JPH09213299A - Current collecting structure of storage battery - Google Patents
Current collecting structure of storage batteryInfo
- Publication number
- JPH09213299A JPH09213299A JP8014824A JP1482496A JPH09213299A JP H09213299 A JPH09213299 A JP H09213299A JP 8014824 A JP8014824 A JP 8014824A JP 1482496 A JP1482496 A JP 1482496A JP H09213299 A JPH09213299 A JP H09213299A
- Authority
- JP
- Japan
- Prior art keywords
- electrode plate
- electrode plates
- storage battery
- welding
- current collecting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Connection Of Batteries Or Terminals (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、蓄電池の集電構造
に係わり、特に、多数の電極板を有する蓄電池において
それら電極板を集電端子に接続させる構成に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a current collecting structure for a storage battery, and more particularly to a structure for connecting a plurality of electrode plates to a current collecting terminal in the storage battery.
【0002】[0002]
【従来の技術】充電することによって繰り返し利用でき
る蓄電池(2次電池)は、様々な分野で広く使用されて
いる。最近では、携帯端末や音響機器などに使用される
小型の蓄電池だけでなく、たとえば、電気自動車用バッ
テリなどのような大型の蓄電池の需要も増加している。2. Description of the Related Art Storage batteries (secondary batteries) that can be repeatedly used by charging are widely used in various fields. Recently, not only small storage batteries used for mobile terminals and audio equipment, but also large storage batteries such as batteries for electric vehicles are increasing in demand.
【0003】一般的な大型の蓄電池としては、複数の正
極用の電極板と複数の負極用の電極板とを交互に重ね合
わせて並列接続し、それらの電極板を電解液の中に浸す
構成が知られている。As a general large-sized storage battery, a plurality of positive electrode plates and a plurality of negative electrode plates are alternately superposed and connected in parallel, and these electrode plates are immersed in an electrolytic solution. It has been known.
【0004】図6は、一般的な大型蓄電池の内部構成を
示す図である。各正極用電極板は、反応部101および
リード部102とから構成される。同様に、各負極用電
極板は、反応部103およびリード部104とから構成
される。反応部101とリード部102との間、反応部
103とリード部104との間は、それぞれ溶接するこ
とによって電気的に接続されている。電槽105は、蓄
電池の容器であり、その中に電解液が入っている。FIG. 6 is a diagram showing the internal structure of a general large-sized storage battery. Each positive electrode plate includes a reaction section 101 and a lead section 102. Similarly, each negative electrode plate is composed of a reaction section 103 and a lead section 104. The reaction part 101 and the lead part 102 and the reaction part 103 and the lead part 104 are electrically connected by welding. The battery case 105 is a container of a storage battery, and the electrolytic solution is contained therein.
【0005】正極用電極板および負極用電極板は、反応
部101と反応部103とが交互に重なりあうように組
み合わされる。なお、図6では省略しているが、実際に
は反応部101と反応部103とが電気的に接触しない
ようにそれらの間にセパレータが設けられる。正極用電
極板および負極用電極板は、交互に重なり合うように組
み合わされた状態で電槽105の中に配置され、反応部
101および反応部103が電解液に浸される。The electrode plate for the positive electrode and the electrode plate for the negative electrode are assembled so that the reaction parts 101 and 103 are alternately overlapped with each other. Although omitted in FIG. 6, a separator is actually provided between the reaction unit 101 and the reaction unit 103 so that they are not in electrical contact with each other. The electrode plate for the positive electrode and the electrode plate for the negative electrode are arranged in the battery case 105 in a state of being combined so as to overlap with each other, and the reaction section 101 and the reaction section 103 are immersed in the electrolytic solution.
【0006】反応部103が電解液と反応することによ
って生じる電子は、リード部104を介して負極集電端
子へ伝導され、そこから外部へ供給される。外部から流
れてくる電子は、正極集電端子、リード部102を介し
て反応部101へ伝導され、そこで電解液と反応して吸
収される。集電端子は、この蓄電池から電力を取り出す
ための電池端子である。Electrons generated by the reaction of the reaction part 103 with the electrolytic solution are conducted to the negative electrode current collecting terminal through the lead part 104 and then supplied to the outside. Electrons flowing from the outside are conducted to the reaction section 101 via the positive electrode current collector terminal and the lead section 102, where they react with the electrolytic solution and are absorbed. The current collecting terminal is a battery terminal for taking out electric power from this storage battery.
【0007】図7は、電極板と集電端子との接続構造の
一例を示す図である。図7では、正極について示してい
るが、負極側の構成も同じである。図7に示す構成で
は、集電端子106は、各電極板のリード部102を収
容するためのスリットを有している。そして、蓄電池を
組み立てるときは、各電極板のリード部102の先端部
(突起部)を集電端子106のスリットにはめ込み、そ
の状態で各電極板のリード部102と集電端子106と
を溶接してそれらを電気的に接続する。FIG. 7 is a diagram showing an example of a connection structure between the electrode plate and the collector terminal. Although the positive electrode is shown in FIG. 7, the configuration on the negative electrode side is also the same. In the configuration shown in FIG. 7, the collector terminal 106 has a slit for accommodating the lead portion 102 of each electrode plate. When assembling the storage battery, the tip portion (protrusion) of the lead portion 102 of each electrode plate is fitted into the slit of the current collector terminal 106, and in that state, the lead portion 102 of each electrode plate and the current collector terminal 106 are welded. And connect them electrically.
【0008】上記作業において、リード部102をスリ
ットの内側に確実に接続するためには、多くの入力エネ
ルギーで溶接する必要がある。なぜなら、溶接は本来、
被溶接物どうしを確実に接触させた状態で熱エネルギー
を与えることで互いに溶け合うが、図7に示したスリッ
トにリード部102の先端部をはめ込んだだけでは、そ
れらの間に多くの空間(隙間)が存在するために十分な
接触が得られず、この状態で無理やり溶かすには多くの
熱エネルギーを必要とするからである。ところが、この
溶接時の熱はリード部102を介して反応部101に伝
導されるので、溶接箇所の温度を高くしすぎると、反応
部101の特性に悪影響を与えたり、あるいは反応部1
01と反応部103との間に設けられるセパレータを損
傷してしまう恐れがある。溶接時に反応部101が高温
になるのを防ぐためには、各リード部102をスリット
の内側に点溶接する手法が考えられる。In the above work, in order to securely connect the lead portion 102 to the inside of the slit, it is necessary to weld with a large amount of input energy. Because welding is essentially
The objects to be welded are melted by applying heat energy in a state where they are surely brought into contact with each other. However, if the tips of the lead portions 102 are simply fitted into the slits shown in FIG. ) Is not obtained enough contact, because it requires a lot of thermal energy to forcefully melt in this state. However, since the heat at the time of welding is conducted to the reaction part 101 via the lead part 102, if the temperature of the welding part is made too high, the characteristics of the reaction part 101 are adversely affected, or the reaction part 1
01 and the reaction part 103 may damage the separator. In order to prevent the reaction part 101 from becoming hot during welding, a method of spot welding each lead part 102 to the inside of the slit can be considered.
【0009】しかしながら、点溶接では電気的な接続が
十分でない場合がある。この結果、電極板ごとにリード
部102と集電端子106との間の接合面積が異なって
抵抗格差を生じ、特性のばらつきが大きくなるので、蓄
電池としての性能が安定しない恐れがある。電極板ごと
抵抗がばらつくと、充電時等に抵抗の少ない電極板に多
くの電荷が流れ、その電極板の使用頻度が高くなるの
で、特定の電極板の劣化が早まる。However, the electric connection may not be sufficient in spot welding. As a result, the bonding area between the lead portion 102 and the current collecting terminal 106 is different for each electrode plate, and a resistance difference is generated, resulting in large variations in characteristics, which may result in unstable performance as a storage battery. If the resistance varies with the electrode plate, a large amount of charge flows to the electrode plate having a low resistance during charging, etc., and the frequency of use of the electrode plate increases, so that the deterioration of a specific electrode plate is accelerated.
【0010】このように、図7に示す構成では、電極板
と集電端子とを確実に接続することが困難であった。図
8は、上述の問題を解決する構成の一例を示す図であ
る。図8に示す構成では、溶接を容易にするために集電
端子の側部に溶接面を設け、その溶接面に電極板のリー
ド部を接続する。すなわち、電極板107aおよび10
7bのリード部を集電端子108の溶接面109に溶接
し、電極板107cおよび107dのリード部を接続面
109の反対側に設けられている溶接面に溶接する。As described above, in the structure shown in FIG. 7, it is difficult to reliably connect the electrode plate and the collector terminal. FIG. 8 is a diagram showing an example of a configuration that solves the above problem. In the configuration shown in FIG. 8, a welding surface is provided on a side portion of the collector terminal in order to facilitate welding, and the lead portion of the electrode plate is connected to the welding surface. That is, the electrode plates 107a and 10
The lead portion 7b is welded to the welding surface 109 of the collector terminal 108, and the lead portions of the electrode plates 107c and 107d are welded to the welding surface provided on the opposite side of the connection surface 109.
【0011】このような構成とすれば、電極板107a
〜107dと集電端子108との固定(位置決め)は簡
単であり、比較的少ない入力エネルギーで溶接できるの
で、さほど高温にすることなくそれらを確実に接続する
ことができる。With such a structure, the electrode plate 107a
Since the fixing (positioning) of ~ 107d and the current collecting terminal 108 is simple and welding can be performed with a relatively small input energy, they can be reliably connected without raising the temperature so much.
【0012】[0012]
【発明が解決しようとする課題】図9は、図8に示した
構成の蓄電池を上面、側面、および正面から見た、電槽
のみをカットした断面図である。FIG. 9 is a cross-sectional view of the storage battery having the configuration shown in FIG. 8 as seen from the top, side, and front, in which only the battery case is cut.
【0013】図9の蓄電池は、正極用および負極用の電
極板がそれぞれ8枚ずつ設けられた構成である。同図の
右側に示す側断面図では、正極用の電極板および集電端
子を示している。以下では、蓄電池の正極側の構成につ
いて説明するが、負極側の構成も同じである。The storage battery shown in FIG. 9 has a structure in which eight positive electrode plates and eight negative electrode plates are provided. The side sectional view shown on the right side of the figure shows the electrode plate for the positive electrode and the current collecting terminal. The configuration of the positive electrode side of the storage battery will be described below, but the configuration of the negative electrode side is also the same.
【0014】集電端子108の側面に設けた2つの溶接
面109には、それぞれ4枚の電極板のリード部102
が束ねて溶接されている。このとき、各電極板を電槽1
05内の所定の位置に配置させながらリード部102の
先端部を溶接面109に接続させるためには、リード部
102を反応部101に対して適当に曲げる必要があ
る。換言すれば、各電極板を電槽105内の所定の位置
に配置させながらリード部102の先端部を溶接面10
9に接続させるようにリード部102を反応部101に
対して適当に曲げるようにしている。The two welding surfaces 109 provided on the side surfaces of the collector terminal 108 are respectively provided on the lead portions 102 of the four electrode plates.
Are bundled and welded. At this time, attach each electrode plate to the battery case 1
In order to connect the tip of the lead portion 102 to the welding surface 109 while arranging it at a predetermined position in 05, the lead portion 102 needs to be bent appropriately with respect to the reaction portion 101. In other words, while the respective electrode plates are arranged at the predetermined positions in the battery case 105, the leading end of the lead portion 102 is welded to the welding surface 10.
The lead portion 102 is appropriately bent with respect to the reaction portion 101 so as to be connected to the connector 9.
【0015】ところが、集電端子108の溶接面109
からX方向に遠い位置にある電極板においては、反応部
101に対するリード部102の曲げ角度が大きくな
る。即ち、図10に示すように、電槽105の近傍に配
置される電極板は、反応部101に対するリード部10
2の曲げ角度θがかなり大きくなってしまう。特に、電
気自動車などのニーズに伴う高容量タイプの電池は、積
層される電極板の枚数が多くなり曲げ角度はさらに大き
くなる。However, the welding surface 109 of the collector terminal 108
In the electrode plate located at a position away from in the X direction, the bending angle of the lead portion 102 with respect to the reaction portion 101 becomes large. That is, as shown in FIG. 10, the electrode plate arranged in the vicinity of the battery case 105 has the lead portion 10 with respect to the reaction portion 101.
The bending angle θ of 2 becomes considerably large. In particular, in the case of high capacity type batteries that meet the needs of electric vehicles and the like, the number of electrode plates to be laminated increases and the bending angle becomes even larger.
【0016】また、蓄電池としてニッケル水素系を想定
した場合、その電池を充放電するに従って、各電極板の
反応部101に付着してある活物質の微粒化が進行する
などして反応部101は膨張する。各電極板の反応部1
01が膨張すると、各電極板どうしの間隔が広がる方向
に力が働くので、電槽105付近にある電極板は、さら
に溶接面109からのX方向の距離が大きくなり、これ
に伴って曲げ角度θがさらに大きくなるとともにリード
部102に張力が加わる。When a nickel-hydrogen battery is assumed as the storage battery, as the battery is charged and discharged, atomization of the active material adhering to the reaction part 101 of each electrode plate progresses and the reaction part 101 becomes Expands. Reaction part 1 of each electrode plate
When 01 expands, a force acts in a direction in which the distance between the electrode plates expands, so that the electrode plate near the battery case 105 further increases the distance in the X direction from the welding surface 109, and the bending angle accordingly. As θ further increases, tension is applied to the lead portion 102.
【0017】このように、曲げ角度θが大きくなるとと
もにリード部102に張力が加わると、反応部101と
リード部102との間の接合部に亀裂が生じてしまう。
上述のような接合部の破損を防ぐためには、各電極板の
リード部102の高さを大きくすればよい。すなわち、
リード部102の高さを大きくすれば、リード部102
を溶接面109に接続させたときのリード部102の曲
げ角度が緩やかになるので、反応部101とリード部1
02との接合部にかかる負荷が小さくなり、その部分の
破損を防ぐことができる。As described above, when the bending angle θ increases and the tension is applied to the lead portion 102, a crack is generated in the joint portion between the reaction portion 101 and the lead portion 102.
In order to prevent the above-mentioned damage of the joint portion, the height of the lead portion 102 of each electrode plate may be increased. That is,
If the height of the lead portion 102 is increased, the lead portion 102
Since the bending angle of the lead portion 102 when connecting the lead portion 102 to the welding surface 109 becomes gentle, the reaction portion 101 and the lead portion 1
The load applied to the joint portion with 02 becomes small, and damage to that portion can be prevented.
【0018】しかしながら、通常、蓄電池の形状は規格
として定められているので、リード部102の高さを大
きくすれば、その分だけ反応部101の高さが小さくな
る。反応部101が小さくなれば、必然的に、充放電に
際しての化学反応が生じる面積が狭くなるので、蓄電池
の容量が小さくなってしまう。However, since the shape of the storage battery is usually defined as a standard, if the height of the lead portion 102 is increased, the height of the reaction portion 101 is correspondingly reduced. If the reaction section 101 becomes smaller, the area in which a chemical reaction occurs during charging / discharging inevitably becomes smaller, and the capacity of the storage battery becomes smaller.
【0019】また、溶接面109から各電極板までのX
方向の距離は電極板ごとに異なるので、溶接面109か
らX方向の距離が遠くなるほどリード部102を長くす
る必要がある。このため、予め電極板ごとにリード部1
02の長さを変えて加工しておく必要があった。あるい
は、各電極板のリード部102を互いに同じ形状とする
場合には、それらを溶接面109に接続すると、溶接面
109の近くにある電極板のリード部の先端は溶接面1
09から遠く離れている電極板のリード部の先端に対し
て突出するので、溶接後にリード部の先端をカットする
工程が必要になる。X from the welding surface 109 to each electrode plate
Since the distance in the direction differs for each electrode plate, it is necessary to lengthen the lead portion 102 as the distance in the X direction from the welding surface 109 increases. Therefore, the lead portion 1 is previously prepared for each electrode plate.
It was necessary to change the length of 02 before processing. Alternatively, when the lead portions 102 of each electrode plate have the same shape as each other, if they are connected to the welding surface 109, the tips of the lead portions of the electrode plate near the welding surface 109 will have the welding surface 1
09, since it projects from the tip of the lead part of the electrode plate far away from 09, a step of cutting the tip of the lead part after welding is required.
【0020】このように、従来の蓄電池では、電極板の
破損を防ごうとすると、蓄電池の容量が小さくなってし
まうという問題があった。本発明の課題は、蓄電池の容
量を小さくすることなく電極板の破損を防ぐことであ
る。As described above, the conventional storage battery has a problem that the capacity of the storage battery becomes small in order to prevent the electrode plate from being damaged. An object of the present invention is to prevent damage to the electrode plate without reducing the capacity of the storage battery.
【0021】[0021]
【課題を解決するための手段】本発明の蓄電池は、複数
の電極板の各リード部を集電端子に接続した構成を前提
とする。The storage battery of the present invention is premised on a structure in which each lead portion of a plurality of electrode plates is connected to a collector terminal.
【0022】上記集電端子の側面に上記電極板のリード
部を接続するための接続面を少なくとも3つ設ける。そ
して、それら各接続面に少なくとも1つの電極板のリー
ド部を接続させる。At least three connecting surfaces for connecting the lead portions of the electrode plate are provided on the side surfaces of the collector terminal. Then, the lead portion of at least one electrode plate is connected to each of the connection surfaces.
【0023】他の態様では、上記複数の電極板を少なく
とも3つのグループに分ける。そして、各グループごと
に電極板のリード部を束ね、それら束ねたリード部をそ
れぞれ上記集電端子の側部に接続させる。In another aspect, the plurality of electrode plates are divided into at least three groups. Then, the lead portions of the electrode plates are bundled for each group, and the bundled lead portions are respectively connected to the side portions of the current collecting terminal.
【0024】上記のいずれの構成においても、複数の電
極板と集電端子との接続箇所が3つ以上になる。したが
って、多数の電極板を蓄電池の容器内の所定の位置にそ
れぞれ設ける場合、各電極板をその電極板に近接する位
置で集電端子に接続させることができる。このため、各
電極板のリード部を集電端子に接続させるためにリード
部を無理に曲げる必要はなく、電極板が破損することは
ない。In any of the above configurations, there are three or more connecting points between the plurality of electrode plates and the current collecting terminals. Therefore, when a large number of electrode plates are respectively provided at predetermined positions in the container of the storage battery, each electrode plate can be connected to the collector terminal at a position close to the electrode plate. Therefore, it is not necessary to forcibly bend the lead portion in order to connect the lead portion of each electrode plate to the collector terminal, and the electrode plate is not damaged.
【0025】各電極板のリード部を集電端子の側面に接
続するので、その接続工程が容易であり、各電極板と集
電端子とを確実に接続できる。上記少なくとも3つの接
続面を、上記複数の電極板が積層される方向において互
いに異なる位置に設けるようにしてもよい。このような
構成とすれば、各電極板の近傍に集電端子の接続面が位
置するので、各電極板のリード部を集電端子に接続させ
るときにリード部を無理に曲げる必要はない。Since the lead portion of each electrode plate is connected to the side surface of the current collecting terminal, the connecting process is easy and each electrode plate and the current collecting terminal can be reliably connected. The at least three connecting surfaces may be provided at different positions in the direction in which the plurality of electrode plates are stacked. With such a configuration, since the connection surface of the collector terminal is located near each electrode plate, it is not necessary to forcibly bend the lead portion of each electrode plate when connecting the lead portion to the collector terminal.
【0026】上記少なくとも3つの接続面を、上記複数
の電極板が積層される方向と直交する方向において少な
くとも2カ所以上に設けるようにしてもよい。このよう
な構成とすれば、集電端子に多数の接続面を設けること
ができるので、多数の電極板を有する蓄電池であっても
各電極板の近傍に接続面を位置させることが可能とな
る。The at least three connecting surfaces may be provided at least at two or more locations in the direction orthogonal to the direction in which the plurality of electrode plates are laminated. With such a configuration, since a large number of connecting surfaces can be provided on the current collecting terminal, even in a storage battery having a large number of electrode plates, it is possible to position the connecting surfaces near each electrode plate. .
【0027】[0027]
【発明の実施の形態】以下、本発明の実施形態について
図面を参照しながら説明する。図1は、本発明の蓄電池
の内部構造を示す図であり、上面、側面および正面から
見た、電槽のみをカットした断面図である。また、図1
に示す蓄電池は、図9に示した構成と同様に、正極用お
よび負極用の電極板がそれぞれ8枚ずつ設けられた構成
である。さらに、同図の右側に示す側断面図では、正極
用の電極板及び集電端子を示している。以下では、蓄電
池の正極側の構成について説明するが、負極側の構成も
同じである。Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a view showing the internal structure of the storage battery of the present invention, and is a cross-sectional view of the storage battery as seen from the top, side, and front. Also, FIG.
Similar to the configuration shown in FIG. 9, the storage battery shown in FIG. 8 has a configuration in which eight positive electrode plates and eight negative electrode plates are provided. Further, the side sectional view shown on the right side of the figure shows the electrode plate for the positive electrode and the current collecting terminal. The configuration of the positive electrode side of the storage battery will be described below, but the configuration of the negative electrode side is also the same.
【0028】本実施形態の集電端子1は、電極板2のリ
ード部を溶接するための溶接面を4つ有する。すなわ
ち、集電端子1は、その側面に溶接面(請求項1〜5の
記載した接続面に対応する)11〜14を有する。そし
て、各溶接面にそれぞれ2枚ずつ電極板2が接続され
る。The collector terminal 1 of this embodiment has four welding surfaces for welding the lead portions of the electrode plate 2. That is, the current collector terminal 1 has welding surfaces 11 to 14 (corresponding to the connection surfaces described in claims 1 to 5) on its side surface. Then, two electrode plates 2 are connected to each welding surface.
【0029】溶接面11〜14は、電極板2が積層され
る方向(X方向)に互いに異なる位置に設けられる。ま
た、電極板2が積層される方向と直交する方向(Y方
向)においては、溶接面11および12と、溶接面13
および14とが互いに異なる位置に設けられている。The welding surfaces 11 to 14 are provided at positions different from each other in the direction in which the electrode plates 2 are laminated (X direction). Further, in the direction (Y direction) orthogonal to the direction in which the electrode plates 2 are stacked, the welding surfaces 11 and 12 and the welding surface 13
And 14 are provided at different positions.
【0030】図2は、集電端子1と電極板2との接続部
の構成を説明する斜示図である。集電端子1は、8枚の
電極板を接続する構成であるが、ここでは、図面を見や
すくするために4枚の電極板2a〜2dのみを示す。FIG. 2 is an oblique view for explaining the structure of the connecting portion between the collector terminal 1 and the electrode plate 2. The current collecting terminal 1 has a configuration in which eight electrode plates are connected, but here, only four electrode plates 2a to 2d are shown to make the drawing easy to see.
【0031】図2に示すように、溶接面11には、電極
板2aおよび2bが接続され、溶接面13には、電極板
2cおよび2dが接続される。電極板2aおよび2bを
集電端子1に接続するときには、電極板2aおよび2b
のリード部の突起部を束ねて溶接面11に溶接する。電
極板2cおよび2dについても同様である。As shown in FIG. 2, the welding surface 11 is connected to the electrode plates 2a and 2b, and the welding surface 13 is connected to the electrode plates 2c and 2d. When connecting the electrode plates 2a and 2b to the collector terminal 1, the electrode plates 2a and 2b
The protrusions of the lead portion are bundled and welded to the welding surface 11. The same applies to the electrode plates 2c and 2d.
【0032】図3は、図1の右側に示した側断面図を拡
大した図である。同図に示すように8枚の電極板2a〜
2hは、2枚ずつ溶接面11〜14に接続されている。
このように、集電端子1に4つの溶接面11〜14を設
けたので、各電極板2a〜2hをその電極板に近接する
位置でいずれかの溶接面11〜14に接続させることが
できる。このことにより、各電極板とその電極板に対応
する溶接面との間のX方向の距離は小さくなる。FIG. 3 is an enlarged view of the side sectional view shown on the right side of FIG. As shown in the figure, eight electrode plates 2a to
Two pieces of 2h are connected to the welding surfaces 11 to 14.
As described above, since the four welding surfaces 11 to 14 are provided on the collector terminal 1, each electrode plate 2a to 2h can be connected to any of the welding surfaces 11 to 14 at a position close to the electrode plate. . This reduces the distance in the X direction between each electrode plate and the welding surface corresponding to the electrode plate.
【0033】このように、本実施形態の集電端子1は、
溶接面11〜14をX方向(電極板が積層される方向)
において互いに異なる位置に設けたので、各電極板2a
〜2hの近傍に集電端子の接続面が位置する。したがっ
て、各電極板2a〜2hのリード部102を集電端子に
接続させる際、リード部102を反応部101に対して
無理に曲げる必要はない。As described above, the current collecting terminal 1 of this embodiment is
Welding surfaces 11 to 14 in the X direction (direction in which electrode plates are stacked)
Since the electrodes are provided at different positions in
The connection surface of the collector terminal is located in the vicinity of ~ 2h. Therefore, when connecting the lead portion 102 of each of the electrode plates 2a to 2h to the current collecting terminal, it is not necessary to forcibly bend the lead portion 102 with respect to the reaction portion 101.
【0034】次に、本実施形態の構成と図9に示した従
来の構成とを比較する。従来の構成では、図10に示す
ように、たとえば、電槽105の近傍に配置された電極
板から溶接面109までのX方向の距離は大きかった。
このため、その電極板のリード部を集電端子108に接
続する場合、反応部101とリード部102との接合部
の破損を防ぐために反応部101に対するリード部の曲
げ角度θをある一定の角度よりも小さくするという条件
を設ければ、リード部102の高さを大きくしなければ
ならない。Next, the configuration of this embodiment will be compared with the conventional configuration shown in FIG. In the conventional configuration, as shown in FIG. 10, for example, the distance in the X direction from the electrode plate arranged near the battery case 105 to the welding surface 109 was large.
Therefore, when connecting the lead portion of the electrode plate to the collector terminal 108, the bending angle θ of the lead portion with respect to the reaction portion 101 is set to a certain angle in order to prevent damage to the joint portion between the reaction portion 101 and the lead portion 102. If the condition is set to be smaller than that, the height of the lead portion 102 must be increased.
【0035】これに対して、図1〜3に示した本実施形
態の構成においては、各電極板とその電極板に対応する
溶接面との間のX方向の距離は小さい。このため、各電
極板のリード部102の高さを小さくしても、各電極板
の反応部101に対するリード部102の曲げ角度θ
を、反応部101とリード部102との接合部を破損さ
せるような負荷が生じる角度よりも小さくできる。すな
わち、各電極板のリード部102の高さを小さくして
も、反応部101とリード部102との接合部に過度の
負荷が加わることはなく、その接合部が破損することは
ない。また、通常、蓄電池の形状は規格として定められ
ているので、リード部102の高さを小さくできれば、
その分だけ反応部101の高さが大きくなる。この結
果、充放電に際して化学反応を起こす面積が広くなるの
で、蓄電池の容量が大きくなる。On the other hand, in the configuration of this embodiment shown in FIGS. 1 to 3, the distance in the X direction between each electrode plate and the welding surface corresponding to the electrode plate is small. Therefore, even if the height of the lead portion 102 of each electrode plate is reduced, the bending angle θ of the lead portion 102 with respect to the reaction portion 101 of each electrode plate is increased.
Can be smaller than the angle at which a load that damages the joint between the reaction portion 101 and the lead portion 102 is generated. That is, even if the height of the lead portion 102 of each electrode plate is reduced, an excessive load is not applied to the joint portion between the reaction portion 101 and the lead portion 102, and the joint portion is not damaged. Further, since the shape of the storage battery is usually defined as a standard, if the height of the lead portion 102 can be reduced,
The height of the reaction part 101 is correspondingly increased. As a result, the area in which a chemical reaction occurs during charging / discharging becomes large, and the capacity of the storage battery becomes large.
【0036】上述の比較おける本実施形態の優位性は、
蓄電池としてニッケル水素系を想定した場合も同じであ
る。すなわち、ニッケル水素系の蓄電池の場合は、充放
電を繰り返すことによって(特に、充電時に)各電極板
の反応部101が膨張し、外側に配置された電極板(例
えば、電極板2d)は、さらに電槽105に接近するよ
うに移動するが、そのように移動したとしても、電極板
2dと溶接面13との間のX方向の距離はさほど大きく
はならない。したがって、反応部101に対するリード
部102の曲げ角度θもさほど大きくはならず、また、
リード部102に加わる張力も大きくはないので、反応
部101とリード部102との接合部を破損させるよう
な負荷が生じることもない。The superiority of this embodiment in the above comparison is
The same applies when a nickel-hydrogen battery is assumed as the storage battery. That is, in the case of a nickel-hydrogen storage battery, by repeating charge and discharge (especially at the time of charging), the reaction part 101 of each electrode plate expands, and the electrode plate (for example, the electrode plate 2d) arranged outside is Further, although it moves so as to approach the battery case 105, even if such a movement is made, the distance in the X direction between the electrode plate 2d and the welding surface 13 does not become so large. Therefore, the bending angle θ of the lead portion 102 with respect to the reaction portion 101 does not become so large, and
Since the tension applied to the lead portion 102 is not large, a load that damages the joint between the reaction portion 101 and the lead portion 102 does not occur.
【0037】また、本実施形態では、電極板の枚数に対
する溶接面の数を増やすことによって、各電極板の近傍
に溶接面を設けることができるので、各電極板からその
電極板に対応する溶接面までのX方向の距離のばらつき
が小さい。このため、各電極板のリード部の長さを互い
に同じにしておいても、それらを溶接面に溶接したと
き、特定の電極板のリード部の先端が突出することはな
い。したがって、従来のように、予め電極板ごとにリー
ド部の長さを変えておいたり、あるいは、溶接後にリー
ド部の先端をカットするような工程は不要である。この
効果は、積層される電極板の数が増えるほど顕著にな
る。Further, in this embodiment, since the welding surface can be provided in the vicinity of each electrode plate by increasing the number of welding surfaces with respect to the number of electrode plates, the welding corresponding to each electrode plate is performed. The variation in the distance to the surface in the X direction is small. Therefore, even if the lead portions of each electrode plate have the same length, the tips of the lead portions of a particular electrode plate do not project when they are welded to the welding surface. Therefore, unlike the prior art, the step of previously changing the length of the lead portion for each electrode plate or cutting the tip of the lead portion after welding is unnecessary. This effect becomes more remarkable as the number of electrode plates to be stacked increases.
【0038】図1〜3に示した本実施形態の構成および
図9および図10に示した従来の構成は、双方とも、正
極電極板および負極電極板をそれぞれ8枚ずつ設けた構
成である。従来の構成では、1つの溶接面ごとに4枚の
電極板のリード部を溶接するのに対し、本実施形態の構
成では、1つの溶接面ごとに2枚の電極板のリード部を
溶接する。このように、本実施形態では、1つの溶接面
に溶接する電極板の数が少ないので、1カ所当たりの溶
接に必要な入力エネルギーが少なくて済む。例えば、電
極板と集電端子とをレーザ溶接する場合には、本実施形
態の構成では、小さなレーザ発光パワーで良好な溶接を
することができる。Both the configuration of the present embodiment shown in FIGS. 1 to 3 and the conventional configuration shown in FIGS. 9 and 10 are configurations in which eight positive electrode plates and eight negative electrode plates are provided. In the conventional configuration, the lead portions of four electrode plates are welded for each welding surface, whereas in the configuration of the present embodiment, the lead portions of two electrode plates are welded for each welding surface. . As described above, in the present embodiment, since the number of electrode plates to be welded on one welding surface is small, the input energy required for welding at one place can be small. For example, in the case of laser welding the electrode plate and the current collector terminal, the configuration of the present embodiment enables good welding with a small laser emission power.
【0039】上記実施形態では、集電端子が4つの溶接
面11〜14を有する構成を示したが、本発明は、この
構成に限定されるものではなく、集電端子が3つ以上の
溶接面を有する構成に適用される。図4は、集電端子が
6つの溶接面を有する構成を示す図である。図4では、
溶接面(請求項1〜5の記載した接続面に対応する)2
1〜23が描かれているが、溶接面21〜23と対称位
置に溶接面24〜26が設けられている。この集電端子
を、例えば、正極電極板および負極電極板をそれぞれ1
2枚ずつ設けた構成の蓄電池に適用すれば、各溶接面2
1〜26には、それぞれ2枚ずつの電極板が溶接される
ことになる。In the above embodiment, the current collecting terminal has the structure having four welding surfaces 11 to 14, but the present invention is not limited to this structure, and the welding has three or more current collecting terminals. Applies to configurations with faces. FIG. 4 is a diagram showing a configuration in which the current collecting terminal has six welding surfaces. In FIG.
Welding surface (corresponding to the connection surface described in claims 1 to 5) 2
1 to 23 are drawn, welding surfaces 24 to 26 are provided at positions symmetrical to the welding surfaces 21 to 23. This current collecting terminal is, for example, one positive electrode plate and one negative electrode plate.
If it is applied to a storage battery that has two batteries, each welding surface 2
Two electrode plates are welded to each of the plates 1 to 26.
【0040】また、各溶接面に溶接される電極板の枚数
は全て同じである必要はなく、たとえば、ある溶接面に
対して3枚、他の溶接面には2枚としてもよい。さら
に、電極板の枚数は実施例に限定されることはなく、3
枚以上であれば他の枚数であってもよい。The number of electrode plates to be welded to each welding surface does not have to be the same. For example, three electrodes may be provided for one welding surface and two electrodes may be provided for another welding surface. Further, the number of electrode plates is not limited to that in the embodiment, and the number of electrode plates is 3
Other numbers may be used as long as the number is one or more.
【0041】さらに、集電端子の形状は、実施例に限定
されず、他の形状であってもよい。たとえば、図5(a)
および図5(b) に示す形状等が考えられる。また、上記
実施形態では、各電極板と集電端子とを溶接する構成を
示したが、本発明はこの構成に限定されるものではな
く、各電極板と集電端子とを電気的に接続する構成であ
れば他の形態にも適用できる。たとえば、図3におい
て、2枚ずつ束ねられた電極板のリード部を各々まとめ
て集電端子にネジ止めする構成であってもよい。Further, the shape of the current collecting terminal is not limited to that of the embodiment, and may be another shape. For example, Figure 5 (a)
Also, the shape shown in FIG. Further, in the above embodiment, the configuration in which each electrode plate and the current collecting terminal are welded has been shown, but the present invention is not limited to this configuration, and each electrode plate and the current collecting terminal are electrically connected. The configuration can be applied to other forms. For example, in FIG. 3, the lead portions of the two electrode plates may be collectively bundled and screwed to the current collecting terminal.
【0042】[0042]
【発明の効果】本発明の蓄電池においては、集電端子の
側面に各電極板との接続面を3つ以上設けたので、各電
極板とその電極板に対応する接続面との間の距離は小さ
い。このため、各電極板のリード部の高さを小さくして
も、各電極板の反応部に対するリード部の曲げ角度は小
さく、反応部とリード部との接合部に過度の負荷が加わ
ることはないので、その部分が破損することはない。ま
た、リード部の高さを小さくできれば、その分だけ反応
部の高さが大きくなり、このことによって充放電に際し
て化学反応が起こす面積が広くなるので、蓄電池の容量
が大きくなる。In the storage battery of the present invention, since the side surface of the collector terminal is provided with three or more connection surfaces with each electrode plate, the distance between each electrode plate and the connection surface corresponding to the electrode plate is reduced. Is small. Therefore, even if the height of the lead portion of each electrode plate is reduced, the bending angle of the lead portion with respect to the reaction portion of each electrode plate is small, and an excessive load is not applied to the joint portion between the reaction portion and the lead portion. Since it does not exist, the part will not be damaged. Further, if the height of the lead portion can be reduced, the height of the reaction portion is correspondingly increased, which increases the area in which a chemical reaction occurs during charge and discharge, thereby increasing the capacity of the storage battery.
【図1】本実施形態の蓄電池の内部構造を示す図であ
り、上面、側面、および正面から見た断面図である。FIG. 1 is a diagram showing an internal structure of a storage battery of the present embodiment, and is a cross-sectional view seen from a top surface, a side surface, and a front surface.
【図2】集電端子と電極板との接続部の構成を説明する
の斜示図である。FIG. 2 is an oblique view for explaining a configuration of a connecting portion between a current collecting terminal and an electrode plate.
【図3】図1の側断面図を拡大した図である。FIG. 3 is an enlarged view of a side sectional view of FIG.
【図4】6つの溶接面を有する集電端子の構成を示す図
である。FIG. 4 is a diagram showing a configuration of a current collector terminal having six welding surfaces.
【図5】集電端子の他の形状の例を示す図である。FIG. 5 is a diagram showing an example of another shape of a current collecting terminal.
【図6】一般的な大型蓄電池の内部構成を示す図であ
る。FIG. 6 is a diagram showing an internal configuration of a general large-sized storage battery.
【図7】電極板と集電端子との接続構造の一例を示す図
である。FIG. 7 is a diagram showing an example of a connection structure between an electrode plate and a collector terminal.
【図8】図7の構成の問題点を解決する構成例を示す図
である。8 is a diagram showing a configuration example for solving the problem of the configuration of FIG.
【図9】図8に示した構成の蓄電池を上面、側面および
正面から見た断面図である。9 is a cross-sectional view of the storage battery having the configuration shown in FIG. 8 as seen from the top, side, and front.
【図10】図9の側断面図を拡大した図である。FIG. 10 is an enlarged view of the side sectional view of FIG. 9.
1 集電端子 2(2a〜2h) 電極板 11〜14 溶接面 21〜26 溶接面 105 電槽 101、103 反応部 102、104 リード部 DESCRIPTION OF SYMBOLS 1 Current collector terminal 2 (2a-2h) Electrode plate 11-14 Welding surface 21-26 Welding surface 105 Battery case 101, 103 Reaction part 102, 104 Lead part
Claims (5)
接続した構成の蓄電池において、 上記集電端子は、その側面に上記電極板のリード部を接
続するための接続面を少なくとも3つ有し、それら各接
続面に上記電極板のリード部を少なくとも1つ接続させ
ることを特徴とする蓄電池の集電構造。1. A storage battery having a structure in which each lead portion of a plurality of electrode plates is connected to a current collecting terminal, wherein the current collecting terminal has at least three connecting surfaces on its side surface for connecting the lead portions of the electrode plate. A storage battery current collecting structure characterized in that at least one lead portion of the electrode plate is connected to each of the connection surfaces.
数の電極板が積層される方向において互いに異なる位置
に設けることを特徴とする請求項1に記載の蓄電池の集
電構造。2. The current collecting structure for a storage battery according to claim 1, wherein the at least three connection surfaces are provided at different positions in a direction in which the plurality of electrode plates are stacked.
数の電極板が積層される方向と直交する方向において少
なくとも2カ所以上に設けることを特徴とする請求項1
に記載の蓄電池の集電構造。3. The at least three connecting surfaces are provided at least at two or more locations in a direction orthogonal to a direction in which the plurality of electrode plates are stacked.
The storage structure of the storage battery described in.
なくとも3つの接続面のうち当該電極板に最も近い位置
にある接続面に接続させることを特徴とする請求項1〜
3のいずれか1つに記載の蓄電池の集電構造。4. The lead parts of the plurality of electrode plates are connected to one of the at least three connection faces which is closest to the electrode plate.
3. The current collecting structure for the storage battery according to any one of 3.
接続した構成の蓄電池において、 上記複数の電極板を少なくとも3つのグループに分け、
各グループごとに電極板のリード部を束ねてそれぞれ上
記集電端子の側部に接続させることを特徴とする蓄電池
の集電構造。5. A storage battery having a configuration in which each lead portion of a plurality of electrode plates is connected to a collector terminal, wherein the plurality of electrode plates are divided into at least three groups,
A current collecting structure for a storage battery, characterized in that the lead portions of the electrode plates are bundled for each group and connected to the side portions of the current collecting terminals.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8014824A JPH09213299A (en) | 1996-01-31 | 1996-01-31 | Current collecting structure of storage battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8014824A JPH09213299A (en) | 1996-01-31 | 1996-01-31 | Current collecting structure of storage battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH09213299A true JPH09213299A (en) | 1997-08-15 |
Family
ID=11871800
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8014824A Withdrawn JPH09213299A (en) | 1996-01-31 | 1996-01-31 | Current collecting structure of storage battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH09213299A (en) |
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000268806A (en) * | 1999-03-12 | 2000-09-29 | Sumitomo Electric Ind Ltd | Battery terminal |
JP2000299099A (en) * | 1999-04-13 | 2000-10-24 | Matsushita Electric Ind Co Ltd | Manufacture of battery |
JP2002280269A (en) * | 2001-03-22 | 2002-09-27 | Nissan Diesel Motor Co Ltd | Electrode structure for electric double-layer capacitor |
JP2003282044A (en) * | 2002-03-26 | 2003-10-03 | Shin Kobe Electric Mach Co Ltd | Secondary battery |
JP2004273806A (en) * | 2003-03-10 | 2004-09-30 | Nisshinbo Ind Inc | Electrode body for electric double layer capacitor and electric double layer capacitor |
JP2006108380A (en) * | 2004-10-05 | 2006-04-20 | Nissan Diesel Motor Co Ltd | Manufacturing method of capacitor module |
JP2008066170A (en) * | 2006-09-08 | 2008-03-21 | Nec Tokin Corp | Method of manufacturing laminated battery |
JP2012054038A (en) * | 2010-08-31 | 2012-03-15 | Toyota Motor Corp | Method for manufacturing battery, battery, method for manufacturing pre-welded positive electrode plate, and pre-welded positive electrode plate |
KR101243591B1 (en) * | 2010-12-24 | 2013-03-20 | 삼성에스디아이 주식회사 | Electrode assembly and Secondary battery with the same |
JP2013084515A (en) * | 2011-10-12 | 2013-05-09 | Toyota Industries Corp | Secondary battery |
JP2013089318A (en) * | 2011-10-13 | 2013-05-13 | Toyota Industries Corp | Secondary battery |
JP2013534361A (en) * | 2010-08-17 | 2013-09-02 | エルジー・ケム・リミテッド | Rechargeable battery with improved lead structure |
JP2013187141A (en) * | 2012-03-09 | 2013-09-19 | Toyota Industries Corp | Power storage device and vehicle |
JP2013218827A (en) * | 2012-04-05 | 2013-10-24 | Toyota Industries Corp | Power storage device, and vehicle |
WO2014013992A1 (en) * | 2012-07-17 | 2014-01-23 | 新神戸電機株式会社 | Secondary battery collector structure and secondary battery |
KR101464966B1 (en) * | 2012-04-04 | 2014-11-25 | 주식회사 엘지화학 | Electrode Assembly Having Lead-tap Joint Structure and Electrochemical Cell Containing the Same |
KR101471964B1 (en) * | 2012-04-04 | 2014-12-11 | 주식회사 엘지화학 | Electrode Assembly Having Novel Lead-tap Joint Structure and Electrochemical Cell Containing the Same |
WO2015046143A1 (en) * | 2013-09-30 | 2015-04-02 | 住友電気工業株式会社 | Rectangular electricity storage device and method for manufacturing same |
JP2015069918A (en) * | 2013-09-30 | 2015-04-13 | 日産自動車株式会社 | Electric device, apparatus and method for manufacturing the same |
WO2017038042A1 (en) * | 2015-08-31 | 2017-03-09 | パナソニックIpマネジメント株式会社 | Laminated battery |
WO2017082530A1 (en) * | 2015-11-11 | 2017-05-18 | 주식회사 엘지화학 | Battery cell comprising electrode lead having protruding extension and tab connector |
JP2019204799A (en) * | 2015-03-30 | 2019-11-28 | 三洋電機株式会社 | Square secondary battery and battery pack using the same |
WO2019245214A1 (en) * | 2018-06-22 | 2019-12-26 | 주식회사 엘지화학 | Battery module including secondary battery and bus bar |
US10886520B2 (en) | 2017-11-14 | 2021-01-05 | Lg Chem, Ltd. | Electrode assembly, rechargeable battery comprising the same and method for manufacturing rechargeable battery |
CN112993471A (en) * | 2015-03-30 | 2021-06-18 | 三洋电机株式会社 | Prismatic secondary battery and assembled battery |
JP2021120961A (en) * | 2019-09-04 | 2021-08-19 | 三洋電機株式会社 | Square secondary battery and battery pack using the same |
WO2023030773A1 (en) * | 2021-09-03 | 2023-03-09 | Saft | Connection part for an electrochemical element having a prismatic shape |
WO2023157228A1 (en) * | 2022-02-18 | 2023-08-24 | 株式会社 東芝 | Secondary battery |
-
1996
- 1996-01-31 JP JP8014824A patent/JPH09213299A/en not_active Withdrawn
Cited By (49)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4557329B2 (en) * | 1999-03-12 | 2010-10-06 | 住友電気工業株式会社 | Battery terminal |
JP2000268806A (en) * | 1999-03-12 | 2000-09-29 | Sumitomo Electric Ind Ltd | Battery terminal |
JP2000299099A (en) * | 1999-04-13 | 2000-10-24 | Matsushita Electric Ind Co Ltd | Manufacture of battery |
JP2002280269A (en) * | 2001-03-22 | 2002-09-27 | Nissan Diesel Motor Co Ltd | Electrode structure for electric double-layer capacitor |
JP2003282044A (en) * | 2002-03-26 | 2003-10-03 | Shin Kobe Electric Mach Co Ltd | Secondary battery |
JP2004273806A (en) * | 2003-03-10 | 2004-09-30 | Nisshinbo Ind Inc | Electrode body for electric double layer capacitor and electric double layer capacitor |
JP2006108380A (en) * | 2004-10-05 | 2006-04-20 | Nissan Diesel Motor Co Ltd | Manufacturing method of capacitor module |
JP4573616B2 (en) * | 2004-10-05 | 2010-11-04 | Udトラックス株式会社 | Capacitor module manufacturing method |
EP2254186A1 (en) | 2006-09-08 | 2010-11-24 | NEC Energy Devices, Inc. | Method for production of stacked battery |
CN103078078A (en) * | 2006-09-08 | 2013-05-01 | Nec能源元器件株式会社 | Stacked battery |
JP2008066170A (en) * | 2006-09-08 | 2008-03-21 | Nec Tokin Corp | Method of manufacturing laminated battery |
EP2360770A2 (en) | 2006-09-08 | 2011-08-24 | NEC Energy Devices, Inc. | Stacked battery |
EP2360770A3 (en) * | 2006-09-08 | 2012-01-11 | NEC Energy Devices, Inc. | Stacked battery |
KR101348562B1 (en) * | 2006-09-08 | 2014-01-07 | 엔이씨 에너지 디바이스 가부시키가이샤 | Method for production of stacked battery |
US8491673B2 (en) | 2006-09-08 | 2013-07-23 | Nec Energy Devices, Ltd. | Method for production of stacked battery |
EP1901387A3 (en) * | 2006-09-08 | 2008-05-21 | NEC TOKIN Corporation | Method for production of stacked battery |
JP2013534361A (en) * | 2010-08-17 | 2013-09-02 | エルジー・ケム・リミテッド | Rechargeable battery with improved lead structure |
US9520589B2 (en) | 2010-08-17 | 2016-12-13 | Lg Chem, Ltd. | Secondary battery of improved lead structure |
JP2012054038A (en) * | 2010-08-31 | 2012-03-15 | Toyota Motor Corp | Method for manufacturing battery, battery, method for manufacturing pre-welded positive electrode plate, and pre-welded positive electrode plate |
KR101243591B1 (en) * | 2010-12-24 | 2013-03-20 | 삼성에스디아이 주식회사 | Electrode assembly and Secondary battery with the same |
JP2013084515A (en) * | 2011-10-12 | 2013-05-09 | Toyota Industries Corp | Secondary battery |
JP2013089318A (en) * | 2011-10-13 | 2013-05-13 | Toyota Industries Corp | Secondary battery |
JP2013187141A (en) * | 2012-03-09 | 2013-09-19 | Toyota Industries Corp | Power storage device and vehicle |
KR101464966B1 (en) * | 2012-04-04 | 2014-11-25 | 주식회사 엘지화학 | Electrode Assembly Having Lead-tap Joint Structure and Electrochemical Cell Containing the Same |
KR101471964B1 (en) * | 2012-04-04 | 2014-12-11 | 주식회사 엘지화학 | Electrode Assembly Having Novel Lead-tap Joint Structure and Electrochemical Cell Containing the Same |
JP2013218827A (en) * | 2012-04-05 | 2013-10-24 | Toyota Industries Corp | Power storage device, and vehicle |
WO2014013992A1 (en) * | 2012-07-17 | 2014-01-23 | 新神戸電機株式会社 | Secondary battery collector structure and secondary battery |
US9728787B2 (en) | 2012-07-17 | 2017-08-08 | Hitachi Chemical Company, Ltd. | Current collecting structure for secondary battery and secondary battery |
CN104471746A (en) * | 2012-07-17 | 2015-03-25 | 新神户电机株式会社 | Secondary battery collector structure and secondary battery |
JP2015069918A (en) * | 2013-09-30 | 2015-04-13 | 日産自動車株式会社 | Electric device, apparatus and method for manufacturing the same |
WO2015046143A1 (en) * | 2013-09-30 | 2015-04-02 | 住友電気工業株式会社 | Rectangular electricity storage device and method for manufacturing same |
US11569552B2 (en) | 2015-03-30 | 2023-01-31 | Sanyo Electric Co., Ltd. | Prismatic secondary battery and assembled battery using the same |
JP2019204799A (en) * | 2015-03-30 | 2019-11-28 | 三洋電機株式会社 | Square secondary battery and battery pack using the same |
CN112993471B (en) * | 2015-03-30 | 2024-05-10 | 三洋电机株式会社 | Square secondary battery and assembled battery |
CN112993471A (en) * | 2015-03-30 | 2021-06-18 | 三洋电机株式会社 | Prismatic secondary battery and assembled battery |
US11862762B2 (en) | 2015-03-30 | 2024-01-02 | Sanyo Electric Co., Ltd. | Prismatic secondary battery and assembled battery using the same |
US11165125B2 (en) | 2015-03-30 | 2021-11-02 | Sanyo Electric Co., Ltd. | Prismatic secondary battery and assembled battery using the same |
WO2017038042A1 (en) * | 2015-08-31 | 2017-03-09 | パナソニックIpマネジメント株式会社 | Laminated battery |
WO2017082530A1 (en) * | 2015-11-11 | 2017-05-18 | 주식회사 엘지화학 | Battery cell comprising electrode lead having protruding extension and tab connector |
US10644298B2 (en) | 2015-11-11 | 2020-05-05 | Lg Chem, Ltd. | Battery cell comprising electrode lead having protruding extension and tab connector |
US10886520B2 (en) | 2017-11-14 | 2021-01-05 | Lg Chem, Ltd. | Electrode assembly, rechargeable battery comprising the same and method for manufacturing rechargeable battery |
US11626640B2 (en) | 2018-06-22 | 2023-04-11 | Lg Energy Solution, Ltd. | Battery module including secondary battery and bus bar |
WO2019245214A1 (en) * | 2018-06-22 | 2019-12-26 | 주식회사 엘지화학 | Battery module including secondary battery and bus bar |
US12100849B2 (en) | 2018-06-22 | 2024-09-24 | Lg Energy Solution, Ltd. | Battery module including secondary battery and bus bar |
JP2022180650A (en) * | 2019-09-04 | 2022-12-06 | 三洋電機株式会社 | Square secondary battery and battery pack using the same |
JP2021120961A (en) * | 2019-09-04 | 2021-08-19 | 三洋電機株式会社 | Square secondary battery and battery pack using the same |
WO2023030773A1 (en) * | 2021-09-03 | 2023-03-09 | Saft | Connection part for an electrochemical element having a prismatic shape |
FR3126814A1 (en) * | 2021-09-03 | 2023-03-10 | Saft | Connection piece for prismatic format electrochemical element |
WO2023157228A1 (en) * | 2022-02-18 | 2023-08-24 | 株式会社 東芝 | Secondary battery |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH09213299A (en) | Current collecting structure of storage battery | |
US10665829B2 (en) | Rectangular secondary battery and method of manufacturing the same | |
US10833372B2 (en) | Rectangular secondary battery | |
KR100599749B1 (en) | Secondary battery and electrodes assembly | |
KR101161965B1 (en) | Current collector terminal plate for secondary battery, secondary battery, and method for producing secondary battery | |
KR101658024B1 (en) | Secondary battery and secondary battery module | |
EP1812982B1 (en) | Secondary battery pack having configuration of alternative orientation | |
KR100590006B1 (en) | Secondary battery and electrodes assembly | |
US6440604B1 (en) | Cell | |
US9077026B2 (en) | Rechargeable battery pack | |
EP2204863A1 (en) | Battery module | |
KR100599795B1 (en) | Secondary battery | |
US20110287300A1 (en) | Rechargeable battery and battery module | |
KR20180016843A (en) | Rechargeable battery having current collector | |
KR20100067464A (en) | Battery module | |
JP2013536979A (en) | Battery having cell tab connection structure by resistance welding | |
KR20050121914A (en) | Secondary battery and electrodes assembly | |
KR100599598B1 (en) | Secondary battery, electrodes assembly and plate using the same | |
US6733918B2 (en) | Sealed rechargeable battery | |
KR100599714B1 (en) | Secondary battery | |
CN108140872B (en) | Electrode assembly including electrode plate having bonded additional tab formed thereon | |
KR100599713B1 (en) | Secondary battery and electrodes assembly | |
KR100578982B1 (en) | Secondary Battery | |
JPH09213298A (en) | Battery and electrode plate for battery | |
US20230031678A1 (en) | Battery Module, and Battery Pack and Vehicle Comprising Battery Module |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20030401 |