JP2024061161A - Hot water storage and heating equipment - Google Patents

Hot water storage and heating equipment Download PDF

Info

Publication number
JP2024061161A
JP2024061161A JP2022168918A JP2022168918A JP2024061161A JP 2024061161 A JP2024061161 A JP 2024061161A JP 2022168918 A JP2022168918 A JP 2022168918A JP 2022168918 A JP2022168918 A JP 2022168918A JP 2024061161 A JP2024061161 A JP 2024061161A
Authority
JP
Japan
Prior art keywords
hot water
water storage
compressor
heat exchanger
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022168918A
Other languages
Japanese (ja)
Inventor
秋人 江田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noritz Corp
Original Assignee
Noritz Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noritz Corp filed Critical Noritz Corp
Priority to JP2022168918A priority Critical patent/JP2024061161A/en
Publication of JP2024061161A publication Critical patent/JP2024061161A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

【課題】除霜運転中のヒートポンプユニットの圧縮機にかかる過剰な運転負荷を軽減することができる貯湯給湯装置を提供すること。【解決手段】圧縮機(21)と凝縮熱交換器(22)と膨張弁(23)と蒸発熱交換器(24)とを冷媒回路(25)により接続して構成されたヒートポンプユニット(4)と、貯湯タンク(2)と、ヒートポンプユニット(4)で加熱された湯水を貯湯タンク(2)に貯湯する貯湯運転を制御する制御部(18)を備えた貯湯給湯装置(1)において、圧縮機(21)の冷媒の吐出温度を検知する吐出温度検知手段(26)と、蒸発熱交換器(24)の出口の冷媒温度を検知する蒸発熱交出口温度検知手段(27)を備え、制御部(18)は、貯湯運転中に蒸発熱交換器(24)の出口の冷媒温度に基づいて蒸発熱交換器(24)の着霜を検知した場合にこの霜を除去する除霜運転を開始し、この除霜運転開始から所定時間経過後の除霜運転中に吐出温度の上昇を検知した場合には圧縮機(21)の運転回転数を減少させる。【選択図】図4A hot water storage and heating device is provided that can reduce the excessive operating load on a compressor of a heat pump unit during a defrosting operation. [Solution] A hot water storage and heating device (1) including a heat pump unit (4) formed by connecting a compressor (21), a condensing heat exchanger (22), an expansion valve (23), and an evaporative heat exchanger (24) by a refrigerant circuit (25), a hot water storage tank (2), and a control unit (18) for controlling a hot water storage operation in which hot water heated by the heat pump unit (4) is stored in the hot water storage tank (2), the device includes a discharge temperature detection means (26) for detecting the discharge temperature of the refrigerant of the compressor (21), and an evaporative heat exchange outlet temperature detection means (27) for detecting the refrigerant temperature at the outlet of the evaporative heat exchanger (24). When the control unit (18) detects frost on the evaporative heat exchanger (24) based on the refrigerant temperature at the outlet of the evaporative heat exchanger (24) during the hot water storage operation, the control unit (18) starts a defrosting operation to remove the frost, and when it detects an increase in the discharge temperature during the defrosting operation after a predetermined time has elapsed since the start of the defrosting operation, the control unit (18) reduces the operating speed of the compressor (21). [Selected Figure] Fig. 4

Description

本発明は、ヒートポンプユニットで加熱して貯湯タンクに貯湯した湯水を給湯に使用する貯湯給湯装置に関し、特に貯湯運転中に行われるヒートポンプユニットの除霜運転に関する。 The present invention relates to a hot water storage and hot water supply system that uses hot water heated by a heat pump unit and stored in a hot water storage tank for hot water supply, and in particular to a defrosting operation of the heat pump unit that is performed during hot water storage operation.

従来から、ヒートポンプユニットで加熱した湯水を貯湯タンクに貯湯する貯湯運転を行い、この貯湯した湯水を給湯に使用する貯湯給湯装置が広く利用されている。ヒートポンプユニットは、圧縮機と凝縮熱交換器と膨張弁と蒸発熱交換器とを冷媒回路により接続して構成されている。 Conventionally, hot water storage and hot water supply systems have been widely used, which perform hot water storage operation to store hot water heated by a heat pump unit in a hot water storage tank and use this stored hot water for hot water supply. The heat pump unit is composed of a compressor, a condensing heat exchanger, an expansion valve, and an evaporating heat exchanger connected by a refrigerant circuit.

貯湯運転は、蒸発熱交換器で外気の熱を冷媒に吸熱させ、この冷媒の熱を湯水の加熱に利用する。そのため、外気温が低いときには、吸熱されて温度が下がった外気に含まれている水分が凝縮して、蒸発熱交換器に着霜し易くなる。蒸発熱交換器についた霜は外気からの吸熱を妨げるので、着霜が検知されるとこの霜を除去する除霜運転が行われる。 In hot water storage operation, the heat of the outside air is absorbed by the refrigerant in the evaporative heat exchanger, and the heat of this refrigerant is used to heat hot water. Therefore, when the outside temperature is low, the moisture contained in the outside air that has absorbed heat and dropped in temperature condenses, making it more likely for frost to form on the evaporative heat exchanger. Since frost on the evaporative heat exchanger prevents the absorption of heat from the outside air, when frost is detected, a defrosting operation is performed to remove the frost.

この除霜運転について、例えば特許文献1のように、冷媒回路の接続を切替えて冷媒の流動方向を逆転させ、圧縮機から吐出される高温の冷媒を蒸発熱交換器に流通させて除霜運転を行う貯湯給湯装置が知られている。また、例えば特許文献2のように、外気を温めるヒータを備え、ヒータで温められた外気を蒸発熱交換器に送風して霜を解かす除霜運転を行う貯湯給湯装置が知られている。 Regarding this defrosting operation, for example, Patent Document 1 discloses a hot water storage and hot water supply device that switches the connection of the refrigerant circuit to reverse the flow direction of the refrigerant and circulates the high-temperature refrigerant discharged from the compressor through the evaporative heat exchanger to perform the defrosting operation. Also, for example, Patent Document 2 discloses a hot water storage and hot water supply device that is equipped with a heater that warms outside air and performs a defrosting operation by blowing the outside air warmed by the heater through the evaporative heat exchanger to melt the frost.

特許第5333597号公報Patent No. 5333597 特開2008-57910号公報JP 2008-57910 A

特許文献1の除霜運転は、冷媒回路の接続切替のために圧縮機の運転回転数(周波数)を減少させる、又は圧縮機を停止させ、接続切替後に予め設定されている除霜運転時の運転回転数にする。それ故、高温の冷媒を蒸発熱交換器に流通させるまで時間がかかり、除霜運転の所要時間が長くなる虞がある。また、除霜運転完了後に冷媒回路の接続を切替えて貯湯運転を再開する際にも時間がかかり、貯湯運転の所要時間が長くなる虞がある。 In the defrosting operation of Patent Document 1, the operating speed (frequency) of the compressor is reduced or stopped in order to switch the connection of the refrigerant circuit, and the operating speed during defrosting operation that is preset after the connection is switched is set. Therefore, it takes time for the high-temperature refrigerant to circulate through the evaporative heat exchanger, and there is a risk that the time required for the defrosting operation will be long. In addition, it also takes time to switch the connection of the refrigerant circuit and resume the hot water storage operation after the defrosting operation is completed, and there is a risk that the time required for the hot water storage operation will be long.

一方、特許文献2の除霜運転は、外気を温めるためのヒータによって貯湯給湯装置が複雑になり、製造コストが上昇してしまうので好ましくない。そのため、除霜運転は、貯湯タンクから凝縮熱交換器に供給される湯水の流動を停止させると共に膨張弁を所定の開度にし、冷媒回路の接続を切替えずに圧縮機から吐出される高温の冷媒を蒸発熱交換器に流通させて霜を除去する場合が多い。 On the other hand, the defrosting operation of Patent Document 2 is not preferable because the heater for warming the outside air complicates the hot water storage and hot water supply device, increasing manufacturing costs. Therefore, defrosting operation is often performed by stopping the flow of hot water supplied from the hot water storage tank to the condensing heat exchanger, opening the expansion valve to a specified degree, and circulating the high-temperature refrigerant discharged from the compressor through the evaporative heat exchanger without switching the connection of the refrigerant circuit to remove frost.

しかし、この除霜運転中に、液化した冷媒によって冷媒回路内の冷媒の流動が滞ってしまい、圧縮機に過剰な運転負荷かがかかる場合がある。例えば膨張弁において、液化した冷媒が気体の冷媒の流動を妨げ、圧縮機の吐出圧力が上昇して運転負荷が増加する場合がある。そして、この除霜運転時の過剰な運転負荷による圧縮機の耐久性劣化又は破損が懸念されている。 However, during this defrosting operation, the liquefied refrigerant may impede the flow of refrigerant in the refrigerant circuit, placing an excessive operating load on the compressor. For example, in the expansion valve, the liquefied refrigerant may impede the flow of gaseous refrigerant, causing the discharge pressure of the compressor to rise and increasing the operating load. There is concern that the excessive operating load during this defrosting operation may cause the compressor to deteriorate in durability or break.

そこで、本発明は、除霜運転中のヒートポンプユニットの圧縮機に過剰な運転負荷がかかることを軽減することができる貯湯給湯装置を提供することを目的としている。 The present invention aims to provide a hot water storage and hot water supply device that can reduce excessive operating load on the compressor of a heat pump unit during defrosting operation.

請求項1の発明の貯湯給湯装置は、圧縮機と凝縮熱交換器と膨張弁と蒸発熱交換器とを冷媒回路により接続して構成されたヒートポンプユニットと、貯湯タンクと、前記ヒートポンプユニットで加熱された湯水を前記貯湯タンクに貯湯する貯湯運転を制御する制御部を備えた貯湯給湯装置において、前記圧縮機の冷媒の吐出温度を検知する吐出温度検知手段と、前記蒸発熱交換器の出口の冷媒温度を検知する蒸発熱交出口温度検知手段を備え、前記制御部は、前記貯湯運転中に前記蒸発熱交換器の出口の冷媒温度に基づいて前記蒸発熱交換器の着霜を検知した場合にこの霜を除去する除霜運転を開始し、この除霜運転開始から所定時間経過後の除霜運転中に前記吐出温度の上昇を検知した場合には前記圧縮機の運転回転数を減少させることを特徴としている。 The hot water storage and hot water supply device of the invention of claim 1 includes a heat pump unit formed by connecting a compressor, a condensing heat exchanger, an expansion valve, and an evaporative heat exchanger by a refrigerant circuit, a hot water storage tank, and a control unit that controls a hot water storage operation in which hot water heated by the heat pump unit is stored in the hot water storage tank. The device is equipped with a discharge temperature detection means that detects the discharge temperature of the refrigerant of the compressor, and an evaporative heat exchange outlet temperature detection means that detects the refrigerant temperature at the outlet of the evaporative heat exchanger. The control unit starts a defrosting operation to remove the frost when it detects frost on the evaporative heat exchanger based on the refrigerant temperature at the outlet of the evaporative heat exchanger during the hot water storage operation, and reduces the operating speed of the compressor when it detects an increase in the discharge temperature during the defrosting operation after a predetermined time has elapsed since the start of the defrosting operation.

上記構成によれば、貯湯給湯装置は、ヒートポンプユニットで加熱した湯水を貯湯タンクに貯湯し、この貯湯運転中にヒートポンプユニットの蒸発熱交換器の着霜を検知した場合にこの霜を除去する除霜運転を開始する。そして、この除霜運転開始から所定時間経過後の除霜運転中に圧縮機が吐出する冷媒の吐出温度の上昇を検知した場合に、圧縮機の運転回転数を減少させる。除霜運転中の圧縮機が吐出する冷媒の吐出温度の上昇は吐出圧力の上昇によるものであり、圧縮機の運転負荷の増加を示しているので、圧縮機の運転回転数を減少させて運転負荷の増加を軽減することができる。従って、除霜運転中のヒートポンプユニットの圧縮機にかかる過剰な運転負荷を軽減することができ、圧縮機の耐久性劣化又は破損を防止することができる。 According to the above configuration, the hot water storage and hot water supply device stores hot water heated by the heat pump unit in the hot water storage tank, and when frost formation on the evaporative heat exchanger of the heat pump unit is detected during this hot water storage operation, a defrosting operation is started to remove the frost. Then, when an increase in the discharge temperature of the refrigerant discharged by the compressor is detected during the defrosting operation after a predetermined time has elapsed since the start of the defrosting operation, the operating speed of the compressor is reduced. Since the increase in the discharge temperature of the refrigerant discharged by the compressor during the defrosting operation is caused by an increase in the discharge pressure and indicates an increase in the operating load of the compressor, the operating speed of the compressor can be reduced to reduce the increase in the operating load. Therefore, the excessive operating load on the compressor of the heat pump unit during the defrosting operation can be reduced, and deterioration of the durability or damage to the compressor can be prevented.

請求項2の発明の貯湯給湯装置は、請求項1の発明において、前記制御部は、前記吐出温度の上昇幅に応じた前記運転回転数の減少幅を設定することを特徴としている。
上記構成によれば、圧縮機の吐出温度の上昇幅に対応させて圧縮機の運転回転数の減少幅を設定するので、圧縮機の運転負荷の増加に応じて運転回転数を減少させて運転負荷の増加を軽減することができる。
The hot water storage and hot water supply device of the present invention according to claim 2 is the first invention, characterized in that the control unit sets a range of decrease in the operating rotation speed in accordance with a range of increase in the discharge temperature.
According to the above configuration, the reduction range of the operating speed of the compressor is set in accordance with the increase range of the compressor discharge temperature, so that the operating speed can be reduced in response to an increase in the operating load of the compressor, thereby mitigating the increase in the operating load.

請求項3の発明の貯湯給湯装置は、請求項1又は2の発明において、前記制御部は、前記運転回転数を減少させた後で前記吐出温度の下降を検知した場合に、前記吐出温度の下降幅に応じて前記運転回転数の増加幅を設定して前記運転回転数を増加させることを特徴としている。
上記構成によれば、圧縮機の運転負荷の軽減後に圧縮機の吐出温度の下降を検知した場合に、この吐出温度の下降幅に対応させて圧縮機の運転回転数の増加幅を設定してこの圧縮機の運転回転数を増加させる。運転回転数減少後の圧縮機が吐出する冷媒の吐出温度の下降は圧縮機の吐出圧力の低下によるものであり、圧縮機の運転負荷が減少しているので、圧縮機の運転回転数を増加させて、運転回転数減少前の状態に近づける。従って、除霜運転中のヒートポンプユニットの圧縮機に過剰な運転負荷がかからなくなった後、除霜運転開始当初の運転回転数に近づけるので、除霜運転の所要時間が長くならないようにすることができる。
The hot water storage and hot water supply device of the invention of claim 3 is characterized in that, in the invention of claim 1 or 2, the control unit, when it detects a decrease in the discharge temperature after reducing the operating speed, increases the operating speed by setting an increase in the operating speed according to the decrease in the discharge temperature.
According to the above configuration, when a drop in the discharge temperature of the compressor is detected after the operating load of the compressor is reduced, the increase range of the operating speed of the compressor is set corresponding to the drop range of the discharge temperature, and the operating speed of the compressor is increased. The drop in the discharge temperature of the refrigerant discharged from the compressor after the operating speed is reduced is due to a drop in the discharge pressure of the compressor, and since the operating load of the compressor is reduced, the operating speed of the compressor is increased to approach the state before the reduction in the operating speed. Therefore, after the excessive operating load on the compressor of the heat pump unit during the defrosting operation is no longer imposed, the operating speed is brought close to the operating speed at the start of the defrosting operation, so that the time required for the defrosting operation can be prevented from becoming long.

本発明の貯湯給湯装置によれば、除霜運転中のヒートポンプユニットの圧縮機にかかる過剰な運転負荷を軽減することができる。 The hot water storage and hot water supply device of the present invention can reduce the excessive operating load on the compressor of the heat pump unit during defrosting operation.

本発明の実施例に係る貯湯給湯装置の説明図である。1 is an explanatory diagram of a hot water storage and heating device according to an embodiment of the present invention. 図1のヒートポンプユニットの説明図である。FIG. 2 is an explanatory diagram of the heat pump unit of FIG. 1 . 貯湯運転制御のフローチャートである。4 is a flowchart of hot water storage operation control. 除霜運転制御のフローチャートである。4 is a flowchart of a defrosting operation control. 除霜運転中の圧縮機の吐出温度と吐出圧力、膨張弁の出口の冷媒温度と蒸発熱交換器の出口の冷媒温度の変動を示すデータの例である。13 is an example of data showing fluctuations in the discharge temperature and discharge pressure of the compressor, the refrigerant temperature at the outlet of the expansion valve, and the refrigerant temperature at the outlet of the evaporative heat exchanger during a defrosting operation.

以下、本発明を実施するための形態について実施例に基づいて説明する。 The following describes the form for implementing the present invention based on examples.

最初に、本発明の貯湯給湯装置1の構成について説明する。
図1に示すように、貯湯給湯装置1は、貯湯タンク2を備えた貯湯ユニット3と、ヒートポンプユニット4と、例えば燃焼式の補助熱源機5を有する。この貯湯給湯装置1は、ヒートポンプユニット4で所定の目標貯湯温度に加熱された湯水を貯湯タンク2に貯湯する貯湯運転を行う。補助熱源機5は、矢印HWで示すように給湯設定温度の湯水を給湯栓6から給湯するために、貯湯ユニット3から出湯された湯水をその温度に応じて加熱して、又は非加熱で、給湯栓6に供給する。
First, the configuration of the hot water storage and supplying apparatus 1 of the present invention will be described.
As shown in Fig. 1, the hot water storage and hot water supply device 1 has a hot water storage unit 3 equipped with a hot water storage tank 2, a heat pump unit 4, and, for example, a combustion-type auxiliary heat source device 5. This hot water storage and hot water supply device 1 performs a hot water storage operation in which hot water heated to a predetermined target hot water storage temperature by the heat pump unit 4 is stored in the hot water storage tank 2. The auxiliary heat source device 5 supplies the hot water discharged from the hot water storage unit 3 to the hot water supply tap 6 either heated or unheated depending on the temperature of the hot water, in order to supply hot water at a hot water supply setting temperature from the hot water supply tap 6 as shown by the arrow HW.

次に、貯湯ユニット3について説明する。
貯湯タンク2の下部には、ヒートポンプユニット4に貯湯タンク2の湯水を供給するために、貯湯ポンプ7を備えた往き通路8が接続されている。貯湯タンク2の上部には、ヒートポンプユニット4で加熱された湯水を貯湯タンク2に貯湯するための戻り通路9が接続されている。戻り通路9の途中には、湯水の流路を切り替える切替弁10が配設され、この切替弁10において戻り通路9から分岐された戻り分岐通路9aが、往き通路8の貯湯ポンプ7よりも上流部分に接続されている。
Next, the hot water storage unit 3 will be described.
A supply passage 8 equipped with a hot water storage pump 7 is connected to the bottom of the hot water storage tank 2 in order to supply hot water from the hot water storage tank 2 to the heat pump unit 4. A return passage 9 is connected to the top of the hot water storage tank 2 in order to store the hot water heated by the heat pump unit 4 in the hot water storage tank 2. A changeover valve 10 for switching the flow path of the hot water is disposed midway through the return passage 9, and a return branch passage 9a branched off from the return passage 9 at this changeover valve 10 is connected to a portion of the supply passage 8 upstream of the hot water storage pump 7.

戻り通路9の切替弁10よりも上流側には、ヒートポンプユニット4で加熱された湯水の温度を検知する戻り温度センサ9bが配設されている。例えばヒートポンプユニット4の起動直後における戻り温度センサ9bの検知温度が所定の貯湯設定温度よりも低い場合に、切替弁10を貯湯タンク2側から戻り分岐通路9a側に切り替えて、十分に加熱できるようになるまで貯湯タンク2に湯水を戻さずに循環させることができる。 A return temperature sensor 9b is disposed upstream of the switching valve 10 in the return passage 9 to detect the temperature of the hot water heated by the heat pump unit 4. For example, if the temperature detected by the return temperature sensor 9b immediately after starting the heat pump unit 4 is lower than a predetermined hot water set temperature, the switching valve 10 can be switched from the hot water tank 2 side to the return branch passage 9a side to circulate the hot water without returning it to the hot water tank 2 until it can be heated sufficiently.

貯湯タンク2の底部には、矢印CWで示す上水を供給する給水通路11が接続されている。貯湯タンク2の頂部には、貯湯ユニット3から貯湯タンク2の湯水を出湯するための出湯通路12が接続されている。出湯通路12の途中には混合弁14が配設され、給水通路11の途中から分岐された給水分岐通路11aが混合弁14に接続されている。そして、貯湯タンク2からの湯水と給水分岐通路11aからの上水とが、混合弁14で混合されて貯湯ユニット3から出湯される。 A water supply passage 11 that supplies clean water, as indicated by the arrow CW, is connected to the bottom of the hot water storage tank 2. A hot water outlet passage 12 that allows the hot water in the hot water storage tank 2 to be discharged from the hot water storage unit 3 is connected to the top of the hot water storage tank 2. A mixing valve 14 is provided midway along the hot water outlet passage 12, and a water supply branch passage 11a that branches off from midway along the water supply passage 11 is connected to the mixing valve 14. The hot water from the hot water storage tank 2 and the clean water from the water supply branch passage 11a are mixed by the mixing valve 14 and discharged from the hot water storage unit 3.

貯湯タンク2には、複数の貯湯温度センサ2a~2dが高さ方向に所定の間隔を空けて配設されており、貯湯タンク2に貯湯された湯水の温度とその温度の湯水の貯湯量を検知することができる。そして、貯湯された湯水の降温を防ぐため、これら貯湯温度センサ2a~2dと貯湯タンク2を覆うように図示外の断熱材が配設されている。 The hot water storage tank 2 has multiple hot water temperature sensors 2a-2d arranged at a predetermined interval in the vertical direction, which can detect the temperature of the hot water stored in the hot water storage tank 2 and the amount of hot water stored at that temperature. In order to prevent the temperature of the stored hot water from dropping, insulation material (not shown) is arranged to cover the hot water temperature sensors 2a-2d and the hot water storage tank 2.

給水通路11には、給水通路11を流通する上水の温度(給水温度)を検知する給水温度センサ11bが配設されている。出湯通路12には、貯湯ユニット3からの出湯流量を検知する出湯流量センサ12aと、貯湯タンク2から出湯されて混合弁14に供給される湯水の温度を検知する貯湯タンク出湯温度センサ12bと、貯湯ユニット3からの出湯温度を検知する出湯温度センサ12cが配設されている。出湯通路12は、湯水通路15によって補助熱源機5の給水口5aに接続され、補助熱源機5の給湯口5bは、湯水通路16によって給湯栓6に接続されている。 A water supply temperature sensor 11b is provided in the water supply passage 11 to detect the temperature (water supply temperature) of the clean water flowing through the water supply passage 11. A water outlet flow rate sensor 12a is provided in the hot water outlet passage 12 to detect the hot water outlet flow rate from the hot water storage unit 3, a hot water storage tank outlet water temperature sensor 12b is provided in the hot water outlet passage 12 to detect the temperature of the hot water that is discharged from the hot water storage tank 2 and supplied to the mixing valve 14, and an outlet water temperature sensor 12c is provided in the hot water outlet passage 12 to detect the hot water outlet temperature from the hot water storage unit 3. The hot water outlet passage 12 is connected to the water supply port 5a of the auxiliary heat source unit 5 by a hot water passage 15, and the hot water supply port 5b of the auxiliary heat source unit 5 is connected to the hot water tap 6 by a hot water passage 16.

貯湯ユニット3は、例えば貯湯運転の制御、貯湯ユニット3から出湯する湯水の温度調整の制御等を行う貯湯ユニット制御部18(制御部)を有する。貯湯ユニット制御部18は、ヒートポンプユニット4と貯湯ポンプ7を駆動して、ヒートポンプユニット4で加熱した湯水を貯湯タンク2の上部から貯湯する貯湯運転を行う。また、出湯流量センサ12aが所定の流量以上の流量を検知した場合に、給水温度センサ11b及び貯湯タンク出湯温度センサ12bの検知温度に基づいて、出湯温度センサ12cの検知温度が所定の出湯温度になるように混合弁14の混合比を調整して出湯する。 The hot water storage unit 3 has a hot water storage unit control unit 18 (control unit) that, for example, controls the hot water storage operation and controls the temperature adjustment of the hot water discharged from the hot water storage unit 3. The hot water storage unit control unit 18 drives the heat pump unit 4 and the hot water storage pump 7 to perform hot water storage operation in which hot water heated by the heat pump unit 4 is stored from the top of the hot water storage tank 2. When the hot water outlet flow rate sensor 12a detects a flow rate equal to or greater than a predetermined flow rate, the mixing ratio of the mixing valve 14 is adjusted based on the temperatures detected by the water supply temperature sensor 11b and the hot water storage tank outlet temperature sensor 12b, and hot water is discharged so that the temperature detected by the outlet temperature sensor 12c becomes the predetermined outlet temperature.

貯湯ユニット制御部18と補助熱源機5には、例えば給湯設定温度等を給湯使用者が設定するための操作端末19が接続されている。操作端末19は複数台接続されていてもよく、貯湯ユニット3に対応する操作端末19が貯湯ユニット制御部18に接続され、補助熱源機5に対応する操作端末が補助熱源機5に接続されていてもよい。 An operation terminal 19 is connected to the hot water storage unit control unit 18 and the auxiliary heat source unit 5, for example, so that the hot water supply user can set the hot water supply setting temperature, etc. A plurality of operation terminals 19 may be connected, and an operation terminal 19 corresponding to the hot water storage unit 3 may be connected to the hot water storage unit control unit 18, and an operation terminal corresponding to the auxiliary heat source unit 5 may be connected to the auxiliary heat source unit 5.

次に、ヒートポンプユニット4について説明する。
図2に示すように、ヒートポンプユニット4は、圧縮機21と凝縮熱交換器22と膨張弁23と蒸発熱交換器24とを冷媒回路25により接続して構成されている。冷媒回路25には、圧縮機21、凝縮熱交換器22、膨張弁23、蒸発熱交換器24を通過させる冷媒が封入されている。この冷媒回路25には、圧縮機21が吐出した冷媒の温度を検知する吐出温度センサ26(吐出温度検知手段)と、蒸発熱交換器24の出口の冷媒温度を検知する蒸発熱交出口温度センサ27(蒸発熱交出口温度検知手段)が配設されている。
Next, the heat pump unit 4 will be described.
2, the heat pump unit 4 is configured by connecting a compressor 21, a condensing heat exchanger 22, an expansion valve 23, and an evaporative heat exchanger 24 by a refrigerant circuit 25. The refrigerant circuit 25 is filled with refrigerant that passes through the compressor 21, the condensing heat exchanger 22, the expansion valve 23, and the evaporative heat exchanger 24. The refrigerant circuit 25 is provided with a discharge temperature sensor 26 (discharge temperature detection means) that detects the temperature of the refrigerant discharged from the compressor 21, and an evaporative heat exchanger outlet temperature sensor 27 (evaporative heat exchanger outlet temperature detection means) that detects the refrigerant temperature at the outlet of the evaporative heat exchanger 24.

ヒートポンプユニット4は、蒸発熱交換器24に外気を送る送風ファン28と、貯湯ユニット制御部18の指令に基づいてヒートポンプユニット4を制御するヒートポンプユニット制御部29を備えている。ヒートポンプユニット制御部29は、吐出温度センサ26、蒸発熱交出口温度センサ27の検知温度を取得し、通信線29aを介して貯湯ユニット制御部18と通信し、圧縮機21の運転回転数と膨張弁23の開度と送風ファン28の送風量を制御する。 The heat pump unit 4 includes a blower fan 28 that sends outside air to the evaporative heat exchanger 24, and a heat pump unit control unit 29 that controls the heat pump unit 4 based on commands from the hot water storage unit control unit 18. The heat pump unit control unit 29 acquires the detected temperatures of the discharge temperature sensor 26 and the evaporative heat exchange outlet temperature sensor 27, communicates with the hot water storage unit control unit 18 via a communication line 29a, and controls the operating speed of the compressor 21, the opening of the expansion valve 23, and the air flow rate of the blower fan 28.

圧縮機21は、圧縮して高温になった高温高圧の冷媒を凝縮熱交換器22に供給する。凝縮熱交換器22では、貯湯ポンプ7によって供給される貯湯タンク2の湯水が、高温の冷媒との熱交換により目標貯湯温度に加熱され、貯湯タンク2に戻される。凝縮熱交換器22での熱交換により温度が下がった高圧の冷媒は、膨張弁23に送られる。 The compressor 21 supplies the compressed, high-temperature, high-pressure refrigerant to the condensing heat exchanger 22. In the condensing heat exchanger 22, the hot water in the hot water storage tank 2 supplied by the hot water storage pump 7 is heated to the target hot water storage temperature by heat exchange with the high-temperature refrigerant and returned to the hot water storage tank 2. The high-pressure refrigerant whose temperature has been reduced by heat exchange in the condensing heat exchanger 22 is sent to the expansion valve 23.

膨張弁23は、例えば電動モータの駆動により絞り量を変更することができる制御弁である。この膨張弁23に送られた高圧の冷媒は、膨張弁23を通過する際に急激に膨張して外気よりも低温になり、蒸発熱交換器24に送られる。そして、蒸発熱交換器24において送風ファン28によって送風される外気から吸熱して温度が上がった冷媒が、圧縮機21に戻って再び圧縮され高温になる。 The expansion valve 23 is a control valve whose throttle amount can be changed by driving an electric motor, for example. The high-pressure refrigerant sent to this expansion valve 23 expands rapidly as it passes through the expansion valve 23, becoming colder than the outside air, and is sent to the evaporation heat exchanger 24. The refrigerant, whose temperature has increased as it absorbs heat from the outside air blown by the blower fan 28 in the evaporation heat exchanger 24, returns to the compressor 21, where it is compressed again and becomes hot again.

次に、貯湯運転及びこの貯湯運転中に行われる除霜運転について説明する。
貯湯ユニット制御部18は、給湯使用の時刻、使用量等を給湯使用履歴として学習記憶し、この給湯使用履歴に基づいて将来の給湯使用の給湯使用開始時刻、使用量等の予測を行う。そして、予測した給湯使用開始時刻までに予測した使用量に相当する必要熱量を貯湯する貯湯運転を行う。この貯湯運転の制御について図3のフローチャートに基づいて説明する。図中のSi(i=1,2,・・・)はステップを表す。
Next, the hot water storage operation and the defrosting operation carried out during this hot water storage operation will be described.
The hot water storage unit control unit 18 learns and stores the time of hot water use, the amount of use, etc. as a hot water use history, and predicts the start time of future hot water use, the amount of use, etc. based on this hot water use history. Then, it performs a hot water storage operation to store the amount of heat required equivalent to the predicted amount of use until the predicted hot water use start time. The control of this hot water storage operation will be described based on the flowchart in Figure 3. In the figure, Si (i = 1, 2, ...) represents a step.

貯湯運転制御が開始されると、S1において給湯使用の予測に基づいて目標貯湯温度の貯湯運転を開始してS2に進む。具体的にはヒートポンプユニット4を作動させ、貯湯ポンプ7を駆動する。ヒートポンプユニット4は、送風ファン28を駆動し、圧縮機21を所定の運転回転数で駆動し、膨張弁23を所定の開度にして冷媒回路25内の冷媒を流動させ、凝縮熱交換器22で貯湯タンク2からの湯水を加熱する。 When hot water storage operation control is started, in S1, hot water storage operation at a target hot water storage temperature is started based on the prediction of hot water use, and the process proceeds to S2. Specifically, the heat pump unit 4 is operated and the hot water storage pump 7 is driven. The heat pump unit 4 drives the blower fan 28, drives the compressor 21 at a predetermined operating speed, opens the expansion valve 23 to a predetermined degree to cause the refrigerant in the refrigerant circuit 25 to flow, and heats the hot water from the hot water storage tank 2 in the condensing heat exchanger 22.

S2において、目標貯湯温度で必要熱量の貯湯が完了したか否か判定する。S2の判定がYesの場合はS3に進み、S3において貯湯運転を終了して貯湯運転制御を終了する。一方、S2の判定がNo場合はS4に進み、S4において蒸発熱交換器24の出口の冷媒温度の変動に基づいて蒸発熱交換器24に着霜したか否か判定する。この着霜判定は、貯湯運転開始からしばらく時間が経過すると、蒸発熱交換器24着霜によって冷媒が外気から吸熱し難くなって蒸発熱交換器24の出口の冷媒温度が低下することを利用している。S4の判定がNoの場合はS2に戻って貯湯運転を継続する。 In S2, it is determined whether or not the storage of the required amount of heat at the target hot water storage temperature has been completed. If the determination in S2 is Yes, the process proceeds to S3, where the hot water storage operation is terminated and hot water storage operation control is terminated. On the other hand, if the determination in S2 is No, the process proceeds to S4, where it is determined whether or not frost has formed on the evaporative heat exchanger 24 based on fluctuations in the refrigerant temperature at the outlet of the evaporative heat exchanger 24. This frost determination utilizes the fact that after some time has passed since the start of hot water storage operation, frost has formed on the evaporative heat exchanger 24, making it difficult for the refrigerant to absorb heat from the outside air, causing the refrigerant temperature at the outlet of the evaporative heat exchanger 24 to drop. If the determination in S4 is No, the process returns to S2 and the hot water storage operation continues.

一方、S4の判定がYesの場合はS5に進み、S5において貯湯ポンプ7を停止することにより貯湯運転を中断して、S6に進む。そしてS6において、除霜運転制御を行う。蒸発熱交換器24の着霜は、冷媒が外気から吸熱することを妨げて貯湯運転の効率を低下させるので、効率よく貯湯運転ができるように除霜運転を行って、蒸発熱交換器24についた霜を除去する。 On the other hand, if the determination in S4 is Yes, the process proceeds to S5, where the hot water storage pump 7 is stopped to interrupt the hot water storage operation, and the process proceeds to S6. Then, in S6, defrosting operation control is performed. Since frost on the evaporative heat exchanger 24 prevents the refrigerant from absorbing heat from the outside air and reduces the efficiency of the hot water storage operation, a defrosting operation is performed to remove the frost on the evaporative heat exchanger 24 so that the hot water storage operation can be performed efficiently.

除霜運転制御は、図4に示すように、最初にS11において送風ファン28を停止させ、膨張弁23を除霜開度にし、圧縮機21の運転回転数を除霜回転数(例えば75回転/秒)に変更してS12に進む。 As shown in FIG. 4, the defrost operation control first proceeds to S11, where the blower fan 28 is stopped, the expansion valve 23 is set to the defrost opening, and the operating speed of the compressor 21 is changed to the defrost speed (e.g., 75 rpm), and then the process proceeds to S12.

S12において、蒸発熱交換器24の出口の冷媒温度と圧縮機21の吐出温度を取得してS13に進み、S13において除霜対象の蒸発熱交換器24の出口の冷媒温度が所定の除霜必要温度以上になったか否か判定する。除霜が完了したか否か判定するステップである。蒸発熱交換器24についた霜が除去されると、冷媒からの放熱が減少して蒸発熱交換器24の出口の冷媒温度が例えば0℃から上昇してゆく。この冷媒の温度が予め設定された除霜必要温度(例えば5℃)以上になってS13の判定がYesの場合は、除霜が完了したのでS14に進み、S14において除霜運転を終了してリターンし、図3のS7に進む。そしてS7において、貯湯運転を中断した状態から貯湯運転を再開してS2に戻る。S2の判定がYesの場合にはS3に進み、S3において貯湯運転を終了して貯湯運転制御を終了する。 In S12, the refrigerant temperature at the outlet of the evaporative heat exchanger 24 and the discharge temperature of the compressor 21 are obtained, and the process proceeds to S13. In S13, it is determined whether the refrigerant temperature at the outlet of the evaporative heat exchanger 24 to be defrosted has reached or exceeded a predetermined required defrost temperature. This is a step for determining whether defrosting has been completed. When the frost on the evaporative heat exchanger 24 is removed, the heat emitted from the refrigerant decreases and the refrigerant temperature at the outlet of the evaporative heat exchanger 24 rises from, for example, 0°C. If the temperature of this refrigerant reaches or exceeds a preset required defrost temperature (for example, 5°C) and the determination in S13 is Yes, the defrosting is completed, so the process proceeds to S14, the defrosting operation is terminated in S14, the process returns, and the process proceeds to S7 in FIG. 3. Then, in S7, the hot water storage operation is resumed from the state in which the hot water storage operation was interrupted, and the process returns to S2. If the determination in S2 is Yes, the process proceeds to S3, the hot water storage operation is terminated in S3, and the hot water storage operation control is terminated.

一方、図4のS13の判定がNoの場合は除霜運転を継続してS15に進み、S15において除霜運転開始から所定時間経過したか否か判定する。ここで、除霜運転中の圧縮機21の冷媒の吐出温度と吐出圧力と、膨張弁23の出口の冷媒温度と蒸発熱交換器24の出口の冷媒温度の推移を実験的に記録した例を図5に示す。実線L1は圧縮機21の冷媒の吐出温度、破線L2は圧縮機21の冷媒の吐出圧力、実線L3は膨張弁23の出口における冷媒の温度、実線L4は蒸発熱交換器24の出口における冷媒の温度である。 On the other hand, if the determination in S13 in FIG. 4 is No, the defrosting operation continues and proceeds to S15, where it is determined whether or not a predetermined time has elapsed since the start of the defrosting operation. FIG. 5 shows an example of experimentally recorded changes in the refrigerant discharge temperature and discharge pressure of the compressor 21 during defrosting operation, the refrigerant temperature at the outlet of the expansion valve 23, and the refrigerant temperature at the outlet of the evaporative heat exchanger 24. The solid line L1 is the refrigerant discharge temperature of the compressor 21, the dashed line L2 is the refrigerant discharge pressure of the compressor 21, the solid line L3 is the refrigerant temperature at the outlet of the expansion valve 23, and the solid line L4 is the refrigerant temperature at the outlet of the evaporative heat exchanger 24.

貯湯運転中の時刻t0で除霜運転が開始されると、圧縮機21の運転回転数の変更と膨張弁23の駆動によって吐出圧力、吐出温度が変動すると共に、膨張弁23の出口及び蒸発熱交換器24の出口の冷媒の温度が変動する。この図5では、吐出圧力が貯湯運転時よりも一旦下がった後貯湯運転時よりも高くなるまで徐々に上昇し、時刻t1以降は概ね2MPaで安定している。また、吐出温度は、貯湯運転時よりも下がってゆき、時刻t1以降は吐出温度の低下が緩やかになっている。膨張弁23の出口の冷媒温度は、貯湯運転時と比べて一旦低くなった後、吐出圧力の上昇に対応するように25℃程度まで上昇して時刻t1以降で概ね安定する。蒸発熱交換器24の出口の冷媒温度は、外気との熱交換が殆どなく、霜を解かすために放熱するので貯湯運転時と比べて一旦低くなるが、膨張弁23から供給される冷媒の温度が上昇するので0℃程度まで上昇して、時刻t1以降で安定している。 When the defrosting operation is started at time t0 during the hot water storage operation, the discharge pressure and discharge temperature fluctuate due to the change in the operating speed of the compressor 21 and the drive of the expansion valve 23, and the temperature of the refrigerant at the outlet of the expansion valve 23 and the outlet of the evaporative heat exchanger 24 fluctuate. In FIG. 5, the discharge pressure drops once from the hot water storage operation, then gradually rises until it becomes higher than the hot water storage operation, and after time t1, it stabilizes at about 2 MPa. In addition, the discharge temperature drops more than during the hot water storage operation, and after time t1, the decrease in the discharge temperature becomes gradual. The refrigerant temperature at the outlet of the expansion valve 23 becomes lower once compared to the hot water storage operation, then rises to about 25°C in response to the increase in discharge pressure, and after time t1, it stabilizes approximately. The refrigerant temperature at the outlet of the evaporative heat exchanger 24 is initially lower than during hot water storage operation because there is almost no heat exchange with the outside air and heat is released to melt the frost, but the temperature of the refrigerant supplied from the expansion valve 23 rises, so it rises to about 0°C and stabilizes after time t1.

この安定するまでにかかる時間を所定時間として定めており、例えば時刻t0から時刻t1までの時間が所定時間に相当する。図4のS15の判定がNoの場合はS12に戻る。S15の判定がYesの場合はS16に進み、S16において圧縮機21の冷媒の吐出温度が上昇し始めたか否か判定する。ここで、図5の除霜運転途中の時刻t2において、例えば液化した冷媒が膨張弁23を閉塞して高温高圧の気体の冷媒が膨張弁23を通過できず、膨張弁23の出口温度が急低下している。これにより圧縮機21の吐出圧力と吐出温度が上昇する。しばらくすると、この液化した冷媒による閉塞は、高温高圧の冷媒によって押し流されて又は気化して自然に解消され、時刻t3において圧縮機21の吐出圧力と吐出温度が下降に転じると共に膨張弁23の出口温度が回復し始める。 The time required for this stabilization is set as the predetermined time, and for example, the time from time t0 to time t1 corresponds to the predetermined time. If the judgment in S15 in FIG. 4 is No, the process returns to S12. If the judgment in S15 is Yes, the process proceeds to S16, where it is judged whether the discharge temperature of the refrigerant of the compressor 21 has started to rise. Here, at time t2 during the defrosting operation in FIG. 5, for example, liquefied refrigerant blocks the expansion valve 23, so that the high-temperature, high-pressure gas refrigerant cannot pass through the expansion valve 23, and the outlet temperature of the expansion valve 23 drops sharply. This causes the discharge pressure and discharge temperature of the compressor 21 to rise. After a while, the blockage caused by the liquefied refrigerant is naturally eliminated by being washed away by the high-temperature, high-pressure refrigerant or vaporized, and at time t3, the discharge pressure and discharge temperature of the compressor 21 start to drop and the outlet temperature of the expansion valve 23 starts to recover.

しかし、その間は圧縮機21の吐出圧力が時刻t1までの安定した吐出圧力よりも高くなっており、圧縮機21に過剰な運転負荷がかかっているため、圧縮機21の耐久性の劣化又は故障の虞がある。そのため、この一時的な閉塞による圧縮機21の過剰な運転負荷を軽減するために、安定していた吐出圧力の上昇に伴い吐出温度が上昇し始めたときに運転負荷を軽減するように除霜運転を制御する。 However, during that time, the discharge pressure of the compressor 21 is higher than the stable discharge pressure up to time t1, and an excessive operating load is placed on the compressor 21, which may cause a deterioration in durability or failure of the compressor 21. Therefore, in order to reduce the excessive operating load on the compressor 21 caused by this temporary blockage, the defrosting operation is controlled to reduce the operating load when the discharge temperature begins to rise as the stable discharge pressure increases.

図4のS16の判定がNoの場合は、圧縮機21が過剰な運転負荷の状態ではないのでS12に戻る。一方、S16の判定がYesの場合は、圧縮機21が過剰な運転負荷の状態になっているのでS17に進み、S17において圧縮機21の運転回転数を吐出温度の上昇幅に応じた減少幅で減少させて、S18に進む。 If the determination in S16 in FIG. 4 is No, the compressor 21 is not in an excessively loaded state, and the process returns to S12. On the other hand, if the determination in S16 is Yes, the compressor 21 is in an excessively loaded state, and the process proceeds to S17, where the operating speed of the compressor 21 is reduced by a reduction amount corresponding to the increase amount of the discharge temperature, and the process proceeds to S18.

圧縮機21が過剰な運転負荷の状態にあると耐久性の劣化又は破損の虞があるため好ましくないので、圧縮機21の運転回転数を吐出温度の上昇幅に応じた減少幅で減少させて吐出圧力の上昇を小さく抑え、圧縮機21の運転負荷を軽減している。圧縮機21の運転回転数の減少幅は、圧縮機21に応じて適宜設定され、例えば吐出温度の上昇幅0.5℃につき5回転/秒だけ下げるようにする。このとき、圧縮機21にかかる運転負荷を一層軽減するために、例えば1秒につき1回転下げるように緩やかに運転回転数を下げる。 As excessive operating load on the compressor 21 is undesirable due to the risk of deterioration of durability or damage, the operating speed of the compressor 21 is reduced by a reduction amount corresponding to the increase in discharge temperature to keep the increase in discharge pressure small and reduce the operating load on the compressor 21. The reduction amount of the operating speed of the compressor 21 is set appropriately according to the compressor 21, for example, by reducing it by 5 rotations/second for every 0.5°C increase in discharge temperature. At this time, in order to further reduce the operating load on the compressor 21, the operating speed is gradually reduced, for example by reducing it by one rotation per second.

S18において、圧縮機21の運転回転数を減少させた後の冷媒の吐出温度を取得してS19に進む。そしてS19において、冷媒の吐出温度が下降傾向に転じたか否か判定する。S19の判定がNoの場合はS17に戻り、冷媒の吐出温度が下降傾向に転じるまで圧縮機21の運転回転数を下げる。尚、運転回転数を予め設定された下限運転回転数よりも下げないようにしてもよい。 In S18, the refrigerant discharge temperature after the operating speed of the compressor 21 is reduced is obtained, and the process proceeds to S19. Then, in S19, it is determined whether the refrigerant discharge temperature has started to decrease. If the determination in S19 is No, the process returns to S17, and the operating speed of the compressor 21 is reduced until the refrigerant discharge temperature starts to decrease. Note that the operating speed may not be reduced below a preset lower limit operating speed.

一方、S19の判定がYesの場合はS20に進み、S20において圧縮機21の運転回転数を吐出温度の下降幅に応じた増加幅で増加させてS12に戻る。閉塞が解消されて圧縮機21の吐出圧力が低下し、吐出温度が下がるので、圧縮機21の運転回転数を増加させる。このとき圧縮機21にかかる運転負荷を軽減するために、例えば吐出温度の下降幅0.5℃につき5回転/秒だけ上げるようにし、圧縮機21にかかる運転負荷を一層軽減するために、例えば1秒につき1回転上げるように緩やかに運転回転数を上げる。最終的には、圧縮機21の運転回転数を除霜運転開始時の運転回転数に戻す。 On the other hand, if the determination in S19 is Yes, the process proceeds to S20, where the operating speed of the compressor 21 is increased by an increment corresponding to the decrease in the discharge temperature, and the process returns to S12. As the blockage is eliminated and the discharge pressure of the compressor 21 decreases, and the discharge temperature decreases, the operating speed of the compressor 21 is increased. In this case, in order to reduce the operating load on the compressor 21, the operating speed is increased by, for example, 5 rotations/second for every 0.5°C decrease in the discharge temperature, and in order to further reduce the operating load on the compressor 21, the operating speed is increased gradually, for example, by 1 rotation per second. Finally, the operating speed of the compressor 21 is returned to the operating speed at the start of the defrosting operation.

長時間の貯湯運転中には蒸発熱交換器24の着霜が何度か起き、その都度この除霜運転が行われる場合がある。一方、外気温がある程度高い場合には蒸発熱交換器24に着霜しないので、除霜運転を行うことなく貯湯が完了する。 During long-term hot water storage operation, frost may form on the evaporative heat exchanger 24 several times, and defrosting operation may be performed each time. On the other hand, if the outside temperature is relatively high, frost does not form on the evaporative heat exchanger 24, and hot water storage is completed without performing defrosting operation.

上記の貯湯給湯装置1の作用、効果について説明する。
貯湯給湯装置1は、ヒートポンプユニット4で加熱した湯水を貯湯タンク2に貯湯し、この貯湯運転中にヒートポンプユニット4の蒸発熱交換器24の着霜を検知した場合にこの霜を除去する除霜運転を開始する。そして、除霜運転開始から所定時間経過後の除霜運転中に圧縮機21が吐出する冷媒の吐出温度の上昇を検知した場合に、圧縮機21の運転回転数を減少させる。除霜運転中の圧縮機21が吐出する冷媒の吐出温度の上昇は、圧縮機21の吐出圧力の上昇によるものであり、圧縮機21の運転負荷が増加しているので、圧縮機21の運転回転数を減少させて運転負荷の増加を軽減することができる。従って、除霜運転中のヒートポンプユニット4の圧縮機21にかかる過剰な運転負荷を軽減することができ、圧縮機21の耐久性劣化又は破損を防止することができる。
The operation and effects of the above-mentioned hot water storage and supply device 1 will now be described.
The hot water storage and hot water supply device 1 stores hot water heated by the heat pump unit 4 in the hot water storage tank 2, and when frost formation on the evaporative heat exchanger 24 of the heat pump unit 4 is detected during the hot water storage operation, a defrosting operation is started to remove the frost. When an increase in the discharge temperature of the refrigerant discharged by the compressor 21 is detected during the defrosting operation after a predetermined time has elapsed since the start of the defrosting operation, the operating speed of the compressor 21 is reduced. The increase in the discharge temperature of the refrigerant discharged by the compressor 21 during the defrosting operation is caused by an increase in the discharge pressure of the compressor 21, and the operating load of the compressor 21 is increased. Therefore, the operating speed of the compressor 21 can be reduced to reduce the excessive operating load on the compressor 21 of the heat pump unit 4 during the defrosting operation, and the deterioration of durability or damage to the compressor 21 can be prevented.

このとき圧縮機21の吐出温度の上昇幅に対応させて圧縮機21の運転回転数の減少幅を設定するので、圧縮機21の運転負荷の増加に応じて運転回転数を減少させて、運転負荷の増加を軽減することができる。 At this time, the reduction range of the operating speed of the compressor 21 is set in accordance with the increase range of the discharge temperature of the compressor 21, so that the operating speed is reduced in response to an increase in the operating load of the compressor 21, thereby mitigating the increase in the operating load.

また、圧縮機21の運転負荷の軽減後に圧縮機21の吐出温度の下降を検知した場合に、この吐出温度の下降幅に対応させて圧縮機21の運転回転数の増加幅を設定し、この圧縮機21の運転回転数を増加させる。運転回転数減少後の圧縮機21が吐出する冷媒の吐出温度の下降は、圧縮機21の吐出圧力の低下によるものであり、圧縮機21にかかる運転負荷が減少しているので、圧縮機21の運転回転数を増加させて、運転回転数減少前の状態に近づける。従って、除霜運転中のヒートポンプユニット4の圧縮機21に過剰な運転負荷がかからなくなった後、除霜運転開始当初の運転回転数に近づけるので、除霜運転の所要時間が長くならないようにすることができる。 In addition, when a decrease in the discharge temperature of the compressor 21 is detected after the operating load of the compressor 21 is reduced, the increase range of the operating speed of the compressor 21 is set corresponding to the decrease range of the discharge temperature, and the operating speed of the compressor 21 is increased. The decrease in the discharge temperature of the refrigerant discharged from the compressor 21 after the operating speed is reduced is due to a decrease in the discharge pressure of the compressor 21, and since the operating load on the compressor 21 is reduced, the operating speed of the compressor 21 is increased to approach the state before the operating speed was reduced. Therefore, after the excessive operating load on the compressor 21 of the heat pump unit 4 during the defrosting operation is no longer imposed, the operating speed is brought closer to the operating speed at the start of the defrosting operation, so that the time required for the defrosting operation can be prevented from being long.

上記除霜運転における圧縮機21の過剰な運転負荷の軽減は、ヒートポンプユニット4を備えた設備機器に適用可能である。その他、当業者であれば、本発明の趣旨を逸脱することなく、上記実施形態に種々の変更を付加した形態で実施可能であり、本発明はそのような変更形態を包含するものである。 The reduction of the excessive operating load of the compressor 21 during the defrosting operation can be applied to equipment equipped with a heat pump unit 4. In addition, a person skilled in the art can implement the above embodiment in various modified forms without departing from the spirit of the present invention, and the present invention includes such modified forms.

1 :貯湯給湯装置
2 :貯湯タンク
2a~2d:貯湯温度センサ(貯湯熱量検知手段)
3 :貯湯ユニット
4 :ヒートポンプユニット
5 :補助熱源機
6 :給湯栓
7 :貯湯ポンプ
8 :往き通路
9 :戻り通路
9a :戻り分岐通路
10 :切替弁
11 :給水通路
11a :給水分岐通路
11b :給水温度センサ
12 :出湯通路
12a :出湯流量センサ
12b :貯湯タンク出湯温度センサ
12c :出湯温度センサ
14 :混合弁
15,16:湯水通路
18 :貯湯ユニット制御部(制御部)
19 :操作端末
21 :圧縮機
22 :凝縮熱交換器
23 :膨張弁
24 :蒸発熱交換器
25 :冷媒回路
26 :吐出温度センサ(吐出温度検知手段)
27 :蒸発熱交出口温度センサ(蒸発熱交出口温度検知手段)
28 :送風ファン
29 :ヒートポンプユニット制御部
1: Hot water storage and hot water supply device 2: Hot water storage tanks 2a to 2d: Hot water storage temperature sensor (hot water storage heat quantity detection means)
Description of the Reference Number 3: Hot water storage unit 4: Heat pump unit 5: Auxiliary heat source unit 6: Hot water tap 7: Hot water storage pump 8: Supply passage 9: Return passage 9a: Return branch passage 10: Switching valve 11: Water supply passage 11a: Water supply branch passage 11b: Water supply temperature sensor 12: Hot water outlet passage 12a: Hot water outlet flow rate sensor 12b: Hot water storage tank outlet hot water temperature sensor 12c: Hot water outlet temperature sensor 14: Mixing valve 15, 16: Hot water passage 18: Hot water storage unit control unit (control unit)
19: Operation terminal 21: Compressor
22: Condenser heat exchanger 23: Expansion valve 24: Evaporator heat exchanger 25: Refrigerant circuit
26: Discharge temperature sensor (discharge temperature detection means)
27: Evaporative heat exchange outlet temperature sensor (evaporative heat exchange outlet temperature detection means)
28: Blower fan 29: Heat pump unit control section

Claims (3)

圧縮機と凝縮熱交換器と膨張弁と蒸発熱交換器とを冷媒回路により接続して構成されたヒートポンプユニットと、貯湯タンクと、前記ヒートポンプユニットで加熱された湯水を前記貯湯タンクに貯湯する貯湯運転を制御する制御部を備えた貯湯給湯装置において、
前記圧縮機の冷媒の吐出温度を検知する吐出温度検知手段と、前記蒸発熱交換器の出口の冷媒温度を検知する蒸発熱交出口温度検知手段を備え、
前記制御部は、前記貯湯運転中に前記蒸発熱交換器の出口の冷媒温度に基づいて前記蒸発熱交換器の着霜を検知した場合にこの霜を除去する除霜運転を開始し、この除霜運転開始から所定時間経過後の除霜運転中に前記吐出温度の上昇を検知した場合には前記圧縮機の運転回転数を減少させることを特徴とする貯湯給湯装置。
A hot water storage and hot water supply device including a heat pump unit configured by connecting a compressor, a condensing heat exchanger, an expansion valve, and an evaporative heat exchanger by a refrigerant circuit, a hot water storage tank, and a control unit that controls a hot water storage operation in which hot water heated by the heat pump unit is stored in the hot water storage tank,
a discharge temperature detection means for detecting a discharge temperature of the refrigerant of the compressor, and an evaporation heat exchange outlet temperature detection means for detecting a refrigerant temperature at an outlet of the evaporation heat exchanger,
The control unit is characterized in that when frost is detected on the evaporative heat exchanger based on the refrigerant temperature at the outlet of the evaporative heat exchanger during the hot water storage operation, it starts a defrosting operation to remove the frost, and when an increase in the discharge temperature is detected during the defrosting operation after a predetermined time has elapsed since the start of the defrosting operation, it reduces the operating speed of the compressor.
前記制御部は、前記吐出温度の上昇幅に応じた前記運転回転数の減少幅を設定することを特徴とする請求項1に記載の貯湯給湯装置。 The hot water storage and hot water supply device according to claim 1, characterized in that the control unit sets the amount of decrease in the operating speed according to the amount of increase in the discharge temperature. 前記制御部は、前記運転回転数を減少させた後で前記吐出温度の下降を検知した場合に、前記吐出温度の下降幅に応じて前記運転回転数の増加幅を設定して前記運転回転数を増加させることを特徴とする請求項1又は2に記載の貯湯給湯装置。 The hot water storage and hot water supply device according to claim 1 or 2, characterized in that, when the control unit detects a decrease in the discharge temperature after reducing the operating speed, the control unit increases the operating speed by setting an increase in the operating speed according to the decrease in the discharge temperature.
JP2022168918A 2022-10-21 2022-10-21 Hot water storage and heating equipment Pending JP2024061161A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022168918A JP2024061161A (en) 2022-10-21 2022-10-21 Hot water storage and heating equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022168918A JP2024061161A (en) 2022-10-21 2022-10-21 Hot water storage and heating equipment

Publications (1)

Publication Number Publication Date
JP2024061161A true JP2024061161A (en) 2024-05-07

Family

ID=90925976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022168918A Pending JP2024061161A (en) 2022-10-21 2022-10-21 Hot water storage and heating equipment

Country Status (1)

Country Link
JP (1) JP2024061161A (en)

Similar Documents

Publication Publication Date Title
JP4867749B2 (en) Heat pump water heater
JP4078034B2 (en) Heat pump water heater
JP4738293B2 (en) Heat pump device and heat pump water heater
JP2010532462A (en) High temperature gas defrosting method and apparatus
JP2011027286A (en) Air conditioner
RU2465522C2 (en) Refrigerating device and method to control refrigerating device
JP2009036485A (en) Water heater
JP7135493B2 (en) heat pump water heater
JP2012077942A (en) Air conditioner
JP5589607B2 (en) Heat pump cycle equipment
JP2007139415A (en) Heat pump water heater
JP2017003158A (en) Heat pump device and hot water storage type water heater
JP5194492B2 (en) Heat pump water heater
JP2024061161A (en) Hot water storage and heating equipment
JP5440466B2 (en) Air conditioner
JP2007333340A (en) Heat pump type hot water supply apparatus
JP5293714B2 (en) Air conditioner
JP3876721B2 (en) Water heater
WO2022038869A1 (en) Battery temperature regulation system
JP2002340439A (en) Heat pump type hot-water supplier
JP2002213821A (en) Heat-pump water heater
JP7013854B2 (en) Hot water storage and hot water supply device
JP5218510B2 (en) Air conditioner
JP6969223B2 (en) Heat pump heat source machine
JP3573911B2 (en) Ice machine control device