JP2024057096A - Prismatic secondary battery and battery pack using the same - Google Patents

Prismatic secondary battery and battery pack using the same Download PDF

Info

Publication number
JP2024057096A
JP2024057096A JP2024034541A JP2024034541A JP2024057096A JP 2024057096 A JP2024057096 A JP 2024057096A JP 2024034541 A JP2024034541 A JP 2024034541A JP 2024034541 A JP2024034541 A JP 2024034541A JP 2024057096 A JP2024057096 A JP 2024057096A
Authority
JP
Japan
Prior art keywords
negative electrode
positive electrode
current collector
electrode
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2024034541A
Other languages
Japanese (ja)
Inventor
和洋 北岡
雅一 山田
陽平 室屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019160938A external-priority patent/JP6891930B2/en
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2024034541A priority Critical patent/JP2024057096A/en
Publication of JP2024057096A publication Critical patent/JP2024057096A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Battery Mounting, Suspending (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Cell Separators (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

【課題】高い体積エネルギー密度を有する高容量の角形二次電池を提供する。【解決手段】正極板と負極板がセパレータを介して巻回された扁平状の巻回電極体3は、その巻回軸が延びる方向における一方の端部に、正極タブ部4c及び負極タブ部5cを有し、2つの扁平状の巻回電極体3が、それぞれの巻回軸が封口板2に対して垂直な方向に配置され、正極タブ部4c及び負極タブ部5cが封口板2側に位置するように、角形外装体1内に収納されている。【選択図】図3[Problem] To provide a high-capacity prismatic secondary battery having a high volumetric energy density. [Solution] A flat wound electrode body 3 in which a positive electrode plate and a negative electrode plate are wound with a separator interposed therebetween has a positive electrode tab portion 4c and a negative electrode tab portion 5c at one end in the direction in which the winding axis extends, and the two flat wound electrode bodies 3 are arranged so that their respective winding axes are perpendicular to a sealing plate 2, and are housed in a prismatic exterior body 1 such that the positive electrode tab portion 4c and the negative electrode tab portion 5c are located on the sealing plate 2 side. [Selected Figure] Figure 3

Description

本発明は角形二次電池及びそれを用いた組電池に関する。 The present invention relates to a prismatic secondary battery and a battery pack using the same.

電気自動車(EV)やハイブリッド電気自動車(HEV、PHEV)等の駆動用電源において、アルカリ二次電池や非水電解質二次電池等の二次電池が使用されている。これらの用途では、高容量ないし高出力特性が要求されるので、多数の角形二次電池が直列ないし並列に接続された組電池として使用される。 Secondary batteries such as alkaline secondary batteries and non-aqueous electrolyte secondary batteries are used as driving power sources for electric vehicles (EVs) and hybrid electric vehicles (HEVs, PHEVs). These applications require high capacity and high output characteristics, so multiple rectangular secondary batteries are used in series or parallel connected battery packs.

これらの角形二次電池では、開口部を有する有底筒状の角形外装体と、その開口部を封口する封口板により電池ケースが形成される。電池ケース内には、正極板、負極板及びセパレータからなる電極体が電解液と共に収納される。封口板には正極端子及び負極端子が固定される。正極端子は正極集電体を介して正極板に電気的に接続され、負極端子は負極集電体を介して負極板に電気的に接続される。 In these prismatic secondary batteries, a battery case is formed by a cylindrical prismatic exterior body with a bottom and an opening, and a sealing plate that seals the opening. An electrode body consisting of a positive electrode plate, a negative electrode plate, and a separator is stored in the battery case together with an electrolyte. A positive electrode terminal and a negative electrode terminal are fixed to the sealing plate. The positive electrode terminal is electrically connected to the positive electrode plate via the positive electrode current collector, and the negative electrode terminal is electrically connected to the negative electrode plate via the negative electrode current collector.

正極板は、金属製の正極芯体と、正極芯体表面に形成された正極活物質層を含む。正極芯体の一部には正極活物質層が形成されない正極芯体露出部が形成される。そして、この正極芯体露出部に正極集電体が接続される。また、負極板は金属製の負極芯体と、負極芯体表面に形成された負極活物質層を含む。負極芯体の一部には負極活物質層が形成されない負極芯体露出部が形成される。そして、この負極芯体露出部に負極集電体が接続される。 The positive electrode plate includes a metallic positive electrode core and a positive electrode active material layer formed on the surface of the positive electrode core. A positive electrode core exposed portion where the positive electrode active material layer is not formed is formed in a part of the positive electrode core. The positive electrode current collector is connected to this positive electrode core exposed portion. The negative electrode plate includes a metallic negative electrode core and a negative electrode active material layer formed on the surface of the negative electrode core. A negative electrode core exposed portion where the negative electrode active material layer is not formed is formed in a part of the negative electrode core. The negative electrode current collector is connected to this negative electrode core exposed portion.

例えば特許文献1においては、一方の端部に巻回された正極芯体露出部を有し、他方の端部に巻回された負極芯体露出部を有する巻回電極体を用いた角形二次電池が提案されている。また、特許文献2においては、一方の端部に正極芯体露出部及び負極芯体露出部が設けられた巻回電極体を用いた角形二次電池が提案されている。 For example, Patent Document 1 proposes a prismatic secondary battery using a wound electrode body having a wound positive electrode core exposed portion at one end and a wound negative electrode core exposed portion at the other end. Patent Document 2 proposes a prismatic secondary battery using a wound electrode body having a positive electrode core exposed portion and a negative electrode core exposed portion at one end.

特開2009-032640号公報JP 2009-032640 A 特開2008-226625号公報JP 2008-226625 A

車載用二次電池、特にEVやPHEV等に用いられる二次電池に関しては、より体積エネルギー密度が高く電池容量の大きな二次電池の開発が求められる。上記特許文献1に開示されている角形二次電池の場合、電池ケース内には、巻回された正極芯体露出部及び巻回された負極芯体露出部が配置される左右のスペース、及び封口板と巻回電極体の間の上部のスペースが必要であり、二次電池の体積エネルギー密度を増加させることが困難である原因となっている。 There is a demand for the development of secondary batteries with higher volumetric energy density and larger battery capacity for in-vehicle secondary batteries, particularly those used in EVs, PHEVs, etc. In the case of the prismatic secondary battery disclosed in the above Patent Document 1, the battery case requires left and right spaces for arranging the wound positive electrode core exposed portion and the wound negative electrode core exposed portion, as well as an upper space between the sealing plate and the wound electrode body, which makes it difficult to increase the volumetric energy density of the secondary battery.

これに対し、上記特許文献2に開示されている角形二次電池のように、一方の端部に正極芯体露出部及び負極芯体露出部が設けられた巻回電極体を用いること、体積エネルギー密度の高い角形二次電池が得られ易くなる。 In contrast, by using a wound electrode body having a positive electrode core exposed portion and a negative electrode core exposed portion at one end, as in the case of the prismatic secondary battery disclosed in Patent Document 2, it becomes easier to obtain a prismatic secondary battery with a high volumetric energy density.

しかしながら、上記特許文献2に開示されている角形二次電池では、特許文献1に開示されている角形二次電池よりも、集電部の構造が複雑になり易い。 However, the prismatic secondary battery disclosed in Patent Document 2 tends to have a more complex current collecting section structure than the prismatic secondary battery disclosed in Patent Document 1.

本発明は、高い体積エネルギー密度を有する高容量の角形二次電池及びそれを用いた組電池を提供することを目的とする。 The present invention aims to provide a high-capacity rectangular secondary battery with high volumetric energy density and a battery pack using the same.

本発明の一つの形態に係る角形二次電池は、正極板と負極板とをセパレータを介して巻回した扁平状の巻回電極体と、開口部を有し、前記巻回電極体を収納する角形外装体と、前記開口部を封口する封口板と、前記正極板に電気的に接続され前記封口板に取り付けられた正極端子と、前記正極板と前記正極端子を電気的に接続する正極集電体と、前記負極板に電気的に接続され前記封口板に取り付けられた負極端子と、前記負極板と前記負極端子を電気的に接続する負極集電体と、を備えた角形二次電池であって、前記巻回電極体は、前記巻回電極体の巻回軸が延びる方向における一方の端部に、正極タブ部及び負極タブ部を有し、少なくとも2つの前記巻回電極体が、それぞれの前記巻回軸が前記封口板に対して垂直な方向に配置され、前記正極タブ部及び前記負極タブ部が前記封口板側に位置するように、前記角形外装体内に収納され、前記巻回電極体ごとに前記正極板がそれぞれ独立しており、前記巻回電極体ごとに前記負極板がそれぞれ独立しており、前記正極タブ部と前記正極集電体との接合箇所と、前記正極集電体と前記正極端子との接合箇所とが前記封口板の長手方向においてずれており、前記封口板と前記巻回電極体とが向かい合う方向にずれている。あるいは、前記負極タブ部と前記負極集電体との接合箇所と、前記負極集電体と前記負極端子との接合箇所とが前記封口板の長手方向においてずれており、前記封口板と前記巻回電極体とが向かい合う方向にずれている。 A prismatic secondary battery according to one embodiment of the present invention is a prismatic secondary battery comprising: a flat wound electrode body in which a positive electrode plate and a negative electrode plate are wound with a separator interposed therebetween; a prismatic exterior body having an opening and housing the wound electrode body; a sealing plate that seals the opening; a positive electrode terminal electrically connected to the positive electrode plate and attached to the sealing plate; a positive electrode collector that electrically connects the positive electrode plate and the positive electrode terminal; a negative electrode terminal electrically connected to the negative electrode plate and attached to the sealing plate; and a negative electrode collector that electrically connects the negative electrode plate and the negative electrode terminal, wherein the wound electrode body is arranged in such a manner that the wound electrode body is wound in a direction in which the winding axis of the wound electrode body extends. At least two of the wound electrode bodies are housed in the rectangular exterior body so that the winding axis of each is arranged perpendicular to the sealing plate, the positive electrode tab portion and the negative electrode tab portion are located on the sealing plate side, the positive electrode plate is independent for each wound electrode body, the negative electrode plate is independent for each wound electrode body, the joint between the positive electrode tab portion and the positive electrode collector and the joint between the positive electrode collector and the positive electrode terminal are offset in the longitudinal direction of the sealing plate, and the sealing plate and the wound electrode body are offset in the direction facing each other. Alternatively, the joint between the negative electrode tab portion and the negative electrode collector and the joint between the negative electrode collector and the negative electrode terminal are offset in the longitudinal direction of the sealing plate, and the sealing plate and the wound electrode body are offset in the direction facing each other.

このような構成によると、巻回軸が延びる方向における一方端部側に正極タブ部及び負極タブ部が形成された扁平状の巻回電極体を用い、正極タブ部及び負極タブ部を封口板側に配置することにより、電池ケース内において発電に関与しないスペースを削減することができる。したがって、より体積エネルギー密度の高く電池容量の大きな角形二次電池が得られる。 With this configuration, a flat wound electrode body is used in which a positive electrode tab portion and a negative electrode tab portion are formed on one end side in the direction in which the winding axis extends, and the positive electrode tab portion and the negative electrode tab portion are arranged on the sealing plate side, thereby reducing the space inside the battery case that is not involved in power generation. This results in a prismatic secondary battery with a higher volumetric energy density and larger battery capacity.

更に、角形外装体に収納される扁平状の巻回電極体を、複数個とすることにより、正極タブ部と正極集電体との接続部及び負極タブ部と負極集電体の接続部をより簡単な構成とすることが可能となる。 Furthermore, by having multiple flat wound electrode bodies housed in a rectangular exterior body, it is possible to simplify the configuration of the connection between the positive electrode tab portion and the positive electrode current collector and the connection between the negative electrode tab portion and the negative electrode current collector.

なお、正極集電体と正極端子を一つの部品とすることも可能である。負極集電体と負極端子を一つの部品とすることも可能である。また、正極集電体と正極端子とが、他の導電部材を介して電気的に接続されていてもよい。負極集電体と正極端子とが、他の導電部材を介して電気的に接続されていてもよい。 The positive electrode collector and the positive electrode terminal may be integrated into one component. The negative electrode collector and the negative electrode terminal may be integrated into one component. The positive electrode collector and the positive electrode terminal may be electrically connected via another conductive member. The negative electrode collector and the positive electrode terminal may be electrically connected via another conductive member.

前記角形外装体は、底部と、一対の大面積側壁と、一対の小面積側壁と、を有し、
前記小面積側壁の面積は前記大面積側壁の面積よりも小さく、
前記底部の面積は前記小面積側壁の面積よりも小さいことが好ましい。
The rectangular exterior body has a bottom, a pair of large-area side walls, and a pair of small-area side walls,
the area of the small area sidewall is smaller than the area of the large area sidewall;
The area of the bottom is preferably smaller than the area of the small area sidewall.

このような構成によると、角形外装体と封口板により形成される電池ケースの6つの外面のうち、底部と封口板の面が他の4つの面よりも面積が小さくなる。よって、巻回電極体と封口板の間に形成され、正極タブ部、負極タブ部、正極電体及び負極集電体等が配置されるスペースを小さくすることが可能となる。したがって、より体積エネルギー密度の高い角形二次電池となる。 With this configuration, of the six outer surfaces of the battery case formed by the rectangular exterior body and the sealing plate, the surface area of the bottom and the sealing plate is smaller than the other four surfaces. This makes it possible to reduce the space formed between the wound electrode body and the sealing plate in which the positive electrode tab portion, negative electrode tab portion, positive electrode current body, negative electrode current collector, etc. are arranged. This results in a rectangular secondary battery with a higher volumetric energy density.

前記正極板は、正極芯体と、前記正極芯体上に形成された正極活物質層を有し、前記正極芯体は前記正極活物質層が形成されていない正極芯体露出部を有し、前記負極板は、負極芯体と、前記負極芯体上に形成された負極活物質層を有し、前記負極芯体は前記負極活物質層が形成されていない負極芯体露出部を有し、記正極タブ部は前記正極芯体露出部であり、前記負極タブ部は前記負極芯体露出部であることが好ましい。 The positive electrode plate has a positive electrode core and a positive electrode active material layer formed on the positive electrode core, the positive electrode core has a positive electrode core exposed portion on which the positive electrode active material layer is not formed, the negative electrode plate has a negative electrode core and a negative electrode active material layer formed on the negative electrode core, the negative electrode core has a negative electrode core exposed portion on which the negative electrode active material layer is not formed, and it is preferable that the positive electrode tab portion is the positive electrode core exposed portion and the negative electrode tab portion is the negative electrode core exposed portion.

正極タブ部は正極芯体から構成されることが好ましい。また、負タブ部は負芯体から構成されることが好ましい。なお、正極タブ部及び負極タブ部はそれぞれ、正極芯体ないし負極芯体に接続された芯体と別の部品とすることもできる。例えば、タブ部としてアルミニウム、アルミニウム合金、銅、銅合金、ニッケル、あるいはニッケル合金等などからなる金属板を用いることが可能である。 The positive electrode tab portion is preferably composed of a positive electrode core. The negative tab portion is preferably composed of a negative core. The positive electrode tab portion and the negative electrode tab portion can be separate parts from the core connected to the positive electrode core or the negative electrode core. For example, a metal plate made of aluminum, an aluminum alloy, copper, a copper alloy, nickel, a nickel alloy, or the like can be used as the tab portion.

前記正極タブ部は直線部と曲線部を有し、前記負極タブ部は直線部と曲線部を有することが好ましい。 It is preferable that the positive electrode tab portion has a straight portion and a curved portion, and the negative electrode tab portion has a straight portion and a curved portion.

前記正極板の幅方向における一方の端部には、略同じ幅を有する前記正極タブ部が、略等間隔となるように形成されていることが好ましい。 It is preferable that the positive electrode tab portions, each having approximately the same width, are formed at approximately equal intervals at one end of the positive electrode plate in the width direction.

なお、正極タブ部の幅とは、正極板を展開した状態において、正極板の長手方向に沿った正極タブ部の幅を意味する。また、正極タブ部間の間隔とは、正極板を展開した状態において、正極板の長手方向に沿った正極タブ部間の距離を意味する。略同じ幅とは、各正極タブ部の幅がプラスマイナス10%の範囲内にあればよい。各正極タブ部の幅がプラスマイナス5%の範囲内にあることが好ましい。また、略等間隔とは、各正極タブ部間の間隔がプラスマイナス10%の範囲内にあればよい。各正極タブ部間の間隔が各正極タブ部の幅がプラスマイナス5%の範囲内にあることが好ましい。 The width of the positive electrode tab portion means the width of the positive electrode tab portion along the longitudinal direction of the positive electrode plate when the positive electrode plate is unfolded. The spacing between the positive electrode tab portions means the distance between the positive electrode tab portions along the longitudinal direction of the positive electrode plate when the positive electrode plate is unfolded. The approximately same width means that the width of each positive electrode tab portion is within a range of plus or minus 10%. It is preferable that the width of each positive electrode tab portion is within a range of plus or minus 5%. The approximately equal spacing means that the spacing between each positive electrode tab portion is within a range of plus or minus 10%. It is preferable that the spacing between each positive electrode tab portion is within a range of plus or minus 5% of the width of each positive electrode tab portion.

このような構成によると、正極板内での充放電反応がより均一となる。また、容易に正極板を作製することができる。 This configuration makes the charge/discharge reaction within the positive plate more uniform. In addition, the positive plate can be easily manufactured.

前記正極タブ部の幅は、前記巻回電極体の幅の1/4以上且つ1/2以下であることが好ましい。 The width of the positive electrode tab portion is preferably greater than or equal to 1/4 and less than or equal to 1/2 the width of the wound electrode body.

ここで、巻回電極体の幅とは、巻回軸に対して垂直であり、且つ巻回電極体の厚み方向に対して垂直な方向の幅である。 Here, the width of the wound electrode body is the width perpendicular to the winding axis and perpendicular to the thickness direction of the wound electrode body.

前記正極タブ部はずれた状態で積層されることにより、各前記正極タブ部の端部により形成される正極段状部が形成され、
前記正極段状部に正極集電体が接続されていることが好ましい。
The positive electrode tab portions are stacked in a shifted state, thereby forming a positive electrode step portion formed by ends of the positive electrode tab portions,
It is preferable that a positive electrode current collector is connected to the positive electrode step portion.

前記負極板の幅方向における一方の端部には、略同じ幅を有する前記負極タブ部が、略等間隔となるように形成されていることが好ましい。 It is preferable that the negative electrode tab portions, each having approximately the same width, are formed at approximately equal intervals at one end of the negative electrode plate in the width direction.

なお、負極タブ部の幅とは、負極板を展開した状態において、負極板の長手方向に沿った負極タブ部の幅を意味する。また、負極タブ部間の間隔とは、負極板を展開した状態において、負極板の長手方向に沿った負極タブ部間の距離を意味する。略同じ幅とは、各負極タブ部の幅がプラスマイナス10%の範囲内にあればよい。各負極タブ部の幅がプラスマイナス5%の範囲内にあることが好ましい。また、略等間隔とは、各負極タブ部間の間隔がプラスマイナス10%の範囲内にあればよい。各負極タブ部間の間隔が各負極タブ部の幅がプラスマイナス5%の範囲内にあることが好ましい。 The width of the negative electrode tab portion means the width of the negative electrode tab portion along the longitudinal direction of the negative electrode plate when the negative electrode plate is unfolded. The spacing between the negative electrode tab portions means the distance between the negative electrode tab portions along the longitudinal direction of the negative electrode plate when the negative electrode plate is unfolded. The term "approximately the same width" means that the width of each negative electrode tab portion is within a range of plus or minus 10%. It is preferable that the width of each negative electrode tab portion is within a range of plus or minus 5%. The term "approximately equal spacing" means that the spacing between each negative electrode tab portion is within a range of plus or minus 10%. It is preferable that the spacing between each negative electrode tab portion is within a range of plus or minus 5% of the width of each negative electrode tab portion.

このような構成によると、負極板内での充放電反応がより均一となる。また、容易に負極板を作製することができる。 This configuration makes the charge/discharge reaction within the negative plate more uniform. In addition, the negative plate can be easily manufactured.

前記負極タブ部の幅は、前記巻回電極体の幅の1/4以上且つ1/2以下であることが好ましい。 It is preferable that the width of the negative electrode tab portion is greater than or equal to 1/4 and less than or equal to 1/2 the width of the wound electrode body.

前記負極タブ部はずれた状態で積層されることにより、各前記負極タブ部の端部により形成される負極段状部が形成され、
前記負極段状部に負極集電体が接続されていることが好ましい。
The negative electrode tab portions are stacked in a shifted state, thereby forming a negative electrode step portion formed by ends of the negative electrode tab portions,
It is preferable that a negative electrode current collector is connected to the negative electrode step portion.

本発明の一つの形態に係る組電池は、
複数の前記角形二次電池と、
一対のエンドプレートと、
前記一対のエンドプレートを連結するバインドバーと、を有し、
前記複数の角形二次電池は、前記一対のエンドプレートの間に、それぞれの大面積側壁が平行になる向きで積層され、
一方の側面に、各前記角形二次電池の前記正極端子及び前記負極端子が配置され、
他方の側面に、各前記角形二次電池の各前記角形外装体の底面が配置されている。
A battery pack according to one embodiment of the present invention includes:
A plurality of the prismatic secondary batteries;
A pair of end plates;
a bind bar connecting the pair of end plates,
the plurality of rectangular secondary batteries are stacked between the pair of end plates with their large-area side walls oriented parallel to each other;
The positive electrode terminal and the negative electrode terminal of each of the rectangular secondary batteries are disposed on one side surface,
The bottom surface of each of the rectangular exterior bodies of each of the rectangular secondary batteries is disposed on the other side surface.

本発明によると、高い体積エネルギー密度を有する高容量の角形二次電池及びそれを用いた組電池を提供できる。 The present invention provides a high-capacity rectangular secondary battery with high volumetric energy density and a battery pack using the same.

実施形態に係る角形二次電池の斜視図である。1 is a perspective view of a prismatic secondary battery according to an embodiment; 図1のII-II線に沿った断面図である。2 is a cross-sectional view taken along line II-II in FIG. 1. 図1のIII-III線に沿った断面図である。2 is a cross-sectional view taken along line III-III in FIG. 1. 図1のIV-IV線に沿った断面図である。FIG. 2 is a cross-sectional view taken along line IV-IV in FIG. 図1のV-V線に沿った断面図である。2 is a cross-sectional view taken along line VV in FIG. 1. 実施形態に係る正極板の平面図である。FIG. 2 is a plan view of a positive electrode plate according to the embodiment. 実施形態に係る負極板の平面図である。FIG. 2 is a plan view of a negative electrode plate according to the embodiment. 実施形態に係る巻回電極体を巻回軸が延びる方向に沿って見た図である。1 is a view of a wound electrode body according to an embodiment as viewed along a direction in which a winding axis extends. FIG. 集電体の斜視図である。FIG. タブ部と集電体の接続工程を示す図である。1A to 1C are diagrams showing a process of connecting the tab portion and the current collector. タブ部と集電体の接続部を示す図である。FIG. 4 is a diagram showing a connection portion between a tab portion and a current collector. 参考例に係る角形二次電池に用いる巻回電極体の図である。FIG. 11 is a diagram of a wound electrode body used in a prismatic secondary battery according to a reference example. 実施形態に係る角形二次電池に用いる巻回電極体の図である。FIG. 2 is a diagram of a wound electrode body used in the prismatic secondary battery according to the embodiment. 変形例の集電体の斜視図である。FIG. 13 is a perspective view of a current collector according to a modified example. 変形例の集電体の斜視図である。FIG. 13 is a perspective view of a current collector according to a modified example. 変形例の集電体の斜視図である。FIG. 13 is a perspective view of a current collector according to a modified example. 変形例の集電体の斜視図である。FIG. 13 is a perspective view of a current collector according to a modified example. 変形例の角形二次電池におけるタブ部と集電体の接続工程を示す図である。10A to 10C are diagrams illustrating a process of connecting the tab portion and the current collector in a modified prismatic secondary battery. 変形例の角形二次電池におけるタブ部と集電体の接続工程を示す図である。10A to 10C are diagrams illustrating a process of connecting the tab portion and the current collector in a modified prismatic secondary battery. 変形例に係る正極板及び負極板の平面図である。13 is a plan view of a positive electrode plate and a negative electrode plate according to a modified example. FIG. 変形例に係る巻回電極体を示す図である。13A and 13B are diagrams showing a wound electrode body according to a modified example. 変形例に係る角形二次電池の電流遮断機構の断面図である。13 is a cross-sectional view of a current interruption mechanism of a prismatic secondary battery according to a modified example. 電流遮断機構に用いる集電体の斜視図である。FIG. 2 is a perspective view of a current collector used in the current interruption device. 実施の形態に係る組電池の斜視図である。1 is a perspective view of a battery pack according to an embodiment;

実施形態に係る角形二次電池20の構成を以下に説明する。なお、本発明は、以下の実施形態に限定されない。
図1~5に示すように、角形二次電池20は、開口部を有する角形外装体1と、当該開口部を封口する封口板2を備える。角形外装体1及び封口板2により電池ケースが構成される。角形外装体1及び封口板2は、それぞれ金属製であることが好ましく、例えば、アルミニウム又はアルミニウム合金製とすることができる。角形外装体1は、底部1a、一対の大面積側壁1b及び一対の小面積側壁1cを有する。角形外装体1は、底部と対向する位置に開口部を有する角形の有底筒状の外装体である。角形外装体1内には、正極板と負極板とがセパレータ(いずれも図示省略)を介して巻回された扁平状の巻回電極体3が電解質と共に収容される。正極板は、金属製の正極芯体上に正極活物質を含む正極活物質層が形成されている。正極板の幅方向の端部には、正極芯体が露出する正極芯体露出部4bが形成されている。なお、正極芯体としてはアルミニウム箔又はアルミニウム合金箔を用いることが好ましい。負極板は、金属製の負極芯体上に負極活物質を含む負極活物質層が形成されている。負極板の幅方向の端部には、負極芯体が露出する負極芯体露出部5bが形成されている。なお、負極芯体としては銅箔又は銅合金箔を用いることが好ましい。角形二次電池20では、正極芯体露出部4bが正極タブ部4cを構成し、負極芯体露出部5bが負極タブ部5cを構成している。
The configuration of the prismatic secondary battery 20 according to the embodiment will be described below. Note that the present invention is not limited to the following embodiment.
As shown in FIGS. 1 to 5, the prismatic secondary battery 20 includes a prismatic exterior body 1 having an opening, and a sealing plate 2 that seals the opening. The prismatic exterior body 1 and the sealing plate 2 form a battery case. The prismatic exterior body 1 and the sealing plate 2 are preferably made of metal, and may be made of aluminum or an aluminum alloy, for example. The prismatic exterior body 1 has a bottom 1a, a pair of large-area side walls 1b, and a pair of small-area side walls 1c. The prismatic exterior body 1 is a rectangular, bottomed, cylindrical exterior body having an opening at a position opposite the bottom. Inside the prismatic exterior body 1, a flat-shaped wound electrode body 3 in which a positive electrode plate and a negative electrode plate are wound with a separator (both not shown) interposed therebetween is accommodated together with an electrolyte. The positive electrode plate has a positive electrode active material layer containing a positive electrode active material formed on a metal positive electrode core. At the end of the positive electrode plate in the width direction, a positive electrode core exposed portion 4b is formed in which the positive electrode core is exposed. It is preferable to use aluminum foil or aluminum alloy foil as the positive electrode core. The negative electrode plate has a negative electrode active material layer containing a negative electrode active material formed on a metal negative electrode core. At the end in the width direction of the negative electrode plate, a negative electrode core exposed portion 5b is formed where the negative electrode core is exposed. It is preferable to use copper foil or copper alloy foil as the negative electrode core. In the rectangular secondary battery 20, the positive electrode core exposed portion 4b constitutes the positive electrode tab portion 4c, and the negative electrode core exposed portion 5b constitutes the negative electrode tab portion 5c.

図2~4に示すように、角形外装体1には、2つの扁平状の巻回電極体3が、その巻回軸が延びる方向が、封口板2に対して垂直になるように配置されている。そして、各巻回電極体3の正極芯体露出部4b及び負極芯体露出部5bが封口板2側に位置している。また、各巻回電極体3の正極芯体露出部4b同士が同じ側(図2において上側)に位置し、各巻回電極体3の負極芯体露出部同士5bが同じ側(図2において下側)に位置している。 As shown in Figures 2 to 4, two flat wound electrode bodies 3 are arranged in the rectangular exterior body 1 so that the direction in which their winding axes extend is perpendicular to the sealing plate 2. The positive electrode core exposed portion 4b and the negative electrode core exposed portion 5b of each wound electrode body 3 are located on the sealing plate 2 side. The positive electrode core exposed portions 4b of each wound electrode body 3 are located on the same side (upper side in Figure 2), and the negative electrode core exposed portions 5b of each wound electrode body 3 are located on the same side (lower side in Figure 2).

巻回電極体3において巻回軸が延びる方向の一方端側には、積層された正極芯体露出部4b及び積層された負極芯体露出部5bが設けられている。積層された正極芯体露出部4bに正極集電体6が溶接されて溶接部30が形成されている。そして、この正極集電体6に正極端子7が電気的に接続されている。積層された負極芯体露出部5bに負極集電体8が溶接されて溶接部30が形成されている。そして、この負極集電体8に負極端子9が電気的に接続されている。 At one end of the wound electrode body 3 in the direction in which the winding axis extends, a stacked positive electrode core exposed portion 4b and a stacked negative electrode core exposed portion 5b are provided. A positive electrode current collector 6 is welded to the stacked positive electrode core exposed portion 4b to form a welded portion 30. A positive electrode terminal 7 is electrically connected to this positive electrode current collector 6. A negative electrode current collector 8 is welded to the stacked negative electrode core exposed portion 5b to form a welded portion 30. A negative electrode terminal 9 is electrically connected to this negative electrode current collector 8.

正極端子7及び正極集電体6はそれぞれ絶縁部材10、ガスケット11を介して封口板2に固定される。負極端子9及び負極集電体8はそれぞれ絶縁部材12、ガスケット13を介して封口板2に固定される。ガスケット11、13は、封口板2と各端子7、9の間
にそれぞれ配置されている。絶縁部材10、12は、封口板2と各集電体6、8の間にそれぞれ配置されている。なお、ガスケット及び絶縁部材はそれぞれ、絶縁性の樹脂部材からなることが好ましい。巻回電極体3は箱状に折り曲げられた絶縁シート14に覆われた状態で角形外装体1内に収容される。絶縁シート14は、巻回電極体3を覆い巻回電極体3と角形外装体1の間に配置されている。封口板2は角形外装体1の開口縁部にレーザ溶接等により溶接接続される。封口板2は電解液注液孔15を有し、この電解液注液孔15は注液後、封止栓16により封止される。封口板2には電池内部の圧力が高くなった場合にガスを排出するためのガス排出弁17が形成されている。
The positive electrode terminal 7 and the positive electrode current collector 6 are fixed to the sealing plate 2 via an insulating member 10 and a gasket 11, respectively. The negative electrode terminal 9 and the negative electrode current collector 8 are fixed to the sealing plate 2 via an insulating member 12 and a gasket 13, respectively. The gaskets 11 and 13 are disposed between the sealing plate 2 and each of the terminals 7 and 9, respectively. The insulating members 10 and 12 are disposed between the sealing plate 2 and each of the current collectors 6 and 8, respectively. The gaskets and the insulating members are preferably made of insulating resin materials. The wound electrode body 3 is accommodated in the rectangular exterior body 1 in a state where it is covered with an insulating sheet 14 folded into a box shape. The insulating sheet 14 covers the wound electrode body 3 and is disposed between the wound electrode body 3 and the rectangular exterior body 1. The sealing plate 2 is welded to the opening edge of the rectangular exterior body 1 by laser welding or the like. The sealing plate 2 has an electrolyte injection hole 15, and this electrolyte injection hole 15 is sealed by a sealing plug 16 after electrolyte injection. The sealing plate 2 is formed with a gas exhaust valve 17 for exhausting gas when the pressure inside the battery becomes high.

角形二次電池20の大きさは、例えば、幅(封口板2に対して垂直な方向の長さ。図1において左右方向の長さ。)が18cm、厚さ(図1において前後方向の長さ)が3cm、高さ(封口板2に対して平行で且つ角形二次電池20の厚み方向に対して垂直な方向の長さ。図1において上下方向の長さ。)が9cmとすることができる。 The size of the prismatic secondary battery 20 can be, for example, 18 cm in width (length perpendicular to the sealing plate 2; length in the left-right direction in FIG. 1), 3 cm in thickness (length in the front-to-back direction in FIG. 1), and 9 cm in height (length parallel to the sealing plate 2 and perpendicular to the thickness direction of the prismatic secondary battery 20; length in the up-to-down direction in FIG. 1).

なお、本発明は、角形二次電池の高さに対する幅の割合が、2以上のときに特に効果的である。本発明は、角形二次電池の高さが10cm以下であり、角形二次電池の幅が17cm以上の場合特に有効である。また、本発明は、電池容量が30Ah以上の場合特に有効である。なお、電池容量の値は、設計容量即ち電池の製造業者が規定する公称容量の値とすることができる。 The present invention is particularly effective when the ratio of width to height of a prismatic secondary battery is 2 or more. The present invention is particularly effective when the height of the prismatic secondary battery is 10 cm or less and the width of the prismatic secondary battery is 17 cm or more. The present invention is particularly effective when the battery capacity is 30 Ah or more. The value of the battery capacity can be the design capacity, i.e., the nominal capacity value specified by the battery manufacturer.

次の角形二次電池20の製造方法について説明する。 The manufacturing method for the following rectangular secondary battery 20 will be described.

[正極板の作製]
正極活物質としてのコバルト酸リチウム、結着剤としてのポリフッ化ビニリデン(PVdF)、導電材としての炭素材料、及びN-メチルピロリドン(NMP)を含む正極スラリーを作製する。この正極スラリーを、正極芯体である厚さ15μmの矩形状のアルミニウム箔の両面に塗布する。そして、これを乾燥させることにより、正極スラリー中のN-メチルピロリドンを取り除き、正極芯体上に正極活物質層を形成する。その後、正極活物質層を所定厚みになるように圧縮処理を行う。このようにして得られた正極板を、幅方向の一方の端部に所定幅の正極芯体露出部が、所定の間隔で形成されるように裁断する。
[Preparation of positive electrode plate]
A positive electrode slurry containing lithium cobalt oxide as a positive electrode active material, polyvinylidene fluoride (PVdF) as a binder, a carbon material as a conductive material, and N-methylpyrrolidone (NMP) is prepared. This positive electrode slurry is applied to both sides of a rectangular aluminum foil having a thickness of 15 μm, which is a positive electrode core. Then, by drying this, N-methylpyrrolidone in the positive electrode slurry is removed, and a positive electrode active material layer is formed on the positive electrode core. Thereafter, a compression process is performed so that the positive electrode active material layer has a predetermined thickness. The positive electrode plate obtained in this way is cut so that a positive electrode core exposed portion of a predetermined width is formed at one end in the width direction at a predetermined interval.

図6に示すように、このようにして得られた正極板4は、正極芯体上に正極活物質層4aが形成されている。そして、幅方向の一方の端部に所定幅の正極芯体露出部4bが所定間隔をおいて形成されている。なお、この正極芯体露出部4bが正極タブ部4cを構成している。 As shown in FIG. 6, the positive electrode plate 4 obtained in this manner has a positive electrode active material layer 4a formed on the positive electrode core. Positive electrode core exposed portions 4b of a predetermined width are formed at one end in the width direction at a predetermined interval. The positive electrode core exposed portions 4b constitute the positive electrode tab portions 4c.

ここで、各正極タブ部4cの幅W1はいずれも40mmとしている。また、各正極タブ部4c間の間隔W2はいずれも120mmとしている。なお、正極タブ部4cの幅W1とは、正極板の長手方向における幅である。 The width W1 of each positive electrode tab portion 4c is 40 mm. The spacing W2 between each positive electrode tab portion 4c is 120 mm. Note that the width W1 of the positive electrode tab portion 4c is the width in the longitudinal direction of the positive electrode plate.

[負極板の作製]
負極活物質としての黒鉛、結着剤としてのスチレンブタジエンゴム(SBR)、増粘剤としてのカルボキシメチルセルロース(CMC)、及び水を含む負極スラリーを作製する。この負極スラリーを、負極芯体である厚さ8μmの矩形状の銅箔の両面に塗布する。そして、これを乾燥させることにより、負極スラリー中の水を取り除き、負芯体上に負極活物質層を形成する。その後、負極活物質層を所定厚みになるように圧縮処理を行う。このようにして得られた負極板を、幅方向の一方の端部に所定幅の負極芯体露出部が、所定の間隔で形成されるように裁断する。
[Preparation of negative electrode plate]
A negative electrode slurry containing graphite as a negative electrode active material, styrene butadiene rubber (SBR) as a binder, carboxymethyl cellulose (CMC) as a thickener, and water is prepared. This negative electrode slurry is applied to both sides of a rectangular copper foil having a thickness of 8 μm, which is a negative electrode core. Then, by drying it, the water in the negative electrode slurry is removed, and a negative electrode active material layer is formed on the negative electrode core. Then, a compression process is performed so that the negative electrode active material layer has a predetermined thickness. The negative electrode plate obtained in this way is cut so that a negative electrode core exposed portion of a predetermined width is formed at one end in the width direction at a predetermined interval.

図7に示すように、このようにして得られた負極板5は、負極芯体上に負極活物質層5
aが形成されている。そして、幅方向の一方の端部に所定幅の負極芯体露出部5bが所定間隔をおいて形成されている。なお、この負極芯体露出部5bが負極タブ部5cを構成している。なお、負極板5においては、幅方向の他方の端部にも負極芯体露出部5bが形成されている。
As shown in FIG. 7, the negative electrode plate 5 thus obtained has a negative electrode active material layer 5 on a negative electrode core.
a is formed. A negative electrode core exposed portion 5b of a predetermined width is formed at one end in the width direction at a predetermined interval. The negative electrode core exposed portion 5b constitutes a negative electrode tab portion 5c. The negative electrode plate 5 also has a negative electrode core exposed portion 5b formed at the other end in the width direction.

ここで、各負極タブ部5cの幅W3はいずれも40mmとしている。また、各負極タブ部5c間の間隔W4はいずれも120mmとしている。なお、負極タブ部の幅W3とは、負極板5の長手方向における幅である。 The width W3 of each negative electrode tab portion 5c is 40 mm. The spacing W4 between each negative electrode tab portion 5c is 120 mm. The width W3 of the negative electrode tab portion is the width in the longitudinal direction of the negative electrode plate 5.

なお、正極タブ部4cの幅W1、正極タブ部4c間の間隔W2、巻回電極体3の直線部の長さL、巻回電極体3の曲線部の半径Rの関係は、W1+W2>2Lとすることが好ましい。また、W1+2πR<Lとし、正極板の巻き始めの位置を0°としたとき、負極板の巻き始めの位置が180~270°とすることが好ましい。 The relationship between the width W1 of the positive electrode tab portion 4c, the spacing W2 between the positive electrode tab portions 4c, the length L of the straight portion of the wound electrode body 3, and the radius R of the curved portion of the wound electrode body 3 is preferably W1+W2>2L. In addition, it is preferable that W1+2πR<L and that when the winding start position of the positive electrode plate is 0°, the winding start position of the negative electrode plate is 180-270°.

また、負極タブ部5cの幅W2、負極タブ部5c間の間隔W4、巻回電極体3の直線部の長さL、巻回電極体3の曲線部の半径Rの関係は、W3+W4>2Lとすることが好ましい。 In addition, the relationship between the width W2 of the negative electrode tab portion 5c, the spacing W4 between the negative electrode tab portions 5c, the length L of the straight portion of the wound electrode body 3, and the radius R of the curved portion of the wound electrode body 3 is preferably W3+W4>2L.

[巻回電極体]
上述の方法で得られた正極板4と負極板5を、正極タブ部4cと負極タブ部5cが重ならないようにずらして、ポリエチレン製の多孔質セパレータを間に介在させて積層、巻回し、プレスすることにより扁平状の巻回電極体3とする。
[Wound electrode body]
The positive electrode plate 4 and the negative electrode plate 5 obtained by the above-mentioned method are shifted so that the positive electrode tab portion 4c and the negative electrode tab portion 5c do not overlap, and a polyethylene porous separator is interposed between them, and then the plates are stacked, wound, and pressed to form a flat wound electrode body 3.

図8は巻回電極体3において正極タブ4c及び負極タブ5cが形成される側の面を示す図である。図8に示すように、巻回電極体3において、巻回軸が延びる方向の一方の端部側に、正極タブ部4cと負極タブ部5cが配置される。そして、幅方向(巻回電極体3の巻回軸が延びる方向に対して垂直で、且つ巻回電極体3の厚み方向に対して垂直な方向)の一方側に正極タブ4cが積層され、他方側に負極タブ部5cが積層された状態となる。 Figure 8 is a diagram showing the surface of the wound electrode body 3 on which the positive electrode tab 4c and negative electrode tab 5c are formed. As shown in Figure 8, in the wound electrode body 3, the positive electrode tab portion 4c and the negative electrode tab portion 5c are arranged on one end side in the direction in which the winding axis extends. Then, the positive electrode tab 4c is stacked on one side in the width direction (the direction perpendicular to the direction in which the winding axis of the wound electrode body 3 extends and perpendicular to the thickness direction of the wound electrode body 3), and the negative electrode tab portion 5c is stacked on the other side.

正極タブ部4c及び負極タブ部5cはそれぞれ巻回電極体3の直線部(平端部)に配置される直線部31と、巻回電極体3の曲線部(湾曲部)に配置される曲線部32を有する。また、各正極タブ部4cは巻き始めから巻き終りにかけて少しずつずれるようにして配置され、積層されている。また、各負極タブ部5cも巻き始めから巻き終りにかけて少しずつずれるようにして配置され、積層されている。そのため、積層された正極タブ部4cには、各正極タブ部4cの端部により形成される段状部33が形成されている。また、積層された負極タブ部5cには、各負極タブ部5cの端部により形成される段状部33が形成されている。 The positive electrode tab portion 4c and the negative electrode tab portion 5c each have a straight portion 31 arranged on the straight portion (flat end) of the wound electrode body 3, and a curved portion 32 arranged on the curved portion (curved portion) of the wound electrode body 3. In addition, each positive electrode tab portion 4c is arranged and stacked so as to be shifted slightly from the start of winding to the end of winding. In addition, each negative electrode tab portion 5c is arranged and stacked so as to be shifted slightly from the start of winding to the end of winding. Therefore, the stacked positive electrode tab portion 4c has a step portion 33 formed by the end of each positive electrode tab portion 4c. In addition, the stacked negative electrode tab portion 5c has a step portion 33 formed by the end of each negative electrode tab portion 5c.

このようにして作製された巻回電極体3を2つ用意し、それぞれの正極タブ部4cと負極タブ部5cが同じ側に配置されるようにして、絶縁テープにより2つの巻回電極体3を一纏まりに固定する。なお、巻回電極体3は少なくとも2つ用いればよく、その数は特に限定されない。また、複数個の巻回電極体3は必ずしも固定する必要はないが、一纏まりに固定されることが好ましい。固定方法は特に限定されず、絶縁テープにより固定しても良いし、袋状ないし箱状に成形された絶縁シート内に配置することにより一纏まりにしてもよい。 Two wound electrode bodies 3 thus produced are prepared, and the positive electrode tab portion 4c and the negative electrode tab portion 5c are arranged on the same side, and the two wound electrode bodies 3 are fixed together with insulating tape. At least two wound electrode bodies 3 are required, and the number is not particularly limited. Although it is not necessary to fix multiple wound electrode bodies 3, it is preferable to fix them together. The fixing method is not particularly limited, and they may be fixed with insulating tape, or they may be fixed together by placing them in an insulating sheet formed into a bag or box shape.

[封口板、集電体及び端子の組み立て]
図1及び図2に示すように、封口板2の長手方向における一方端側において、封口板2の電池外部側にガスケット11が、封口板2の電池内部側に絶縁部材10が配置される。正極端子7はフランジ部7a及び挿入部7bを有する。正極端子7はガスケット11上に
配置され、正極集電体6は絶縁部材10の下面上に配置される。ガスケット11、封口板2、絶縁部材10及び正極集電体6にはそれぞれ貫通穴が形成されており、これらの貫通穴に電池外部側から正極端子7を挿入し、正極端子7の先端を加締めることにより、正極端子7、ガスケット11、封口板2、絶縁部材10及び正極集電体6が一体的に固定される。なお、正極端子7において加締められた部分と正極集電体6をレーザ溶接等により溶接することが好ましい。
[Assembly of sealing plate, current collector and terminal]
As shown in FIG. 1 and FIG. 2, at one end of the sealing plate 2 in the longitudinal direction, a gasket 11 is disposed on the outer side of the sealing plate 2 on the battery side, and an insulating member 10 is disposed on the inner side of the sealing plate 2 on the battery side. The positive electrode terminal 7 has a flange portion 7a and an insertion portion 7b. The positive electrode terminal 7 is disposed on the gasket 11, and the positive electrode current collector 6 is disposed on the lower surface of the insulating member 10. Through holes are formed in the gasket 11, the sealing plate 2, the insulating member 10, and the positive electrode current collector 6, and the positive electrode terminal 7 is inserted into these through holes from the outer side of the battery, and the tip of the positive electrode terminal 7 is crimped, so that the positive electrode terminal 7, the gasket 11, the sealing plate 2, the insulating member 10, and the positive electrode current collector 6 are fixed integrally. It is preferable to weld the crimped portion of the positive electrode terminal 7 to the positive electrode current collector 6 by laser welding or the like.

封口板2の長手方向における他方端側において、封口板2の電池外部側にガスケット13が、封口板2の電池内部側に絶縁部材12が配置される。負極端子9はフランジ部9a及び挿入部9bを有する。そして、負極端子9はガスケット13上に配置され、負極集電体8は絶縁部材12の下面上に配置されている。ガスケット13、封口板2、絶縁部材12及び負極集電体8にはそれぞれ貫通穴が形成されており、これらの貫通穴に電池外部側から負極端子9を挿入し、負極端子9の先端を加締めることにより、負極端子9、ガスケット13、封口板2、絶縁部材12及び負極集電体8が一体的に固定される。なお、負極端子9において加締められた部分と負極集電体8をレーザ溶接等により溶接することが好ましい。 At the other end of the sealing plate 2 in the longitudinal direction, a gasket 13 is disposed on the outer side of the sealing plate 2, and an insulating member 12 is disposed on the inner side of the sealing plate 2. The negative terminal 9 has a flange portion 9a and an insertion portion 9b. The negative terminal 9 is disposed on the gasket 13, and the negative current collector 8 is disposed on the lower surface of the insulating member 12. Through holes are formed in the gasket 13, the sealing plate 2, the insulating member 12, and the negative current collector 8, and the negative terminal 9 is inserted into these through holes from the outer side of the battery, and the tip of the negative terminal 9 is crimped, thereby fixing the negative terminal 9, the gasket 13, the sealing plate 2, the insulating member 12, and the negative current collector 8 together. It is preferable to weld the crimped portion of the negative terminal 9 to the negative current collector 8 by laser welding or the like.

図9に示す正極集電体6及び負極集電体8を用いる。正極集電体6を例に説明する。正極集電体6は、正極端子7が接続されるベース部6aと、ベース部6aの端部から巻回電極体3の方向に延びる接続部6bを有する。ベース部6aには、貫通穴6cが形成されている。正極端子7がこの貫通穴6cに挿入され、正極端子7の先端部がベース部6a上に加締められることにより、正極端子7と正極集電体6が接続される。接続部6bは、ベース部6aにおいて電池の厚み方向(図9中では手前側端部及び奥側端部)の両端部に設けられている。接続部6bには突起34が形成されている。また、接続部6bにはスリット35が形成されている。負極集電体8についても正極集電体6と同様の形状とすることができる。なお、正極集電体6及び負極集電体8は板状の金属部材を折り曲げ加工して形成することが好ましい。 The positive electrode collector 6 and the negative electrode collector 8 shown in FIG. 9 are used. The positive electrode collector 6 will be described as an example. The positive electrode collector 6 has a base portion 6a to which the positive electrode terminal 7 is connected, and a connection portion 6b extending from the end of the base portion 6a in the direction of the wound electrode body 3. A through hole 6c is formed in the base portion 6a. The positive electrode terminal 7 is inserted into this through hole 6c, and the tip of the positive electrode terminal 7 is crimped onto the base portion 6a, thereby connecting the positive electrode terminal 7 and the positive electrode collector 6. The connection portion 6b is provided at both ends of the base portion 6a in the thickness direction of the battery (the front end and the back end in FIG. 9). A protrusion 34 is formed in the connection portion 6b. In addition, a slit 35 is formed in the connection portion 6b. The negative electrode collector 8 can also be formed in the same shape as the positive electrode collector 6. It is preferable to form the positive electrode collector 6 and the negative electrode collector 8 by bending a plate-shaped metal member.

[集電体と巻回電極体の接続]
図10は、タブ部と集電体の接続工程を示す図であり、図2及び図3に対応する断面図である。図10に示すように、一方面側と他方面側のそれぞれにおいて正極集電体6の接続部6bに形成された突起34に積層された正極タブ部4cを配置する。そして、一対の抵抗溶接電極40で、積層された正極タブ部4c及び正極集電体6を挟み込んだ状態で、抵抗溶接電流を流し、抵抗溶接を行う。これにより、積層された正極タブ部4cと正極集電体6が溶接接続される。負極側についても同様の方法で負極タブ部5cと負極集電体8を溶接接続する。
[Connection between current collector and wound electrode body]
10 is a cross-sectional view showing a process of connecting the tab portion and the current collector, corresponding to FIG. 2 and FIG. 3. As shown in FIG. 10, the stacked positive electrode tab portion 4c is arranged on the protrusion 34 formed on the connection portion 6b of the positive electrode current collector 6 on one side and the other side. Then, a resistance welding current is applied to the stacked positive electrode tab portion 4c and the positive electrode current collector 6 while the stacked positive electrode tab portion 4c and the positive electrode current collector 6 are sandwiched between a pair of resistance welding electrodes 40, and resistance welding is performed. As a result, the stacked positive electrode tab portion 4c and the positive electrode current collector 6 are welded and connected. On the negative electrode side, the negative electrode tab portion 5c and the negative electrode current collector 8 are welded and connected in a similar manner.

図9に示した正極集電体6ないし負極集電体8を用いる場合、まず、図9の左側の手前及び奥側の突起34が形成された部分について図10に記載の方法で溶接接続を行う。その後、図9の右側の手前及び奥側の突起34が形成された部分について図10に記載の方法で溶接接続を行う。このとき、図9に示すように、接続部6bにはスリット35が形成されているため、2箇所目の抵抗溶接の際に、既に抵抗溶接されている1箇所目の溶接部を経由する無効電流(抵抗溶接に関与しない電流)が生じることを抑制できる。なお、抵抗溶接の順番は、図9における左側、右側のいずれが先であってもよいし、同時に行ってもよい。負極側についても同様の方法とすることができる。 When using the positive electrode collector 6 or the negative electrode collector 8 shown in FIG. 9, first, the part where the protrusions 34 are formed on the front and back sides of the left side of FIG. 9 is welded by the method shown in FIG. 10. Then, the part where the protrusions 34 are formed on the front and back sides of the right side of FIG. 9 is welded by the method shown in FIG. 10. At this time, as shown in FIG. 9, since the slit 35 is formed in the connection part 6b, it is possible to suppress the generation of reactive current (current not involved in resistance welding) passing through the first welded part that has already been resistance welded when resistance welding at the second place. The order of resistance welding may be either the left side or the right side in FIG. 9 first, or they may be performed simultaneously. The same method can be used for the negative electrode side.

また、図11に示すように、正極集電体6は正極タブ部4cの段状部33に溶接接続することができる。これにより、巻回電極体3の最外周に位置する正極タブ部4cのみでなく、巻回電極体3の内周側に位置する正極タブ部4cを正極集電体6により強固に接続できる。また、巻回電極体3の最外周に位置する正極タブ部4cのみでなく、巻回電極体3
の内周側に位置する正極タブ部4cが正極集電体6に近い位置で溶接される。したがって、より均質に集電をすることができる。負極側についても同様の方法とすることができる。
11, the positive electrode current collector 6 can be welded to the step portion 33 of the positive electrode tab portion 4c. This allows not only the positive electrode tab portion 4c located on the outermost periphery of the wound electrode body 3, but also the positive electrode tab portion 4c located on the inner periphery side of the wound electrode body 3 to be more firmly connected to the positive electrode current collector 6.
The positive electrode tab portion 4c located on the inner periphery side of the positive electrode current collector 6 is welded at a position close to the positive electrode current collector 6. This allows for more uniform current collection. A similar method can be used for the negative electrode side.

次に、正極集電体6及び負極集電体8に接続された巻回電極体3を、箱状に折り曲げられた絶縁シート14内に配置した状態で、角形外装体1に挿入する。 絶縁シート14は、巻回電極体3が並ぶ方向に延びて角形外装体1の側壁と向かい合う面を有する領域を含む。そして、封口板2と角形外装体1の接合部をレーザ溶接により溶接し、角形外装体1の開口部を封口する。その後、封口板2に設けられた電解液注液孔15から非水電解液を注液し、封止栓16により電解液注液孔15を封止し、角形二次電池20を作製する。 Next, the wound electrode body 3 connected to the positive electrode collector 6 and the negative electrode collector 8 is inserted into the rectangular exterior body 1 while being placed inside the insulating sheet 14 folded into a box shape. The insulating sheet 14 includes an area having a surface that extends in the direction in which the wound electrode bodies 3 are arranged and faces the side wall of the rectangular exterior body 1. The joint between the sealing plate 2 and the rectangular exterior body 1 is then welded by laser welding to seal the opening of the rectangular exterior body 1. Thereafter, nonaqueous electrolyte is injected through the electrolyte injection hole 15 provided in the sealing plate 2, and the electrolyte injection hole 15 is sealed with a sealing plug 16 to produce a rectangular secondary battery 20.

角形二次電池20においては、巻回電極体3において、正極タブ部4c及び負極タブ部5cがそれぞれ封口板2側に配置される構成となっている。したがって、角形外装体1内において、発電に関与しない部材が配置されるスペースを削減でき、体積エネルギー密度が高い角形二次電池となる。更に、角形二次電池20では、角形外装体1及び封口板2により構成される電池ケースの6面のうち最も小さい面積の面に封口板2を配置している。即ち、封口板2及び角形外装体1の底部1aの面積が、角形外装体1の4つの側壁(一対の大面積側壁1b及び一対の小面積側壁1c))よりも小さくなっている。これにより、発電に関与しない部材が配置されるスペースを最小とすることができ、より体積エネルギー密度の高い電池となる。 In the rectangular secondary battery 20, the positive electrode tab portion 4c and the negative electrode tab portion 5c are arranged on the sealing plate 2 side of the wound electrode body 3. Therefore, the space in the rectangular exterior body 1 where components not involved in power generation are arranged can be reduced, resulting in a rectangular secondary battery with a high volumetric energy density. Furthermore, in the rectangular secondary battery 20, the sealing plate 2 is arranged on the surface with the smallest area among the six surfaces of the battery case formed by the rectangular exterior body 1 and the sealing plate 2. That is, the area of the sealing plate 2 and the bottom 1a of the rectangular exterior body 1 is smaller than the four side walls (a pair of large-area side walls 1b and a pair of small-area side walls 1c) of the rectangular exterior body 1. This allows the space where components not involved in power generation are arranged to be minimized, resulting in a battery with a higher volumetric energy density.

更に、角形二次電池20では、角形外装体1に収納される電極体を複数の扁平状の巻回電極体3としている。 Furthermore, in the rectangular secondary battery 20, the electrode body housed in the rectangular exterior body 1 is made up of multiple flat wound electrode bodies 3.

大容量(例えば、電池容量が30Ah以上)の角形二次電池を作製するとき、角形外装体1に収納される電極体が一つの巻回電極体である場合、巻回電極体は図12に示すように巻回数が大きく厚みの大きな巻回電極体となる。このような巻回電極体では、各正極タブ部4c同士、及び各負極タブ部5c同士の位置合わせが難しく、また、各正極タブ部4c及び各負極タブ部5cの幅を大きくすることも困難である。また、正極タブ部4cと負極タブ部5cが接触し易くなる虞がある。また、正極タブ部4cと正極集電体6の接続、負極タブ部5cと負極集電体8の接続が困難となる。 When manufacturing a large-capacity (for example, battery capacity of 30 Ah or more) rectangular secondary battery, if the electrode body housed in the rectangular exterior body 1 is a single wound electrode body, the wound electrode body becomes a wound electrode body with a large number of windings and a large thickness as shown in FIG. 12. In such a wound electrode body, it is difficult to align each positive electrode tab portion 4c with each other and each negative electrode tab portion 5c with each other, and it is also difficult to increase the width of each positive electrode tab portion 4c and each negative electrode tab portion 5c. In addition, there is a risk that the positive electrode tab portion 4c and the negative electrode tab portion 5c will easily come into contact with each other. In addition, it becomes difficult to connect the positive electrode tab portion 4c to the positive electrode collector 6 and the negative electrode tab portion 5c to the negative electrode collector 8.

これに対し、角形外装体1に収納される電極体を複数の扁平状の巻回電極体3とすることにより、各正極タブ部4c同士、各負極タブ部5c同士の位置あわせが行い易くなる。また、各正極タブ部4c及び各負極タブ部5cの幅を大きくしても、正極タブ部4cと負極タブ部5cの接触を容易に防止できる(図13参照)。よって、角形二次電池20のように、角形外装体1に収納される電極体を複数個に分割することにより、正極タブ部4cと負極タブ部5cの接触を防止しながらも、正極タブ部4c及び負極タブ部5cの幅を大きくすることにより集電効率が向上し、更に、振動等により正極タブ部4cないし負極タブ部5cが損傷・破損することを防止できる。よって、集電効率に優れ且つ信頼性の高い角形二次電池が得られる。 In contrast, by forming the electrode body housed in the rectangular exterior body 1 into a plurality of flat wound electrode bodies 3, it becomes easier to align the positive electrode tab portions 4c with each other and the negative electrode tab portions 5c with each other. In addition, even if the width of each positive electrode tab portion 4c and each negative electrode tab portion 5c is increased, the contact between the positive electrode tab portion 4c and the negative electrode tab portion 5c can be easily prevented (see FIG. 13). Therefore, as in the rectangular secondary battery 20, by dividing the electrode body housed in the rectangular exterior body 1 into a plurality of pieces, the contact between the positive electrode tab portion 4c and the negative electrode tab portion 5c is prevented, while the width of the positive electrode tab portion 4c and the negative electrode tab portion 5c is increased, improving the current collection efficiency, and further preventing the positive electrode tab portion 4c or the negative electrode tab portion 5c from being damaged or broken due to vibration or the like. Therefore, a rectangular secondary battery with excellent current collection efficiency and high reliability can be obtained.

<変形例1>
図14に変形例1に係る集電体を示す。正極集電体6(負極集電体8)において、接続部6b(8b)に設けられた突起34は、横方向に延びる線状の突起とすることができる。このような構成であると、溶接の際に突起34に対する抵抗溶接電極40の位置ずれを許容することが可能となる。したがって、より生産性と溶接品質に優れた集電構造となる。
<Modification 1>
14 shows a current collector according to Modification 1. In the positive current collector 6 (negative current collector 8), the protrusion 34 provided on the connection portion 6b (8b) can be a linear protrusion extending laterally. With this configuration, it is possible to allow the resistance welding electrode 40 to be misaligned with respect to the protrusion 34 during welding. This results in a current collecting structure with better productivity and welding quality.

<変形例2>
図15に変形例2に係る集電体を示す。正極集電体6(負極集電体8)において、溶接部が形成される部分が手前側及び奥側にそれぞれ一箇所となるようにすることもできる。また、突起34を点状(正方形、円形、半球状 等)とすることもできる。また、ベース部6a(8a)が、角形二次電池20の厚み方向の幅が大きい幅広部6a1(8a1)と、角形二次電池20の厚み方向の幅が幅広部6a1(8a1)よりも小さい幅狭部6a2(8a2)を有する。そして、正極端子7(負極端子9)は、幅広部6a1(8a1)に接続されている。また、接続部6b(8b)は幅狭部6a2(8a2)の端部に形成されている。このような構成であると、ベース部6a(8a)において、正極端子7(負極端子9)が接続される部分を広くすることができるため、ベース部6a(8a)に正極端子7(負極端子9)を接続する際の作業性が向上する。また、ベース部6a(8a)において、一対の接続部6b(8b)が両端に形成された領域を小さくできるため、抵抗溶接の際、一対の抵抗溶接電極で正極集電体6(負極集電体8)を挟み込んだときに、ベース部6a(8a)が変形することを抑制できる。
<Modification 2>
FIG. 15 shows a collector according to the second modification. In the positive electrode collector 6 (negative electrode collector 8), the welded portion may be formed at one location each on the front side and the back side. The protrusion 34 may be dot-shaped (square, circular, hemispherical, etc.). The base portion 6a (8a) has a wide portion 6a1 (8a1) having a large width in the thickness direction of the rectangular secondary battery 20 and a narrow portion 6a2 (8a2) having a width smaller than that of the wide portion 6a1 (8a1) in the thickness direction of the rectangular secondary battery 20. The positive electrode terminal 7 (negative electrode terminal 9) is connected to the wide portion 6a1 (8a1). The connection portion 6b (8b) is formed at the end of the narrow portion 6a2 (8a2). With this configuration, the area of the base portion 6a (8a) to which the positive electrode terminal 7 (negative electrode terminal 9) is connected can be made wider, improving the workability when connecting the positive electrode terminal 7 (negative electrode terminal 9) to the base portion 6a (8a). Also, the area of the base portion 6a (8a) where the pair of connection portions 6b (8b) are formed at both ends can be made smaller, so that deformation of the base portion 6a (8a) can be suppressed when the positive electrode collector 6 (negative electrode collector 8) is sandwiched between a pair of resistance welding electrodes during resistance welding.

<変形例3>
図16に変形例3に係る集電体を示す。このように、幅広部6a1(8a1)の両側に幅狭部6a2(8a2)を設けることができる。また、一方の幅狭部6a2(8a2)の両端にそれぞれ接続部6b(8b)を設け、他方の幅狭部6a2(8a2)の両端にそれぞれ接続部6b(8b)を設けることができる。
<Modification 3>
16 shows a current collector according to Modification 3. In this manner, narrow portions 6a2 (8a2) can be provided on both sides of wide portion 6a1 (8a1). Also, connection portions 6b (8b) can be provided on both ends of one narrow portion 6a2 (8a2), and connection portions 6b (8b) can be provided on both ends of the other narrow portion 6a2 (8a2).

<変形例4>
図17に変形例4に係る集電体を示す。正極端子7(負極端子9)がベース部6a(8a)に予め溶接等により接続されていてもよい。このような集電体を用いる場合、正極端子7(負極端子9)を電池内部側から封口板2の貫通穴に挿入し、電池外部側に配置された外部導電部材上に正極端子7(負極端子9)をカシメ固定するようにする。
<Modification 4>
17 shows a current collector according to Modification 4. The positive electrode terminal 7 (negative electrode terminal 9) may be previously connected to the base portion 6a (8a) by welding or the like. When such a current collector is used, the positive electrode terminal 7 (negative electrode terminal 9) is inserted into the through hole of the sealing plate 2 from the inside of the battery, and the positive electrode terminal 7 (negative electrode terminal 9) is fixed by crimping onto an external conductive member arranged on the outside of the battery.

<変形例5>
図18に変形例5に係る角形二次電池における正極集電体6と正極タブ部4cの接続工程を示す。図18に示すように、積層された正極タブ部4cにおいて、正極集電体6の接続部6bが配置される側とは反対側の外面に集電体受け部品41を配置することができる。集電体受け部品41は、正極タブ部4cに沿って配置される第1領域41aと、この第1領域41aにおいて巻回電極体3側の端部に形成された折り曲げ部41bを有する。折り曲げ部41bが形成されていると、抵抗溶接時にスパッタが生じたとしても、スパッタが巻回電極体3の発電部(正極板4と負極板5が積層された部分)側に飛散し、発電部が損傷することを防止できる。
<Modification 5>
18 shows a process for connecting the positive electrode collector 6 and the positive electrode tab portion 4c in the prismatic secondary battery according to the fifth modification. As shown in FIG. 18, the current collector receiving part 41 can be arranged on the outer surface of the stacked positive electrode tab portion 4c opposite to the side on which the connection portion 6b of the positive electrode collector 6 is arranged. The current collector receiving part 41 has a first region 41a arranged along the positive electrode tab portion 4c and a bent portion 41b formed at the end of the first region 41a on the side of the wound electrode body 3. If the bent portion 41b is formed, even if spatter occurs during resistance welding, it is possible to prevent the spatter from scattering toward the power generation portion (the portion where the positive electrode plate 4 and the negative electrode plate 5 are stacked) of the wound electrode body 3 and damaging the power generation portion.

<変形例6>
図19に変形例6に係る角形二次電池における正極集電体6と正極タブ部4cの接続工程を示す。正極集電体6において一方側の接続部6bと他方側の接続部6bの間に、スペーサ42を配置することができる。これにより、一対の抵抗溶接電極40で、積層された正極タブ部4c及び正極集電体6の接続部6bを挟み込んだ際、正極集電体6が変形することを抑制できる。なお、スペーサ42は金属部材ないし樹脂部材とすることができる。スペーサ42は絶縁性の樹脂部材とすることが好ましい。また、スペーサ42は板状、ブロック状、柱状とすることができる。
<Modification 6>
FIG. 19 shows a process of connecting the positive electrode collector 6 and the positive electrode tab portion 4c in the prismatic secondary battery according to the sixth modification. A spacer 42 can be disposed between the connection portion 6b on one side of the positive electrode collector 6 and the connection portion 6b on the other side of the positive electrode collector 6. This can prevent the positive electrode collector 6 from being deformed when the stacked positive electrode tab portion 4c and the connection portion 6b of the positive electrode collector 6 are sandwiched between a pair of resistance welding electrodes 40. The spacer 42 can be a metal member or a resin member. The spacer 42 is preferably an insulating resin member. The spacer 42 can be a plate-like, block-like, or column-like.

上述の実施形態及び変形例に記載の内容は、正極側及び負極側のいずれにも適用できる。 The contents described in the above embodiments and variations can be applied to both the positive and negative electrode sides.

上述の実施形態及び変形例では、正極タブ部と正極集電体の接続、負極タブ部と負極集電体の接続を抵抗溶接により行う例を示したが、他の方法により行うことも可能である。
例えば、抵抗溶接の代わりに超音波溶接やレーザ等の高エネルギー線による溶接等を用いることができる。
In the above-described embodiment and modified examples, the positive electrode tab portion and the negative electrode current collector are connected by resistance welding, but other methods may also be used.
For example, instead of resistance welding, ultrasonic welding or welding using high energy rays such as laser can be used.

<変形例7>
変形例に係る巻回電極体として以下の構成が考えられる。図20は正極板54(負極板55)の平面図である。正極板54(負極板55)は正極芯体(負極芯体)上の正極活物質層54a(55a)が形成されている。長手方向の両端には正極芯体露出部54b(負極芯体露出部55b)が形成されている。そして、正極芯体露出部54b(負極芯体露出部55b)にはそれぞれに正極タブ56(負極タブ57)が溶接等により接続されている。正極タブ56(負極タブ57)は、正極芯体(負極芯体)よりも厚みの厚い金属板であることが好ましい。
<Modification 7>
The following configurations are conceivable as the wound electrode body according to the modified example. FIG. 20 is a plan view of a positive electrode plate 54 (negative electrode plate 55). The positive electrode plate 54 (negative electrode plate 55) has a positive electrode active material layer 54a (55a) formed on a positive electrode core (negative electrode core). A positive electrode core exposed portion 54b (negative electrode core exposed portion 55b) is formed at both ends in the longitudinal direction. A positive electrode tab 56 (negative electrode tab 57) is connected to each of the positive electrode core exposed portions 54b (negative electrode core exposed portion 55b) by welding or the like. The positive electrode tab 56 (negative electrode tab 57) is preferably a metal plate having a thickness greater than that of the positive electrode core (negative electrode core).

このような正極板54及び負極板55をセパレータを介して巻回し、扁平状の巻回軸方向の一方の端部から正極タブ56及び負極タブ57がそれぞれ突出した扁平状の巻回電極体60とする(図21)。そして、このような扁平状の巻回電極体60を複数個用いて、角形二次電池を作製することができる。例えば、扁平状の巻回電極体60を図21の向きで、複数個積層して用いる。なお、このような場合、扁平状の巻回電極体60を4つ以上用いることが好ましい。このような扁平状の巻回電極体60を4つ以上用いることにより、集電性の低下を抑制しながらも、体積エネルギー密度の高い角形二次電池とすることができる。 The positive electrode plate 54 and the negative electrode plate 55 are wound with a separator interposed therebetween to form a flat wound electrode body 60 in which a positive electrode tab 56 and a negative electrode tab 57 protrude from one end of the flat winding axis direction (FIG. 21). A prismatic secondary battery can be produced by using a plurality of such flat wound electrode bodies 60. For example, a plurality of flat wound electrode bodies 60 are stacked in the orientation shown in FIG. 21 for use. In this case, it is preferable to use four or more flat wound electrode bodies 60. By using four or more such flat wound electrode bodies 60, a prismatic secondary battery with high volumetric energy density can be produced while suppressing a decrease in current collection performance.

なお、正極タブ56及び負極タブ57の幅X2及びX3はそれぞれ、扁平状の巻回電極体60の幅X1に対して1/4以上とすることが好ましい。これにより、内部抵抗を低減できるとともに、耐振動性の向上した角形二次電池とすることができる。また、耐振動性がより向上した角形二次電池とするためには、図20に示すように、正極タブ56(負極タブ57)が正極板54(負極板55)の幅方向において、一方の端部E1から中央線Cを越えて他方の端部E2側までは配置されていることが好ましい。これにより巻回電極体60が各正極タブ56及び各負極タブ57を介して封口板にしっかりと接続される。 The widths X2 and X3 of the positive electrode tab 56 and the negative electrode tab 57 are preferably 1/4 or more of the width X1 of the flat wound electrode body 60. This reduces the internal resistance and improves the vibration resistance of the rectangular secondary battery. In order to improve the vibration resistance of the rectangular secondary battery, it is preferable that the positive electrode tab 56 (negative electrode tab 57) is arranged in the width direction of the positive electrode plate 54 (negative electrode plate 55) from one end E1 to the other end E2 beyond the center line C, as shown in FIG. 20. This allows the wound electrode body 60 to be firmly connected to the sealing plate via each positive electrode tab 56 and each negative electrode tab 57.

<電流遮断機構>
正極板と正極端子の間の導電経路、及び負極板と負極端子の間の導電経路のいずれかに、電池内圧の上昇に伴い作動し、正極板と正極端子の間の導電経路又は負極板と負極端子の間の導電経路を切断し電流を遮断する電流遮断機構を設けることができる。この場合、ガス排出弁の作動圧は、電流遮断機構の作動圧よりも大きい値とすることが好ましい。
<Current interruption mechanism>
A current interruption mechanism may be provided in either the conductive path between the positive plate and the positive terminal or the conductive path between the negative plate and the negative terminal, which is activated in response to an increase in the battery internal pressure and cuts off the conductive path between the positive plate and the positive terminal or the conductive path between the negative plate and the negative terminal to interrupt the current. In this case, the operating pressure of the gas release valve is preferably set to a value higher than the operating pressure of the current interruption mechanism.

電流遮断機構としては、電池内圧の上昇に伴い変形する変形板と、変形板の変形に伴い破断する破断部を含む構成とすることが好ましい。そして、この破断部は正極集電体に形成することが好ましい。この場合、例えば、正極集電体を図15に記載の正極集電体6とすることができる。正極集電体6において、貫通穴6cの周囲に破断部として薄肉部やノッチ部を形成する。正極集電体6のベース部6aの上方に変形板を配置する。そして、貫通穴6cの周囲を変形板の下面にレーザ溶接等により溶接接続する。これにより、変形板が電池内圧の上昇に伴い上方へ変形したとき、ベース部6aに設けた薄肉部ないしノッチ部が破断し、導電経路が切断される。このような場合、正極タブ部4cと正極集電体6の接続は抵抗溶接により行うことが好ましい。これにより、正極タブ部4cと正極集電体6を超音波溶接する場合と比較し、振動等が破断部に悪影響を与えることを抑制できる。また、正極タブ部4cと正極集電体6をレーザ溶接する場合と比較し、スパッタ等が破断部に悪影響を与えることを抑制できる。また、幅広部6a1(8a1)が形成されていることにより、破断部が容易に形成できる。また、変形板とベース部6aの間に絶縁部材を配置し、この絶縁部材とベース部6aを固定する場合、幅広部6a1(8a1)において容易に固定することができる。その方法としては、例えば、幅広部6a1(8a1)に貫通
穴や切欠き部を設け、絶縁部材に形成された突起を貫通穴や切欠き部に嵌合することが考えられる。また、ベース部において接続部6bが形成される部分が幅狭部6a2となっており、正極タブ部4cを接続部6bに接続する際、ベース部6aの変形が抑制されるため、破断部が損傷することを抑制できる。
The current interrupt mechanism is preferably configured to include a deformation plate that deforms with an increase in the battery internal pressure and a fracture portion that breaks with the deformation of the deformation plate. The fracture portion is preferably formed on the positive electrode collector. In this case, for example, the positive electrode collector can be the positive electrode collector 6 shown in FIG. 15. In the positive electrode collector 6, a thin portion or a notch portion is formed around the through hole 6c as a fracture portion. The deformation plate is disposed above the base portion 6a of the positive electrode collector 6. Then, the periphery of the through hole 6c is welded and connected to the lower surface of the deformation plate by laser welding or the like. As a result, when the deformation plate deforms upward with an increase in the battery internal pressure, the thin portion or the notch portion provided on the base portion 6a breaks, and the conductive path is cut off. In such a case, the connection between the positive electrode tab portion 4c and the positive electrode collector 6 is preferably performed by resistance welding. As a result, compared to the case where the positive electrode tab portion 4c and the positive electrode collector 6 are ultrasonically welded, it is possible to suppress the adverse effect of vibrations on the fracture portion. In addition, compared to the case where the positive electrode tab portion 4c and the positive electrode current collector 6 are laser-welded, it is possible to suppress the adverse effect of spatters and the like on the fractured portion. In addition, since the wide portion 6a1 (8a1) is formed, the fractured portion can be easily formed. In addition, when an insulating member is disposed between the deformation plate and the base portion 6a and this insulating member and the base portion 6a are fixed, the fixing can be easily performed at the wide portion 6a1 (8a1). As a method for this, for example, a through hole or a notch portion can be provided in the wide portion 6a1 (8a1) and a protrusion formed on the insulating member can be fitted into the through hole or the notch portion. In addition, the portion where the connection portion 6b is formed in the base portion is the narrow portion 6a2, and when the positive electrode tab portion 4c is connected to the connection portion 6b, the deformation of the base portion 6a is suppressed, so that the fractured portion can be suppressed from being damaged.

図22に電流遮断機構を備えた角形二次電池の断面図を示す。なお、この断面図は、図2の正極端子周辺の拡大図に対応する。絶縁部材10の下面に筒状部を有するカップ状の導電部材60が配置される。導電部材60は絶縁部材10側に貫通穴を有し、この貫通穴に正極端子7が挿入され正極端子7と接続されている。導電部材60は電池内部側に開口する。そしてこの開口を塞ぐように変形板61が配置されている。変形板61の周縁が導電部材60に溶接接続され、開口が変形板61により封止されている。変形板61の電池内部側の面には正極集電体6が接続されている。正極集電体6は貫通穴63を有し、この貫通穴63の縁部が変形板61と溶接接続されている。そして、この溶接接続された部分の周囲には薄肉部64が形成されている。また、薄肉部64には環状の溝部65が形成されている。電池内部の圧力が上昇すると、変形板61の中央部が封口板2側に浮き上がるように変形する。これに伴い、変形板61と正極集電体6の接続部が封口板2側に引っ張られ、環状の溝部65が破断する。これにより、正極板と正極端子7の導電経路が切断され、充電電流が遮断される。これにより過充電の更なる進行を防止できる。 Figure 22 shows a cross-sectional view of a prismatic secondary battery equipped with a current interruption mechanism. This cross-sectional view corresponds to the enlarged view of the positive terminal periphery in Figure 2. A cup-shaped conductive member 60 having a cylindrical portion is disposed on the lower surface of the insulating member 10. The conductive member 60 has a through hole on the insulating member 10 side, and the positive terminal 7 is inserted into this through hole and connected to the positive terminal 7. The conductive member 60 opens to the inside of the battery. A deformation plate 61 is disposed to close this opening. The periphery of the deformation plate 61 is welded to the conductive member 60, and the opening is sealed by the deformation plate 61. A positive electrode current collector 6 is connected to the surface of the deformation plate 61 on the inside of the battery. The positive electrode current collector 6 has a through hole 63, and the edge of this through hole 63 is welded to the deformation plate 61. A thin-walled portion 64 is formed around the welded portion. In addition, a ring-shaped groove portion 65 is formed in the thin-walled portion 64. When the pressure inside the battery rises, the center of the deformable plate 61 deforms so that it rises toward the sealing plate 2. As a result, the connection between the deformable plate 61 and the positive electrode current collector 6 is pulled toward the sealing plate 2, and the annular groove 65 breaks. This cuts off the conductive path between the positive electrode plate and the positive electrode terminal 7, and the charging current is interrupted. This makes it possible to prevent further overcharging.

なお、変形板61と正極集電体6の間には樹脂製の絶縁板62が配置されている。絶縁板62は絶縁板10とラッチ固定されている(図示省略)。絶縁板62は固定用突起部67を有し、この突起部67が正極集電体6に形成された固定用貫通穴66に挿入され、先端部が拡径されている。これにより、絶縁板62と正極集電体6のベース部6aが接続固定されている。 A resin insulating plate 62 is disposed between the deformation plate 61 and the positive electrode collector 6. The insulating plate 62 is latched to the insulating plate 10 (not shown). The insulating plate 62 has a fixing protrusion 67, which is inserted into a fixing through hole 66 formed in the positive electrode collector 6, and the tip portion is expanded in diameter. This connects and fixes the insulating plate 62 to the base portion 6a of the positive electrode collector 6.

図23は、電流遮断機構に用いられる正極集電体6の斜視図である。なお、図22は図23のZ-Z線に沿った断面図に対応する。正極集電体6はベース部6aと、ベース部6aから電極体に向かって延びる接続部6bを有する。ベース部6aは、角形二次電池の厚み方向(封口板の短辺方向)の幅が大きい幅広部6a1と、角形二次電池の厚み方向の幅が幅広部6a1よりも小さい幅狭部6a2を有する。そして、幅広部6a1において、ベース部6aは変形板61と接続されている。また、幅広部6a1において、ベース部6aは絶縁板62と固定されている。接続部6bは幅狭部6a2に設けられている。 Figure 23 is a perspective view of a positive electrode collector 6 used in a current interruption mechanism. Note that Figure 22 corresponds to a cross-sectional view taken along line Z-Z in Figure 23. The positive electrode collector 6 has a base portion 6a and a connection portion 6b extending from the base portion 6a toward the electrode body. The base portion 6a has a wide portion 6a1 that is wide in the thickness direction of the rectangular secondary battery (the short side direction of the sealing plate) and a narrow portion 6a2 that is narrower than the wide portion 6a1 in the thickness direction of the rectangular secondary battery. In the wide portion 6a1, the base portion 6a is connected to the deformation plate 61. In the wide portion 6a1, the base portion 6a is fixed to the insulating plate 62. The connection portion 6b is provided in the narrow portion 6a2.

このような電流遮断機構であると、正極集電体6の接続部6bに正極タブ部4cを溶接接続する際に、ベース部6aに設けられた脆弱部(破断予定部)や変形板61とベース部6aの接続部に悪影響が及ぶことを抑制できる。例えば、接続部6bと正極タブ部4cの溶接時に発生するスパッタが脆弱部や接続部に飛散することを抑制できる。あるいは、接続部6bと正極タブ部4cを溶接する際の応力により、ベース部6aにおいて脆弱部や接続部の周辺が変形することが抑制される。なお、幅広部6a1の幅W1と幅狭部6a2の幅W2の関係はW1/W2≧3/2以上とすることが好ましい。 With such a current interruption mechanism, when the positive electrode tab portion 4c is welded to the connection portion 6b of the positive electrode current collector 6, it is possible to suppress adverse effects on the weak portion (part to be broken) provided in the base portion 6a and the connection portion between the deformable plate 61 and the base portion 6a. For example, it is possible to suppress the scattering of spatter generated when welding the connection portion 6b and the positive electrode tab portion 4c onto the weak portion or the connection portion. Alternatively, it is possible to suppress deformation of the weak portion or the periphery of the connection portion in the base portion 6a due to stress when welding the connection portion 6b and the positive electrode tab portion 4c. Note that it is preferable that the relationship between the width W1 of the wide portion 6a1 and the width W2 of the narrow portion 6a2 is W1/W2≧3/2 or more.

なお、このような構成の電流遮断機構は、角形外装体に収納される電極体が一つの巻回電極体である場合も効果的である。また、このような構成の電流遮断機構は、角形外装体に収納される電極体が積層型電極体の場合でも効果的である。 The current interruption mechanism of this configuration is also effective when the electrode body housed in the rectangular exterior body is a single wound electrode body. The current interruption mechanism of this configuration is also effective when the electrode body housed in the rectangular exterior body is a stacked electrode body.

角形二次電池20を複数個用いた組電池としては、以下の構成とすることができる。 A battery pack using multiple rectangular secondary batteries 20 can have the following configuration:

図24に示すように、組電池50では、一対のエンドプレート51の間に複数個の角形二次電池20が、それぞれの大面積側壁が平行になる向きで積層される。一対のエンドプレート51はバインドバー52により連結されている。なお、エンドプレートとバスバー
はボルトやリベット等と用いて、あるいは溶接等により接続される。各角形二次電池20の間には絶縁性のセパレータ53が配置されている、セパレータ53は樹脂製であることが好ましい。そして、組電池50において、一方の側面(図24では手前側の側面)に、各角形二次電池20の正極端子7及び負極端子9が配置されるようにする。隣接する角形二次電池20同士の端子間はバスバー54により接続されている。そして他方の側面(図24では奥側の側面)に、各角形二次電池20の底部が配置されるようにする。そして、組電池50の上面と下面に、各角形二次電池20の小面積側壁が配置されるようにする。このような構成とすることにより、高さが低く、且つ体積エネルギー密度の非常に高い組電池となる。そして、このような組電池50を、図24に記載の向きで車両に登載することにより、車内の居住性が大幅に改善された車両となる。
As shown in FIG. 24 , in the battery pack 50, a plurality of prismatic secondary batteries 20 are stacked between a pair of end plates 51 with their large area side walls parallel to each other. The pair of end plates 51 are connected by a bind bar 52. The end plates and the bus bar are connected by means of bolts, rivets, or welding. An insulating separator 53 is disposed between each pair of prismatic secondary batteries 20. The separator 53 is preferably made of resin. In the battery pack 50, the positive electrode terminal 7 and the negative electrode terminal 9 of each prismatic secondary battery 20 are disposed on one side (the side on the front side in FIG. 24 ). The terminals of adjacent prismatic secondary batteries 20 are connected by a bus bar 54. The bottom of each prismatic secondary battery 20 is disposed on the other side (the side on the back side in FIG. 24 ). The small area side walls of each prismatic secondary battery 20 are disposed on the upper and lower surfaces of the battery pack 50. Such a configuration results in a battery pack that is low in height and has a very high volumetric energy density. By mounting such a battery pack 50 on a vehicle in the orientation shown in Fig. 24, the vehicle can have significantly improved interior comfort.

なお、組電池50の底面には、内部に冷却媒体が流れる冷却板55が配置されており、この冷却板により各角形二次電池20が冷却されるようにすることが好ましい。なお、冷却媒体は、気体であってもよいし、液体であってもよい。 It is preferable that a cooling plate 55 through which a cooling medium flows is disposed on the bottom surface of the battery pack 50, and that each of the rectangular secondary batteries 20 is cooled by this cooling plate. The cooling medium may be either a gas or a liquid.

1・・・角形外装体
1a・・・底部
1b・・・大面積側壁
1c・・・小面積側壁
2・・・封口板
3・・・巻回電極体
4・・・正極板
4a・・・正極活物質層
4b・・・正極芯体露出部
4c・・・正極タブ部
5・・・負極板
5a・・・負極活物質層
5b・・・負極芯体露出部
5c・・・負極タブ部
6・・・正極集電体
6a・・・ベース部
6b・・・接続部
6c・・・貫通穴
7・・・正極端子
7a・・・フランジ部
7b・・・挿入部
8・・・負極集電体
8a・・・ベース部
8b・・・接続部
8c・・・貫通穴
9・・・負極端子
9a・・・フランジ部
9b・・・挿入部
10、12・・・絶縁部材
11、13・・・ガスケット
14・・・絶縁シート
15・・・電解液注液孔
16・・・封止栓
17・・・ガス排出弁
20・・・角形二次電池
30・・・溶接部
31・・・直線部
32・・・曲線部
33・・・段状部
34・・・突起
35・・・スリット
40・・・抵抗溶接電極
41・・・集電体受け部品
42・・・スペーサ
50・・・組電池
51・・・エンドプレート
52・・・バインドバー
53・・・セパレータ
54・・・バスバー
55・・・冷却板
60・・・導電部材
61・・・変形板
62・・・絶縁板
63・・・貫通穴
64・・・薄肉部
65・・・溝部
66・・・固定用貫通穴
67・・・固定用突起
1: rectangular exterior body 1a: bottom 1b: large area side wall 1c: small area side wall 2: sealing plate 3: wound electrode body 4: positive electrode plate 4a: positive electrode active material layer 4b: positive electrode core exposed portion 4c: positive electrode tab portion 5: negative electrode plate 5a: negative electrode active material layer 5b: negative electrode core exposed portion 5c: negative electrode tab portion 6: positive electrode collector 6a: base portion 6b: connection portion 6c: through hole 7: positive electrode terminal 7a: flange portion 7b: insertion portion 8: negative electrode collector 8a: base portion 8b: connection portion 8c: through hole 9: negative electrode terminal 9a: flange portion 9b: insertion portion 10, 12: insulating member 11, Reference Signs List 13: Gasket 14: Insulating sheet 15: Electrolyte injection hole 16: Sealing plug 17: Gas exhaust valve 20: Prismatic secondary battery 30: Welded portion 31: Straight portion 32: Curved portion 33: Step portion 34: Protrusion 35: Slit 40: Resistance welding electrode 41: Current collector receiving part 42: Spacer 50: Battery pack 51: End plate 52: Bind bar 53: Separator 54: Bus bar 55: Cooling plate 60: Conductive member 61: Deformable plate 62: Insulating plate 63: Through hole 64: Thin portion 65: Groove portion 66: Fixing through hole 67: Fixing protrusion

Claims (14)

正極板と負極板との間にセパレータを介した電極体と、
開口部を有し、前記電極体を収納する角形外装体と、
前記開口部を封口する封口板と、
前記正極板に電気的に接続され前記封口板に取り付けられた正極端子と、
前記正極板と前記正極端子を電気的に接続する正極集電体と、
前記負極板に電気的に接続され前記封口板に取り付けられた負極端子と、
前記負極板と前記負極端子を電気的に接続する負極集電体と、を備えた角形二次電池であって、
前記電極体は、前記封口板の面した一方の端部に、正極タブ部及び負極タブ部を有し、
複数の前記電極体ではそれぞれ、前記正極タブ部及び前記負極タブ部が前記一方の端部に位置するように、前記角形外装体内に収納され、
前記電極体ごとに前記正極板がそれぞれ独立しており、
前記電極体ごとに前記負極板がそれぞれ独立しており、
前記複数の電極体は、第1の電極体と第2の電極体を含み、
前記第1の電極体が有する複数の前記正極タブ部が束ねられて前記正極集電体に溶接された第1の正極側溶接部と、
前記第2の電極体が有する複数の前記正極タブ部が束ねられて前記正極集電体に溶接された第2の正極側溶接部と、を有し、
前記正極集電体において、前記第1の正極側溶接部と前記第2の正極側溶接部は前記少なくとも2つの電極体が並ぶ方向に離れた位置に形成され、
前記第1の正極側溶接部と前記第2の正極側溶接部は、前記正極集電体における前記正極端子との接続位置と前記封口板の長手方向において並んでいる、
角形二次電池。
an electrode assembly having a separator between a positive electrode plate and a negative electrode plate;
A rectangular exterior body having an opening and housing the electrode body;
A sealing plate that seals the opening;
a positive electrode terminal electrically connected to the positive electrode plate and attached to the sealing plate;
a positive electrode current collector that electrically connects the positive electrode plate and the positive electrode terminal;
a negative electrode terminal electrically connected to the negative electrode plate and attached to the sealing plate;
a negative electrode current collector electrically connecting the negative electrode plate and the negative electrode terminal,
the electrode body has a positive electrode tab portion and a negative electrode tab portion at one end facing the sealing plate,
Each of the plurality of electrode assemblies is housed in the rectangular exterior body such that the positive electrode tab portion and the negative electrode tab portion are located at the one end portion,
The positive electrode plate is independent for each electrode body,
The negative electrode plate is independent for each electrode body,
the plurality of electrode bodies include a first electrode body and a second electrode body,
a first positive electrode side welded portion in which the plurality of positive electrode tab portions of the first electrode body are bundled and welded to the positive electrode current collector;
a second positive electrode side weld portion in which the plurality of positive electrode tab portions of the second electrode body are bundled together and welded to the positive electrode current collector,
In the positive electrode current collector, the first positive electrode side welded portion and the second positive electrode side welded portion are formed at positions spaced apart in a direction in which the at least two electrode bodies are arranged,
the first positive electrode side welded portion and the second positive electrode side welded portion are aligned with a connection position of the positive electrode current collector with the positive electrode terminal in a longitudinal direction of the sealing plate;
Prismatic secondary battery.
複数の前記負極タブ部が束ねられた状態で、前記負極集電体と負極集電体受け部品に挟まれて前記負極集電体に接続された、
請求項1に記載の角形二次電池。
A plurality of the negative electrode tab portions are bundled together, sandwiched between the negative electrode current collector and a negative electrode current collector receiving part, and connected to the negative electrode current collector.
The prismatic secondary battery according to claim 1 .
複数の前記正極タブ部が束ねられた状態で、前記正極集電体と正極集電体受け部品に挟まれて前記正極集電体に接続された、
請求項1~2のいずれか1つに記載の角形二次電池。
A plurality of the positive electrode tab portions are bundled together and sandwiched between the positive electrode current collector and a positive electrode current collector receiving part and connected to the positive electrode current collector.
The prismatic secondary battery according to claim 1 or 2.
前記負極集電体は、ベース部と、前記負極集電体の前記ベース部の端部から折り曲げられた接続部とを有し、
前記負極集電体の前記ベース部に前記負極端子が接続され、
前記負極集電体の前記接続部に前記負極タブ部が接続された、
請求項1~3のいずれか1つに記載の角形二次電池。
the negative electrode current collector has a base portion and a connection portion bent from an end portion of the base portion of the negative electrode current collector,
the negative electrode terminal is connected to the base portion of the negative electrode current collector;
the negative electrode tab portion is connected to the connection portion of the negative electrode current collector;
The prismatic secondary battery according to any one of claims 1 to 3.
前記正極集電体は、ベース部と、前記正極集電体の前記ベース部の端部から折り曲げられた接続部とを有し、
前記正極集電体の前記ベース部に前記正極端子が接続され、
前記正極集電体の前記接続部に前記正極タブ部が接続された、
請求項1~4のいずれか1つに記載の角形二次電池。
the positive electrode current collector has a base portion and a connection portion bent from an end portion of the base portion of the positive electrode current collector,
the positive electrode terminal is connected to the base portion of the positive electrode current collector;
The positive electrode tab portion is connected to the connection portion of the positive electrode current collector.
The prismatic secondary battery according to any one of claims 1 to 4.
前記負極タブ部の幅は、前記電極体の幅の1/4以上且つ1/2以下である、
請求項1~5のいずれか1つに記載の角形二次電池。
The width of the negative electrode tab portion is ¼ to ½ of the width of the electrode body.
The prismatic secondary battery according to any one of claims 1 to 5.
前記正極タブ部の幅は、前記電極体の幅の1/4以上且つ1/2以下である、
請求項1~6のいずれか1つに記載の角形二次電池。
The width of the positive electrode tab portion is ¼ to ½ of the width of the electrode body.
The prismatic secondary battery according to any one of claims 1 to 6.
前記負極板は、負極芯体と、前記負極芯体上に形成された負極活物質層を有し、
前記負極芯体は前記負極活物質層が形成されていない負極芯体露出部を有し、
前記負極タブ部は前記負極芯体露出部である、
請求項1~6のいずれか1つに記載の角形二次電池。
The negative electrode plate has a negative electrode core and a negative electrode active material layer formed on the negative electrode core,
the negative electrode core has a negative electrode core exposed portion on which the negative electrode active material layer is not formed,
The negative electrode tab portion is the negative electrode core exposed portion.
The prismatic secondary battery according to any one of claims 1 to 6.
前記正極板は、正極芯体と、前記正極芯体上に形成された正極活物質層を有し、
前記正極芯体は前記正極活物質層が形成されていない正極芯体露出部を有し、
前記正極タブ部は前記正極芯体露出部である、
請求項1~8のいずれか1つに記載の角形二次電池。
The positive electrode plate has a positive electrode core and a positive electrode active material layer formed on the positive electrode core,
the positive electrode core has a positive electrode core exposed portion on which the positive electrode active material layer is not formed,
The positive electrode tab portion is the positive electrode core exposed portion.
The prismatic secondary battery according to any one of claims 1 to 8.
前記第1の電極体が有する複数の前記負極タブ部が束ねられて前記負極集電体に溶接された第1の負極側溶接部と、
前記第2の電極体が有する複数の前記負極タブ部が束ねられて前記負極集電体に溶接された第2の負極側溶接部と、を有し、
前記負極集電体において、前記第1の負極側溶接部と前記第2の負極側溶接部は離れた位置に形成された、
請求項1~9のいずれか1つに記載の角形二次電池。
a first negative electrode side welded portion in which the plurality of negative electrode tab portions of the first electrode body are bundled and welded to the negative electrode current collector;
a second negative electrode side welded portion in which the negative electrode tab portions of the second electrode body are bundled together and welded to the negative electrode current collector,
In the negative electrode current collector, the first negative electrode side welded portion and the second negative electrode side welded portion are formed at positions separated from each other.
The prismatic secondary battery according to any one of claims 1 to 9.
正極板と負極板の間にセパレータを介した電極体と、
開口部を有し、前記電極体を収納する角形外装体と、
前記開口部を封口する封口板と、
前記正極板に電気的に接続され前記封口板に取り付けられた正極端子と、
前記正極板と前記正極端子を電気的に接続する正極集電体と、
前記負極板に電気的に接続され前記封口板に取り付けられた負極端子と、
前記負極板と前記負極端子を電気的に接続する負極集電体と、を備えた角形二次電池であって、
前記電極体は、前記封口板の面する一方の端部に、正極タブ部及び負極タブ部を有し、
複数の前記電極体ではそれぞれ、前記一方の端部に、前記正極タブ部及び前記負極タブ部が位置するように、前記角形外装体内に収納され、
前記電極体ごとに前記正極板がそれぞれ独立しており、
前記電極体ごとに前記負極板がそれぞれ独立しており、
前記複数の電極体は、第1の電極体と第2の電極体を含み、
前記第1の電極体が有する複数の前記負極タブ部が束ねられて前記負極集電体に溶接された第1の負極側溶接部と、
前記第2の電極体が有する複数の前記負極タブ部が束ねられて前記負極集電体に溶接された第2の負極側溶接部と、を有し、
前記負極集電体において、前記第1の負極側溶接部と前記第2の負極側溶接部は
前記複数の電極体が並ぶ方向に離れた位置に形成され、
前記第1の負極側溶接部と前記第2の負極側溶接部は、前記負極集電体における前記負極端子との接続位置と前記封口板の長手方向において並んでいる、
角形二次電池。
an electrode assembly having a separator between a positive electrode plate and a negative electrode plate;
A rectangular exterior body having an opening and housing the electrode body;
A sealing plate that seals the opening;
a positive electrode terminal electrically connected to the positive electrode plate and attached to the sealing plate;
a positive electrode current collector that electrically connects the positive electrode plate and the positive electrode terminal;
a negative electrode terminal electrically connected to the negative electrode plate and attached to the sealing plate;
a negative electrode current collector electrically connecting the negative electrode plate and the negative electrode terminal,
the electrode body has a positive electrode tab portion and a negative electrode tab portion at one end facing the sealing plate,
Each of the plurality of electrode bodies is housed in the rectangular exterior body such that the positive electrode tab portion and the negative electrode tab portion are located at the one end,
The positive electrode plate is independent for each electrode body,
The negative electrode plate is independent for each electrode body,
the plurality of electrode bodies include a first electrode body and a second electrode body,
a first negative electrode side welded portion in which the plurality of negative electrode tab portions of the first electrode body are bundled and welded to the negative electrode current collector;
a second negative electrode side weld portion in which the plurality of negative electrode tab portions of the second electrode body are bundled together and welded to the negative electrode current collector,
In the negative electrode current collector, the first negative electrode side welded portion and the second negative electrode side welded portion are formed at positions spaced apart from each other in a direction in which the plurality of electrode assemblies are arranged,
the first negative electrode side welded portion and the second negative electrode side welded portion are aligned with a connection position of the negative electrode current collector with the negative electrode terminal in a longitudinal direction of the sealing plate;
Prismatic secondary battery.
前記角形外装体は、底部と、一対の大面積側壁と、一対の小面積側壁と、を有し、
前記小面積側壁の面積は前記大面積側壁の面積よりも小さく、
前記底部の面積は前記小面積側壁の面積よりも小さい、
請求項1~11のいずれか1つに記載の角形二次電池。
The rectangular exterior body has a bottom, a pair of large-area side walls, and a pair of small-area side walls,
the area of the small area sidewall is smaller than the area of the large area sidewall;
the area of the bottom is smaller than the area of the small area sidewall;
The prismatic secondary battery according to any one of claims 1 to 11.
請求項1~12のいずれか1つに記載の角形二次電池を複数備えた組電池であって、
一対のエンドプレートと、
前記一対のエンドプレートを連結するバインドバーと、を有し、
複数の前記角形二次電池は、前記一対のエンドプレートの間に配置された組電池。
A battery pack including a plurality of prismatic secondary batteries according to any one of claims 1 to 12,
A pair of end plates;
a bind bar connecting the pair of end plates,
The plurality of rectangular secondary batteries are arranged between the pair of end plates.
請求項12に記載の角形二次電池を複数備えた組電池であって、
一対のエンドプレートと、
前記一対のエンドプレートを連結するバインドバーと、を有し、
複数の前記角形二次電池は、前記一対のエンドプレートの間に、各前記角形二次電池の前記大面積側壁が平行になる向きで配置され、
一方の側面に、各前記角形二次電池の前記正極端子及び前記負極端子が配置され、
他方の側面に、各前記角形二次電池の各前記角形外装体の前記底部が配置された組電池。
A battery pack including a plurality of the prismatic secondary batteries according to claim 12,
A pair of end plates;
a bind bar connecting the pair of end plates,
the plurality of prismatic secondary batteries are arranged between the pair of end plates with the large-area side walls of each of the prismatic secondary batteries oriented in parallel;
The positive electrode terminal and the negative electrode terminal of each of the rectangular secondary batteries are disposed on one side surface,
The bottoms of the rectangular exterior bodies of the rectangular secondary batteries are disposed on the other side of the battery pack.
JP2024034541A 2019-09-04 2024-03-07 Prismatic secondary battery and battery pack using the same Pending JP2024057096A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2024034541A JP2024057096A (en) 2019-09-04 2024-03-07 Prismatic secondary battery and battery pack using the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019160938A JP6891930B2 (en) 2015-03-30 2019-09-04 Square secondary battery and assembled battery using it
JP2021085911A JP7160457B2 (en) 2019-09-04 2021-05-21 Prismatic secondary battery and assembled battery using the same
JP2022161566A JP7453307B2 (en) 2019-09-04 2022-10-06 Prismatic secondary battery and assembled battery using the same
JP2024034541A JP2024057096A (en) 2019-09-04 2024-03-07 Prismatic secondary battery and battery pack using the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2022161566A Division JP7453307B2 (en) 2019-09-04 2022-10-06 Prismatic secondary battery and assembled battery using the same

Publications (1)

Publication Number Publication Date
JP2024057096A true JP2024057096A (en) 2024-04-23

Family

ID=77270273

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2021085911A Active JP7160457B2 (en) 2019-09-04 2021-05-21 Prismatic secondary battery and assembled battery using the same
JP2022161566A Active JP7453307B2 (en) 2019-09-04 2022-10-06 Prismatic secondary battery and assembled battery using the same
JP2024034541A Pending JP2024057096A (en) 2019-09-04 2024-03-07 Prismatic secondary battery and battery pack using the same

Family Applications Before (2)

Application Number Title Priority Date Filing Date
JP2021085911A Active JP7160457B2 (en) 2019-09-04 2021-05-21 Prismatic secondary battery and assembled battery using the same
JP2022161566A Active JP7453307B2 (en) 2019-09-04 2022-10-06 Prismatic secondary battery and assembled battery using the same

Country Status (1)

Country Link
JP (3) JP7160457B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115548597B (en) * 2022-11-29 2023-04-21 瑞浦兰钧能源股份有限公司 Welding method of secondary battery and battery thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08115729A (en) * 1994-10-13 1996-05-07 Japan Storage Battery Co Ltd Organic electrolyte battery and its manufacture
JPH09213299A (en) * 1996-01-31 1997-08-15 Toyota Autom Loom Works Ltd Current collecting structure of storage battery
JPH10261440A (en) * 1997-03-19 1998-09-29 Hitachi Ltd Lithium secondary battery, and manufacture thereof and battery system thereof
JP2011171079A (en) * 2010-02-17 2011-09-01 Toshiba Corp Battery cell
JP5699909B2 (en) * 2011-11-11 2015-04-15 株式会社豊田自動織機 Secondary battery electrode body, secondary battery and vehicle
JP2013251055A (en) * 2012-05-30 2013-12-12 Hitachi Ltd Joint structure, joining method, secondary battery and method for manufacturing secondary battery
JP6015845B2 (en) * 2013-03-15 2016-10-26 日立化成株式会社 Secondary battery
JP2015011919A (en) * 2013-07-01 2015-01-19 三洋電機株式会社 Power unit

Also Published As

Publication number Publication date
JP2022180650A (en) 2022-12-06
JP2021120961A (en) 2021-08-19
JP7160457B2 (en) 2022-10-25
JP7453307B2 (en) 2024-03-19

Similar Documents

Publication Publication Date Title
US11862762B2 (en) Prismatic secondary battery and assembled battery using the same
US10644301B2 (en) Prismatic secondary battery and assembled battery using the same
US11316235B2 (en) Prismatic secondary battery, assembled battery using the same and method of producing the same
JP6891930B2 (en) Square secondary battery and assembled battery using it
US11050092B2 (en) Method for manufacturing prismatic secondary battery
JP6599129B2 (en) Rectangular secondary battery, assembled battery using the same, and manufacturing method thereof
US20200251711A1 (en) Rectangular secondary battery and method of manufacturing the same
JP6569434B2 (en) Prismatic secondary battery
JP2016189248A (en) Square secondary battery and battery pack using the same
JP6805288B2 (en) Square secondary battery and assembled battery using it
JP2024057096A (en) Prismatic secondary battery and battery pack using the same
US20140023913A1 (en) Prismatic secondary battery
KR20230029531A (en) Battery
JP2023066921A (en) battery
JP2023078786A (en) battery
JP2019186232A (en) Manufacturing method for square secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240307