JP2024059877A - Optical device, distance measuring device, distance measuring method, program, and recording medium - Google Patents

Optical device, distance measuring device, distance measuring method, program, and recording medium Download PDF

Info

Publication number
JP2024059877A
JP2024059877A JP2024028118A JP2024028118A JP2024059877A JP 2024059877 A JP2024059877 A JP 2024059877A JP 2024028118 A JP2024028118 A JP 2024028118A JP 2024028118 A JP2024028118 A JP 2024028118A JP 2024059877 A JP2024059877 A JP 2024059877A
Authority
JP
Japan
Prior art keywords
light
instantaneous
irradiation
distance
field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2024028118A
Other languages
Japanese (ja)
Inventor
修 加園
充 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pioneer Corp
Original Assignee
Pioneer Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Corp filed Critical Pioneer Corp
Priority to JP2024028118A priority Critical patent/JP2024059877A/en
Publication of JP2024059877A publication Critical patent/JP2024059877A/en
Pending legal-status Critical Current

Links

Images

Abstract

【課題】レーザ光の強度に関する安全基準を順守し、かつ遠方に位置する物体の測距を精度良く行うことが可能な光学装置を提供する。【解決手段】光学装置は、出射光を出射する光源を各々が含み、かつ各々が出射光を、瞬間照射野を有する照射光として出射する複数の投光部と、照射光が物体で反射した反射光を受光する受光素子を含み、かつ照射光の各々の瞬間照射野の立体角よりも瞬間視野の立体角が大きい受光部と、を有し、受光部から所定の距離にある照射面において、複数の投光部の瞬間照射野によって形成される照射領域は、瞬間視野によって形成される視野領域を内包する。【選択図】図1[Problem] To provide an optical device that complies with safety standards regarding the intensity of laser light and is capable of measuring the distance to a distant object with high accuracy. [Solution] The optical device has a plurality of light-projecting units, each of which includes a light source that emits an emitted light, and each of which emits the emitted light as irradiation light having an instantaneous irradiation field, and a light-receiving unit that includes a light-receiving element that receives light reflected from an object from the irradiation light, and whose instantaneous field of view is larger than the solid angle of each instantaneous irradiation field of the irradiation light, and on an irradiation surface located a predetermined distance from the light-receiving unit, the irradiation area formed by the instantaneous irradiation fields of the plurality of light-projecting units includes the field of view formed by the instantaneous field of view. [Selected Figure] Figure 1

Description

本発明は、出射光の出射及び当該出射光の受光を行う光学装置、物体までの距離を計測する測距装置、測距方法、プログラム及び記録媒体に関する。 The present invention relates to an optical device that emits and receives emitted light, a distance measuring device that measures the distance to an object, a distance measuring method, a program, and a recording medium.

光学装置を含む測距装置は、例えば、レーザ光を対象領域内で走査して物体までの距離を計測する、すなわち測距する。このような測距装置としては、例えば、可動部が揺動する光走査部、可動部の光反射面に向かってパルス光を出射する光源部、パルス光の反射光を受光する受光部及び物体までの距離を計測する測距部を備える光測距装置が特許文献1に開示されている。 A distance measuring device including an optical device measures the distance to an object, i.e., measures distance, by, for example, scanning a target area with laser light. An example of such a distance measuring device is disclosed in Patent Document 1, which discloses an optical distance measuring device that includes an optical scanning unit with a swinging movable unit, a light source unit that emits pulsed light toward the light reflecting surface of the movable unit, a light receiving unit that receives the reflected light of the pulsed light, and a distance measuring unit that measures the distance to the object.

特開2011-053137号公報JP 2011-053137 A

レーザ光は物体に照射されると散乱する。このため、レーザ光が照射される物体が測距装置から遠くなるにつれて、測距装置が受光するレーザ光の光量は少なくなる。したがって、測距装置から遠方に位置する物体の測距を行うためには、レーザ光の出力を高くして出射することが望ましい。 When laser light is irradiated onto an object, it scatters. For this reason, the amount of laser light received by the distance measuring device decreases as the object being irradiated with the laser light becomes farther away from the distance measuring device. Therefore, in order to measure the distance to an object located far away from the distance measuring device, it is desirable to emit laser light with a high output.

しかし、レーザ光は、パワー密度が高い場合には人体に有害となることがある。このため、安全基準によってレーザ光の出力が制限されている。従って、遠距離に位置する物体までの距離を測定する場合、安全基準を順守したレーザ光では、測距装置が受光するレーザ光の光量が少なくなることが課題の1つとして挙げられる。 However, laser light can be harmful to the human body if its power density is high. For this reason, safety standards limit the output of laser light. Therefore, when measuring the distance to an object located at a long distance, one of the issues is that with laser light that complies with safety standards, the amount of laser light received by the distance measuring device is reduced.

本発明は上記した点に鑑みてなされたものであり、レーザ光の強度に関する安全基準を順守し、かつ遠方に位置する物体の測距を精度良く行うことが可能な光学装置を提供することを課題の1つとする。 The present invention has been made in consideration of the above points, and one of its objectives is to provide an optical device that complies with safety standards regarding the intensity of laser light and is capable of accurately measuring the distance to an object located at a distance.

本願請求項1に記載の光学装置は、出射光を出射する光源を各々が含み、かつ各々が前記出射光を、瞬間照射野を有する照射光として出射する複数の投光部と、前記照射光が物体で反射した反射光を受光する受光素子を含み、かつ前記照射光の各々の前記瞬間照射野の立体角よりも瞬間視野の立体角が大きい受光部と、を有し、前記受光部から所定の距離にある照射面において、前記複数の投光部の前記瞬間照射野によって形成される照射領域は、前記瞬間視野によって形成される視野領域を内包することを特徴とする。 The optical device described in claim 1 of the present application has a plurality of light projecting units each including a light source that emits an emission light and each emitting the emission light as an illumination light having an instantaneous illumination field, and a light receiving unit including a light receiving element that receives the reflected light of the illumination light reflected by an object and having a solid angle of an instantaneous visual field larger than the solid angle of the instantaneous illumination field of each of the illumination lights, and is characterized in that, on an illumination surface located a predetermined distance from the light receiving unit, the illumination area formed by the instantaneous illumination fields of the plurality of light projecting units includes a visual field area formed by the instantaneous visual field.

本願請求項7に記載の測距装置は、出射光を出射する光源を各々が含み、かつ各々が前記出射光を、瞬間照射野を有する照射光として出射する複数の投光部と、前記照射光が物体で反射した反射光を受光する受光素子を含み、かつ前記照射光の各々の前記瞬間照射野の立体角よりも瞬間視野の立体角が大きい受光部とを有し、前記受光部から所定の距離にある照射面において、前記複数の投光部の前記瞬間照射野によって形成される照射領域が、前記瞬間視野によって形成される視野領域を内包する光学装置と、前記出射光及び前記反射光に基づいて前記物体までの距離を測距する測距部と、を有することを特徴とする。 The distance measuring device described in claim 7 of the present application is characterized in that it has a plurality of light projecting units, each of which includes a light source that emits an emitted light, and each of which emits the emitted light as an irradiated light having an instantaneous irradiation field, a light receiving unit, each of which includes a light receiving element that receives the reflected light of the irradiated light reflected by an object, and whose solid angle of the instantaneous field of view is larger than the solid angle of the instantaneous irradiation field of each of the irradiated lights, and has an optical device in which the irradiation area formed by the instantaneous irradiation fields of the plurality of light projecting units includes the field of view formed by the instantaneous field on an irradiation surface located at a predetermined distance from the light receiving unit, and a distance measuring unit that measures the distance to the object based on the emitted light and the reflected light.

本願請求項8に記載の測距方法は、出射光を出射する光源を各々が含み、かつ各々が前記出射光を、瞬間照射野を有する照射光として出射する複数の投光部と、前記照射光が物体で反射した反射光を受光する受光素子を含み、かつ前記照射光の各々の前記瞬間照射野の立体角よりも瞬間視野の立体角が大きい受光部とを有し、前記受光部から所定の距離にある照射面において、前記複数の投光部の前記瞬間照射野によって形成される照射領域が、前記瞬間視野によって形成される視野領域を内包する光学装置と、前記出射光及び前記反射光に基づいて前記物体までの距離を測距する測距部と、を有する測距装置によって実行される測距方法であって、前記複数の投光部の各々から前記照射光を同時に出射する工程と、前記受光部で前記瞬間視野をもって前記反射光を受光する工程と、前記出射光及び前記反射光に基づいて前記物体までの距離を測距する工程と、を含むことを特徴とする。 The distance measuring method described in claim 8 of the present application is a distance measuring method performed by a distance measuring device having a plurality of light projecting units, each of which includes a light source that emits an emission light, and each of which emits the emission light as an illumination light having an instantaneous illumination field, and a light receiving unit, each of which includes a light receiving element that receives the reflected light of the emission light reflected by an object, and whose solid angle of the instantaneous visual field is larger than the solid angle of the instantaneous illumination field of each of the emission lights, and an optical device in which the illumination area formed by the instantaneous illumination fields of the plurality of light projecting units includes the visual field area formed by the instantaneous visual field on an illumination surface at a predetermined distance from the light receiving unit, and a distance measuring unit that measures the distance to the object based on the emission light and the reflected light, characterized in that the distance measuring method includes a step of simultaneously emitting the emission light from each of the plurality of light projecting units, a step of receiving the reflected light with the instantaneous visual field in the light receiving unit, and a step of measuring the distance to the object based on the emission light and the reflected light.

本願請求項9に記載のプログラムは、出射光を出射する光源を各々が含み、かつ各々が前記出射光を、瞬間照射野を有する照射光として出射する複数の投光部と、前記照射光が物体で反射した反射光を受光する受光素子を含み、かつ前記照射光の各々の前記瞬間照射野の立体角よりも瞬間視野の立体角が大きい受光部とを有し、前記受光部から所定の距離にある照射面において、前記複数の投光部の前記瞬間照射野によって形成される照射領域が、前記瞬間視野によって形成される視野領域を内包する光学装置と、前記出射光及び前記反射光に基づいて前記物体までの距離を測距する測距部と、を有する測距装置に、前記複数の投光部の各々から前記照射光を同時に出射する工程と、前記受光部で前記瞬間視野をもって前記反射光を受光する工程と、前記出射光及び前記反射光に基づいて前記物体までの距離を測距する工程と、をさせることを特徴とする。 The program described in claim 9 of the present application is characterized in that the program causes a distance measuring device having a plurality of light projecting units, each of which includes a light source that emits emitted light, and each of which emits the emitted light as irradiation light having an instantaneous irradiation field, and a light receiving unit, each of which includes a light receiving element that receives reflected light of the emitted light reflected by an object, and whose solid angle of instantaneous visual field is larger than the solid angle of the instantaneous irradiation field of each of the emitted light, and an optical device in which an irradiation area formed by the instantaneous irradiation fields of the plurality of light projecting units includes a visual field area formed by the instantaneous visual field on an irradiation surface at a predetermined distance from the light receiving unit, and a distance measuring unit that measures the distance to the object based on the emitted light and the reflected light, to perform the steps of simultaneously emitting the irradiation light from each of the plurality of light projecting units, receiving the reflected light with the instantaneous visual field in the light receiving unit, and measuring the distance to the object based on the emitted light and the reflected light.

本願請求項10に記載の記録媒体は、出射光を出射する光源を各々が含み、かつ各々が前記出射光を、瞬間照射野を有する照射光として出射する複数の投光部と、前記照射光が物体で反射した反射光を受光する受光素子を含み、かつ前記照射光の各々の前記瞬間照射野の立体角よりも瞬間視野の立体角が大きい受光部とを有し、前記受光部から所定の距離にある照射面において、前記複数の投光部の前記瞬間照射野によって形成される照射領域が、前記瞬間視野によって形成される視野領域を内包する光学装置と、前記出射光及び前記反射光に基づいて前記物体までの距離を測距する測距部と、を有する測距装置に、前記複数の投光部の各々から前記照射光を同時に出射する工程と、前記受光部で前記瞬間視野をもって前記反射光を受光する工程と、前記出射光及び前記反射光に基づいて前記物体までの距離を測距する工程と、をさせるプログラムが記録されていることを特徴とする。 The recording medium described in claim 10 of the present application is characterized in that it has a plurality of light projecting units, each of which includes a light source that emits emitted light, and each of which emits the emitted light as irradiation light having an instantaneous irradiation field, and a light receiving unit, each of which includes a light receiving element that receives reflected light of the emitted light reflected by an object, and whose solid angle of instantaneous visual field is larger than the solid angle of the instantaneous irradiation field of each of the emitted light, and an optical device in which the illumination area formed by the instantaneous illumination fields of the plurality of light projecting units includes the visual field area formed by the instantaneous visual field on an irradiation surface at a predetermined distance from the light receiving unit, and a distance measuring unit that measures the distance to the object based on the emitted light and the reflected light, and has a program recorded thereon to cause the distance measuring device to perform the steps of simultaneously emitting the irradiation light from each of the plurality of light projecting units, receiving the reflected light with the instantaneous visual field in the light receiving unit, and measuring the distance to the object based on the emitted light and the reflected light.

実施例1に係る測距装置の構成を示すブロック図である。1 is a block diagram showing a configuration of a distance measuring device according to a first embodiment; 実施例1に係る測距装置の投光系の動作原理を説明する説明図である。3 is an explanatory diagram for explaining the operation principle of a light projection system of the distance measuring device according to the first embodiment. FIG. 実施例1に係る測距装置の受光系の動作原理を説明する説明図である。3 is an explanatory diagram for explaining the operation principle of a light receiving system of the distance measuring device according to the first embodiment. FIG. 実施例1に係る測距装置の投光部及び受光部の配置例を示す斜視図である。2 is a perspective view showing an example of the arrangement of a light projecting unit and a light receiving unit of the distance measuring device according to the first embodiment; FIG. 実施例1に係る測距装置からの距離に応じた投光部の瞬間照射野と受光部の瞬間視野を説明する概念図である。3 is a conceptual diagram illustrating an instantaneous irradiation field of the light projecting unit and an instantaneous visual field of the light receiving unit according to the distance from the distance measuring device of Example 1. FIG. 実施例1に係る測距装置から所定の距離における仮想面上の瞬間照射野の立体角を説明する概念図である。1 is a conceptual diagram for explaining the solid angle of an instantaneous irradiation field on a virtual plane at a predetermined distance from the distance measuring device of Example 1. FIG. 実施例1に係る測距装置から所定の距離における仮想面上の瞬間視野の立体角を説明する概念図である。4 is a conceptual diagram for explaining a solid angle of an instantaneous field of view on a virtual plane at a predetermined distance from the distance measuring device according to the first embodiment. FIG. 実施例1に係る測距装置から所定の距離における仮想面上の瞬間照射野と瞬間視野を説明する概念図である。1 is a conceptual diagram illustrating an instantaneous irradiation field and an instantaneous visual field on a virtual plane at a predetermined distance from a distance measuring device according to Example 1. FIG. 実施例1に係る測距装置の測距方法を示す処理フローである。4 is a process flow showing a distance measuring method of the distance measuring device according to the first embodiment. 実施例1に係る測距装置の投光部及び受光部の他の配置例を示す斜視図である。10 is a perspective view showing another example of the arrangement of the light projecting unit and the light receiving unit of the distance measuring device according to the first embodiment. FIG. 実施例1に係る測距装置の投光部の他の構成例を示す説明図である。5 is an explanatory diagram showing another configuration example of the light projecting unit of the distance measuring device according to the first embodiment; FIG. 実施例2に係る測距装置の構成を示すブロック図である。FIG. 11 is a block diagram showing a configuration of a distance measuring device according to a second embodiment. 実施例3に係る測距装置の投光部及び受光部の配置例を示す斜視図である。FIG. 11 is a perspective view showing an example of the arrangement of a light projecting unit and a light receiving unit of a distance measuring device according to a third embodiment. 実施例3に係る測距装置から所定の距離における仮想面上の瞬間照射野と瞬間視野を説明する概念図である。A conceptual diagram explaining an instantaneous irradiation field and an instantaneous visual field on a virtual plane at a predetermined distance from a distance measuring device of Example 3. 実施例3に係る測距装置の投光部及び受光部の他の配置例を示す斜視図である。FIG. 11 is a perspective view showing another example of the arrangement of the light projecting unit and the light receiving unit of the distance measuring device according to the third embodiment. 実施例3に係る測距装置の投光部及び受光部の他の配置例を示す斜視図である。FIG. 13 is a perspective view showing another example of the arrangement of the light projecting unit and the light receiving unit of the distance measuring device according to the third embodiment.

以下、本発明の光学装置を測距装置に用いた実施例を説明する。 Below, we will explain an example in which the optical device of the present invention is used in a distance measuring device.

図1は、本実施例に係る測距装置100の機能ブロックを示している。図1において、投光部10a,10bは、出射光を出射する発光装置である。投光部10a,10bは、互いに同一の構成を有する。投光部10a、10bの光源11は、例えば出射光としてパルス光を出射可能なレーザ素子である。 Figure 1 shows the functional blocks of the distance measuring device 100 according to this embodiment. In Figure 1, the light projecting units 10a and 10b are light emitting devices that emit emitted light. The light projecting units 10a and 10b have the same configuration. The light source 11 of the light projecting units 10a and 10b is, for example, a laser element capable of emitting pulsed light as the emitted light.

光偏向素子12は、制御信号に応じて光ビームを偏向させる装置である。言い換えれば、光偏向素子12は、パルス光を方向可変に偏向させることができる。光偏向素子12は、光反射面(図示せず)を含む出射光反射部材を有している。光偏向素子12には、MEMS(Micro Electro Mechanical Systems)ミラー装置、ポリゴンミラー等を用いることができる。尚、光偏向素子12は、光反射面を持たない光偏向素子であってもよい。このような光偏向素子12としては、音響光学偏向器(AO偏向器)等が挙げられる。 The optical deflection element 12 is a device that deflects a light beam in response to a control signal. In other words, the optical deflection element 12 can deflect pulsed light in a variable direction. The optical deflection element 12 has an emitted light reflecting member that includes a light reflecting surface (not shown). The optical deflection element 12 may be a MEMS (Micro Electro Mechanical Systems) mirror device, a polygon mirror, or the like. Note that the optical deflection element 12 may also be an optical deflection element that does not have a light reflecting surface. An example of such an optical deflection element 12 is an acousto-optical deflector (AO deflector).

光偏向素子12は、当該光反射面にて光源11から出射されたパルス光を反射して、走査対象となる所定の領域(以下、走査対象領域とする)に向けて照射光を出射可能である。したがって、光偏向素子12は、出射光偏光素子として機能する。 The light deflection element 12 can reflect the pulsed light emitted from the light source 11 at its light reflecting surface and emit irradiation light toward a predetermined area to be scanned (hereinafter referred to as the scanning area). Therefore, the light deflection element 12 functions as an emitted light polarization element.

このように、投光部10a,10bは、各々が光偏向素子12で偏光された出射光を、瞬間照射野を有する照射光として走査対象領域に向けて出射する。照射光は、走査対象領域に存在する物体で反射される。当該物体で反射された照射光は、反射光として測距装置100に向かって進行する。 In this way, the light projectors 10a and 10b each emit the output light polarized by the optical deflection element 12 toward the scanning target area as irradiation light having an instantaneous irradiation field. The irradiation light is reflected by an object present in the scanning target area. The irradiation light reflected by the object travels toward the distance measuring device 100 as reflected light.

受光部20は、反射光を受光して、電気信号である受光信号を生成する受光装置である。光偏向素子21は、制御信号に応じて光ビームを偏向させることができる装置である。言い換えれば、光偏向素子21は、照射光が物体で反射した反射光を方向可変に偏向させることができる。光偏向素子21は、光反射面(図示せず)を含む反射光反射部材を有する。光偏向素子21は、光偏向素子12と同様にMEMSミラー装置等を用いることができる。したがって、光偏向素子21は、反射光偏向素子として機能する。 The light receiving unit 20 is a light receiving device that receives reflected light and generates a light receiving signal, which is an electrical signal. The light deflection element 21 is a device that can deflect a light beam in response to a control signal. In other words, the light deflection element 21 can deflect the reflected light, which is the irradiated light reflected by an object, in a variable direction. The light deflection element 21 has a reflected light reflecting member that includes a light reflecting surface (not shown). As with the light deflection element 12, the light deflection element 21 can be a MEMS mirror device or the like. Therefore, the light deflection element 21 functions as a reflective light deflection element.

受光素子22は、光偏向素子21で偏向された反射光を受光して、電気信号である受光信号を生成する。受光素子22としては、例えば、アバランシェフォトダイオード(Avalanche Photodiode)等を採用することができる。 The light receiving element 22 receives the reflected light deflected by the light deflection element 21 and generates a light receiving signal, which is an electrical signal. For example, an avalanche photodiode can be used as the light receiving element 22.

制御部30は、投光部10a,10bの各々の光源11から出射するパルス光の制御並びに、受光部20の光偏向素子21及び投光部10a,10bの各々の光偏向素子12の光反射面の角度の制御を行う。制御部30は、中央処理装置、主記憶装置、補助記憶装置を少なくとも有するコンピュータである。 The control unit 30 controls the pulsed light emitted from the light source 11 of each of the light projectors 10a and 10b, as well as the angle of the light reflecting surface of the light deflection element 21 of the light receiving unit 20 and the light deflection element 12 of each of the light projectors 10a and 10b. The control unit 30 is a computer that has at least a central processing unit, a main memory device, and an auxiliary memory device.

光源制御部31は、投光部10a,10bの各々の光源11の発光制御を行う。具体的には、光源11がパルス発光をするように発光タイミングを規定したテーブル(図示せず)を参照して、その発光を制御する。 The light source control unit 31 controls the light emission of each of the light sources 11 of the light projecting units 10a and 10b. Specifically, the light emission is controlled by referring to a table (not shown) that specifies the light emission timing so that the light source 11 emits pulsed light.

ミラー制御部32は、投光部10a,10bの各々の光偏向素子12の光反射面の傾きの角度を制御する。具体的には、ミラー制御部32は、光偏向素子12の光反射面でパルス光を反射させ、反射させた照射光によって走査対象領域の走査がなされるように光偏向素子12の光反射面の傾きの角度を制御する。 The mirror control unit 32 controls the angle of inclination of the light reflecting surface of the light deflection element 12 of each of the light projectors 10a and 10b. Specifically, the mirror control unit 32 reflects pulsed light at the light reflecting surface of the light deflection element 12, and controls the angle of inclination of the light reflecting surface of the light deflection element 12 so that the reflected irradiation light scans the scanning target area.

ミラー制御部32は、受光部20の光偏向素子21の光偏向素子21の光反射面の傾きの角度を制御する。具体的には、ミラー制御部32は、受光部20の光偏向素子21の光反射面の方向(傾きの角度)と投光部10a,10bの光偏向素子12の光反射面との方向(傾きの角度)が連動するように、光偏向素子21の光反射面の傾きを制御する。すなわち、受光部20の光偏向素子21の光反射面の方向と投光部10a,10bの光偏向素子12の光反射面との方向が連動することによって、反射光が受光素子22に向かって進行する。 The mirror control unit 32 controls the angle of inclination of the light reflecting surface of the light deflection element 21 of the light receiving unit 20. Specifically, the mirror control unit 32 controls the inclination of the light reflecting surface of the light deflection element 21 so that the direction (angle of inclination) of the light reflecting surface of the light deflection element 21 of the light receiving unit 20 and the direction (angle of inclination) of the light reflecting surface of the light deflection element 12 of the light projecting units 10a and 10b are linked. In other words, the reflected light travels toward the light receiving element 22 by linking the direction of the light reflecting surface of the light deflection element 21 of the light receiving unit 20 and the direction of the light reflecting surface of the light deflection element 12 of the light projecting units 10a and 10b.

言い換えれば、光源制御部31及びミラー制御部32は、投光部10a,10bの各々からパルス光を同時に出射させる出射制御手段として機能する。また、ミラー制御部32は、受光部20に反射光を受光させる受光手段として機能する。 In other words, the light source control unit 31 and the mirror control unit 32 function as an emission control means for simultaneously emitting pulsed light from each of the light projecting units 10a and 10b. In addition, the mirror control unit 32 functions as a light receiving means for causing the light receiving unit 20 to receive reflected light.

測距部としての距離測定部33は、測距装置100から走査対象領域内にある物体までの距離を算出する。言い換えれば、距離測定部33は、パルス光及び反射光に基づいて物体までの距離を測距する測距手段として機能する。 The distance measurement unit 33, which serves as a distance measurement unit, calculates the distance from the distance measurement device 100 to an object within the scanning target area. In other words, the distance measurement unit 33 functions as a distance measurement means that measures the distance to an object based on the pulsed light and the reflected light.

距離測定部33は、受光素子22によって生成された受光信号に基づいて測距装置100から走査対象領域内にある物体までの距離を算出する。例えば、距離測定部33は、タイムオブフライト法を用いて当該距離が算出される。尚、物体までの距離の算出は、タイムオブフライト法に限られず位相差法であってもよい。 The distance measurement unit 33 calculates the distance from the distance measuring device 100 to an object in the scanning area based on the light receiving signal generated by the light receiving element 22. For example, the distance measurement unit 33 calculates the distance using a time-of-flight method. Note that the calculation of the distance to the object is not limited to the time-of-flight method, and may also be a phase difference method.

具体的には、距離測定部33は、光源11によって出射された1のパルス光の出射時刻と、当該1のパルス光が偏向された照射光が走査対象領域内の物体によって反射されて反射光として受光素子22で検出された受光時刻を取得する。そして、当該出射時刻と当該受光時刻の時刻差に基づいて、測距装置100と物体との距離を算出する。 Specifically, the distance measurement unit 33 acquires the emission time of one pulse of light emitted by the light source 11 and the reception time at which the irradiated light resulting from the deflection of the one pulse of light is reflected by an object in the scanning target area and detected as reflected light by the light receiving element 22. Then, the distance between the distance measuring device 100 and the object is calculated based on the time difference between the emission time and the reception time.

尚、光偏向素子12によって偏向された照射光の進行方向には、仮想の面である照射面(図示せず)が設けられている。尚、照射面は、実在するものではない。 In addition, a virtual irradiation surface (not shown) is provided in the traveling direction of the irradiation light deflected by the light deflection element 12. In addition, the irradiation surface does not actually exist.

図2は、投光部10a、10bを含む投光系の動作を示す概念図である。図2において、光源11から出射されたパルス光EL1は、光偏向素子12の光反射面MRに入射する。 Figure 2 is a conceptual diagram showing the operation of a light projection system including light projection units 10a and 10b. In Figure 2, pulsed light EL1 emitted from light source 11 is incident on light reflecting surface MR of light deflection element 12.

光偏向素子12は、光反射面MRに入射されたパルス光EL1を反射する。すなわち、光偏向素子12は、パルス光EL1を照射光EL2として走査対象領域Rに向けて偏向する。 The optical deflection element 12 reflects the pulsed light EL1 incident on the optical reflection surface MR. That is, the optical deflection element 12 deflects the pulsed light EL1 as irradiation light EL2 toward the scanning target region R.

光偏向素子12の光反射面MRは、揺動自在に本体に固定されている。したがって、光偏向素子12は、光反射面MRを揺動させることにより、走査対象領域R内の所望の方向に照射光EL2の進行方向を偏向する。 The light reflecting surface MR of the light deflection element 12 is fixed to the main body so that it can swing freely. Therefore, the light deflection element 12 deflects the traveling direction of the irradiation light EL2 in the desired direction within the scanning target area R by swinging the light reflecting surface MR.

照射光EL2は、照射面VSにおいて所望の軌跡が描かれるように光偏向素子12によって偏向される。また、照射面VSで描かれる軌跡は、ラスタ走査軌跡、リサージュ走査軌跡等が望ましいがこれに限るものではない。 The irradiation light EL2 is deflected by the optical deflection element 12 so that a desired trajectory is traced on the irradiation surface VS. In addition, the trajectory traced on the irradiation surface VS is preferably a raster scanning trajectory, a Lissajous scanning trajectory, or the like, but is not limited to these.

図3は、受光部20の受光系の動作を示す概念図である。図3において、照射光EL2は、走査対象領域R内に存在する物体OBで反射する。物体OBで反射した照射光EL2は、反射光RLとして受光部20に向かって進行する。反射光RLは、受光部20の光偏向素子21の光反射面MRで反射されると、受光素子22に入射する。 Figure 3 is a conceptual diagram showing the operation of the light receiving system of the light receiving unit 20. In Figure 3, the irradiation light EL2 is reflected by an object OB present in the scanning target area R. The irradiation light EL2 reflected by the object OB travels toward the light receiving unit 20 as reflected light RL. When the reflected light RL is reflected by the light reflecting surface MR of the light deflection element 21 of the light receiving unit 20, it enters the light receiving element 22.

受光素子22は、入射された反射光RLに基づいて受光信号を生成し、制御部30に生成した受光信号を供給する。制御部30の距離測定部33は、パルス光EL1を出射した時刻と反射光RLを受光した時刻に基づいて、物体OBまでの距離を計測する。 The light receiving element 22 generates a light receiving signal based on the incident reflected light RL and supplies the generated light receiving signal to the control unit 30. The distance measurement unit 33 of the control unit 30 measures the distance to the object OB based on the time when the pulsed light EL1 is emitted and the time when the reflected light RL is received.

図4は、本実施例に係る測距装置100の投光部10a,10b及び受光部20の配置例を示している。図4に示すように、投光部10a,10bは、基板40上において受光部20を挟み込むように列状に配置されている。 Figure 4 shows an example of the arrangement of the light-projecting units 10a, 10b and the light-receiving unit 20 of the distance measuring device 100 according to this embodiment. As shown in Figure 4, the light-projecting units 10a, 10b are arranged in a row on the substrate 40 so as to sandwich the light-receiving unit 20 between them.

また、投光部10a,10bは、受光部20までの距離が等しく配置されている。具体的には、受光部20から投光部10aまでの距離LH1は、受光部20から投光部10bまでの距離LH2に等しい。 The light-projecting units 10a and 10b are also positioned at equal distances to the light-receiving unit 20. Specifically, the distance LH1 from the light-receiving unit 20 to the light-projecting unit 10a is equal to the distance LH2 from the light-receiving unit 20 to the light-projecting unit 10b.

図5は、投光部10,10bの瞬間照射野(iFOI)(Instantaneous Field of Illumination)及び受光部20の瞬間視野(iFOV)(Instantaneous Field of View)の態様を示している。尚、図中の破線矢印は、照射光EL2の進行方向を示している。 Figure 5 shows the instantaneous field of illumination (iFOI) of the light projecting units 10 and 10b and the instantaneous field of view (iFOV) of the light receiving unit 20. The dashed arrow in the figure indicates the direction of travel of the irradiation light EL2.

具体的には、図5は、投光部10a,10bの瞬間照射野(iFOI)及び受光部20の瞬間視野(iFOV)の図中の破線矢印で示した照射光EL2の進行方向に対して垂直な方向の断面を測距装置100からの距離に応じて示している。 Specifically, FIG. 5 shows cross sections of the instantaneous field of interest (iFOI) of the light projectors 10a and 10b and the instantaneous field of view (iFOV) of the light receiver 20 in a direction perpendicular to the direction of travel of the irradiation light EL2 indicated by the dashed arrow in the figure, according to the distance from the distance measuring device 100.

ここで、瞬間照射野(iFOI)とは、注目する瞬間に出射光ELが照射される領域である。例えば、瞬間照射野(iFOI)とは、投光部10a,10bの投光レンズ(図示しない)により光源形状(図示しない)が投影される各々の角度範囲、もしくは各々の和の角度範囲であり、瞬間視野(iFOV)とは、受光部20の受光レンズにより受光部20の受光面が見込む角度範囲である。 The instantaneous field of interest (iFOI) is the area irradiated with the emitted light EL at the moment of interest. For example, the instantaneous field of interest (iFOI) is the angular range into which the light source shape (not shown) is projected by the projection lenses (not shown) of the light projectors 10a and 10b, or the sum of the angular ranges, and the instantaneous field of view (iFOV) is the angular range into which the light receiving surface of the light receiving unit 20 is viewed by the light receiving lens of the light receiving unit 20.

図中の二点鎖線は、投光部10aの瞬間照射野(iFOI(a))及び投光部10bの瞬間照射野(iFOI(b))を示している。また、図中の一点鎖線は、受光部20の瞬間視野(iFOV)を示している。 The two-dot chain lines in the figure indicate the instantaneous irradiation field (iFOI(a)) of the light projector 10a and the instantaneous irradiation field (iFOI(b)) of the light projector 10b. Also, the one-dot chain line in the figure indicates the instantaneous field of view (iFOV) of the light receiver 20.

投光部10a,10bは、安全基準を満たす出力で各々が照射光EL2を出射する。安全基準は、測距装置100から所定の距離における光の強度に基づいて定められている。安全基準は、例えば、測距装置100から100mmにおける光の強度に基づいて定められている。また、投光部10a及び投光部10bが出射する出射光ELの瞬間照射野(iFOI(a),iFOI(b))は瞬間視野(iFOV)よりも小さい。 The light projecting units 10a and 10b each emit irradiation light EL2 with an output that satisfies a safety standard. The safety standard is determined based on the light intensity at a predetermined distance from the distance measuring device 100. For example, the safety standard is determined based on the light intensity at 100 mm from the distance measuring device 100. In addition, the instantaneous irradiation field (iFOI(a), iFOI(b)) of the emitted light EL emitted by the light projecting units 10a and 10b is smaller than the instantaneous field of view (iFOV).

測距装置100からの距離に応じて、瞬間視野(iFOV)内における瞬間照射野(iFOI(a),iFOI(b))の各々の位置関係は変化する。具体的には、測距装置100からの距離が遠くなるにつれて、瞬間照射野(iFOI(a),iFOI(b))は互いに近づき、測距装置100からの所定の距離において互いに接する。 Depending on the distance from the distance measuring device 100, the positional relationship of each of the instantaneous irradiation fields (iFOI(a), iFOI(b)) within the instantaneous field of view (iFOV) changes. Specifically, as the distance from the distance measuring device 100 increases, the instantaneous irradiation fields (iFOI(a), iFOI(b)) approach each other and come into contact with each other at a predetermined distance from the distance measuring device 100.

距離L1~L4は、測距装置100からの距離である。例えば、距離L1~L4は、受光部20からの距離である。また、距離L1~L4は、投光部10a又は投光部10bからの距離であってもよい。 Distances L1 to L4 are distances from the distance measuring device 100. For example, distances L1 to L4 are distances from the light receiving unit 20. Distances L1 to L4 may also be distances from the light projecting unit 10a or the light projecting unit 10b.

距離L1は、安全基準で定められている測距装置100からの距離である。距離L1の位置において、投光部10aの瞬間照射野(iFOI(a))及び投光部10bの瞬間照射野(iFOI(b))は、受光部20の瞬間視野(iFOV)の外側に配されている。 Distance L1 is the distance from the distance measuring device 100 as determined by safety standards. At the position of distance L1, the instantaneous irradiation field (iFOI(a)) of the light projecting unit 10a and the instantaneous irradiation field (iFOI(b)) of the light projecting unit 10b are located outside the instantaneous field of view (iFOV) of the light receiving unit 20.

従って、距離L1の位置における投光部10a、10bが出射する照射光EL2の強度は、安全基準を満たしている。尚、距離L1の位置において、投光部10aの瞬間照射野(iFOI(a))及び投光部10bの瞬間照射野(iFOI(b))のうち、いずれか一方、又はその両方が、受光部20の瞬間視野(iFOV)の内側に配されていてもよい。この場合、距離L1の位置における安全基準を満たすように適宜、照射光EL2の出力を調整するとよい。 Therefore, the intensity of the irradiation light EL2 emitted by the light projectors 10a and 10b at the position of distance L1 meets the safety standard. Note that at the position of distance L1, either or both of the instantaneous irradiation field (iFOI(a)) of the light projector 10a and the instantaneous irradiation field (iFOI(b)) of the light projector 10b may be located inside the instantaneous field of view (iFOV) of the light receiver 20. In this case, it is advisable to adjust the output of the irradiation light EL2 as appropriate so as to meet the safety standard at the position of distance L1.

距離L2は、測距装置100からの距離であり、距離L1よりも長い。距離L2は、例えば、測距装置100から50mである。距離L2の位置において、投光部10aの瞬間照射野(iFOI(a))及び投光部10bの瞬間照射野(iFOI(b))の一部は、受光部20の瞬間視野(iFOV)の内側に配されている。したがって、距離L2の位置において物体OBが存在する場合、受光部20は、物体OBの測距を行うにあたり十分な反射光RLを得ることができる。このため、測距装置100は、距離L2よりも遠い距離に存在する物体OBの測距を行うことができる。 Distance L2 is the distance from the distance measuring device 100 and is longer than distance L1. Distance L2 is, for example, 50 m from the distance measuring device 100. At the position of distance L2, the instantaneous irradiation field (iFOI(a)) of the light projecting unit 10a and a part of the instantaneous irradiation field (iFOI(b)) of the light projecting unit 10b are arranged inside the instantaneous field of view (iFOV) of the light receiving unit 20. Therefore, when an object OB is present at the position of distance L2, the light receiving unit 20 can obtain sufficient reflected light RL to measure the distance of the object OB. Therefore, the distance measuring device 100 can measure the distance of an object OB that is present at a distance farther than distance L2.

距離L3は、測距装置100からの距離であり、距離L2よりも長い。距離L3は、例えば、測距装置100から100mである。距離L3の位置において、投光部10aの瞬間照射野(iFOI(a))及び投光部10bの瞬間照射野(iFOI(b))の一部は、受光部20の瞬間視野(iFOV)の内側に配されている。 Distance L3 is the distance from the distance measuring device 100 and is longer than distance L2. Distance L3 is, for example, 100 m from the distance measuring device 100. At the position of distance L3, a part of the instantaneous irradiation field (iFOI(a)) of the light projecting unit 10a and the instantaneous irradiation field (iFOI(b)) of the light projecting unit 10b are disposed inside the instantaneous field of view (iFOV) of the light receiving unit 20.

また、距離L3において受光部20の瞬間視野(iFOV)の内側に配されている投光部10aの瞬間照射野(iFOI(a))及び投光部10bの瞬間照射野(iFOI(b))の領域の割合は、距離L2よりも多い。 In addition, at distance L3, the proportion of the area of the instantaneous irradiation field (iFOI(a)) of light projector 10a and the instantaneous irradiation field (iFOI(b)) of light projector 10b that is disposed inside the instantaneous field of view (iFOV) of light receiver 20 is greater than at distance L2.

したがって、距離L3の位置に物体OBが存在する場合、受光部20は、物体OBの測距を行うにあたり十分な反射光RLが得ることができる。このため、測距装置100は、瞬間視野(iFOV)内に配される瞬間照射野(iFOI)の密度が、距離L2に物体OBが存在する場合よりも高い状態で測距を行うことができる。 Therefore, when an object OB is present at a position of distance L3, the light receiving unit 20 can obtain sufficient reflected light RL to measure the distance to the object OB. Therefore, the distance measuring device 100 can measure the distance in a state where the density of the instantaneous illumination field (iFOI) arranged within the instantaneous field of view (iFOV) is higher than when the object OB is present at distance L2.

距離L4は、測距装置100からの距離であり、距離L3よりも長い。距離L4は、例えば、測距装置100から200mである。 Distance L4 is the distance from the distance measuring device 100 and is longer than distance L3. Distance L4 is, for example, 200 m from the distance measuring device 100.

距離L4の位置において、投光部10aの瞬間照射野(iFOI(a))及び投光部10bの瞬間照射野(iFOI(b))は、受光部20の瞬間視野(iFOV)の内側に配されている。 At the distance L4, the instantaneous irradiation field (iFOI(a)) of the light projector 10a and the instantaneous irradiation field (iFOI(b)) of the light projector 10b are located inside the instantaneous field of view (iFOV) of the light receiver 20.

すなわち、距離L4において受光部20の瞬間視野(iFOV)の内側に配されている投光部10aの瞬間照射野(iFOI(a))及び投光部10bの瞬間照射野(iFOI(b))の領域の割合は、距離L3よりも多い。 In other words, the proportion of the area of the instantaneous irradiation field (iFOI(a)) of the light projector 10a and the instantaneous irradiation field (iFOI(b)) of the light projector 10b that is disposed inside the instantaneous field of view (iFOV) of the light receiver 20 at distance L4 is greater than that at distance L3.

従って、距離L4の位置に物体OBが存在する場合、受光部20は、物体OBの測距を行うにあたり十分な反射光RLが得られる。このため、測距装置100は、瞬間視野(iFOV)内に配される瞬間照射野(iFOI)の密度が、距離L3に物体OBが存在する場合よりも高い状態で測距を行うことができる。 Therefore, when an object OB is present at a position of distance L4, the light receiving unit 20 can obtain sufficient reflected light RL to measure the distance to the object OB. Therefore, the distance measuring device 100 can measure the distance in a state where the density of the instantaneous illumination field (iFOI) arranged within the instantaneous field of view (iFOV) is higher than when the object OB is present at distance L3.

図6Aは、図5の距離L4における照射面VSでの瞬間照射野(iFOI(a),iFOI(b))を示している。図6Aにおいて、光源11から所定の距離(r)の位置に照射面VSが配されている。照射面VS上に投光部10a,10bの光源11の瞬間照射野(iFOI(a),iFOI(b))が示されている。 Figure 6A shows the instantaneous irradiation fields (iFOI(a), iFOI(b)) on the irradiation surface VS at the distance L4 in Figure 5. In Figure 6A, the irradiation surface VS is disposed at a predetermined distance (r) from the light source 11. The instantaneous irradiation fields (iFOI(a), iFOI(b)) of the light source 11 of the light projectors 10a and 10b are shown on the irradiation surface VS.

照射面VS上における瞬間照射野(iFOI(a),iFOI(b))は、矩形状に示されている。尚、照射面VS上における瞬間照射野(iFOI(a),iFOI(b))は、矩形状に限られず、例えば、円状や楕円状になるように光源11を構成してもよい。 The instantaneous irradiation field (iFOI(a), iFOI(b)) on the irradiation surface VS is shown as a rectangle. Note that the instantaneous irradiation field (iFOI(a), iFOI(b)) on the irradiation surface VS is not limited to a rectangular shape, and the light source 11 may be configured to be, for example, circular or elliptical.

ここで、立体角は、空間上の同一の点から出る半直線が動いてつくる錐面によって区切られた部分のことをいう。立体角は、当該点を中心とする半径が1の球から当該錐面が切り取った面積の大きさで表すことができる。 Here, a solid angle refers to the area enclosed by a cone surface formed by the movement of a half line emanating from the same point in space. A solid angle can be expressed as the size of the area that the cone surface cuts out from a sphere of radius 1 centered on that point.

本実施例において空間上の同一の点を光源11とした場合、光源11が瞬間照射野(iFOI(a),iFOI(b))を見込む立体角は、照射面VS上における瞬間照射野(iFOI(a),iFOI(b))で表される。尚、瞬間照射野(iFOI(a),iFOI(b))の中心CIと光源11とを結ぶ線を軸AX1とする。 In this embodiment, when the same point in space is the light source 11, the solid angle through which the light source 11 views the instantaneous irradiation field (iFOI(a), iFOI(b)) is represented by the instantaneous irradiation field (iFOI(a), iFOI(b)) on the irradiation surface VS. The line connecting the center CI of the instantaneous irradiation field (iFOI(a), iFOI(b)) and the light source 11 is defined as the axis AX1.

図6Bは、図5の距離L4における照射面VSでの瞬間視野(iFOV)を示している。図6Bにおいて、受光素子22から所定の距離(r)の位置に照射面VSが配されている。すなわち、図6Aの光源11から照射面VSまでの距離と、受光素子22から照射面VSまでの距離は等しい。 Figure 6B shows the instantaneous field of view (iFOV) at the irradiation surface VS at the distance L4 in Figure 5. In Figure 6B, the irradiation surface VS is located at a predetermined distance (r) from the light receiving element 22. That is, the distance from the light source 11 to the irradiation surface VS in Figure 6A is equal to the distance from the light receiving element 22 to the irradiation surface VS.

照射面VS上に受光部20の瞬間視野(iFOV)が示されている。照射面VS上における瞬間視野(iFOV)は、矩形状に示されている。尚、照射面VS上における瞬間視野(iFOV)は、矩形状に限られず、例えば、円状や楕円状になるように受光部20の受光素子22を構成してもよい。 The instantaneous field of view (iFOV) of the light receiving unit 20 is shown on the irradiation surface VS. The instantaneous field of view (iFOV) on the irradiation surface VS is shown as a rectangle. Note that the instantaneous field of view (iFOV) on the irradiation surface VS is not limited to a rectangular shape, and the light receiving element 22 of the light receiving unit 20 may be configured to be, for example, circular or elliptical.

また、照射面VS上の瞬間視野(iFOV)の内側には、図6Aで示した瞬間照射野(iFOI(a),iFOI(b))が示されている。照射面VS上における、瞬間視野(iFOV)は、瞬間照射野(iFOI(a),iFOI(b))よりも大きい。 Inside the instantaneous field of view (iFOV) on the irradiation surface VS, the instantaneous irradiation field (iFOI(a), iFOI(b)) shown in FIG. 6A is shown. The instantaneous field of view (iFOV) on the irradiation surface VS is larger than the instantaneous irradiation field (iFOI(a), iFOI(b)).

本実施例において空間上の同一の点を受光素子22とした場合、受光素子22が瞬間視野(iFOV)を見込む立体角は、照射面VS上における瞬間視野(iFOV)で表される。 In this embodiment, if the same point in space is the light receiving element 22, the solid angle through which the light receiving element 22 sees the instantaneous field of view (iFOV) is expressed as the instantaneous field of view (iFOV) on the irradiation surface VS.

従って、光源11が瞬間照射野(iFOI(a),iFOI(b))見込む立体角は、受光素子22が瞬間視野(iFOV)を見込む立体角よりも小さい。言い換えれば、受光素子22が瞬間視野(iFOV)を見込む立体角は、光源11が瞬間照射野(iFOI(a),iFOI(b))を見込む立体角よりも大きい。尚、瞬間視野(iFOV)の中心CVと受光素子22とを結ぶ線を軸AX2とする。 Therefore, the solid angle through which the light source 11 views the instantaneous irradiation field (iFOI(a), iFOI(b)) is smaller than the solid angle through which the light receiving element 22 views the instantaneous field of view (iFOV). In other words, the solid angle through which the light receiving element 22 views the instantaneous field of view (iFOV) is larger than the solid angle through which the light source 11 views the instantaneous irradiation field (iFOI(a), iFOI(b)). The line connecting the center CV of the instantaneous field of view (iFOV) and the light receiving element 22 is defined as the axis AX2.

図6Cは、距離L4に位置する照射面VSにおける瞬間照射野(iFOI(a)、iFOI(b))及び瞬間視野(iFOV)を示している。尚、照射面VS上における瞬間照射野(iFOI(a)、iFOI(b))及び瞬間視野(iFOV)は、矩形状に示されている。 Figure 6C shows the instantaneous irradiation field (iFOI(a), iFOI(b)) and the instantaneous field of view (iFOV) on the irradiation surface VS located at a distance L4. Note that the instantaneous irradiation field (iFOI(a), iFOI(b)) and the instantaneous field of view (iFOV) on the irradiation surface VS are shown in a rectangular shape.

図6Cに示すように、距離L4に位置する照射面VSにおいて、照射領域RIは、投光部10a,10bの各々の瞬間照射野(iFOI(a),iFOI(b))によって形成されている。照射領域RIは、投光部10a,10bの各々によって照らされている領域である。 As shown in FIG. 6C, in the irradiation surface VS located at the distance L4, the irradiation area RI is formed by the instantaneous irradiation fields (iFOI(a), iFOI(b)) of each of the light projectors 10a and 10b. The irradiation area RI is the area illuminated by each of the light projectors 10a and 10b.

照射領域RIは、例えば、距離L4に位置する照射面VSにおいて、照射光EL2が照射される領域のうち、当該領域の中心における照射光EL2の明るさの半分を少なくとも有する領域である。 The irradiation area RI is, for example, an area on the irradiation surface VS located at a distance L4 where the irradiation light EL2 is irradiated, and has at least half the brightness of the irradiation light EL2 at the center of the area.

視野領域RVは、距離L4に位置する照射面VSにおいて、受光部20の瞬間視野(iFOV)によって形成されている。照射領域RIは、距離L4に位置する照射面VSにおいて、視野領域RVの全体を含んでいる。 The visual field RV is formed by the instantaneous field of view (iFOV) of the light receiving unit 20 at the irradiation surface VS located at the distance L4. The irradiation area RI includes the entire visual field RV at the irradiation surface VS located at the distance L4.

尚、照射領域RIが瞬間視野RVの全体を含んでいる走査対象領域R上の位置、すなわち、測距装置100からの距離は、適宜調整することができる。例えば、当該測距装置100からの距離は、距離L2や距離L3のように、距離L4よりも測距装置100に近い距離であってもよいし、距離L4よりも測距装置100に遠い距離であってもよい。 The position on the scanning target region R where the irradiation region RI includes the entire instantaneous field of view RV, i.e., the distance from the distance measuring device 100, can be adjusted as appropriate. For example, the distance from the distance measuring device 100 may be a distance closer to the distance measuring device 100 than distance L4, such as distance L2 or distance L3, or a distance farther from the distance measuring device 100 than distance L4.

図7は、測距装置100の測距方法を示す処理フローである。図7に示すように、制御部30は、投光部10a,10bの各々から照射光EL2を同時に出射させる(ステップS01)。言い換えれば、測距装置100は、投光部10a,10bの各々から照射光EL2を同時に出射する。具体的には、制御部30は、投光部10a,10bの各々の光源11からパルス光EL1を出射させる。制御部30は、投光部10a,10bの各々の光偏向素子12によってパルス光EL1を偏向させる。この結果、投光部10a,10bの各々から照射光EL2が同時に出射される。 Figure 7 is a process flow showing the distance measurement method of the distance measuring device 100. As shown in Figure 7, the control unit 30 causes the light projecting units 10a and 10b to simultaneously emit the irradiation light EL2 (step S01). In other words, the distance measuring device 100 causes the light projecting units 10a and 10b to simultaneously emit the irradiation light EL2. Specifically, the control unit 30 causes the light source 11 of each of the light projecting units 10a and 10b to emit the pulsed light EL1. The control unit 30 deflects the pulsed light EL1 by the optical deflection element 12 of each of the light projecting units 10a and 10b. As a result, the irradiation light EL2 is simultaneously emitted from each of the light projecting units 10a and 10b.

次いで、制御部30は、照射光EL2が物体OBで反射した反射光RLを受光部20に受光させる(ステップS02)。言い換えれば、測距装置100は、受光部20で瞬間視野(iFOV)をもって反射光RLを受光する。具体的には、制御部30は、反射光RLを受光部20の光偏向素子21によって偏向させ、偏向された反射光RLを受光素子22において受光させる。 Next, the control unit 30 causes the light receiving unit 20 to receive the reflected light RL, which is the irradiation light EL2 reflected by the object OB (step S02). In other words, the distance measuring device 100 receives the reflected light RL with an instantaneous field of view (iFOV) at the light receiving unit 20. Specifically, the control unit 30 deflects the reflected light RL by the optical deflection element 21 of the light receiving unit 20, and causes the deflected reflected light RL to be received by the light receiving element 22.

制御部30は、パルス光EL1及び反射光RLに基づいて物体OBまでの距離を測距する(ステップS03)。言い換えれば、測距装置100は、パルス光EL1及び反射光RLに基づいて物体OBまでの距離を測距する。 The control unit 30 measures the distance to the object OB based on the pulsed light EL1 and the reflected light RL (step S03). In other words, the distance measuring device 100 measures the distance to the object OB based on the pulsed light EL1 and the reflected light RL.

具体的には、制御部30は、光源11によって出射された1のパルス光の出射時刻と、当該1のパルス光が反射光RLとして受光素子22で検出された受光時刻と、を取得する。制御部30は、当該出射時刻と当該受光時刻の時刻差に基づいて、測距装置100と物体OBとの距離を算出する。 Specifically, the control unit 30 acquires the emission time of one pulse of light emitted by the light source 11 and the reception time at which the one pulse of light is detected as reflected light RL by the light receiving element 22. The control unit 30 calculates the distance between the distance measuring device 100 and the object OB based on the time difference between the emission time and the reception time.

以上のように、受光部20、投光部10a、10bから出射される各々の出射光ELの強度は、距離L1の位置において安全基準を満たしている。 As described above, the intensity of each of the emitted lights EL emitted from the light receiving unit 20 and the light emitting units 10a and 10b meets the safety standards at the position of distance L1.

また、測距装置100からの距離が距離L1よりも遠い距離L2以降においては、投光部10a,10bの瞬間照射野(iFOI(a)、iFOI(b))が瞬間視野(iFOV)内に配されている。また、測距装置100からの距離が遠くなるにつれて、瞬間視野(iFOV)内に配される瞬間照射野(iFOI(a)、iFOI(b))の領域の割合が高くなる。したがって、本実施例に係る測距装置100によれば、レーザ光の出力に関する安全基準を順守し、かつ遠方に位置する物体OBの測距を精度よく行うことが可能となる。 In addition, at distance L2 and beyond, which is farther from distance L1 than distance L1 from the distance measuring device 100, the instantaneous irradiation fields (iFOI(a), iFOI(b)) of the light projectors 10a and 10b are arranged within the instantaneous field of view (iFOV). As the distance from the distance measuring device 100 increases, the proportion of the area of the instantaneous irradiation fields (iFOI(a), iFOI(b)) arranged within the instantaneous field of view (iFOV) increases. Therefore, according to the distance measuring device 100 of this embodiment, it is possible to accurately measure the distance to a distant object OB while complying with safety standards regarding the output of laser light.

尚、本願発明の測距装置100が行っている情報処理は、上記実施例において測距装置100が行っている情報処理を実行させるプログラムによって実行することができる。なお、本願発明の情報処理方法を実行させるプログラムは、コンピュータで読み取り可能な記録媒体に記録され、好適に使用することができる。例えば、本願発明の測距装置100が、本願発明のプログラムを記録媒体から読み取り、本願発明のプログラムを実行することができる。 The information processing performed by the distance measuring device 100 of the present invention can be executed by a program that executes the information processing performed by the distance measuring device 100 in the above embodiment. The program that executes the information processing method of the present invention can be recorded on a computer-readable recording medium and used suitably. For example, the distance measuring device 100 of the present invention can read the program of the present invention from the recording medium and execute the program of the present invention.

また、投光部10a,10bの配置は、本実施例の配置例に限られず、例えば、図8に示すように、投光部10a,10bは、基板40上において図4に示した投光部10a,10bの配列方向に対して垂直な方向に列状に基板40上に配置してもよい。 The arrangement of the light-projecting units 10a, 10b is not limited to the arrangement example of this embodiment. For example, as shown in FIG. 8, the light-projecting units 10a, 10b may be arranged in a row on the substrate 40 in a direction perpendicular to the arrangement direction of the light-projecting units 10a, 10b shown in FIG. 4 on the substrate 40.

このように投光部10a,10bを配置した場合、図4において説明したように、投光部10a,10bは、受光部20までの距離が等しく配置するとよい。具体的には、受光部20から投光部10aまでの距離LV1は、受光部20から投光部10bまでの距離LV2と等しくするとよい。 When the light-projecting units 10a and 10b are arranged in this manner, as described in FIG. 4, it is preferable that the light-projecting units 10a and 10b are arranged at equal distances to the light-receiving unit 20. Specifically, it is preferable that the distance LV1 from the light-receiving unit 20 to the light-projecting unit 10a is equal to the distance LV2 from the light-receiving unit 20 to the light-projecting unit 10b.

さらに、瞬間照射野(iFOI(a),iFOI(b))の調整は、光源11から出射された照射光EL2を遮蔽することにより行うとよい。図9は、投光部10a,10bに遮蔽部材SCを設けた構成例を示している。図9に示すように、遮蔽部材SCは、光源11と光偏向素子12との間に設けられている。遮蔽部材SCは、パルス光EL1の一部を遮蔽する。従って、パルス光EL1は、その一部が遮蔽部材SCで遮蔽されて光偏向素子12の光反射面MRに入射する。 Furthermore, the instantaneous irradiation field (iFOI(a), iFOI(b)) may be adjusted by blocking the irradiation light EL2 emitted from the light source 11. Figure 9 shows an example configuration in which a blocking member SC is provided on the light projecting units 10a and 10b. As shown in Figure 9, the blocking member SC is provided between the light source 11 and the light deflection element 12. The blocking member SC blocks a portion of the pulsed light EL1. Therefore, the pulsed light EL1 is partially blocked by the blocking member SC and enters the light reflecting surface MR of the light deflection element 12.

遮蔽部材SCによって瞬間照射野(iFOI(a),iFOI(b))を調整することにより、照射光EL2を出射する光源11の出力の設定が容易になる。例えば、光源11から出射されたパルス光EL1のうち半分をカットする場合、パルス光EL1の半分を遮蔽部材SCで遮蔽することによりこれを実現することができる。従って、光源11に供給される電流を制御する構成を必要とすることなく、簡易な構成でパルス光を出射する光源11のパワーの設定が容易になる。 By adjusting the instantaneous irradiation field (iFOI(a), iFOI(b)) with the shielding member SC, it becomes easy to set the output of the light source 11 that emits the irradiation light EL2. For example, when cutting half of the pulsed light EL1 emitted from the light source 11, this can be achieved by shielding half of the pulsed light EL1 with the shielding member SC. Therefore, it becomes easy to set the power of the light source 11 that emits pulsed light with a simple configuration without requiring a configuration to control the current supplied to the light source 11.

実施例1においては、受光部20は、受光部としての機能を有するように構成した。しかし、受光部は、受光部としての機能のみならず投光部としての機能を有するように構成してもよい。尚、実施例1に係る測距装置100と同一の構成については、同一の符号を付して説明を省略する。 In the first embodiment, the light receiving unit 20 is configured to function as a light receiving unit. However, the light receiving unit may be configured to function not only as a light receiving unit but also as a light projecting unit. Note that the same components as those in the distance measuring device 100 of the first embodiment are denoted by the same reference numerals and will not be described.

図10は、実施例2に係る測距装置100の機能ブロックを示している。図10に示すように、投受光部50の光源51は、出射光を出射する発光装置である。光源51は、投光部10a,10bの光源11と同一の構成を有する。 Figure 10 shows the functional blocks of the distance measuring device 100 according to the second embodiment. As shown in Figure 10, the light source 51 of the light projecting/receiving unit 50 is a light emitting device that emits emitted light. The light source 51 has the same configuration as the light source 11 of the light projecting units 10a and 10b.

光偏向素子52は、制御信号に応じて光ビームを偏向させる装置である。言い換えれば、光偏向素子52は、パルス光EL1の方向及び反射光RLの方向を可変に偏向させることができる。光偏向素子52は、光反射面(図示せず)を含む出射光反射部材を有している。 The optical deflection element 52 is a device that deflects a light beam in response to a control signal. In other words, the optical deflection element 52 can variably deflect the direction of the pulsed light EL1 and the direction of the reflected light RL. The optical deflection element 52 has an output light reflecting member that includes a light reflecting surface (not shown).

光偏向素子52は、光偏向素子12と同様にMEMSミラー装置等を用いることができる。光偏向素子52は、当該光反射面にてパルス光を反射して、走査対象領域Rに向けて照射光EL2を出射可能であると共に、受光素子53に向けて反射光を偏向可能である。したがって、光偏向素子52は、出射光偏光素子及び反射光偏光素子として機能する。 The optical deflection element 52 can be a MEMS mirror device or the like, similar to the optical deflection element 12. The optical deflection element 52 can reflect pulsed light at its light reflecting surface and emit irradiation light EL2 toward the scanning target region R, and can deflect the reflected light toward the light receiving element 53. Therefore, the optical deflection element 52 functions as an emitted light polarizing element and a reflected light polarizing element.

尚、光源51と、光偏向素子52との間にビームスプリッタ(図示せず)を設けて、パルス光EL1と反射光RLを分けるようにするとよい。 In addition, it is advisable to provide a beam splitter (not shown) between the light source 51 and the optical deflection element 52 to separate the pulsed light EL1 and the reflected light RL.

受光素子53は、光偏向素子52で偏向された反射光RLを受光して、電気信号である受光信号を生成する。受光素子53としては、例えば、アバランシェフォトダイオード等を採用することができる。 The light receiving element 53 receives the reflected light RL deflected by the light deflection element 52 and generates a light receiving signal, which is an electrical signal. For example, an avalanche photodiode or the like can be used as the light receiving element 53.

このように、投受光部50は、投光部の機能と受光部の機能を有している。従って、投受光部50の瞬間照射野(iFOI)の軸AX1は、瞬間視野(iFOV)の軸AX2と一致している。 In this way, the light projecting and receiving unit 50 has the functions of a light projecting unit and a light receiving unit. Therefore, the axis AX1 of the instantaneous field of interest (iFOI) of the light projecting and receiving unit 50 coincides with the axis AX2 of the instantaneous field of view (iFOV).

以上のように、本実施例の測距装置100によれば、実施例1の測距装置100と同様に、レーザ光の出力に関する安全基準を順守し、かつ遠方に位置する物体OBの測距を精度よく行うことが可能となる。また、投受光部50の瞬間照射野(iFOI)の軸AX1は、瞬間視野(iFOV)の軸AX2と一致していることにより、例えば、測距装置100からの距離が距離L2よりも短い距離に物体OBが存在している場合でも、当該物体OBの測距を精度よく行うことが可能となる。 As described above, the distance measuring device 100 of this embodiment, like the distance measuring device 100 of embodiment 1, complies with safety standards regarding the output of laser light and can accurately measure the distance to a distant object OB. In addition, since the axis AX1 of the instantaneous field of view (iFOI) of the light projecting and receiving unit 50 coincides with the axis AX2 of the instantaneous field of view (iFOV), it is possible to accurately measure the distance to the object OB even if the object OB is located at a distance from the distance measuring device 100 that is shorter than the distance L2.

実施例1に係る測距装置100は、投光部10a及び投光部10bは、瞬間視野(iFOV)において、互いに異なる位置に配されていた。しかし、投光部10a及び投光部10bは、瞬間視野(iFOV)において、互いに重なる位置に配されているようにしてもよい。尚、実施例1に係る測距装置100と同一の構成については、同一の符号を付して説明を省略する。 In the distance measuring device 100 according to the first embodiment, the light projecting unit 10a and the light projecting unit 10b are arranged at different positions in the instantaneous field of view (iFOV). However, the light projecting unit 10a and the light projecting unit 10b may be arranged at positions where they overlap each other in the instantaneous field of view (iFOV). Note that the same components as those in the distance measuring device 100 according to the first embodiment are given the same reference numerals and will not be described.

図11は、実施例3に係る測距装置100の投光部10及び受光部20の配置例を示している。図11に示すように、投光部10a~10dは、基板40上において受光部20を挟み込むように列状に配置されている。具体的には、投光部10a~10dは、投光部10a及び投光部10dが列の末端に配され、投光部10b,10cがその間に配されている。投光部10b,10cの間には、受光部20が配されている。 Figure 11 shows an example of the arrangement of the light-projecting unit 10 and the light-receiving unit 20 of the distance measuring device 100 according to the third embodiment. As shown in Figure 11, the light-projecting units 10a to 10d are arranged in a row on the substrate 40 so as to sandwich the light-receiving unit 20. Specifically, the light-projecting units 10a to 10d are arranged such that the light-projecting unit 10a and the light-projecting unit 10d are arranged at the ends of the row, and the light-projecting units 10b and 10c are arranged between them. The light-receiving unit 20 is arranged between the light-projecting units 10b and 10c.

また、投光部10aと投光部10bとの間の距離、投光部10bと受光部20との間の距離、受光部20と投光部10cとの間に距離、及び投光部10cと投光部10dとの間の距離は等しく配置されている。 The distance between light-projecting unit 10a and light-projecting unit 10b, the distance between light-projecting unit 10b and light-receiving unit 20, the distance between light-receiving unit 20 and light-projecting unit 10c, and the distance between light-projecting unit 10c and light-projecting unit 10d are all equal.

図12は、距離L4に位置する照射面VSにおける瞬間照射野(iFOI(a)~iFOI(d))及び瞬間視野(iFOV)を示している。尚、照射面VS上における瞬間照射野(iFOI(a)~iFOI(d))及び瞬間視野(iFOV)は、矩形状に示されている。 Figure 12 shows the instantaneous irradiation field (iFOI(a)-iFOI(d)) and the instantaneous field of view (iFOV) on the irradiation surface VS located at a distance L4. Note that the instantaneous irradiation field (iFOI(a)-iFOI(d)) and the instantaneous field of view (iFOV) on the irradiation surface VS are shown in a rectangular shape.

図12に示すように、距離L4に位置する照射面VSにおいて、照射領域RIは、投光部10a~10dの各々の瞬間照射野(iFOI(a)~iFOI(d))によって形成されている。 As shown in FIG. 12, in the irradiation surface VS located at a distance L4, the irradiation area RI is formed by the instantaneous irradiation fields (iFOI(a) to iFOI(d)) of each of the light projectors 10a to 10d.

具体的には、照射領域RIは、照射面VSにおいて投光部10a~10dの各々によって照らされている領域である。照射領域RIは、視野領域RVの全体を含んでいる。 Specifically, the illumination area RI is the area on the illumination surface VS that is illuminated by each of the light projectors 10a to 10d. The illumination area RI includes the entire viewing area RV.

投光部10a~10dのうちの一組の投光部10a,10bの各々の照射面VSにおける瞬間照射野(iFOI(a),iFOI(b))は、照射面VSにおける瞬間視野(iFOV)上において互いに重なっている。また、投光部10a~10dのうちの一組の投光部10c,10dの各々の照射面VSにおける瞬間照射野(iFOI(c),iFOI(d))は、照射面VSにおける瞬間視野(iFOV)上において距離L4で互いに重なっている。 The instantaneous irradiation fields (iFOI(a), iFOI(b)) on the irradiation surface VS of each of a pair of light projectors 10a, 10b among light projectors 10a-10d overlap with each other on the instantaneous visual field (iFOV) on the irradiation surface VS. In addition, the instantaneous irradiation fields (iFOI(c), iFOI(d)) on the irradiation surface VS of each of a pair of light projectors 10c, 10d among light projectors 10a-10d overlap with each other at a distance L4 on the instantaneous visual field (iFOV) on the irradiation surface VS.

視野領域RVは、距離L4に位置する照射面VSにおいて、受光部20の瞬間視野(iFOV)によって形成されている。照射領域RIは、距離L4に位置する照射面VSにおいて、視野領域RVの全体を含んでいる。 The visual field RV is formed by the instantaneous field of view (iFOV) of the light receiving unit 20 at the irradiation surface VS located at the distance L4. The irradiation area RI includes the entire visual field RV at the irradiation surface VS located at the distance L4.

ここで、投光部10a~10dから出射された各々の出射光ELのうち、測距装置100からの距離において瞬間視野(iFOV)内に照射される出射光ELの強度の和を、測距装置100からの距離における照射光強度とする。 Here, the sum of the intensities of the emitted light EL emitted from each of the light projecting units 10a to 10d that is irradiated within the instantaneous field of view (iFOV) at a distance from the distance measuring device 100 is defined as the irradiated light intensity at the distance from the distance measuring device 100.

このように、投光部10a,10bの各々の照射面VSにおける瞬間照射野(iFOI(a),iFOI(b))は、照射面VSにおける瞬間視野(iFOV)上で互いに重なっていることにより、当該瞬間照射野(iFOI(a),iFOI(b))が互いに重なっている領域における照射光強度を強くすることができる。同様に、投光部10c,10dの各々の照射面VSにおける瞬間照射野(iFOI(c),iFOI(d))は、照射面VSにおける瞬間視野(iFOV)上で互いに重なっていることにより、当該瞬間照射野(iFOI(c),iFOI(d))が互いに重なっている領域における照射光強度を強くすることができる。従って、受光部20が受光する反射光RLの光量を多くすることが可能となる。 In this way, the instantaneous irradiation fields (iFOI(a), iFOI(b)) on the irradiation surface VS of each of the light projectors 10a and 10b overlap each other on the instantaneous field of view (iFOV) on the irradiation surface VS, so that the irradiation light intensity can be increased in the area where the instantaneous irradiation fields (iFOI(a), iFOI(b)) overlap each other. Similarly, the instantaneous irradiation fields (iFOI(c), iFOI(d)) on the irradiation surface VS of each of the light projectors 10c and 10d overlap each other on the instantaneous field of view (iFOV) on the irradiation surface VS, so that the irradiation light intensity can be increased in the area where the instantaneous irradiation fields (iFOI(c), iFOI(d)) overlap each other. Therefore, it is possible to increase the amount of reflected light RL received by the light receiving unit 20.

以上のように、本実施例の測距装置100によれば、実施例1の測距装置100と同様に、レーザ光の出力に関する安全基準を順守し、かつ遠方に位置する物体OBの測距を精度よく行うことが可能となる。特に、受光部20が受光する反射光RLの光量を多くすることが可能となるため、物体OBの測距を精度よく行うことが可能となる。 As described above, the distance measuring device 100 of this embodiment, like the distance measuring device 100 of embodiment 1, complies with safety standards regarding the output of laser light and can accurately measure the distance to a distant object OB. In particular, it is possible to increase the amount of reflected light RL received by the light receiving unit 20, making it possible to accurately measure the distance to the object OB.

尚、投光部10a,10bの配置は、本実施例の配置例に限られず、例えば、図13に示すように、投光部10a~10dは、基板40上において図11に示した投光部10a~10dの配列方向に対して垂直な方向に列状に配置してもよい。 The arrangement of the light-projecting units 10a, 10b is not limited to the arrangement example of this embodiment. For example, as shown in FIG. 13, the light-projecting units 10a to 10d may be arranged in a row on the substrate 40 in a direction perpendicular to the arrangement direction of the light-projecting units 10a to 10d shown in FIG. 11.

このように投光部10a~10dを配置した場合、図11において説明したように、投光部10aと投光部10bとの間の距離、投光部10bと受光部20との間の距離、受光部20と投光部10cとの間に距離、及び投光部10cと投光部10dとの間の距離は等しく配置されているとよい。 When light-projecting units 10a to 10d are arranged in this manner, as described in FIG. 11, it is preferable that the distance between light-projecting unit 10a and light-projecting unit 10b, the distance between light-projecting unit 10b and light-receiving unit 20, the distance between light-receiving unit 20 and light-projecting unit 10c, and the distance between light-projecting unit 10c and light-projecting unit 10d are all equal.

さらに、投光部10a~10dは、基板40上において受光部20から等距離の位置に各々が配置されているようにしてもよい。図14は、変形例に係る測距装置100の投光部の配置例を示している。図14に示すように、受光部20から投光部10aまでの距離LH1は、受光部20から投光部10cまでの距離LH2に等しい。また、受光部20から投光部10bまでの距離LV1は、受光部20から投光部10dまでの距離LV2に等しい。さらに、距離LV1,LV2,LH1,LH2は、互いに等しい。 Furthermore, the light-projecting units 10a to 10d may each be arranged at an equal distance from the light-receiving unit 20 on the substrate 40. FIG. 14 shows an example of the arrangement of the light-projecting units of a distance measuring device 100 according to a modified example. As shown in FIG. 14, the distance LH1 from the light-receiving unit 20 to the light-projecting unit 10a is equal to the distance LH2 from the light-receiving unit 20 to the light-projecting unit 10c. Furthermore, the distance LV1 from the light-receiving unit 20 to the light-projecting unit 10b is equal to the distance LV2 from the light-receiving unit 20 to the light-projecting unit 10d. Furthermore, the distances LV1, LV2, LH1, and LH2 are equal to one another.

尚、本実施例の受光部20は、実施例2で説明した投受光部50によって実施してもよい。 The light receiving unit 20 in this embodiment may be implemented by the light projecting and receiving unit 50 described in embodiment 2.

100 測距装置
10a~10d 投光部
11 光源
12 光偏向素子
20 投受光部
21 光源
22 受光素子
23 光偏向素子
30 制御部
40 距離測定部
iFOI 瞬間照射野
iFOV 瞬間視野
OB 物体
VS 照射面
100 Distance measuring device 10a to 10d Light projecting unit 11 Light source 12 Light deflection element 20 Light projecting and receiving unit 21 Light source 22 Light receiving element 23 Light deflection element 30 Control unit 40 Distance measuring unit iFOI Instantaneous irradiation field iFOV Instantaneous field of view OB Object VS Irradiation surface

Claims (10)

出射光を出射する光源を各々が含み、かつ各々が前記出射光を、瞬間照射野を有する照射光として出射する複数の投光部と、
前記照射光が物体で反射した反射光を受光する受光素子を含み、かつ前記照射光の各々の前記瞬間照射野の立体角よりも瞬間視野の立体角が大きい受光部と、
を有し、
前記受光部から所定の距離にある照射面において、前記複数の投光部の前記瞬間照射野によって形成される照射領域は、前記瞬間視野によって形成される視野領域を内包することを特徴とする光学装置。
A plurality of light projecting units each including a light source that emits an emission light, and each emitting the emission light as an emission light having an instantaneous irradiation field;
A light receiving unit including a light receiving element that receives light reflected by an object from the irradiated light, and the solid angle of an instantaneous field of view is larger than the solid angle of the instantaneous irradiation field of each of the irradiated lights;
having
An optical device characterized in that, on an irradiation surface located a predetermined distance from the light receiving unit, an irradiation area formed by the instantaneous irradiation fields of the multiple light projecting units includes a field of view formed by the instantaneous field of view.
前記複数の投光部は、前記出射光を方向可変に偏向させる出射光偏向素子を各々が含み、かつ各々が前記出射光偏向素子で偏向させた前記出射光を、瞬間照射野を有する照射光として出射することを特徴とする請求項1に記載の光学装置。 The optical device according to claim 1, characterized in that each of the light projecting units includes an output light deflection element that deflects the output light in a variable direction, and each of the light projecting units emits the output light deflected by the output light deflection element as irradiation light having an instantaneous irradiation field. 前記投光部は、前記光源と前記出射光偏向素子との間に前記出射光の一部を遮蔽する遮蔽部材を有することを特徴とする請求項2に記載の光学装置。 The optical device according to claim 2, characterized in that the light projecting unit has a shielding member between the light source and the emitted light deflection element that shields a portion of the emitted light. 前記複数の投光部のうちの少なくとも一組の投光部の各々の前記瞬間照射野は、前記瞬間視野上において前記受光部から所定の距離で互いに重なることを特徴とする請求項1乃至3のいずれか1つに記載の光学装置。 An optical device according to any one of claims 1 to 3, characterized in that the instantaneous irradiation fields of at least one set of the plurality of light-projecting units overlap each other at a predetermined distance from the light-receiving unit on the instantaneous visual field. 前記複数の投光部は4つの投光部を含み、
前記受光部から所定の距離にある照射面において、前記複数の投光部のうち2つの投光部から出射される前記照射光の前記瞬間照射野の各々が互いに重畳して1の照射領域を形成し、前記複数の投光部のうち前記2つの投光部と異なる2つの投光部から出射される前記照射光の前記瞬間照射野の各々が互いに重畳して他の照射領域を形成することを特徴とする請求項1乃至4のいずれか1つに記載の光学装置。
The plurality of light projecting units include four light projecting units,
5. The optical device according to claim 1, wherein, on an irradiation surface at a predetermined distance from the light receiving unit, the instantaneous irradiation fields of the irradiation light emitted from two of the plurality of light projecting units overlap with each other to form one irradiation area, and the instantaneous irradiation fields of the irradiation light emitted from two of the plurality of light projecting units other than the two light projecting units overlap with each other to form another irradiation area.
前記複数の投光部のうち1の投光部の瞬間照射野の軸は、前記瞬間視野の軸と一致していることを特徴とする請求項1乃至5のいずれか1つに記載の光学装置。 An optical device according to any one of claims 1 to 5, characterized in that the axis of the instantaneous irradiation field of one of the multiple light projecting units coincides with the axis of the instantaneous visual field. 出射光を出射する光源を各々が含み、かつ各々が前記出射光を、瞬間照射野を有する照射光として出射する複数の投光部と、前記照射光が物体で反射した反射光を受光する受光素子を含み、かつ前記照射光の各々の前記瞬間照射野の立体角よりも瞬間視野の立体角が大きい受光部とを有し、前記受光部から所定の距離にある照射面において、前記複数の投光部の前記瞬間照射野によって形成される照射領域が、前記瞬間視野によって形成される視野領域を内包する光学装置と、
前記出射光及び前記反射光に基づいて前記物体までの距離を測距する測距部と、
を有することを特徴とする測距装置。
an optical device comprising: a plurality of light projecting units each including a light source for emitting an emission light, and each emitting the emission light as an illumination light having an instantaneous illumination field; and a light receiving unit including a light receiving element for receiving a reflected light of the illumination light reflected by an object, and having a solid angle of an instantaneous visual field larger than a solid angle of the instantaneous illumination field of each of the illumination lights, wherein, on an illumination surface at a predetermined distance from the light receiving unit, an illumination area formed by the instantaneous illumination fields of the plurality of light projecting units includes a visual field area formed by the instantaneous visual field;
a distance measuring unit that measures a distance to the object based on the emitted light and the reflected light;
A distance measuring device comprising:
出射光を出射する光源を各々が含み、かつ各々が前記出射光を、瞬間照射野を有する照射光として出射する複数の投光部と、前記照射光が物体で反射した反射光を受光する受光素子を含み、かつ前記照射光の各々の前記瞬間照射野の立体角よりも瞬間視野の立体角が大きい受光部とを有し、前記受光部から所定の距離にある照射面において、前記複数の投光部の前記瞬間照射野によって形成される照射領域が、前記瞬間視野によって形成される視野領域を内包する光学装置と、前記出射光及び前記反射光に基づいて前記物体までの距離を測距する測距部と、を有する測距装置によって実行される測距方法であって、
前記複数の投光部の各々から前記照射光を同時に出射する工程と、
前記受光部で前記瞬間視野をもって前記反射光を受光する工程と、
前記出射光及び前記反射光に基づいて前記物体までの距離を測距する工程と、
を含むことを特徴とする測距方法。
a light-projecting unit including a light source for emitting an emission light and for emitting the emission light as an emission light having an instantaneous illumination field; and a light-receiving unit including a light-receiving element for receiving light reflected from an object from the emission light and having a solid angle of an instantaneous visual field larger than a solid angle of the instantaneous illumination field of each of the emission lights, wherein an illumination area formed by the instantaneous illumination fields of the light-projecting units on an illumination surface at a predetermined distance from the light-receiving unit includes a visual field area formed by the instantaneous visual field; and a distance measuring unit for measuring a distance to the object based on the emission light and the reflected light,
a step of simultaneously emitting the irradiation light from each of the plurality of light projecting units;
receiving the reflected light with the light receiving unit at the instantaneous field of view;
measuring a distance to the object based on the emitted light and the reflected light;
A distance measuring method comprising:
出射光を出射する光源を各々が含み、かつ各々が前記出射光を、瞬間照射野を有する照射光として出射する複数の投光部と、前記照射光が物体で反射した反射光を受光する受光素子を含み、かつ前記照射光の各々の前記瞬間照射野の立体角よりも瞬間視野の立体角が大きい受光部とを有し、前記受光部から所定の距離にある照射面において、前記複数の投光部の前記瞬間照射野によって形成される照射領域が、前記瞬間視野によって形成される視野領域を内包する光学装置と、前記出射光及び前記反射光に基づいて前記物体までの距離を測距する測距部と、を有する測距装置に、
前記複数の投光部の各々から前記照射光を同時に出射する工程と、
前記受光部で前記瞬間視野をもって前記反射光を受光する工程と、
前記出射光及び前記反射光に基づいて前記物体までの距離を測距する工程と、
をさせることを特徴とするプログラム。
a light-projecting unit including a light source for emitting an emission light and for emitting the emission light as an emission light having an instantaneous illumination field; and a light-receiving unit including a light-receiving element for receiving light reflected from an object from the emission light and having a solid angle of an instantaneous visual field larger than a solid angle of the instantaneous illumination field of each of the emission lights, wherein an illumination area formed by the instantaneous illumination fields of the light-projecting units on an illumination surface at a predetermined distance from the light-receiving unit includes a visual field area formed by the instantaneous visual field; and a distance measuring unit for measuring a distance to the object based on the emission light and the reflected light,
a step of simultaneously emitting the irradiation light from each of the plurality of light projecting units;
receiving the reflected light with the light receiving unit at the instantaneous field of view;
measuring a distance to the object based on the emitted light and the reflected light;
A program for causing a computer to execute the above steps.
出射光を出射する光源を各々が含み、かつ各々が前記出射光を、瞬間照射野を有する照射光として出射する複数の投光部と、前記照射光が物体で反射した反射光を受光する受光素子を含み、かつ前記照射光の各々の前記瞬間照射野の立体角よりも瞬間視野の立体角が大きい受光部とを有し、前記受光部から所定の距離にある照射面において、前記複数の投光部の前記瞬間照射野によって形成される照射領域が、前記瞬間視野によって形成される視野領域を内包する光学装置と、前記出射光及び前記反射光に基づいて前記物体までの距離を測距する測距部と、を有する測距装置に、
前記複数の投光部の各々から前記照射光を同時に出射する工程と、
前記受光部で前記瞬間視野をもって前記反射光を受光する工程と、
前記出射光及び前記反射光に基づいて前記物体までの距離を測距する工程と、
をさせるプログラムが記録されていることを特徴とする記録媒体。
a light-projecting unit including a light source for emitting an emission light and for emitting the emission light as an emission light having an instantaneous illumination field; and a light-receiving unit including a light-receiving element for receiving light reflected from an object from the emission light and having a solid angle of an instantaneous visual field larger than a solid angle of the instantaneous illumination field of each of the emission lights, wherein an illumination area formed by the instantaneous illumination fields of the light-projecting units on an illumination surface at a predetermined distance from the light-receiving unit includes a visual field area formed by the instantaneous visual field; and a distance measuring unit for measuring a distance to the object based on the emission light and the reflected light,
a step of simultaneously emitting the irradiation light from each of the plurality of light projecting units;
receiving the reflected light with the light receiving unit at the instantaneous field of view;
measuring a distance to the object based on the emitted light and the reflected light;
A recording medium having a program recorded thereon for causing a computer to execute the above-mentioned operation.
JP2024028118A 2018-06-28 2024-02-28 Optical device, distance measuring device, distance measuring method, program, and recording medium Pending JP2024059877A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2024028118A JP2024059877A (en) 2018-06-28 2024-02-28 Optical device, distance measuring device, distance measuring method, program, and recording medium

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018122714A JP2020003329A (en) 2018-06-28 2018-06-28 Optical device, distance measuring device, and distance measuring method
JP2022138953A JP2022164850A (en) 2018-06-28 2022-09-01 Optical device, distance measuring device and distance measuring method
JP2024028118A JP2024059877A (en) 2018-06-28 2024-02-28 Optical device, distance measuring device, distance measuring method, program, and recording medium

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2022138953A Division JP2022164850A (en) 2018-06-28 2022-09-01 Optical device, distance measuring device and distance measuring method

Publications (1)

Publication Number Publication Date
JP2024059877A true JP2024059877A (en) 2024-05-01

Family

ID=69099705

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2018122714A Ceased JP2020003329A (en) 2018-06-28 2018-06-28 Optical device, distance measuring device, and distance measuring method
JP2022138953A Pending JP2022164850A (en) 2018-06-28 2022-09-01 Optical device, distance measuring device and distance measuring method
JP2024028118A Pending JP2024059877A (en) 2018-06-28 2024-02-28 Optical device, distance measuring device, distance measuring method, program, and recording medium

Family Applications Before (2)

Application Number Title Priority Date Filing Date
JP2018122714A Ceased JP2020003329A (en) 2018-06-28 2018-06-28 Optical device, distance measuring device, and distance measuring method
JP2022138953A Pending JP2022164850A (en) 2018-06-28 2022-09-01 Optical device, distance measuring device and distance measuring method

Country Status (1)

Country Link
JP (3) JP2020003329A (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0461085U (en) * 1990-10-02 1992-05-26
JP3473737B2 (en) * 1998-06-10 2003-12-08 日本信号株式会社 Vehicle speed measurement device
JP2005292156A (en) * 1999-02-24 2005-10-20 Denso Corp Distance-measuring device
JP6186863B2 (en) * 2013-05-07 2017-08-30 富士通株式会社 Ranging device and program
CN204989469U (en) * 2015-07-29 2016-01-20 武汉万集信息技术有限公司 Many emission unit laser rangefinder with strengthen remote range finding ability
JP7073262B2 (en) * 2016-01-31 2022-05-23 ベロダイン ライダー ユーエスエー,インコーポレイテッド 3D imaging based on LIDAR with overlapping irradiation in the distant field

Also Published As

Publication number Publication date
JP2020003329A (en) 2020-01-09
JP2022164850A (en) 2022-10-27

Similar Documents

Publication Publication Date Title
US11726315B2 (en) Ladar transmitter with ellipsoidal reimager
US9285266B2 (en) Object detector including a light source with light emitting region of a first size in a first direction and a second size in a second direction
US9304228B2 (en) Object detection apparatus with detection based on reflected light or scattered light via an imaging unit
JP2020531826A (en) Transmitter with scan mirror covered by a collimating cover element
CN111656215B (en) Laser radar device, driving assistance system, and vehicle
CN104728729A (en) Lighting device
US20180156414A1 (en) Vehicle lighting apparatus
JP6414349B1 (en) Light emitting device, object information detecting device, optical path adjusting method, object information detecting method, and light modulation unit
US10754234B2 (en) Projection device
US20200150418A1 (en) Distance measurement device and mobile body
JP2021535996A (en) Coaxial settings for photodetection and ranging, ie LIDAR measurements
KR101415918B1 (en) Laser multi-sacn apparatus
US20210294098A1 (en) Image display device
JP2021170033A (en) Scanner
JP2024059877A (en) Optical device, distance measuring device, distance measuring method, program, and recording medium
JP2022162080A (en) Distance measuring device
WO2019163210A1 (en) Scanning optical system and lidar
JPWO2018147454A1 (en) Scanning optical system and laser radar device
JP2023070546A (en) Floodlight device, range finder, and method of controlling laser beam projection
KR20220122925A (en) diffuser device
WO2019244701A1 (en) Light radiation device, object information detection device, light path adjustment method, and object information detection method
JP2022159438A (en) Ranging device
KR20190039453A (en) image display devices
JP7155526B2 (en) lidar device
WO2021125018A1 (en) Light emitting device, object detecting device, and mobile body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240228