possible to prevent a temperature drop of the flow path forming body and the heated fluid flowing inside the flow path forming body.

被加熱流体をより高温の状態で前記流路形成体から噴出させるためには、前記流路形成体において、前記被覆体との接続部よりも流路他端側に、流体噴出口が設けられていることが望ましい。これならば、前記流路形成体に設けられた流体噴出口から直接噴出させることができるので、前記流路形成体の内部において加熱された被加熱流体の温度を低下させることなくそのまま噴出させることができる。   In order to eject the heated fluid from the flow path forming body at a higher temperature, a fluid jet is provided in the flow path forming body on the other end side of the flow path with respect to the connecting portion with the covering body. It is desirable that In this case, since it can be directly ejected from the fluid ejection port provided in the flow path forming body, it is ejected as it is without lowering the temperature of the heated fluid heated inside the flow path forming body. Can do.

前記流体噴出口が、前記流路形成体の外側周面に設けられていることが望ましい。これならば、流体噴出口が前記流路形成体の外側周面に設けられているので、前記流路形成体の外周方向に加熱した流体を噴出させることができる。したがって、例えば有底の深穴又は貫通した深孔等の内周面に前記被加熱流体を直接噴出させることが可能になり、前記深穴又は深孔の内周面を効率良く表面改質することができる。ここで、処理される前記深穴又は深孔の開口形状としては、円形状、楕円又は多角形等であっても良く、特定の開口形状に限られない。また、前記深穴又は深孔は、前記開口形状の最大寸法をdとし、前記深穴の深さ寸法又は前記深孔の長さ寸法をLとした場合に、d<Lの関係を満たすものである。さらに、前記流体噴出口が前記流路形成体の周方向に沿って設けられていれば、前記流路形成体の外周方向に加熱した流体を一層効率良く噴出させることができる。前記流体噴出口が周方向に沿って設けられる場合の態様としては、例えば、1つの前記流体噴出口が前記流路形成体の周方向に沿って延びるものでも良いし、複数の前記流体噴出口が前記流路形成体の周方向に沿って並ぶものでも良い。   It is desirable that the fluid ejection port is provided on the outer peripheral surface of the flow path forming body. If it is this, since the fluid ejection port is provided in the outer peripheral surface of the said flow-path formation body, the fluid heated in the outer peripheral direction of the said flow-path formation body can be ejected. Therefore, for example, the fluid to be heated can be directly ejected to an inner peripheral surface such as a deep hole having a bottom or a deep hole penetrating, and the inner peripheral surface of the deep hole or the deep hole is efficiently surface-modified. be able to. Here, the deep hole or the opening shape of the deep hole to be processed may be a circular shape, an oval shape, a polygonal shape, or the like, and is not limited to a specific opening shape. The deep hole or deep hole satisfies a relationship of d <L, where d is the maximum dimension of the opening shape and L is the depth dimension of the deep hole or the length dimension of the deep hole. It is. Furthermore, if the fluid ejection port is provided along the circumferential direction of the flow path forming body, the fluid heated in the outer circumferential direction of the flow path forming body can be ejected more efficiently. As an aspect in the case where the fluid ejection port is provided along the circumferential direction, for example, one fluid ejection port may extend along the circumferential direction of the flow path forming body, or a plurality of the fluid ejection ports. May be arranged along the circumferential direction of the flow path forming body.

前記流路形成体が、前記被覆体よりも高電気抵抗を有する導電性材料からなることが望ましい。これならば、通電加熱する際に前記流路形成体をより効率よく加熱することができるので、効率よく被加熱流体を高温の状態にすることができる。   It is desirable that the flow path forming body is made of a conductive material having a higher electric resistance than the covering body. If it is this, since the said flow-path formation body can be heated more efficiently at the time of energizing heating, a to-be-heated fluid can be efficiently made into a high temperature state.

前記被覆体が、銅又は真鍮からなることが望ましい。これならば、電気抵抗の低い銅又は真鍮により前記被覆体を形成することで、前記被覆体が通電により加熱されることを防止し、効率よく前記流路形成体を加熱することができる。   The covering is preferably made of copper or brass. If it is this, by forming the said covering body with copper or brass with low electric resistance, it can prevent that the said covering body is heated by electricity supply, and can heat the said flow path formation body efficiently.

前記流路形成体及び前記被覆体が、それぞれ直管形状をなし、前記流路形成体及び前記被覆体が、溶接されることにより電気的に接続されていることが望ましい。これならば、流路形成体の構成を簡単化することができる。また、前記被覆体を流路形成体の流路方向に沿って配設し易くすることができ、前記被覆体の構成も簡単化することができる。   It is desirable that the flow path forming body and the covering body each have a straight pipe shape, and the flow path forming body and the covering body are electrically connected by welding. If it is this, the structure of a flow-path formation body can be simplified. Further, the covering body can be easily disposed along the flow path direction of the flow path forming body, and the configuration of the covering body can be simplified.

前記流路形成体の外面に流路方向に沿って複数の流体噴出ノズルが設けられており、前記被覆体には、前記複数の流体噴出ノズルに対応して、前記複数の流体噴出ノズルを外部に露出させるための1又は複数の貫通孔が形成されていることが望ましい。これならば、導体管に流体噴出ノズルを設けることによって、加熱された流体を当該流体噴出ノズルにより定められる所定の噴射範囲に噴出することができる。ここで、導体管に設けられる流体噴出ノズルは、用途に応じて選択される。   A plurality of fluid ejection nozzles are provided on the outer surface of the flow path forming body along the flow path direction, and the plurality of fluid ejection nozzles are externally attached to the covering body in correspondence with the plurality of fluid ejection nozzles. It is desirable that one or a plurality of through holes to be exposed to be formed. If this is the case, by providing a fluid ejection nozzle in the conductor tube, the heated fluid can be ejected into a predetermined ejection range defined by the fluid ejection nozzle. Here, the fluid ejection nozzle provided in the conductor tube is selected according to the application.

また、前記流路形成体及び前記被覆体が、加熱された流体を収容するための収容容器等の収容室、又は、加熱された流体により被処理物を処理するための処理容器等の処理室内に挿入して設けられていることが望ましい。これならば、加熱された流体を収容室に収容させることで保温又は加熱することができる。また、処理室内で被処理物を処理することができる。このとき、前記流路形成体及び前記被覆体に接続される単相交流電源又は三相交流電源が、前記収容室又は前記処理室とは別の空間に設けられていることが望ましい。本発明では、流路形成体が過熱蒸気発生部として機能するため、流路形成体及び被覆体を保温室又は処理室に挿入して設け、保温室又は処理室の外部に設けられた単相交流電源又は三相交流電源により電力を供給すれば良く、配管構成を簡略化することができるとともに、熱効率を向上させることができ、省エネにも大きく貢献することができる。また、保温室又は処理室と単相交流電源又は三相交流電源が設置された空間(例えば電源室)とを電気配線で接続すればよく、流体加熱装置の全体構成を簡略化することができるとともに、単相交流電源又は三相交流電源が流路形成体からの熱影響を受けることもない。   Further, the flow path forming body and the covering body are a storage chamber such as a storage container for storing a heated fluid, or a processing chamber such as a processing container for processing an object to be processed by the heated fluid. It is desirable to be provided by being inserted into. If it is this, it can heat-retain or heat by accommodating the heated fluid in a storage chamber. In addition, an object to be processed can be processed in the processing chamber. At this time, it is desirable that a single-phase AC power source or a three-phase AC power source connected to the flow path forming body and the covering body is provided in a space different from the storage chamber or the processing chamber. In the present invention, since the flow path forming body functions as a superheated steam generation unit, the flow path forming body and the covering are provided by being inserted into a warming room or a processing room, and a single phase provided outside the warming room or the processing room. Power may be supplied from an AC power source or a three-phase AC power source, the piping configuration can be simplified, the thermal efficiency can be improved, and energy saving can be greatly contributed. Moreover, what is necessary is just to connect a thermal storage room or a processing room, and the space (for example, power supply room) in which the single-phase alternating current power supply or the three-phase alternating current power supply was installed, and can simplify the whole structure of a fluid heating apparatus. At the same time, the single-phase AC power source or the three-phase AC power source is not affected by the heat from the flow path forming body.

前記流路形成体と前記被覆体との間に絶縁性部材が設けられていることが望ましい。これならば、前記流路形成体と前記被覆体とを確実に絶縁することができ、接続部以外の部分における短絡を防止することができる。   It is desirable that an insulating member is provided between the flow path forming body and the covering body. If it is this, the said flow-path formation body and the said covering body can be insulated reliably, and the short circuit in parts other than a connection part can be prevented.

前記流路形成体の流路一端側から流路他端側における外側周面を覆うセラミック材料からなる絶縁性部材が設けられ、前記流路形成体における前記絶縁性部材よりも流路他端側の外側周面から、前記絶縁性部材の外側周面に亘って金属箔が巻回されることにより前記被覆体が形成されていることが望ましい。これならば、前記被覆体を薄い金属箔で構成できるので、流体加熱装置全体を小寸法とすることができる。また、前記絶縁性部材が耐熱性を有するセラミック材料からなるので、高温の過熱水蒸気を生成する場合等の、高温条件下においても絶縁性を確保することができる。   An insulating member made of a ceramic material that covers an outer peripheral surface on the other end side of the flow path from the one end side of the flow path forming body to the other end side of the flow path is provided. It is desirable that the covering is formed by winding a metal foil from the outer peripheral surface to the outer peripheral surface of the insulating member. If it is this, since the said covering body can be comprised with thin metal foil, the whole fluid heating apparatus can be made into a small dimension. Further, since the insulating member is made of a heat-resistant ceramic material, the insulating property can be ensured even under high temperature conditions such as when high-temperature superheated steam is generated.

前記被覆体における外側周面の略全周を覆うセラミック材料からなる外側絶縁性部材が設けられていることが望ましい。これならば、流体加熱装置を設置する設置対象物が、導電性部材からなる場合や、噴出した被加熱流体によって導電性になる場合等でも、前記被覆体から外部に漏電することを防止することができる。また、前記絶縁性部材が耐熱性を有するセラミック材料からなるので、高温の過熱水蒸気を生成する場合等の、高温条件下においても絶縁性を確保することができる。   It is desirable that an outer insulating member made of a ceramic material that covers substantially the entire circumference of the outer peripheral surface of the covering is provided. If this is the case, it is possible to prevent the leakage from the covering to the outside even when the installation object for installing the fluid heating device is made of a conductive member or becomes conductive by the jetted heated fluid. Can do. Further, since the insulating member is made of a heat-resistant ceramic material, the insulating property can be ensured even under high temperature conditions such as when high-temperature superheated steam is generated.

前記流路形成体に流入する前記被加熱流体が、飽和水蒸気又は過熱水蒸気であって、前記流路形成体から流出する流体が過熱水蒸気であることが望ましい。   It is desirable that the fluid to be heated flowing into the flow path forming body is saturated steam or superheated steam, and the fluid flowing out from the flow path forming body is superheated steam.

このように構成した本発明によれば、内部に流体が流れる流路形成体を通電加熱する流体加熱装置において、回路力率を改善して設備効率を向上させることができる。   According to the present invention configured as described above, in the fluid heating apparatus that energizes and heats the flow path forming body through which the fluid flows, the circuit power factor can be improved and the equipment efficiency can be improved.

本実施形態に係る流体加熱装置の構成を模式的に示す図。The figure which shows typically the structure of the fluid heating apparatus which concerns on this embodiment. 同実施形態の流路形成体の設計例を示す6面図及び拡大図。The 6th page figure and enlarged view which show the example of a design of the flow-path formation body of the embodiment. 変形実施形態に係る流体加熱装置の構成を模式的に示す図。The figure which shows typically the structure of the fluid heating apparatus which concerns on deformation | transformation embodiment. 変形実施形態に係る流体加熱装置の構成を模式的に示す図。The figure which shows typically the structure of the fluid heating apparatus which concerns on deformation | transformation embodiment. 変形実施形態に係る流体加熱装置の構成を模式的に示す図。The figure which shows typically the structure of the fluid heating apparatus which concerns on deformation | transformation embodiment. 変形実施形態に係る流体加熱装置の構成を模式的に示す図。The figure which shows typically the structure of the fluid heating apparatus which concerns on deformation | transformation embodiment. 変形実施形態に係る流体加熱装置の構成を模式的に示す図。The figure which shows typically the structure of the fluid heating apparatus which concerns on deformation | transformation embodiment. 変形実施形態に係る流路形成体の設計例を示す6面図。The 6th page figure which shows the example of a design of the flow-path formation body which concerns on deformation | transformation embodiment.

以下に本発明に係る流体加熱装置の一実施形態について図面を参照して説明する。   Hereinafter, an embodiment of a fluid heating device according to the present invention will be described with reference to the drawings.

本実施形態に係る流体加熱装置100は、図1に示すように、内部に被加熱流体が流れる流路Rが形成された導電性材料からなる流路形成体2に交流電圧を印加して直接通電し、流路形成体2の内部抵抗により発生するジュール熱によって流路形成体2を加熱することにより、前記流路Rを流れる被加熱流体を加熱するものである。   As shown in FIG. 1, the fluid heating apparatus 100 according to the present embodiment directly applies an AC voltage to a flow path forming body 2 made of a conductive material in which a flow path R through which a fluid to be heated flows is formed. The heated fluid flowing through the flow path R is heated by energizing and heating the flow path forming body 2 by Joule heat generated by the internal resistance of the flow path forming body 2.

本実施形態の流路形成体2は、例えばステンレス等の導電性材料からなる概略円筒直管状のパイプにより形成されている。これにより、流路Rは、直線状をなす流路となる。   The flow path forming body 2 of the present embodiment is formed of a substantially cylindrical straight tubular pipe made of a conductive material such as stainless steel. Thereby, the flow path R becomes a linear flow path.

そして、流路形成体2の流路一端側である流路一端部2aには、例えば銅製の第1の給電部材3が接続されており、流路形成体2における第1の給電部材3よりも流路他端側には、例えば銅製の第2の給電部材4が接続されている。そして、この第1の給電部材3及び第2の給電部材4に単相交流電源5の出力端子を接続することによって、第1の給電部材3及び第2の給電部材4を介して流路形成体2に単相交流電圧が印加される。   And the 1st electric power feeding member 3 made from, for example, copper is connected to the flow path one end 2a which is the flow path one end side of the flow path forming body 2, and from the first power feeding member 3 in the flow path forming body 2. Also, the second power supply member 4 made of, for example, copper is connected to the other end of the flow path. Then, by connecting an output terminal of the single-phase AC power supply 5 to the first power supply member 3 and the second power supply member 4, a flow path is formed via the first power supply member 3 and the second power supply member 4. A single-phase AC voltage is applied to the body 2.

第1の給電部材3は、流路形成体2の流路一端部2aに接続された第1の電極31と、当該第1の電極31に接続されて単相交流電源5の一方の出力端子に接続される第1の電線32とからなる。第1の電極31は流路形成体2の外側周面に巻き回されて溶接等により接続されている。   The first power supply member 3 includes a first electrode 31 connected to the flow path one end 2a of the flow path forming body 2, and one output terminal of the single-phase AC power supply 5 connected to the first electrode 31. And a first electric wire 32 connected to the. The first electrode 31 is wound around the outer peripheral surface of the flow path forming body 2 and connected by welding or the like.

また、第2の給電部材4は、流路形成体2における第1の給電部材3よりも流路他端側に接続された被覆体43と、被覆体43の流路一端側である流路一端側端部43aに接続された第2の電極41と、当該第2の電極41に接続されて単相交流電源5の他方の出力端子に接続される第2の電線42と、からなる。第2の電極41は、被覆体43の外側周面に巻き回されて溶接等により接続されている。   The second power supply member 4 includes a covering body 43 connected to the other end side of the flow path with respect to the first power supply member 3 in the flow path forming body 2 and a flow path on one end side of the flow path of the covering body 43. It consists of a second electrode 41 connected to one end 43a and a second electric wire 42 connected to the second electrode 41 and connected to the other output terminal of the single-phase AC power supply 5. The second electrode 41 is wound around the outer peripheral surface of the covering 43 and connected by welding or the like.

具体的に被覆体43は、導電性材料からなる概略円筒直管状のパイプにより形成されている。また被覆体43は、流路形成体2の外側周面に沿って、流路形成体2の流路他端側から流路一端側における外側周面の略全周を覆うものである。ここで、被覆体43は、流路形成体2よりも径が大きく、流路形成体2と同軸上に配置されている。つまり、被覆体43は、流路形成体2とともに所謂二重管構造をなすものである。また、図1に示すように、被覆体43は、流路他端側端部43bにおいて、流路形成体2の外側周面に溶接されることにより電気的に接続されている。   Specifically, the covering 43 is formed of a substantially cylindrical straight tubular pipe made of a conductive material. Further, the covering body 43 covers substantially the entire circumference of the outer peripheral surface on the one end side of the flow path from the other end side of the flow path forming body 2 along the outer peripheral face of the flow path forming body 2. Here, the covering body 43 is larger in diameter than the flow path forming body 2 and is disposed coaxially with the flow path forming body 2. That is, the covering body 43 forms a so-called double tube structure together with the flow path forming body 2. Further, as shown in FIG. 1, the covering body 43 is electrically connected by welding to the outer peripheral surface of the flow path forming body 2 at the flow path other end side end portion 43 b.

ここで、本実施形態の流路形成体2は、第1の給電部材3及び第2の給電部材4よりも高電気抵抗を有する導電性材料により形成されている。具体的には、第1の給電部材3及び第2の給電部材4が銅又は真鍮により形成されている場合には、流路形成体2は、銅又は真鍮よりも高電気抵抗を有する導電性材料により形成されていればよく、例えばステンレスやチタン等で形成されていれば良い。   Here, the flow path forming body 2 of the present embodiment is formed of a conductive material having a higher electrical resistance than the first power supply member 3 and the second power supply member 4. Specifically, when the first power supply member 3 and the second power supply member 4 are made of copper or brass, the flow path forming body 2 has a higher electrical resistance than copper or brass. What is necessary is just to be formed with the material, for example, should just be formed with stainless steel, titanium, etc.

また、本実施形態においては、流路Rに連通する流路形成体2の他端開口2zが、閉塞部材23により閉塞されている。そして、本実施形態の流路形成体2は、被覆体43との接続部よりも流路他端側である流路他端部2bに流体噴出口22が設けられている。本実施形態の流体噴出口22は、流路形成体2の外側周面において軸方向に直交する向きに延びる1又は複数のスリット22により構成されている。   In the present embodiment, the other end opening 2 z of the flow path forming body 2 communicating with the flow path R is closed by the closing member 23. And the flow-path formation body 2 of this embodiment is provided with the fluid ejection port 22 in the flow-path other-end part 2b which is a flow-path other end side rather than the connection part with the coating | coated body 43. FIG. The fluid ejection port 22 of the present embodiment is configured by one or a plurality of slits 22 extending in a direction orthogonal to the axial direction on the outer peripheral surface of the flow path forming body 2.

さらに、流路形成体2と被覆体43との間には、セラミック材料からなる絶縁性部材6が設けられている。具体的には、流路形成体2における被覆体43に対向する外側周面に絶縁性部材6が設けられている。ここで、絶縁性部材6は、被覆体43の内側周面に接触するものでもよいし、接触しないものでもよい。また、絶縁性部材6は、被覆体43の内側周面に設けられているものであってもよい。この絶縁性部材6により、流路形成体2と被覆体43とを確実に絶縁することができ、接続部以外の部分における短絡を防止することができる。   Further, an insulating member 6 made of a ceramic material is provided between the flow path forming body 2 and the covering body 43. Specifically, the insulating member 6 is provided on the outer peripheral surface of the flow path forming body 2 facing the covering body 43. Here, the insulating member 6 may be in contact with the inner peripheral surface of the cover 43 or may not be in contact. The insulating member 6 may be provided on the inner peripheral surface of the covering body 43. By this insulating member 6, the flow path forming body 2 and the covering body 43 can be reliably insulated, and a short circuit in a portion other than the connection portion can be prevented.

その上、被覆体43の外側周面には、当該被覆体43の外側周面の略全周を覆うセラミック材料からなる外側絶縁性部材7が設けられている。この外側絶縁性部材7により、流体加熱装置100を設置する設置対象物が、導電性部材からなる場合や、噴出した被加熱流体によって導電性になる場合等でも、被覆体43から外部に漏電することを防止することができる。   In addition, an outer insulating member 7 made of a ceramic material covering substantially the entire circumference of the outer peripheral surface of the covering body 43 is provided on the outer peripheral surface of the covering body 43. Even if the installation object on which the fluid heating apparatus 100 is installed is made of a conductive member or becomes conductive by the jetted heated fluid, the outer insulating member 7 leaks electricity from the covering 43 to the outside. This can be prevented.

しかして上記の第1の給電部材3及び第2の給電部材4が、流路形成体2の流路一端部2aから電源5側に引き出されている。具体的には、第1の電極31が流路形成体2の流路一端部2aから、第2の電極41が被覆体43の流路一端側端部43aから、流路方向に直交する方向に延出するように設けられている。なお、第1の電極31の延出方向及び第2の電極41の延出方向は同一方向である必要はなく、例えば流路一端部2aにおいて周方向において異なる方向であっても良い。   Thus, the first power supply member 3 and the second power supply member 4 are drawn out from the flow path one end 2a of the flow path forming body 2 to the power source 5 side. Specifically, the direction in which the first electrode 31 is orthogonal to the channel direction from the channel one end 2a of the channel forming body 2 and the second electrode 41 is from the channel one end 43a of the covering 43. It is provided to extend to. Note that the extending direction of the first electrode 31 and the extending direction of the second electrode 41 do not have to be the same direction, and may be different directions in the circumferential direction at, for example, the flow path one end portion 2a.

このように構成された流路形成体2は、加熱された流体を収容するための収容室、又は加熱された流体により被処理物を処理するための処理室内に挿入して設けられる。具体的には、流路形成体2の流路一端部2aを除いた部分が前記収容室又は処理室に挿入して設けられる。そして、この流路形成体2に接続される単相交流電源5が、前記収容室又は前記処理室とは別の空間(例えば電源室)に設けられる。   The flow path forming body 2 configured as described above is provided by being inserted into a storage chamber for storing a heated fluid or a processing chamber for processing an object to be processed by the heated fluid. Specifically, a portion of the flow path forming body 2 excluding the flow path one end portion 2a is provided by being inserted into the storage chamber or the processing chamber. And the single phase alternating current power supply 5 connected to this flow-path formation body 2 is provided in the space (for example, power supply chamber) different from the said storage chamber or the said process chamber.

ここで、このように構成した流体加熱装置100における被加熱流体の流れを説明する。被加熱流体は、流路Rに連通する流路形成体2の一端開口2y(流路一端側)から流入し、流路形成体2内部の流路Rを加熱されながら流れ、流路Rに連通する流路形成体2の他端開口2zに至る。ここで、本実施形態においては、他端開口2zが閉塞部材23により閉塞されているとともに、流路他端部2bにスリット22が設けられているので、被加熱流体は、スリット22から流路形成体2の外部、つまり流体加熱装置100の外部に流出する。なお、本実施形態の流路形成体2の設計例を示す6面図及び部分拡大図を図2に示している。ここで、図2では、外側絶縁性部材7は省略している。また、被加熱流体の一例としては、流路形成体2に流入する被加熱流体が、飽和水蒸気又は過熱水蒸気であって、流路形成体2から流出する流体が過熱水蒸気であることが考えられる。ただし、被加熱流体は、特定の流体に限られることはなく、流体加熱装置100の用途に合わせて適宜選択されるものであればよい。   Here, the flow of the fluid to be heated in the fluid heating apparatus 100 configured as described above will be described. The fluid to be heated flows from one end opening 2y (one end side of the flow path) of the flow path forming body 2 communicating with the flow path R, and flows through the flow path R inside the flow path forming body 2 while being heated. It reaches the other end opening 2z of the flow path forming body 2 in communication. Here, in the present embodiment, the other end opening 2z is closed by the closing member 23, and the slit 22 is provided in the other end 2b of the flow path. It flows out of the formed body 2, that is, out of the fluid heating apparatus 100. In addition, the 6th surface figure and partial enlarged view which show the design example of the flow-path formation body 2 of this embodiment are shown in FIG. Here, in FIG. 2, the outer insulating member 7 is omitted. Further, as an example of the fluid to be heated, it is conceivable that the fluid to be heated flowing into the flow path forming body 2 is saturated steam or superheated steam, and the fluid flowing out from the flow path forming body 2 is superheated steam. . However, the fluid to be heated is not limited to a specific fluid, and may be any one that is appropriately selected according to the application of the fluid heating apparatus 100.

このように構成した流体加熱装置100において、単相交流電源5から単相交流電圧を第1の給電部材3及び第2の給電部材4を介して流路形成体2に印加すると、流路形成体2において流路形成体2に流れる電流の向きと、第2の給電部材4における被覆体43を流れる電流の向きが逆向きとなる。そうすると、それぞれの電流により発生する磁束が打ち消し合い、流路形成体2に発生するリアクタンスが低減されて回路力率を改善することができる。したがって、流体加熱装置100の設備効率を向上させることができる。   In the fluid heating apparatus 100 configured as described above, when a single-phase AC voltage is applied from the single-phase AC power source 5 to the flow path forming body 2 via the first power supply member 3 and the second power supply member 4, the flow path is formed. In the body 2, the direction of the current flowing through the flow path forming body 2 is opposite to the direction of the current flowing through the covering body 43 in the second power supply member 4. If it does so, the magnetic flux which generate | occur | produces by each electric current will mutually cancel, the reactance which generate | occur | produces in the flow-path formation body 2 is reduced, and a circuit power factor can be improved. Therefore, the equipment efficiency of the fluid heating apparatus 100 can be improved.

また、流路形成体2に設けられた流体噴出口22から直接噴出させることができるので、流路形成体2の内部において加熱された被加熱流体の温度を低下させることなく噴出させることができる。さらに、被覆体43が、銅又は真鍮からなるとともに、流路形成体2が被覆体43よりも高電気抵抗を有する導電性材料により形成されているので、被覆体43が通電により加熱されることがなく、被加熱流体が流れる流路形成体2がより効率よく加熱されるので、効率よく被加熱流体を高温の状態にすることができる。   Moreover, since it can eject directly from the fluid ejection port 22 provided in the flow path forming body 2, it can be ejected without lowering the temperature of the heated fluid heated inside the flow path forming body 2. . Furthermore, since the covering body 43 is made of copper or brass and the flow path forming body 2 is formed of a conductive material having a higher electric resistance than the covering body 43, the covering body 43 is heated by energization. Since the flow path forming body 2 through which the fluid to be heated flows is heated more efficiently, the fluid to be heated can be efficiently brought into a high temperature state.

さらに、流体噴出口22が、流路形成体2の外側周面に円周方向に沿って設けられているので、例えば鉄からなる被処理物に形成された深穴又は深孔に流体加熱装置100を挿入した状態で、流体噴出口22から被加熱流体を噴出させることで、前記被処理物の内周面に四酸化三鉄の膜を容易に形成することができる。   Furthermore, since the fluid ejection port 22 is provided along the circumferential direction on the outer peripheral surface of the flow path forming body 2, for example, a fluid heating device is provided in a deep hole or a deep hole formed in a workpiece made of iron, for example. In a state where 100 is inserted, the heated fluid is ejected from the fluid ejection port 22, whereby a film of ferric tetroxide can be easily formed on the inner peripheral surface of the workpiece.

なお、本発明は前記実施形態に限られるものではない。
例えば、図3に示すように、流路形成体2の流路一端側から流路他端側における外側周面を覆う絶縁性部材6が設けられ、流路形成体2における絶縁性部材6よりも流路他端側の外側周面から、絶縁性部材6の外側周面に亘ってテープ状の金属箔401が巻回されることにより被覆体43が形成されているものでも良い。これならば、被覆体43を薄いテープ状の金属箔401で構成できるので、流体加熱装置100全体を小寸法とすることができる。
The present invention is not limited to the above embodiment.
For example, as shown in FIG. 3, an insulating member 6 that covers the outer peripheral surface from the one end side of the flow path forming body 2 to the other end side of the flow path is provided. Alternatively, the covering 43 may be formed by winding the tape-shaped metal foil 401 from the outer peripheral surface on the other end side of the flow channel to the outer peripheral surface of the insulating member 6. If this is the case, the covering 43 can be made of a thin tape-shaped metal foil 401, so that the fluid heating device 100 as a whole can be made small.

また、被覆体43は、流路形成体2の流路他端側から流路一端側における外側周面において、必ずしも全周を覆うものでなくても良い。例えば、被覆体43の一部に切欠き形状又は孔が設けられているものや、被覆体43における流路一端側端部43a又は流路他端側端部43bの端面が、流路方向に対して垂直でないものでも良い。   Further, the covering body 43 may not necessarily cover the entire circumference on the outer peripheral surface from the other end side of the flow path forming body 2 to the one end side of the flow path. For example, a part of the cover 43 having a notch shape or a hole, or the end face of the flow path one end 43a or the other end 43b in the cover 43 in the flow direction It may be non-vertical.

流路形成体2及び被覆体43は、円筒直管状のものに限られず、断面が多角形のもの、楕円形のもの、又は自由曲線で構成されるもの等であっても良い。また、流路形成体2と被覆体43とはその断面が同じ形状でなくてもよく、例えば流路形成体2が断面四角形であり、被覆体43が楕円形であるもの等でも良い。   The flow path forming body 2 and the covering body 43 are not limited to a cylindrical straight tube, and may be a polygonal cross section, an oval cross section, a free curved line, or the like. Further, the flow path forming body 2 and the covering body 43 may not have the same cross section. For example, the flow path forming body 2 may have a rectangular cross section and the covering body 43 may have an elliptical shape.

また、流路形成体2及び被覆体43は、直線状のものに限られず、曲がっているものでも良い。例えば、流路形成体2が曲がっている場合に、被覆体43が流路形成体2の曲がっている外側周面に沿って形成されているもの等でも良い。   Further, the flow path forming body 2 and the covering body 43 are not limited to linear ones but may be bent. For example, when the flow path forming body 2 is bent, the covering body 43 may be formed along the outer peripheral surface where the flow path forming body 2 is bent.

さらに、図4〜図6に示すように、2つの流路形成体2を、それらの流路Rが連通するとともに、2つの流路形成体2に設けられた第1の給電部材3が内側に位置するようにフランジ21により接続してユニット化し、流体加熱装置100を構成しても良い。なお、図4〜図6には、この流体加熱ユニット10を1つ用いて流体加熱装置100を構成した例を示しているが、複数の流体加熱ユニット10をそれらの流路Rが連通するように接続して流体加熱装置100を構成しても良い。   Further, as shown in FIGS. 4 to 6, the two flow path forming bodies 2 are communicated with the flow paths R, and the first power supply member 3 provided in the two flow path forming bodies 2 is disposed on the inner side. The fluid heating device 100 may be configured by connecting with the flange 21 so as to be positioned in a unit. 4 to 6 show an example in which the fluid heating apparatus 100 is configured by using one fluid heating unit 10. However, the flow paths R communicate with a plurality of fluid heating units 10. The fluid heating apparatus 100 may be configured by being connected to the above.

図4の流体加熱ユニット10は、その2つの第1の給電部材3に、三相交流電源5の第1の電源出力(V相)が印加されており、2つの第2の給電部材4の一方に、三相交流電源5の第2の電源出力(U相)が印加されており、2つの第2の給電部材4の他方に、三相交流電源5の第3の電源出力(W相)が印加された場合を示している。   In the fluid heating unit 10 of FIG. 4, the first power supply output (V phase) of the three-phase AC power supply 5 is applied to the two first power supply members 3. The second power output (U phase) of the three-phase AC power source 5 is applied to one side, and the third power output (W phase) of the three-phase AC power source 5 is connected to the other of the two second power supply members 4. ) Is applied.

図5の流体加熱ユニット10は、その2つの第1の給電部材3に、単相交流電源5の一方の電源出力が印加されており、2つの第2の給電部材4の両方に、単相交流電源5の他方の電源出力が印加された場合を示している。また、この流体加熱ユニット10には、2つの第2の給電部材4に電源出力を入力する回路上に例えばサイリスタを用いた電流制御回路7が設けられている。   In the fluid heating unit 10 of FIG. 5, one power output of the single-phase AC power supply 5 is applied to the two first power supply members 3, and the single-phase AC power supply 5 is applied to both of the two second power supply members 4. The case where the other power supply output of the alternating current power supply 5 is applied is shown. Further, the fluid heating unit 10 is provided with a current control circuit 7 using, for example, a thyristor on a circuit for inputting a power output to the two second power feeding members 4.

図6の流体加熱ユニット10は、その2つの第1の給電部材3に、スコット結線変圧器51のo端子が接続されて同一極性の出力が印加され、2つの第2の給電部材4の一方に、スコット結線変圧器51のu端子が接続されてu相が印加されており、2つの第2の給電部材4の他方に、スコット結線変圧器51のv端子が接続されてv相が印加された場合を示している。   In the fluid heating unit 10 of FIG. 6, an o terminal of the Scott connection transformer 51 is connected to the two first power supply members 3 and an output of the same polarity is applied to one of the two second power supply members 4. Further, the u terminal of the Scott connection transformer 51 is connected and the u phase is applied, and the v terminal of the Scott connection transformer 51 is connected to the other of the two second power supply members 4 and the v phase is applied. Shows the case.

その上、図7に示すように、3つの流路形成体2を、それらの流路Rが連通するとともに、3つの流路形成体2に設けられた第1の給電部材3及び第2の給電部材4が同一方向を向くようにフランジ21により接続してユニット化し、流体加熱装置100を構成しても良い。なお、図7には、この流体加熱ユニット10を3つ用いて流体加熱装置100を構成した例を示しているが、複数の流体加熱ユニット10をそれらの流路Rが連通するように接続して流体加熱装置100を構成しても良い。なお、図7において左から、1つ目の流路形成体、2つ目の流路形成体及び3つ目の流路形成体とする。   In addition, as shown in FIG. 7, the three flow path forming bodies 2 are communicated with the flow paths R, and the first power supply member 3 and the second flow paths 2 provided in the three flow path forming bodies 2 are connected. The fluid heating device 100 may be configured by connecting by the flange 21 so that the power supply member 4 faces in the same direction. FIG. 7 shows an example in which the fluid heating apparatus 100 is configured by using three fluid heating units 10. However, a plurality of fluid heating units 10 are connected so that their flow paths R communicate with each other. The fluid heating device 100 may be configured. In FIG. 7, from the left, the first flow path forming body, the second flow path forming body, and the third flow path forming body.

この流体加熱ユニット10において、1つ目の流路形成体2の第1の給電部材3、及び2つ目の流路形成体2の第2の給電部材4に三相交流電源5のV相が接続されており、2つ目の流路形成体2の第1の給電部材3、及び3つ目の流路形成体2の第2の給電部材4に三相交流電源5のW相が接続されており、3つ目の流路形成体2の第1の給電部材3、及び1つ目の流路形成体2の第2の給電部材4に三相交流電源5のU相が接続されている。このように構成することで、三相交流電源5をそのまま接続することが可能となる。   In the fluid heating unit 10, the first power supply member 3 of the first flow path forming body 2 and the second power supply member 4 of the second flow path forming body 2 are connected to the V phase of the three-phase AC power supply 5. Are connected to the first power supply member 3 of the second flow path forming body 2 and the second power supply member 4 of the third flow path forming body 2. The U-phase of the three-phase AC power supply 5 is connected to the first power supply member 3 of the third flow path forming body 2 and the second power supply member 4 of the first flow path forming body 2. Has been. By comprising in this way, it becomes possible to connect the three-phase alternating current power supply 5 as it is.

また、流路Rに連通する流路形成体2の他端開口2zに閉塞部材23が設けられず、当該流路形成体2の他端開口2zが開放されるものであってもよい。この場合、流路形成体2の他端開口2zを流体噴出口22としても良い。また、流路形成体2の他端開口2zを流体噴出口22とする場合には、当該流体噴出口22(他端開口2z)に流体噴出ノズルが取り付けられるものであってもよい。これならば、流体噴出ノズルを用途に合わせて選択することにより、加熱された流体を当該流体噴出ノズルにより定められる所定の噴射範囲に噴出することができる。   Further, the closing member 23 may not be provided in the other end opening 2z of the flow path forming body 2 communicating with the flow path R, and the other end opening 2z of the flow path forming body 2 may be opened. In this case, the other end opening 2z of the flow path forming body 2 may be used as the fluid ejection port 22. Further, when the other end opening 2z of the flow path forming body 2 is used as the fluid ejection port 22, a fluid ejection nozzle may be attached to the fluid ejection port 22 (the other end opening 2z). In this case, by selecting the fluid ejection nozzle according to the application, the heated fluid can be ejected into a predetermined ejection range determined by the fluid ejection nozzle.

更に加えて図8に示すように、直管形状をなす流路形成体2の外側周面に流路方向(管軸方向)に沿って複数の流体噴出ノズル24を設けても良い。この複数の流体噴出ノズル24は、流路形成体2の側壁において周方向全体に形成されるものであっても良いし、流路形成体2の側壁において一方向側に形成されるものであっても良い。図8では、流路形成体2の側壁の一方向側に形成された複数のノズル取り付け部25に流体噴出ノズル24を取り付けるように構成している。なお、図8では、複数の流体噴出ノズル24は、側壁において一端部から他端部に亘って等間隔に設けられているが、これに限られない。この場合、第2の給電部材4の被覆体43には、複数の流体噴出ノズル24に対応して貫通孔43hが形成されており、この貫通孔43hを介して流体噴出ノズル24又はノズル取り付け部25が外部に露出するように構成されている。このように流体噴出ノズル24を有するものであれば、流体噴出ノズル24を用途に合わせて選択することにより、加熱された流体を当該流体噴出ノズル24により定められる所定の噴射範囲に噴出することができる。   In addition, as shown in FIG. 8, a plurality of fluid ejection nozzles 24 may be provided along the flow path direction (tube axis direction) on the outer peripheral surface of the flow path forming body 2 having a straight pipe shape. The plurality of fluid ejection nozzles 24 may be formed in the entire circumferential direction on the side wall of the flow path forming body 2, or may be formed on one side of the side wall of the flow path forming body 2. May be. In FIG. 8, the fluid ejection nozzles 24 are configured to be attached to a plurality of nozzle mounting portions 25 formed on one side of the side wall of the flow path forming body 2. In FIG. 8, the plurality of fluid ejection nozzles 24 are provided at equal intervals from one end to the other end on the side wall, but are not limited thereto. In this case, a through hole 43h is formed in the cover 43 of the second power supply member 4 corresponding to the plurality of fluid ejection nozzles 24, and the fluid ejection nozzle 24 or the nozzle mounting portion is formed through the through holes 43h. 25 is configured to be exposed to the outside. If the fluid ejection nozzle 24 is provided as described above, the heated fluid can be ejected to a predetermined ejection range determined by the fluid ejection nozzle 24 by selecting the fluid ejection nozzle 24 according to the application. it can.

その他、本発明は前記実施形態に限られず、その趣旨を逸脱しない範囲で種々の変形が可能であるのは言うまでもない。   In addition, it goes without saying that the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.

100・・・流体加熱装置
2 ・・・流路形成体(パイプ)
R ・・・流路
3 ・・・第1の給電部材
31 ・・・第1の電極
32 ・・・第1の電線
4 ・・・第2の給電部材
41 ・・・第2の電極
42 ・・・第2の電線
43 ・・・被覆体
5 ・・・電源
6 ・・・絶縁性部材
7 ・・・外側絶縁性部材
10 ・・・流体加熱ユニット
DESCRIPTION OF SYMBOLS 100 ... Fluid heating apparatus 2 ... Flow path formation body (pipe)
R ... Channel 3 ... First power supply member 31 ... First electrode 32 ... First electric wire 4 ... Second power supply member 41 ... Second electrode 42 .... Second electric wire 43 ... Cover 5 ... Power source 6 ... Insulating member 7 ... Outer insulating member 10 ... Fluid heating unit

Claims (13)

内部に被加熱流体が流れる流路が形成された導電性材料からなる流路形成体を通電加熱して、前記流路を流れる被加熱流体を加熱する流体加熱装置であって、
前記流路形成体の流路一端側に接続された第1の給電部材と、前記流路形成体の流路他端側に接続された第2の給電部材との間に交流電圧を印加するものであり、
前記第2の給電部材が、前記流路形成体の流路他端側から流路一端側における外側周面の略全周を覆う被覆体を有し、
前記被覆体の流路他端側端部が、前記流路形成体に電気的に接続されている流体加熱装置。
A fluid heating device that heats a heated fluid flowing through the flow path by energizing and heating a flow path forming body made of a conductive material in which a flow path through which the heated fluid flows is formed,
An AC voltage is applied between the first power supply member connected to one end of the flow path forming body and the second power supply member connected to the other end of the flow path forming body. Is,
The second power supply member has a covering that covers substantially the entire circumference of the outer peripheral surface on the one end side of the flow path from the other end side of the flow path forming body,
A fluid heating apparatus in which a flow path other end side end portion of the covering body is electrically connected to the flow path forming body.
前記流路形成体において、前記被覆体との接続部よりも流路他端側に、流体噴出口が設けられている請求項1記載の流体加熱装置。   The fluid heating apparatus according to claim 1, wherein a fluid ejection port is provided on the other end side of the flow channel with respect to the connecting portion with the covering body in the flow channel forming body. 前記流体噴出口が、前記流路形成体の外側周面に設けられている請求項2記載の流体加熱装置。   The fluid heating apparatus according to claim 2, wherein the fluid ejection port is provided on an outer peripheral surface of the flow path forming body. 前記流路形成体が、前記被覆体よりも高電気抵抗を有する導電性材料からなる請求項1、2又は3記載の流体加熱装置。   The fluid heating device according to claim 1, wherein the flow path forming body is made of a conductive material having a higher electric resistance than the covering body. 前記被覆体が、銅又は真鍮からなる請求項1乃至4の何れかに記載の流体加熱装置。   The fluid heating apparatus according to claim 1, wherein the covering is made of copper or brass. 前記流路形成体及び前記被覆体が、それぞれ直管形状をなし、
前記流路形成体及び前記被覆体が、溶接されることにより電気的に接続されている請求項1乃至5の何れかに記載の流体加熱装置。
The flow path forming body and the covering body each have a straight pipe shape,
The fluid heating apparatus according to claim 1, wherein the flow path forming body and the covering body are electrically connected by welding.
前記流路形成体の外面に流路方向に沿って複数の流体噴出ノズルが設けられており、
前記被覆体には、前記複数の流体噴出ノズルに対応して、前記複数の流体噴出ノズルを外部に露出させるための1又は複数の貫通孔が形成されている請求項1乃至6の何れかに記載の流体加熱装置。
A plurality of fluid ejection nozzles are provided along the flow path direction on the outer surface of the flow path forming body,
7. The cover according to claim 1, wherein one or a plurality of through holes for exposing the plurality of fluid ejection nozzles to the outside are formed corresponding to the plurality of fluid ejection nozzles. The fluid heating apparatus as described.
前記流路形成体及び前記被覆体が、加熱された流体を収容するための収容室、又は加熱された流体により被処理物を処理するための処理室内に設けられている請求項1乃至7の何れかに記載の流体加熱装置。   The flow path forming body and the covering body are provided in a storage chamber for storing a heated fluid or a processing chamber for processing an object to be processed by the heated fluid. Any one of the fluid heating apparatuses. 前記流路形成体及び前記被覆体に接続される単相交流電源が、前記収容室又は前記処理室とは別の空間に設けられている請求項8記載の流体加熱装置。   The fluid heating apparatus according to claim 8, wherein a single-phase AC power source connected to the flow path forming body and the covering body is provided in a space different from the storage chamber or the processing chamber. 前記流路形成体と前記被覆体との間にセラミック材料からなる絶縁性部材が設けられている請求項1乃至9の何れかに記載の流体加熱装置。   The fluid heating apparatus according to claim 1, wherein an insulating member made of a ceramic material is provided between the flow path forming body and the covering body. 前記流路形成体の流路一端側から流路他端側における外側周面を覆うセラミック材料からなる絶縁性部材が設けられ、
前記流路形成体における前記絶縁性部材よりも流路他端側の外側周面から、前記絶縁性部材の外側周面に亘って金属箔が巻回されることにより前記被覆体が形成されている請求項1乃至5の何れかに記載の流体加熱装置。
An insulating member made of a ceramic material that covers the outer peripheral surface on the other end side of the channel from the one end side of the channel forming body is provided,
The covering is formed by winding a metal foil from the outer peripheral surface on the other end side of the flow channel to the outer peripheral surface of the insulating member with respect to the insulating member in the flow channel forming body. The fluid heating apparatus according to any one of claims 1 to 5.
前記被覆体における外側周面の略全周を覆う外側絶縁性部材が設けられている請求項1乃至11の何れかに記載の流体加熱装置。   The fluid heating apparatus according to claim 1, wherein an outer insulating member that covers substantially the entire circumference of the outer peripheral surface of the covering is provided. 前記流路形成体に流入する前記被加熱流体が、飽和水蒸気又は過熱水蒸気であって、前記流路形成体から流出する流体が過熱水蒸気である請求項1乃至12の何れかに記載の流体加熱装置。   The fluid heating according to any one of claims 1 to 12, wherein the heated fluid flowing into the flow path forming body is saturated steam or superheated steam, and the fluid flowing out from the flow path forming body is superheated steam. apparatus.
JP2013195251A 2013-05-30 2013-09-20 Fluid heating device Active JP6224971B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013195251A JP6224971B2 (en) 2013-05-30 2013-09-20 Fluid heating device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013113701 2013-05-30
JP2013113701 2013-05-30
JP2013195251A JP6224971B2 (en) 2013-05-30 2013-09-20 Fluid heating device

Publications (2)

Publication Number Publication Date
JP2015007528A true JP2015007528A (en) 2015-01-15
JP6224971B2 JP6224971B2 (en) 2017-11-01

Family

ID=52337906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013195251A Active JP6224971B2 (en) 2013-05-30 2013-09-20 Fluid heating device

Country Status (1)

Country Link
JP (1) JP6224971B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019116986A (en) * 2017-12-26 2019-07-18 トクデン株式会社 Superheated steam furnace
EP3594570A4 (en) * 2017-03-07 2021-04-28 Jissen Kankyo Kenkyusho Co., Ltd. Superheated steam generation device and thermal decomposition system using same
JP7337422B1 (en) * 2023-01-12 2023-09-04 株式会社実践環境研究所 Oil extraction device and oil extraction method

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4825942A (en) * 1971-08-09 1973-04-04
JPS4939019U (en) * 1972-07-10 1974-04-06
JPS5811344A (en) * 1981-07-13 1983-01-22 Chisso Eng Kk Device of fluid heating pipe without insulated flange
JPS6249520B2 (en) * 1979-04-04 1987-10-20 Showa Denki Kogyo Kk
JPH0454498B2 (en) * 1985-05-23 1992-08-31 Chiyoda Chem Eng Construct Co
JPH05317843A (en) * 1992-05-19 1993-12-03 Shinko Pantec Co Ltd Ultra-pure water heater and ultra-pure water heating method
US6315497B1 (en) * 1995-12-29 2001-11-13 Shell Oil Company Joint for applying current across a pipe-in-pipe system
JP2005337509A (en) * 2004-05-24 2005-12-08 Miyaden Co Ltd Heating steam generating device
JP2008253202A (en) * 2007-04-05 2008-10-23 Ryoso:Kk Method and apparatus for heat-treating food product
JP2008546982A (en) * 2005-07-04 2008-12-25 テトラ ラバル ホールデイングス エ フイナンス ソシエテ アノニム Gas supply method and apparatus

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4825942A (en) * 1971-08-09 1973-04-04
JPS4939019U (en) * 1972-07-10 1974-04-06
JPS6249520B2 (en) * 1979-04-04 1987-10-20 Showa Denki Kogyo Kk
JPS5811344A (en) * 1981-07-13 1983-01-22 Chisso Eng Kk Device of fluid heating pipe without insulated flange
JPH0454498B2 (en) * 1985-05-23 1992-08-31 Chiyoda Chem Eng Construct Co
JPH05317843A (en) * 1992-05-19 1993-12-03 Shinko Pantec Co Ltd Ultra-pure water heater and ultra-pure water heating method
US6315497B1 (en) * 1995-12-29 2001-11-13 Shell Oil Company Joint for applying current across a pipe-in-pipe system
JP2005337509A (en) * 2004-05-24 2005-12-08 Miyaden Co Ltd Heating steam generating device
JP2008546982A (en) * 2005-07-04 2008-12-25 テトラ ラバル ホールデイングス エ フイナンス ソシエテ アノニム Gas supply method and apparatus
JP2008253202A (en) * 2007-04-05 2008-10-23 Ryoso:Kk Method and apparatus for heat-treating food product

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3594570A4 (en) * 2017-03-07 2021-04-28 Jissen Kankyo Kenkyusho Co., Ltd. Superheated steam generation device and thermal decomposition system using same
JP2019116986A (en) * 2017-12-26 2019-07-18 トクデン株式会社 Superheated steam furnace
JP7337422B1 (en) * 2023-01-12 2023-09-04 株式会社実践環境研究所 Oil extraction device and oil extraction method

Also Published As

Publication number Publication date
JP6224971B2 (en) 2017-11-01

Similar Documents

Publication Publication Date Title
EP2213140B1 (en) Flow-through induction heater
KR102162932B1 (en) Fluid heating apparatus
JP2010071624A (en) Fluid heating device
JP6224971B2 (en) Fluid heating device
JP2012163229A (en) Superheated water vapor generator
CN210921360U (en) Superheated steam generator
JP2008270123A (en) Fluid temperature rising apparatus
JP6431717B2 (en) Fluid heating device
JP2006064367A (en) Induction heating type steam generating device
WO2019039960A1 (en) Electric steam generator
JP2016213074A (en) Fluid heating apparatus
JP7256539B2 (en) Superheated steam generator
JP2008204927A (en) Fluid temperature raising device
JP6466641B2 (en) Fluid heating device
JP2019116986A (en) Superheated steam furnace
JP2014059133A (en) Fluid heating device
JP6341614B2 (en) Fluid heating device
JP7406800B2 (en) Superheated steam generator
JP2008292010A (en) Fluid temperature rising device and heating cooker
JP4182541B2 (en) Power generator
JP7407438B2 (en) fluid heating device
JP2012094440A (en) Electric wire for heating coil used for induction heating apparatus and heating coil used for induction heating apparatus using the same
JP6224970B2 (en) Fluid heating device
JP3202235U (en) Fluid heater
JP2006071180A (en) Superheated steam generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160819

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171006

R150 Certificate of patent or registration of utility model

Ref document number: 6224971

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250