JP2024061513A - 放射線治療支援装置及び放射線治療支援方法 - Google Patents

放射線治療支援装置及び放射線治療支援方法 Download PDF

Info

Publication number
JP2024061513A
JP2024061513A JP2022169492A JP2022169492A JP2024061513A JP 2024061513 A JP2024061513 A JP 2024061513A JP 2022169492 A JP2022169492 A JP 2022169492A JP 2022169492 A JP2022169492 A JP 2022169492A JP 2024061513 A JP2024061513 A JP 2024061513A
Authority
JP
Japan
Prior art keywords
irradiation
radiation therapy
radiation
dose distribution
plan information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022169492A
Other languages
English (en)
Inventor
嵩祐 平山
貴啓 山田
祐介 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2022169492A priority Critical patent/JP2024061513A/ja
Publication of JP2024061513A publication Critical patent/JP2024061513A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Radiation-Therapy Devices (AREA)

Abstract

Figure 2024061513000001
【課題】オンラインアダプティブ治療における患者QAを向上させることが可能な放射線治療支援装置を提供する。
【解決手段】モデル生成部120Aは、過去の治療計画情報111Aに含まれる照射パラメータの値である指令値と治療計画情報に基づいて照射された放射線の患者A内での線量分布に関する値である実績値とに基づいて、指令値から線量分布に関する予測値を算出する予測モデルを生成する。分散算出部120Bは、再治療計画情報に含まれる指令値と予測モデルとに基づいて、再治療計画情報に従って照射される放射線の患者A内での線量分布に関する予測値を取得する。
【選択図】図1

Description

本開示は、放射線治療支援装置及び放射線治療支援方法に関する。
放射線療法は、がん病巣に放射線を照射し、がん細胞のDNA(Deoxyribonucleic Acid:デオキシリボ核酸)に損傷を与えることで、がん細胞を死滅させる局所療法である。現在、放射線療法として、通常、強度変調放射線治療法(IMRT:Intensity Modulated Radiation Therapy)及び強度変調回転照射法(VMAT:Volumetric Modulated Arc Therapy)のような、複数の照射方向から放射線を照射し、線量の集中性を向上させた高精度照射法が行われている。例えば、VMATでは、ガントリ角、MLC(Multi Leaf Collimator:マルチリーフコリメータ)の形状及び線量率の3つのパラメータを連続的に変調させながら、連続回転照射を行うことで、正常組織への線量を低減させつつ、腫瘍に高線量を付与することが可能となる。
放射線治療では、患者を撮像したCT(Computed Tomography)画像と医師が設定した処方線量に基づいて、治療計画ソフトウエアを用いて患者体内の線量分布をシミュレートすることで、治療装置の機器パラメータ(コリメータの開口形状など)、照射角度、照射角度ごとの照射量、及び、照射エネルギーなどの照射パラメータが決定される。決定された照射パラメータ及び照射パラメータの算出根拠となる線量分布は治療計画と呼ばれ、治療計画に基づいて照射装置が放射線を患部に照射することで、所望の線量分布を患部に形成することが可能となる。
また、放射線治療では、治療計画の健全性を保障するため、放射線を患者に照射する前に、照射装置にて治療計画に応じた線量分布が患者内に形成されるか否かを確認する確認処理が行われる。この確認処理は、患者QA(Quality Assurance:品質保証)と呼ばれる。
臨床スタッフは、患者QAを通して、治療計画ソフトウエアの線量計算アルゴリズムの計算精度の検証(項目1)、ファントム内での放射線の照射誤差による線量分布への影響の検証(項目2)、及び、治療計画に対する装置動作の妥当性の確認(項目3)を行う。項目1及び2に関しては、実測結果と治療計画ソフトウエアの計算結果との比較により検証が行われる。また、治療施設では、患者QAの評価項目及び判定基準が設定され、各評価項目が判定基準を満足することが確認された場合、治療計画に従って放射線の照射が行われる。一方、各評価項目が判定基準を逸脱した場合には、患者QAの再実施又は治療計画の再生成が実施される。
患者QAとして実施される一般的な方法としては、人体と等価な人体等価物質にて構成される人体模型であるファントムに対して治療計画に従って放射線を照射して線量分布を実測する方法が挙げられる。
また、近年では、患者QAとして、モンテカルロ法のような高精度線量計算手法を用いた独立線量計算エンジンを使用して、患者のCT画像を用いて治療計画に応じた線量分布が形成されるか否かを確認する方法が提案されている。
非特許文献1では、放射線であるビームの照射後に、照射装置の各種パラメータの実測値である照射実測値を用いて、CT画像内での線量分布をモンテカルロ法により計算する手法が開示されている。非特許文献1では、照射実測値を用いて線量分布を評価した場合、照射実測値を用いずに線量分布を評価した場合と比べて、線量分布の評価指標に変化が確認されたことが報告されている。
また、放射線療法では、通常、1日1回の患部への放射線の照射が数日から数週間にわたって繰り返し実施される。このため、治療期間中に腫瘍の拡縮、及び、腫瘍周辺の体内構造の変化が起きることがある。このような変化が起きた場合に治療計画を再生成し、再生成した治療計画を用いて放射線を照射するアダプティブ治療が注目されている。アダプティブ治療において、特に患者が治療用の寝台に寝た状態で治療直前に治療計画を再生成するものはオンラインアダプティブ治療と呼ばれる。
オンラインアダプティブ治療では、鼻腔及び腸の状態のような治療日ごとに異なる患者体形に応じて照射量及び線量分布が最適化される。これにより、マージンとして放射線を照射する標的外の領域を小さくすることができ、正常組織へのダメージを低減することが可能となる。
オンラインアダプティブ治療の課題の1つとして、患者QAに関するものが挙げられる。オンラインアダプティブ治療では、患者が寝台に寝た状態で、再計画された治療計画の患者QAを実施する必要があるため、ファントムなどに対して実際に放射線を照射する従来の患者QAを実施することが難しい。
これに対して特許文献1には、治療計画情報に基づいて、治療計画ソフトウエアの計算結果と、実際にファントムなどに対して治療計画に従って放射線を照射した場合における実測結果との一致率を予測する技術が記載されている。
米国特許第2018085168号明細書
P. Severinski et al., "J Appl Clin Med Phys", 2021;22(7): 235-244
しかしながら、特許文献1に記載の技術では、治療計画ソフトウエアの計算結果と実測結果との一致率が予測されるだけであるため、患者内の線量分布に関する詳細な情報を取得することが困難である。また、照射装置の照射誤差が患者体内の線量分布に与える影響を評価することも難しい。
本開示の目的は、オンラインアダプティブ治療における患者QAを向上させることが可能な放射線治療支援装置及び放射線治療支援方法を提供することにある。
本開示の一態様に従う放射線治療支援装置は、治療計画情報に従って照射対象に対して放射線を照射する放射線治療を支援する放射線治療支援装置であって、過去の前記治療計画情報に含まれる照射パラメータに係る指令値と当該治療計画情報に基づいて照射された放射線の前記照射対象内での線量分布に関する値である実績値とに基づいて、前記指令値から前記線量分布に関する予測値を算出する予測モデルを生成するモデル生成部と、対象の前記治療計画情報である対象計画情報に含まれる前記指令値と前記予測モデルとに基づいて、前記対象計画情報に従って照射される放射線の前記照射対象内での線量分布に関する予測値を取得する分布算出部と、を有する。
本発明によれば、オンラインアダプティブ治療における患者QAを向上させることが可能になる。
本開示の一実施形態の放射線治療システムの全体構成を示す図である。 モデル生成処理の一例を説明するためのフローチャートである。 グループ化処理の一例を説明するための図である。 オンラインアダプティブ治療における当日処理の一例を説明するためのフローチャートである。 患者QAの際に操作者が行う動作手順を示すフローチャートである。 患者QAの際に予測部が行う処理の一例を説明するためのフローチャートである。
以下、本開示の実施形態について図面を参照して説明する。
図1は、本開示の一実施形態の放射線治療システムの全体構成を示す図である。放射線治療システムは、放射線としてX線を照射するX線治療システムでもよいし、放射線として陽子線又は炭素線などの粒子線を照射する粒子線治療システムでもよい。図1では、放射線治療システムとしてX線治療システムが示されている。
図1に示すX線治療システムは、X線照射システム110、データサーバ111、治療計画装置112及び線量分布検証装置113を備える。
X線照射システム110は、照射対象である患者Aに対して放射線としてX線を照射する放射線治療装置であり、X線照射装置100、放射線照射制御装置104、通信装置105、記憶装置106及びコンソール107を備える。X線照射装置100は、患者Aに対して放射線としてX線を照射する装置であり、寝台101、照射ノズル102及びリング型ガントリ103を備える。
寝台101は、患者Aを乗せて固定するベッドである。寝台101は、放射線照射制御装置104からの指示に従って、交差(例えば、直交)する3軸方向に移動可能である。また、寝台101は、各軸を回転軸として回転することが可能である。これらの移動及び回転により、寝台101に乗せられた患者Aの位置を所望の位置に移動することができる。
照射ノズル102は、寝台101に乗せられた患者Aに対してX線を照射する。例えば、照射ノズル102は、放射線照射制御装置104からの指示に従って、照射ノズル102内の線形加速器(図示せず)にて電子線を加速し、加速した電子線をタングステンに照射することでX線を発生させて出射する。また、照射ノズル102には、左右に配置された複数の板状の遮蔽物(以下、リーフと呼ぶ)で構成されたコリメータ(以下、マルチリーフコリメータ(MLC)と呼ぶ)を備えており、照射ノズル102は、放射線照射制御装置104からの指示に従って各リーフの位置を変化させることで、生成したX線の線量分布を所望の分布に整形する。また、照射ノズル102内には、X線の照射量を計測する線量モニタが備わり、線量モニタにて計測した計測値は放射線照射制御装置104に出力され、放射線照射の制御に利用される。
リング型ガントリ103は、照射ノズル102を搭載し、放射線照射制御装置104からの指示に従って、照射ノズル102を寝台101の周りで回転させて、所望の確度からX線を寝台101上の患者Aに照射する。リング型ガントリ103は、略水平方向の軸を中心に回転するガントリ回転と、略垂直方向の軸を中心に回転する照射リングによるリング回転とが可能であり、ガントリ回転及びリング回転の回転中心はアイソセンタと呼ばれる。
放射線照射制御装置104は、寝台101、照射ノズル102、リング型ガントリ103、通信装置105、記憶装置106及びコンソール107と通信可能に接続されており、照射ノズル102、リング型ガントリ103及び寝台101を制御する。通信装置105は、ネットワークを介して、データサーバ111と通信可能に接続され、照射前にネットワーク経由で治療計画装置112にて生成された照射予定の治療計画情報である対象計画情報に含まれる照射パラメータをデータサーバ111から取得して、記憶装置106に記憶する。照射パラメータは、X線照射装置100内の放射線を照射するための機器を制御するためのパラメータであり、機器に設定する機器パラメータ(ガントリ角度、MLCのリーフ位置情報など)と、放射線に関するパラメータ(照射角度、照射角度ごとの照射量及び照射エネルギーなど)とを含む。
コンソール107は、放射線照射制御装置104から取得した情報を表示する出力装置としての機能と、X線照射システム110を操作する医療従事者などの操作者から情報を受け付けて、放射線照射制御装置104に入力装置としての機能とを有する。
放射線照射制御装置104は、コンソール107を介して放射線の照射開始指示を受け付けると、記憶装置106に記憶された照射パラメータに基づいて、照射ノズル102、リング型ガントリ103及び寝台101を制御して、患者AへのX線の照射を開始する。放射線照射制御装置104は、X線の照射中に、数ms~数100msの時間間隔で、患者A内の線量分布に関する値である実績値を取得して治療実績情報として記憶装置106に記憶する。治療実績情報は、MLCの各リーフ位置、リング型ガントリ103のガントリ角度及びリング角度、線量率などの照射パラメータの実績値、並びに、照射ノズル102内の線量モニタで計測された積算線量値などである。照射中に記憶装置106に記憶された治療実績情報は、X線の照射終了後に、ネットワークを介してデータサーバ111に治療実績情報111Aとして保存される。
治療計画情報111Bに含まれる照射パラメータに含まれる特定パラメータの値である指令値と治療実績情報111Aに含まれる特定パラメータの値である実績値との差分は照射誤差と呼ばれる。照射誤差は、患者A内に形成される線量分布に影響を与える。特に、特定パラメータのうちMLCのリーフの位置であるリーフ位置の照射誤差の線量分布への影響が強い。非特許文献2では、リーフ位置の照射誤差が0.2mmの場合、1%程度の線量誤差が引き起こされると報告されている。
線量分布検証装置113は、X線照射システム110による放射線治療を支援する放射線治療支援装置であり、予測部120、判断部121、表示部122、入力部123及び記憶部124を備える。
予測部120は、過去の治療計画情報111Bと過去の治療計画情報に応じた治療実績情報111Aとの組から生成した予測モデルと、予測対象である照射予定の治療計画情報である対象計画情報とに基づいて、対象計画情報に従って照射されるX線の患者A内の線量分布を算出(予測)する。予測モデルは、対象計画情報に含まれる照射パラメータに係る指令値から、線量分布に関する値として線量分布に影響を与える照射誤差を予測するモデルである。
予測部120は、具体的には、モデル生成部120Aと、分布算出部120Bとを有する。モデル生成部120Aは、過去の治療計画情報111Bと過去の治療計画情報に応じた治療実績情報111Aとの組に基づいて、予測モデルを生成する。治療計画情報111Bと治療実績情報111Aとの組は、複数あってもよい。分布算出部120Bは、モデル生成部120Aにて生成された予測モデルと対象計画情報とに基づいて、対象計画情報によるの照射誤差を予測し、その照射誤差から線量分布を算出する。
判断部121は、分布算出部120Bにて予測された線量分布を評価した評価値が許容条件を満たすか否かを判断し、その判断結果を表示部122に表示する。表示部122は、種々の情報を表示する。入力部123は、種々の情報を操作者から受け付ける。記憶部124は、種々の情報を記憶する。
なお、線量分布検証装置113は、例えば、プロセッサ(コンピュータ)及びメモリ(共に図示せず)を備えたコンピュータシステムにより構成される。この場合、線量分布検証装置113の各構成要素及び各機能は、例えば、プロセッサがコンピュータプログラムを読み取り、その読み取ったコンピュータプログラムを実行することで実現される。コンピュータプログラムは、コンピュータにて読み取り可能な記録媒体に記録可能である。記録媒体は、例えば、半導体メモリ、磁気ディスク、光ディスク、磁気テープ及び光磁気ディスクなどである。また、線量分布検証装置113はX線照射システム110に含まれていてもよい。
以下では、線量分布検証装置113による患者A内の線量分布を予測する予測処理についてより詳細に説明する。予測処理は、主に、モデル生成部120Aによる予測モデルを生成するモデル生成処理と、分布算出部120Bによる線量分布を算出(予測)する分布算出処理とを有する。最初にモデル生成処理を説明し、次に分布算出処理を説明する。
図2は、モデル生成処理の一例を説明するためのフローチャートである。ここでは、重回帰分析を用いて、VMATによるX線照射の照射誤差を予測する予測モデルを生成するモデル生成処理を説明する。また、照射誤差はMLCのリーフ位置の誤差であるリーフ位置誤差である。
モデル生成処理では、モデル生成部120Aは、操作者から予測モデルの生成指示を受け付けると、データサーバ111から、過去の治療計画情報111Bとその治療計画情報111Bに対応する治療実績情報111Aとの組を取得する(ステップ201)。
続いて、モデル生成部120Aは、は、治療計画情報111Bから、照射誤差を予測するための説明変数となる動作パラメータを抽出又は算出する(ステップ202)。ここでは、動作パラメータは、治療計画情報に含まれる照射パラメータに応じた、X線照射装置100内の放射線を照射するための機器の動作に関するパラメータであり、具体的には、照射パラメータに含まれるか、照射パラメータから算出可能である。動作パラメータは、例えば、MLCのリーフの速度であるリーフ速度、リーフの加速度であるリーフ加速度、線量率、ガントリの回転速度、照射リングの回転速度、及び、ガントリ角度の少なくとも1つを含む。
VMATでは、ガントリ角度、MLCの形状及び線量率の3つのパラメータを連続的に変調させながら、連続回転照射を行う照射法であるが、治療計画の生成時の計算には、計算負荷を低減させるため、ガントリ角度は等間隔に離散化される。治療計画情報111Bは、ガントリ角度ごとにリーフ位置及びガントリ回転速度を示す。この場合、k番目のガントリ角度とk+1番目のガントリ角度との間におけるリーフ速度及びリーフ加速度の平均値である平均リーフ速度vk+1,k及び平均リーフ加速度ak+1,kは、式(1)及び(2)で算出される。
Figure 2024061513000002
Figure 2024061513000003
ここで、δθは治療計画情報111Bにおけるガントリ角度の間隔である計画ガントリ角度間隔を示し、vはガントリ回転速度を示し、pはk番目のガントリ角度におけるリーフ位置を示す。
続いて、モデル生成部120Aは、操作者から指定されたガントリ角度間隔である予測ガントリ角度間隔δφで照射誤差を予測するため、予測ガントリ角度間隔ごとに照射誤差(リーフ位置の照射誤差)を治療実績情報111Aに基づいて算出する(ステップ203)。
一般的に、治療実績情報111Aは時系列情報であり、治療計画情報111Bはガントリ角度単位で各照射パラメータの値を示す角度単位情報である。したがって、予測ガントリ角度間隔δφで照射誤差を予測するためには、治療実績情報111Aと治療計画情報111Bとを同じ形式の情報に変換する必要がある。つまり、治療実績情報111Aをガントリ角度単位の情報に変換するか、あるいは治療計画情報111Bを時系列情報に変換する必要がある。本実施形態では、モデル生成部120Aは治療実績情報をガントリ角度単位の情報に変換する。
また、治療実績情報111Aは、通常、数ms~数100ms間隔で各照射パラメータの値を示しており、この間隔は治療計画情報111Bよりも細かい。また、予測ガントリ角度間隔δφは、通常、治療計画情報111Bにおけるガントリ角度間隔である計画ガントリ角度間隔δθよりも小さい値に設定される。
したがって、モデル生成部120Aは、治療実績情報111Aについては、予測ガントリ角度間隔δφに従って動作パラメータの値を平均化する事で整形する。一方、治療計画情報111Bでは、予測ガントリ角度間隔δφよりも荒い間隔でデータが存在するため、モデル生成部120Aは、予測ガントリ角度間隔δφの前後の治療計画情報111Bを用いて、内挿補完する。具体的には、k番目の計画ガントリ角度とk+1番目の計画ガントリ角度との間において、k番目の計画ガントリ角度から数えてl番目に存在する予測ガントリ角度のリーフ位置誤差δpk,lは、式(3)で算出される。
Figure 2024061513000004
ここで、関数P(X)はガントリ角度Xにおけるリーフ位置の実績値を示す。
続いて、モデル生成部120Aは、算出したリーフ位置誤差δpk,lを、計画ガントリ角度間隔δθに基づいて、予測モデルを生成する角度をグループ化する(ステップ204)。
図3は、グループ化処理の一例を説明するための図である。図3では、計画ガントリ角度間隔δθが4度間隔、予測ガントリ角度間隔δφが1度間隔である。
本実施形態では、リーフ位置誤差は治療実績情報111Aから式(3)により生成されるため、操作者が指定した予測ガントリ角度間隔δφで存在するが、説明変数となる動作パラメータは、治療計画情報111Bから生成するため、計画ガントリ角度間隔δθで与えられる。モデル生成部120Aは、計画ガントリ角度間隔δθに基づいて、予測ガントリ角度間隔δφをグループ分けし、グループごとに、リーフ位置誤差と説明変数とを対応づける。
図3の例では、モデル生成部120Aは、計画ガントリ角度間隔δθの各角度におけるリーフ位置誤差の周期に基づいて、予測ガントリ角度間隔δφをA~Dの4つのグループに分けている。
そして、モデル生成部120Aは、ステップ204で分けたグループごとに予測モデルを生成する(ステップ205)。本実施形態では、モデル生成部120Aは、予測モデルを生成するガントリ角度の前後の治療計画の平均リーフ速度、平均リーフ加速度及びガントリ角度を説明変数として重回帰分析を行って、目的変数である照射誤差を予測する。この場合、k番目とk+1番目の計画角度の間の各グループのリーフ位置誤差δpk,lは、式(4)から算出される。ただし、lは各グループに対応し、ここでは、lは0~4である。
Figure 2024061513000005
つまり、モデル生成部120Aは、治療実績情報111Aと治療計画情報111Bとの組から算出された照射誤差及び説明変数に基づいて重回帰分析を行い、式(4)式を満たす係数A、B、C、D及びEを求めることで予測モデルを生成する。生成された予測モデルは記憶部124に保存される。
なお、ガントリ角度をグループ化して予測モデルを生成する場合、照射誤差及び説明変数を算出する際に用いる計画情報及び治療実績情報は、同一の計画ガントリ角度間隔で生成された計画が使用される。操作者は、ステップ201に於いて、入力部123を用いて使用する計画ガントリ角度間隔を設定する。線量分布検証装置113は入力された計画ガントリ角度間隔に基づきデータサーバ111から条件を満たす治療計画情報及び治療実績情報の組を読み込む。
また、モデル生成部120Aは、放射線を照射する照射部位ごとに予測モデルを生成してもよい。この場合、入力部123は、ステップ201において、操作者から予測モデルの生成に使用する治療計画情報の特徴(照射部位及び治療計画の複雑さなど)をさらに指定する。この場合、モデル生成部120Aは、措定された特徴に合致した治療計画情報111B及び治療実績情報111Aを読み込む。
また、照射誤差は、リーフの位置誤差に限らず、例えば、線量率の誤差、ガントリの回転速度の誤差、ガントリの回転角度の誤差、照射リングの回転速度の誤差、及び、照射リングの回転角度の誤差の少なくとも1つなどでもよい。また、例えば、予測ガントリ角度と計画ガントリ角度と間の角度間距離に関する情報を新たに定義して、説明変数に加える場合は、必ずしも予測モデルを生成する角度をグループ化する必要はない。
また、説明変数は、平均リーフ速度、平均リーフ速度及びガントリ角度に限らず、例えば、ガントリの回転速度、ガントリの回転角度、リングの回転速度、リングの回転角度及び線量率などの少なくとも1つでもよい。また、モデル生成部120Aは、治療計画情報111Bから算出可能なパラメータを用いた主成分分析により生成した主成分を説明変数としてもよい。
次に分布算出処理を説明する。分布算出処理は、本実施形態では、オンラインアダプティブ治療における治療日当日の処理である当日処理の一部として実行される。図4は、当日処理の一例を説明するためのフローチャートである。
当日処理では、X線照射システム110は、操作者からの指示に従って、寝台101の乗せられた患者Aを撮像して患者Aの画像を取得する(ステップ401)。画像を撮像する装置としては、治療室内に設置されたインルームCT、リング型ガントリ103と共に回転するX線透視装置を用いたコーンビームCT(以下、CBCTと呼ぶ)、及び、MRIなどが挙げられる。ここでは、患者Aの画像はCT画像である。
続いて、放射線照射制御装置104は、治療計画情報111Bの生成に使用したCT画像である計画時CT画像とステップ401で取得した当日のCT画像とを比較して、患者Aを計画通りの位置に配置する患者位置決めを行うる(ステップ402)。
放射線照射制御装置104は、計画時CT画像に設定された各臓器の輪郭情報に基づいて、当日のCT画像上に臓器の輪郭を設定する(ステップ403)。ここで、放射線照射制御装置104は、照射線量を抑制する危険臓器と高線量を付与する標的と設定する。これらの設定は、操作者の指示に従って行われてもよいし、放射線照射制御装置104にて自動的に行われてもよい。なお、ステップ401においてCBCT又はMRIの画像を取得し、CBCT又はMRIの画素値を線量評価などに直接用いた際に計算精度に懸念がある場合、放射線照射制御装置104は、CBCT又はMRIの画像に合わせて計画時CT画像を変形した新たなCT画像を生成して、線量評価及び治療計画の再生成に用いてもよい。
治療計画装置112は、ステップ403で設定した輪郭情報及び当日のCT画像に基づいて、治療計画情報を再生成する(ステップ404)。治療計画装置112は、再生成した治療計画情報である再治療計画情報と元の治療計画情報との線量分布を比較して、再治療計画情報を採用するか否かを判断する(ステップ405)。
再治療計画を採用する場合、線量分布検証装置113は、再治療計画情報に対する患者QAを実行する(ステップ406)。その後、X線照射システム110は、再治療計画情報に従ってX線の照射を行う(ステップ407)。一方、再治療計画情報を採用しない場合、線量分布検証装置113は、ステップ406をスキップして、元の治療計画情報に従ってX線の照射を行う(ステップ407)。
図5は、図4のステップ406における患者QAの際に操作者が行う動作手順を示すフローチャートである。また、図6は、図4のステップ406における患者QAの際に予測部120の分布算出部120Bが行う処理の一例を説明するためのフローチャートである。
患者QAを実施する場合、操作者は、先ず、線量分布検証装置113の入力部123を用いて、患者QAを実施する再治療計画を選択する(ステップ501)。続いて、操作者は、照射誤差の予測に使用する予測モデルを選択する(ステップ502)。ここでは、操作者は予測モデルを選択する際に、照射部位の名前、計画ガントリ角度間隔及び予測ガントリ角度間隔を入力部123に入力する。線量分布検証装置113の分布算出部120Bは、これらの入力情報に基づいて、記憶部124に記憶された予測モデルから使用可能な予測モデルを選択して表示部122に表示する。操作者は、表示された予測モデルの中から、実際に使用する予測モデルを選択する。なお、分布算出部120Bは、照射部位の名前及び計画ガントリ角度間隔を、ステップ501で選択した読み込んだ再治療計画情報のDICOM(Digital Imaging and Communications in Medicine)情報などから取得してもよい。
続いて、操作者は、患者QAの評価体系を選択する(ステップ503)。評価体系は、例えば、患者AのCT画像を用いて評価する患者体系、均一ファントム(水ファントム)を用いて評価する均一ファントム体系、及び、その両方のいずれかである。
その後、操作者が入力部123に対して読込指示を入力すると、線量分布検証装置113の分布算出部120Bは、操作者が入力した入力情報(再治療計画情報、予測モデル及び評価体系)を読み込み(ステップ601)、その読み込んだ入力情報を表示部122に表示する(ステップ602)。なお、読み込んだ入力情報に含まれる再治療計画情報が本実施形態における線量分布の予測対象となる対象計画情報である。
続いて、操作者が入力部123に対して実行指示を入力すると(ステップ504)、分布算出部120Bは、読み込んだ再治療計画情報からリーフ速度、リーフ加速度及びガントリ角度などのパラメータを抽出する(ステップ603)。続いて、分布算出部120Bは、抽出したパラメータと、読み込んだ予測モデルとを用いて、操作者から指定されたガントリ角度間隔で照射誤差を予測する(ステップ604)。
さらに、分布算出部120Bは、予測モデルにより算出された照射誤差を用いて、再治療計画情報に従って照射されるX線の患者A内での線量分布を計算し(ステップ605)、その計算した線量分布を表示部122に表示する(ステップ606)。例えば、線量計算のアルゴリズムとしてモンテカルロ法を用いて、VMATに準拠した再治療計画情報による線量分布を算出する場合、分布算出部120Bは、照射角度ごとの統計数を設定する際に線量率誤差を反映し、MLC内の輸送計算を実施する際にリーフの位置誤差を反映させることで、線量分布を計算する。
操作者は、表示された線量分布を確認して、再治療計画情報を承認するか判断する(ステップ505)。このとき、操作者の判断を支援するため、分布算出部120Bは、評価体系が均一ファントム体系の場合、再治療計画情報の線量分布とのガンマ解析の合格率又は一次元プロファイルの比較結果を示し、評価体系が患者体系の場合、危険臓器及び標的における線量評価指標の比較を示してもよい。また、判断部121は、分布算出部120Bにて算出された線量分布を評価した評価値が許容条件を満たすか否かを判断し、その判断結果を表示部122に表示してもよい。許容条件は、例えば、操作者にて予め登録される。評価値は、線量分布を評価できる値あれば、特に限定されない。
以上の処理により再治療計画情報が承認されると、分布算出部120Bは、再治療計画情報をデータサーバ111に登録する。そして、ステップ407にてX線の照射が行われる。例えば、操作者は、X線照射システム110のコンソール107を用いて、ネットワーク経由で再治療計画の照射パラメータをデータサーバ111から取得して記憶装置106に保存する。続いて、操作者がコンソール107を用いて照射開始を指示すると、X線照射システム110は、再治療計画情報に従って患者AにX線を照射する。
また、X線照射システム110の放射線照射制御装置104は、X線の照射時に、治療実績情報を測定してデータサーバ111に治療実績情報111Aとして保存する。線量分布検証装置113のモデル生成部120Aは、X線の照射が終了した後で、保存された治療実績情報111Aとそれに対応する治療計画情報(再治療計画情報)とを用いて予測モデルを更新してもよい。このとき、モデル生成部120Aは、治療時間以外に予測モデルを更新することが好ましい。
以上の説明では、放射線治療システムとしてX線治療システムを例に説明したが、上述したように放射線治療システムは粒子線治療システムでもよい。この場合、照射誤差としては、例えば、スキャニング照射の照射スポット位置、照射線量値、又は、照射エネルギーに対する指令値と実績値の差分が挙げられる。この場合、予測モデルの説明変数となる動作パラメータは、例えば、スキャニング照射の照射スポット位置、照射線量値、又は、照射エネルギー、蓄積電荷量、及び、スピル中での位置の少なくとも1つを含む。
また、予測モデルの生成方法として重回帰分析を例に挙げたが、予測モデルの生成方法は、重回帰分析に限らず、例えば、他の機械学習手法が用いられてもよい。
以上説明したように本実施形態によれば、モデル生成部120Aは、過去の治療計画情報111Bに含まれる照射パラメータの値である指令値と治療計画情報に基づいて照射された放射線の患者A内での線量分布に関する値である実測値実績値とに基づいて、指令値から線量分布に関する予測値を算出する予測モデルを生成する。分布算出部120Bは、再治療計画情報に含まれる指令値と予測モデルとに基づいて、再治療計画情報に従って照射される放射線の患者A内での線量分布に関する予測値を取得する。したがって、ファントムなどに放射線を照射しなくても、再治療計画情報に応じた放射線照射による患者A内の線量分布の妥当性を把握することが可能となるため、オンラインアダプティブ治療における患者QAを向上させることが可能になる。
また、本実施形態では、モデル生成部120Aは、再治療計画情報に基づく放射線の照射が終了した後で、再治療計画情報に基づいて予測モデルを更新する。このため、放射線治療の遅延を抑制しながら、予測モデルの予測精度を向上させることが可能となる。
また、本実施形態では、線量分布に関する値は、治療計画情報111Bにおける照射パラメータに含まれる特定パラメータの値である指令値と治療計画情報111Bに基づいて制御された機器における特定パラメータの値である実測値との差分である。このような差分は、線量分布に対して影響を与えるため、予測モデルを用いて予測することで線量分布の妥当性をより正確に把握することが可能となる。
また、本実施形態では、モデル生成部120Aは、計画ガントリ角度間隔δθの各角度におけるリーフ位置誤差の周期に基づいて、予測ガントリ角度間隔δφをグループ分けし、グループごとに予測モデルを生成する。このため、予測モデルの予測精度を向上させることが可能となる。
また、本実施形態では、分布算出部120Bは、線量分布に関する予測値に基づいて、線量分布を予測する。このため、線量分布の妥当性をより確認しやすくすることが可能となる。
また、本実施形態では、分布算出部120Bは、再治療計画情報の生成に用いた被検者のCT画像を使用して、線量分布を予測する。このため、ファントムなどに放射線を照射しなくても線量分布の妥当性をより確認しやすくすることが可能となる。
また、本実施形態では、判断部121は、分布算出部120Bにて予測された線量分布を評価した評価値が許容条件を満たすか否かを判断し、当該判断結果を表示する。このため、線量分布の妥当性をより確認しやすくすることが可能となる。
上述した本開示の実施形態は、本開示の説明のための例示であり、本開示の範囲をそれらの実施形態にのみ限定する趣旨ではない。当業者は、本開示の範囲を逸脱することなしに、他の様々な態様で本開示を実施することができる。
100:X線照射装置 101:寝台 102:照射ノズル 103:リング型ガントリ 104:放射線照射制御装置 105:通信装置 106:記憶装置 107:コンソール 110:X線照射システム 111:データサーバ 111A:治療実績情報 111B:治療計画情報 112:治療計画装置 113:線量分布検証装置 120:予測部 120A:モデル生成部 120B:分布算出部 120B:分布算出部 121:判断部 122:表示部 123:入力部 124:記憶部

Claims (13)

  1. 治療計画情報に従って照射対象に対して放射線を照射する放射線治療を支援する放射線治療支援装置であって、
    過去の前記治療計画情報に含まれる照射パラメータに係る指令値と当該治療計画情報に基づいて照射された放射線の前記照射対象内での線量分布に関する値である実績値とに基づいて、前記指令値から前記線量分布に関する予測値を算出する予測モデルを生成するモデル生成部と、
    対象の前記治療計画情報である対象計画情報に含まれる前記指令値と前記予測モデルとに基づいて、前記対象計画情報に従って照射される放射線の前記照射対象内での線量分布に関する予測値を取得する分布算出部と、を有する放射線治療支援装置。
  2. 前記モデル生成部は、前記対象計画情報に基づく放射線の照射が終了した後で、当該対象計画情報に基づいて前記予測モデルを更新する、請求項1に記載の放射線治療支援装置。
  3. 前記線量分布に関する予測値は、前記照射パラメータに含まれる特定パラメータの値である指令値と前記治療計画情報に基づいて制御された機器の実績値との差分である、請求項1に記載の放射線治療支援装置。
  4. 前記特定パラメータは、マルチリーフコリメータのリーフ位置、線量率、ガントリの回転速度、ガントリの回転角度、照射リングの回転速度、及び、照射リングの回転角度の少なくとも1つを含む請求項3に記載の放射線治療支援装置。
  5. 前記特定パラメータは、スキャニング照射の照射スポット位置、照射線量値、及び、照射エネルギーの少なくとも1つを含む請求項3に記載の放射線治療支援装置。
  6. 前記モデル生成部は、前記指令値及び前記実績値として、前記治療計画情報における前記照射パラメータに応じた、前記放射線治療を行うための機器の動作に関する動作パラメータの値に基づいて、前記線量分布に関する予測値を予測するモデルを生成する、請求項1に記載の放射線治療支援装置。
  7. 前記動作パラメータは、マルチリーフコリメータのリーフ速度、マルチリーフコリメータのリーフ加速度、線量率、ガントリの回転速度、照射リングの回転速度、及び、ガントリ角度の少なくとも1つを含む請求項6に記載の放射線治療支援装置。
  8. 前記動作パラメータは、スキャニング照射の照射スポット位置、照射線量値、照射エネルギー、蓄積電荷量、及び、スピル中での位置の少なくとも1つを含む請求項6に記載の放射線治療支援装置。
  9. 前記動作パラメータは、ガントリの回転角度であり、
    前記モデル生成部は、前記ガントリの回転角度における前記線量分布に関する値の周期に基づいて、前記ガントリの回転角度を複数のグループに分け、前記グループごとに前記予測モデルを生成する、請求項8に記載の放射線治療支援装置。
  10. 前記分布算出部は、前記予測値に基づいて、前記線量分布を予測する、請求項1に記載の放射線治療支援装置。
  11. 前記分布算出部は、前記予測値と前記対象計画情報の生成に用いた前記照射対象のCT画像とを使用して、前記線量分布を予測する、請求項10に記載の放射線治療支援装置。
  12. 前記分布算出部にて予測された前記線量分布を評価した評価値が許容条件を満たすか否かを判断し、当該判断結果を表示する判断部をさらに有する請求項1に記載の放射線治療支援装置。
  13. 治療計画情報に従って照射対象に対して放射線を照射する放射線治療を支援する放射線治療支援装置による放射線治療支援方法であって、
    過去の前記治療計画情報に含まれる照射パラメータに係る指令値と当該治療計画情報に基づいて照射された放射線の前記照射対象内での線量分布に関する値である実績値とに基づいて、前記指令値から前記線量分布に関する予測値を算出する予測モデルを生成し、
    対象の前記治療計画情報である対象計画情報に含まれる前記指令値と前記予測モデルとに基づいて、前記対象計画情報に従って照射される放射線の前記照射対象内での線量分布に関する予測値を取得する、放射線治療支援方法。


JP2022169492A 2022-10-21 2022-10-21 放射線治療支援装置及び放射線治療支援方法 Pending JP2024061513A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022169492A JP2024061513A (ja) 2022-10-21 2022-10-21 放射線治療支援装置及び放射線治療支援方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022169492A JP2024061513A (ja) 2022-10-21 2022-10-21 放射線治療支援装置及び放射線治療支援方法

Publications (1)

Publication Number Publication Date
JP2024061513A true JP2024061513A (ja) 2024-05-07

Family

ID=90925660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022169492A Pending JP2024061513A (ja) 2022-10-21 2022-10-21 放射線治療支援装置及び放射線治療支援方法

Country Status (1)

Country Link
JP (1) JP2024061513A (ja)

Similar Documents

Publication Publication Date Title
US20220054863A1 (en) Portal dosimetry systems, devices, and methods
CN111417435B (zh) 放射疗法治疗计划优化工作流程
US20190299027A1 (en) Particle therapy planning apparatus, particle therapy system, and dose distribution calculation program
US7639854B2 (en) Method and system for processing data relating to a radiation therapy treatment plan
US8467497B2 (en) System and method for motion adaptive optimization for radiation therapy delivery
US7773788B2 (en) Method and system for evaluating quality assurance criteria in delivery of a treatment plan
US7551717B2 (en) Virtual 4D treatment suite
CN105832356B (zh) 基于现存患者信息的放射线照相成像参数选择
JP7076380B2 (ja) 陽子治療のためのロバストなブロードビーム最適化
US20040254448A1 (en) Active therapy redefinition
KR20080039925A (ko) 생물학적 모델에 기초하여 방사선 요법 치료 계획을적합화시키는 방법 및 시스템
JP2012501230A (ja) 線量不確定度を計算するシステム及び方法
JP2011502010A (ja) 放射線療法送達の運動適応最適化のためのシステム及び方法
JP2011500293A (ja) 放射線療法線量の分割を適応させるための方法
JP2009507524A (ja) 変形マップに制約を課す方法およびそれを実装するためのシステム
JP2009514559A (ja) 線量体積ヒストグラムを用いて輪郭構造を生成するシステムおよび方法
JP2009502257A (ja) デリバーされた線量を評価するための方法およびシステム
JP2014503315A (ja) 照射計画を作成するための方法および装置
JP2024061513A (ja) 放射線治療支援装置及び放射線治療支援方法
WO2021106333A1 (ja) 患者体内構造変化検出方法、患者体内構造変化検出装置およびコンピュータプログラム
WO2024127708A1 (ja) 放射線治療支援装置及び放射線治療システム
JP2001340475A (ja) 放射線治療計画支援方法及び装置、並びに、これを用いた放射線治療装置
Webb et al. Conformal and intensity-modulated radiotherapy
Khodadadegan Radiation dose optimization for critical organs