JP2024056209A - Organic wastewater treatment method and organic wastewater treatment device - Google Patents
Organic wastewater treatment method and organic wastewater treatment device Download PDFInfo
- Publication number
- JP2024056209A JP2024056209A JP2022162943A JP2022162943A JP2024056209A JP 2024056209 A JP2024056209 A JP 2024056209A JP 2022162943 A JP2022162943 A JP 2022162943A JP 2022162943 A JP2022162943 A JP 2022162943A JP 2024056209 A JP2024056209 A JP 2024056209A
- Authority
- JP
- Japan
- Prior art keywords
- tank
- organic wastewater
- anoxic tank
- wastewater treatment
- sludge
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004065 wastewater treatment Methods 0.000 title claims abstract description 35
- 239000010802 sludge Substances 0.000 claims abstract description 99
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 76
- 230000007246 mechanism Effects 0.000 claims abstract description 38
- 239000012528 membrane Substances 0.000 claims abstract description 34
- 238000003756 stirring Methods 0.000 claims abstract description 29
- 238000000926 separation method Methods 0.000 claims abstract description 24
- 239000002351 wastewater Substances 0.000 claims abstract description 20
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 claims abstract description 8
- 238000000034 method Methods 0.000 claims description 14
- 230000033116 oxidation-reduction process Effects 0.000 claims description 4
- 241000186361 Actinobacteria <class> Species 0.000 abstract description 19
- 241000894006 Bacteria Species 0.000 description 20
- 229920000388 Polyphosphate Polymers 0.000 description 15
- 239000005416 organic matter Substances 0.000 description 15
- 239000001205 polyphosphate Substances 0.000 description 15
- 235000011176 polyphosphates Nutrition 0.000 description 15
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 11
- MMDJDBSEMBIJBB-UHFFFAOYSA-N [O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[NH6+3] Chemical compound [O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[NH6+3] MMDJDBSEMBIJBB-UHFFFAOYSA-N 0.000 description 10
- 238000013019 agitation Methods 0.000 description 7
- 238000005192 partition Methods 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 6
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 6
- 238000005273 aeration Methods 0.000 description 6
- 229910052698 phosphorus Inorganic materials 0.000 description 6
- 239000011574 phosphorus Substances 0.000 description 6
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Chemical compound CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 230000014759 maintenance of location Effects 0.000 description 3
- 239000010865 sewage Substances 0.000 description 3
- 230000032258 transport Effects 0.000 description 3
- 229910019142 PO4 Inorganic materials 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005187 foaming Methods 0.000 description 2
- 150000007524 organic acids Chemical class 0.000 description 2
- 235000005985 organic acids Nutrition 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- 238000004904 shortening Methods 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 241001148470 aerobic bacillus Species 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- XKMRRTOUMJRJIA-UHFFFAOYSA-N ammonia nh3 Chemical compound N.N XKMRRTOUMJRJIA-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000009293 extended aeration Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000012510 hollow fiber Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000001471 micro-filtration Methods 0.000 description 1
- 230000001546 nitrifying effect Effects 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/44—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/02—Aerobic processes
- C02F3/12—Activated sludge processes
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/28—Anaerobic digestion processes
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/30—Aerobic and anaerobic processes
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/34—Biological treatment of water, waste water, or sewage characterised by the microorganisms used
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Microbiology (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Biodiversity & Conservation Biology (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Activated Sludge Processes (AREA)
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
Abstract
Description
本発明は、有機性排水処理方法及び有機性排水処理装置に関する。 The present invention relates to an organic wastewater treatment method and an organic wastewater treatment device.
従来、活性汚泥を利用して窒素やリンを含む例えば下水等の有機性排水を生物処理する有機性排水処理方法として、嫌気槽、無酸素槽、好気槽をこの順に配し、好気槽の汚泥を嫌気槽や無酸素槽に循環供給するA2O法(UCT法)などが広く採用されている。近年では、図6(a),(b)に示すように、固液分離のための沈殿槽に代えて好気槽3に膜分離装置4を浸漬配置し、好気槽3から活性汚泥の一部を無酸素槽2や嫌気槽1に返送するエアリフト方式の汚泥返送路5を備えたMBR法(UCT‐MBRなど)が注目されている。 Conventionally, the A2O method (UCT method) has been widely adopted as an organic wastewater treatment method that uses activated sludge to biologically treat organic wastewater containing nitrogen and phosphorus, such as sewage. In this method, an anaerobic tank, an anoxic tank, and an aerobic tank are arranged in that order, and sludge from the aerobic tank is circulated and supplied to the anaerobic and anoxic tanks. In recent years, MBR methods (such as UCT-MBR) have been attracting attention, in which a membrane separation device 4 is immersed in the aerobic tank 3 instead of a settling tank for solid-liquid separation, and an airlift type sludge return line 5 is provided to return part of the activated sludge from the aerobic tank 3 to the anoxic tank 2 and anaerobic tank 1, as shown in Figures 6(a) and (b).
特許文献1には、オキシデーションディッチや長時間曝気法など汚水が曝気槽内にて24時間以上滞留する従来の活性汚泥法を採用した下水処理施設において、系内の好気的汚泥滞留時間を15日以下に設定することにより放線菌を原因微生物とする発泡スカムの発生を抑制することを特徴とする発泡スカムの抑制方法が開示されている。 Patent Document 1 discloses a method for suppressing foaming scum, which is characterized by suppressing the generation of foaming scum caused by actinomycetes, by setting the aerobic sludge retention time in the system to 15 days or less in a sewage treatment facility that employs a conventional activated sludge process in which wastewater is retained in an aeration tank for 24 hours or more, such as an oxidation ditch or extended aeration process.
放線菌が好気性細菌であることに着目し、嫌気時間帯や曝気槽中に嫌気ゾーンを設けるなどの手段により、汚泥滞留時間が長い場合でも、放線菌が増殖できる時間を減らすことで、増殖量を減らすようにするものである。 By focusing on the fact that actinomycetes are aerobic bacteria, the amount of proliferation can be reduced by reducing the time during which actinomycetes can proliferate, even when the sludge retention time is long, through measures such as setting up an anaerobic period or an anaerobic zone in the aeration tank.
上述したMBR法でも、活性汚泥浮遊物質[mg/リットル](以下、「MLSS」と記す。)が7000~10000[mg/リットル]となるように調整されるのが一般的で、汚泥滞留時間(以下、「SRT」と記す。)が長くなる傾向にある。そして、膜分離装置膜の閉塞を回避するために不可欠となる洗浄用曝気により、好気槽の溶存酸素濃度(以下、「DO濃度」と記す。)が高い状態で推移し易い。そのため、放線菌が発生し易い環境下となる。 Even in the above-mentioned MBR process, the activated sludge suspended solids (mg/liter) (hereafter referred to as "MLSS") is generally adjusted to 7,000 to 10,000 mg/liter, which tends to lengthen the sludge retention time (hereafter referred to as "SRT"). Furthermore, due to cleaning aeration, which is essential to avoid clogging of the membrane of the membrane separation device, the dissolved oxygen concentration (hereafter referred to as "DO concentration") in the aerobic tank tends to remain high. This creates an environment that is favorable for the growth of actinomycetes.
放線菌が発生して大量のスカムが水面付近に滞留するようになると、汚泥返送路に備えたエアリフトポンプの流れが阻害され、好気槽から無酸素槽への活性汚泥の返送が妨げられるという問題が生じる。また、好気槽から外部に泡状のスカムが流出するトラブルが発生する虞があり、好気槽などに備えたセンサ類の誤検知の原因ともなる。 When actinomycetes occur and a large amount of scum accumulates near the water surface, the flow of the air lift pump installed in the sludge return line is obstructed, causing problems such as preventing the return of activated sludge from the aerobic tank to the anoxic tank. There is also a risk of problems occurring in which foamy scum leaks out of the aerobic tank, which can cause erroneous detection by sensors installed in the aerobic tank, etc.
一旦放線菌が発生した場合の対処方として、物理的にスカムを除去する、汚泥を完全に入れ替える、SRTを短縮化する、といった手立てが考えられるが、大規模施設では物理的にスカムを除去する作業は非常に煩雑となり、汚泥の入れ替えやSRTの短縮化なども容易でない。そのため、放線菌を抑制できないまま、運転を継続せざるを得ないのが実情である。 Once actinomycetes have appeared, possible ways to deal with them include physically removing the scum, completely replacing the sludge, and shortening the SRT, but in large-scale facilities, the task of physically removing the scum is extremely cumbersome, and replacing the sludge or shortening the SRT is not easy. As a result, the reality is that operations have to continue without suppressing the actinomycetes.
このような放線菌の発生を抑制するポイントとして、好気槽に流入する易分解有機物の量を削減することが挙げられる。上述したUCT‐MBRでは、無酸素槽における脱窒反応の促進に加えて、嫌気槽におけるポリリン酸蓄積菌による易分解有機物の消費を促す方法が実用化されている。ポリリン酸蓄積菌は、嫌気状態で酢酸や酪酸などの有機物を取り込み、体内貯蔵物質の蓄積を行なう過程でリン酸をポリリン酸として放出し、好気状態では放出した以上のリン酸をポリリン酸として摂取する特性を有する。 One way to suppress the occurrence of such actinomycetes is to reduce the amount of easily decomposable organic matter flowing into the aerobic tank. In the above-mentioned UCT-MBR, in addition to promoting the denitrification reaction in the anoxic tank, a method has been put into practical use that encourages the consumption of easily decomposable organic matter by polyphosphate accumulating bacteria in the anaerobic tank. Polyphosphate accumulating bacteria have the characteristic of ingesting organic matter such as acetic acid and butyric acid in anaerobic conditions, releasing phosphate as polyphosphate in the process of accumulating internal reserve substances, and ingesting more phosphate as polyphosphate than they release in aerobic conditions.
この場合、無酸素槽に加えて嫌気槽を設ける必要があり、広い施設面積が必要になる。また、無酸素槽と嫌気槽の其々に撹拌機を設置し、無酸素槽から嫌気槽への汚泥返送路を設置する必要があり、設備コストも嵩むことになる。 In this case, it is necessary to install an anaerobic tank in addition to an anoxic tank, which requires a large facility area. It is also necessary to install agitators in both the anoxic and anaerobic tanks and a sludge return path from the anoxic tank to the anaerobic tank, which increases the facility costs.
ところで、放線菌が発生しやすいのは流入負荷が低く、余剰汚泥の発生量が低下することで、SRTが長くなる場合である。そこで、好気槽及び無酸素槽の2槽構成のMBRであっても、無酸素槽の必要容量が低減している点に鑑みて、余剰分を嫌気槽に転用することで、放線菌の抑制に寄与することができる。しかし、嫌気槽と無酸素槽への分割を前提とする場合には、上述と同様設備コストが嵩むことから、放線菌抑制対策としては割高な対策となってしまう。 Actinomycetes are more likely to occur when the inflow load is low and the amount of excess sludge generated is reduced, resulting in a long SRT. Therefore, even in an MBR with a two-tank configuration of an aerobic tank and an anoxic tank, the required capacity of the anoxic tank is reduced, so diverting the surplus to the anaerobic tank can contribute to suppressing actinomycetes. However, if the tank is divided into an anaerobic tank and an anoxic tank, the equipment costs will be high as mentioned above, making it a relatively expensive measure to suppress actinomycetes.
本発明の目的は、窒素を含有する有機性排水に対して設備コストの増大を伴なうことなく放線菌の発生を効果的に防止できる有機性排水処理方法及び有機性排水処理装置を提供する点にある。 The object of the present invention is to provide an organic wastewater treatment method and an organic wastewater treatment device that can effectively prevent the occurrence of actinomycetes in nitrogen-containing organic wastewater without increasing equipment costs.
上述の目的を達成するため、本発明による有機性排水処理方法の第一特徴構成は、窒素を含む有機性排水を活性汚泥中で生物処理する有機性排水処理方法であって、供給された原水と活性汚泥を攪拌する攪拌機構が設置された無酸素槽と、膜分離装置が活性汚泥中に浸漬配置された好気槽と、前記好気槽から前記無酸素槽へ活性汚泥を返送する汚泥返送路と、を備えた有機性排水処理装置に対して、前記攪拌機構の作動状態を切替えることにより、前記無酸素槽を一時的に嫌気槽として機能させる点にある。 In order to achieve the above-mentioned object, the first characteristic feature of the organic wastewater treatment method according to the present invention is an organic wastewater treatment method for biologically treating nitrogen-containing organic wastewater in activated sludge, which is provided with an anoxic tank in which a stirring mechanism for stirring supplied raw water and activated sludge is installed, an aerobic tank in which a membrane separation device is immersed in the activated sludge, and a sludge return path for returning activated sludge from the aerobic tank to the anoxic tank, and by switching the operating state of the stirring mechanism, the anoxic tank is temporarily made to function as an anaerobic tank.
無酸素槽に備えた攪拌機構が作動することにより、汚泥返送路から返送された硝酸性窒素と活性汚泥中の脱窒菌とが接触して脱窒処理される過程で、原水に含まれる易分解有機物が脱窒菌により消費される。また、攪拌機構の作動状態を切り替え、例えば攪拌機構を停止させると、汚泥返送路から返送された汚泥に含まれる硝酸性窒素が槽内に自然沈降する過程で脱窒菌と接触して脱窒処理され、やがて活性汚泥は硝酸性窒素が存在しない嫌気度の高い状態となる。嫌気度が高くなると、原水に含まれる易分解性有機物がポリリン酸蓄積菌によって取り込まれてリン酸がポリリン酸として放出される。このようにして原水に含まれる易分解有機物がポリリン酸蓄積菌によって消費された汚泥が好気槽に供給されるようになるので、DO濃度の値が高い好気槽であっても放線菌の発生が抑制されるようになる。このとき、同時にポリリン酸蓄積菌によって過剰摂取によるリン除去効果も得られるようになる。 By operating the stirring mechanism in the anoxic tank, the nitrate nitrogen returned from the sludge return line comes into contact with the denitrifying bacteria in the activated sludge and is denitrified, during which the easily decomposable organic matter contained in the raw water is consumed by the denitrifying bacteria. In addition, when the operating state of the stirring mechanism is switched, for example by stopping the stirring mechanism, the nitrate nitrogen contained in the sludge returned from the sludge return line comes into contact with the denitrifying bacteria in the process of natural settling in the tank and is denitrified, and the activated sludge eventually becomes in a highly anaerobic state in which no nitrate nitrogen is present. When the anaerobic state becomes high, the easily decomposable organic matter contained in the raw water is taken up by the polyphosphate accumulating bacteria and phosphoric acid is released as polyphosphate. In this way, the sludge in which the easily decomposable organic matter contained in the raw water has been consumed by the polyphosphate accumulating bacteria is supplied to the aerobic tank, so that the generation of actinomycetes is suppressed even in an aerobic tank with a high DO concentration. At the same time, the polyphosphate accumulating bacteria can also remove phosphorus by excessive intake.
同第二の特徴構成は、上述した第一の特徴構成に加えて、酸化還元電位、T-N濃度またはMLSSの何れかを指標にして、前記無酸素槽を一時的に嫌気槽として機能させる周期を調整する点にある。 The second characteristic configuration is that, in addition to the first characteristic configuration described above, the period during which the anoxic tank temporarily functions as an anaerobic tank is adjusted using either the redox potential, the T-N concentration, or the MLSS as an indicator.
無酸素槽を一時的に嫌気槽として機能させた状態で、無酸素槽に備えた酸化還元電位センサにより検出される電位が、脱窒反応が行なわれる範囲から逸脱するようになり、T-N濃度センサにより検出される処理水のT-N濃度の上昇を検知し、または、好気槽に備えたMLSSセンサにより検出されるMLSSの値が上昇すると、一時的に嫌気槽として機能させた状態から攪拌機構を作動させて脱窒処理を促進させるように切替えることで、処理水に含まれるT-N濃度の上昇を回避することができる。 When the anoxic tank is temporarily functioning as an anaerobic tank, if the potential detected by the oxidation-reduction potential sensor in the anoxic tank deviates from the range in which denitrification occurs, and an increase in the T-N concentration of the treated water detected by the T-N concentration sensor is detected, or the MLSS value detected by the MLSS sensor in the aerobic tank increases, the tank can be switched from temporarily functioning as an anaerobic tank to operating the agitation mechanism to promote denitrification, thereby preventing an increase in the T-N concentration in the treated water.
本発明による有機性排水処理装置の第一特徴構成は、窒素を含む有機性排水を活性汚泥中で生物処理する有機性排水処理装置であって、原水と活性汚泥を攪拌する攪拌機構が設置された無酸素槽と、膜分離装置が活性汚泥中に浸漬配置された好気槽と、前記好気槽から前記無酸素槽へ活性汚泥を返送する汚泥返送路と、前記攪拌機構の作動状態を切替えることにより、前記無酸素槽を一時的に嫌気槽として機能させる制御部と、を備えている点にある。 The first characteristic feature of the organic wastewater treatment device according to the present invention is that it is an organic wastewater treatment device that biologically treats nitrogen-containing organic wastewater in activated sludge, and is equipped with an anoxic tank in which a stirring mechanism for stirring raw water and activated sludge is installed, an aerobic tank in which a membrane separation device is immersed in the activated sludge, a sludge return path for returning activated sludge from the aerobic tank to the anoxic tank, and a control unit that temporarily causes the anoxic tank to function as an anaerobic tank by switching the operating state of the stirring mechanism.
制御部により攪拌機構の作動状態を切替えて、脱窒処理が行われる無酸素槽を嫌気槽として機能させることにより、原水に含まれる易分解性有機物がポリリン酸蓄積菌によって消費される。その結果、好気槽に流入する易分解有機物の量を削減することができ、好気槽における放線菌の発生を抑制することができるようになる。 By switching the operating state of the stirring mechanism with the control unit and making the anoxic tank where denitrification is performed function as an anaerobic tank, the easily decomposable organic matter contained in the raw water is consumed by polyphosphate accumulating bacteria. As a result, the amount of easily decomposable organic matter flowing into the aerobic tank can be reduced, and the occurrence of actinomycetes in the aerobic tank can be suppressed.
同第二の特徴構成は、上述した第一の特徴構成に加えて、前記無酸素槽に原水を供給する原水供給機構は、前記無酸素槽の底部近傍に原水を供給するように構成されるとともに、前記汚泥返送路は、前記好気槽から返送する汚泥を前記無酸素槽の水面近傍に返送するように構成されている点にある。 The second characteristic configuration is, in addition to the first characteristic configuration described above, that the raw water supply mechanism that supplies raw water to the anoxic tank is configured to supply raw water near the bottom of the anoxic tank, and the sludge return path is configured to return the sludge returned from the aerobic tank to near the water surface of the anoxic tank.
無酸素槽を一時的に嫌気槽として機能させた状態で、原水供給機構により無酸素槽の底部近傍に供給される原水が槽内を上昇し、汚泥返送路から無酸素槽の水面近傍に返送される汚泥が槽内を沈降する過程で、時間を掛けて緩やかに混ざり合う。無酸素槽の底部へと汚泥が沈降する過程において、汚泥の周辺部の被処理水には硝酸性窒素が存在しなくなるため、汚泥の嫌気度が上昇し、無酸素槽の下部から供給される原水中に含まれる有機酸をポリリン酸蓄積菌が取り込むことで、易分解性有機物が消費される。 With the anoxic tank temporarily functioning as an anaerobic tank, raw water supplied near the bottom of the anoxic tank by the raw water supply mechanism rises inside the tank, and sludge returned from the sludge return line to near the water surface of the anoxic tank slowly mixes over time as it settles inside the tank. As the sludge settles to the bottom of the anoxic tank, nitrate nitrogen is no longer present in the treated water around the sludge, so the anaerobicity of the sludge increases, and the polyphosphate accumulating bacteria take up the organic acids contained in the raw water supplied from the bottom of the anoxic tank, consuming easily decomposable organic matter.
同第三の特徴構成は、上述した第二の特徴構成に加えて、前記無酸素槽から前記好気槽へ活性汚泥が流下させる連通部は、前記無酸素槽の水面近傍に設けられている点にある。 The third characteristic configuration is, in addition to the second characteristic configuration described above, that the communication section through which the activated sludge flows from the anoxic tank to the aerobic tank is provided near the water surface of the anoxic tank.
連通部が無酸素槽の水面近傍に設けられているので、無酸素槽の底部近傍に供給される汚水がショートパスして好気槽に流入することが回避される。また、無酸素槽に返送された汚泥が沈降して上澄みのみが連通部を介して好気槽に流入することにより、無酸素槽のMLSS濃度の上昇、ひいては嫌気度の向上に寄与できるようになる。 Since the communication section is provided near the water surface of the anaerobic tank, wastewater supplied near the bottom of the anaerobic tank is prevented from short-passing and flowing into the aerobic tank. In addition, the sludge returned to the anaerobic tank settles and only the supernatant flows into the aerobic tank through the communication section, which contributes to increasing the MLSS concentration in the anaerobic tank and thus improving the anaerobicity.
同第四の特徴構成は、上述した第三の特徴構成に加えて、前記制御部は、酸化還元電位、T-N濃度またはMLSSの何れかを指標にして、前記無酸素槽を一時的に嫌気槽として機能させる周期を調整するように構成されている点にある。 The fourth characteristic configuration is that, in addition to the third characteristic configuration described above, the control unit is configured to adjust the period during which the anoxic tank temporarily functions as an anaerobic tank using either the redox potential, the T-N concentration, or the MLSS as an index.
制御部は、無酸素槽を一時的に嫌気槽として機能させた後に、酸化還元電位、T-N濃度またはMLSSの何れかを指標にして、無酸素槽として機能するように切り替えることで、処理水のT-N濃度の許容範囲を超えた上昇を回避しながらも、好気槽における放線菌の発生を抑制することができるようになる。 The control unit temporarily operates the anoxic tank as an anaerobic tank, and then switches it to function as an anoxic tank using either the redox potential, T-N concentration, or MLSS as an indicator, thereby making it possible to suppress the occurrence of actinomycetes in the aerobic tank while avoiding the T-N concentration of the treated water from rising beyond the allowable range.
同第五の特徴構成は、上述した第四の特徴構成に加えて、前記酸化還元電位を計測する電位センサは、前記無酸素槽を前記嫌気槽として機能させたときに、前記無酸素槽に形成される無酸素領域と嫌気領域の境界に設置されている点にある。 The fifth characteristic configuration is that, in addition to the fourth characteristic configuration described above, the potential sensor that measures the redox potential is installed at the boundary between the anaerobic region and the anaerobic region formed in the anoxic tank when the anoxic tank is made to function as the anaerobic tank.
無酸素領域と嫌気領域の境界における酸化還元電位を検出することにより、酸化還元電位が極端に上昇をし始めた場合は、汚水の供給による水塊の上昇速度が活性汚泥の沈降速度を完全に上回った状態になっていることが疑われるため、通常運転に戻して汚水と活性汚泥を混合させることにより、窒素除去性能を確保し、処理水のT-N濃度が悪化する前に対処することができるようになる。 By detecting the redox potential at the boundary between the anaerobic and anaerobic regions, if the redox potential begins to rise extremely, it is suspected that the rate at which the water mass rises due to the supply of wastewater has completely exceeded the settling rate of the activated sludge. By returning to normal operation and mixing the wastewater and activated sludge, nitrogen removal performance can be secured and action can be taken before the T-N concentration in the treated water deteriorates.
以上説明した通り、本発明によれば、窒素を含有する有機性排水に対して設備コストの増大を伴なうことなく放線菌の発生を効果的に防止できる有機性排水処理方法及び有機性排水処理装置を提供することができるようになった。 As described above, the present invention provides an organic wastewater treatment method and an organic wastewater treatment device that can effectively prevent the occurrence of actinomycetes in nitrogen-containing organic wastewater without increasing equipment costs.
以下、本発明による排水処理方法及び排水処理装置の実施形態を図面に基づいて説明する。本発明による排水処理装置は、窒素やリンを含む例えば下水等の有機性排水を活性汚泥中で生物処理する有機性排水処理装置である。 Embodiments of a wastewater treatment method and a wastewater treatment device according to the present invention will be described below with reference to the drawings. The wastewater treatment device according to the present invention is an organic wastewater treatment device that biologically treats organic wastewater, such as sewage, that contains nitrogen and phosphorus in activated sludge.
図1(a),(b)には有機性排水処理装置100が示されている。有機性排水処理装置100は、攪拌機構20を備えた無酸素槽2、膜分離装置4が浸漬配置された好気槽3、好気槽3から無酸素槽2に汚泥を返送する汚泥返送路5、無酸素槽2に窒素及びリンを含む有機性排水である原水を供給する原水供給機構6、制御部8などを備えている。 Figures 1(a) and (b) show an organic wastewater treatment device 100. The organic wastewater treatment device 100 includes an anoxic tank 2 equipped with an agitation mechanism 20, an aerobic tank 3 in which a membrane separation device 4 is immersed, a sludge return path 5 that returns sludge from the aerobic tank 3 to the anoxic tank 2, a raw water supply mechanism 6 that supplies raw water, which is organic wastewater containing nitrogen and phosphorus, to the anoxic tank 2, a control unit 8, and the like.
原水供給機構6は、無酸素槽2の一側部に配置され、底部近傍に開口が形成された原水供給管で構成されている。汚泥返送路5は、好気槽3の下流側に備えたエアリフトポンプAPと、エアリフトポンプAPで揚水された汚泥を搬送する汚泥搬送管を備えて構成され、汚泥搬送管の開口部が無酸素槽2の水面近傍に位置するように配されている。 The raw water supply mechanism 6 is arranged on one side of the anoxic tank 2 and is composed of a raw water supply pipe with an opening formed near the bottom. The sludge return line 5 is composed of an air lift pump AP provided downstream of the aerobic tank 3 and a sludge transport pipe that transports the sludge pumped by the air lift pump AP, and is arranged so that the opening of the sludge transport pipe is located near the water surface of the anoxic tank 2.
攪拌機構20は、平面視で無酸素槽2の中央部に配された攪拌翼と、攪拌翼を回転駆動するモータMを備えている。モータMが正転駆動されると攪拌翼により槽内の汚泥及び原水に下降流が生じ、底部に達するとその周辺から上向流に転じる循環流が生じる。 The stirring mechanism 20 includes a stirring blade disposed in the center of the anoxic tank 2 in plan view, and a motor M that drives the stirring blade. When the motor M is driven in the normal direction, the stirring blade creates a downward flow in the sludge and raw water in the tank, and when it reaches the bottom, a circulating flow that changes to an upward flow from the periphery.
好気槽3には、複数段の膜分離装置4が浸漬配置され、各膜分離装置4に備えた分離膜を透過した処理水が、集水管及びヘッダー管を介して吸引ポンプPにより取り出される。
各膜分離装置4には複数の膜エレメント41が組み込まれている。図2に示すように、各膜エレメント41は上部に集水管41cを備えた樹脂製の膜支持体41aの表裏両面に分離膜41bが配置されている。本実施形態では、分離膜41bは、不織布の表面に多孔性を有する有機高分子膜を備えた公称孔径が0.4μm程度の精密ろ過膜で構成されている。
A plurality of membrane separation devices 4 are immersed in the aerobic tank 3, and treated water that has permeated the separation membranes provided in each membrane separation device 4 is taken out by a suction pump P via a water collection pipe and a header pipe.
Each membrane separation device 4 incorporates a plurality of membrane elements 41. As shown in Fig. 2, each membrane element 41 has separation membranes 41b disposed on both sides of a resin membrane support 41a equipped with a water collection pipe 41c at the top. In this embodiment, the separation membrane 41b is a microfiltration membrane having a nominal pore size of about 0.4 µm and equipped with a porous organic polymer membrane on the surface of a nonwoven fabric.
分離膜41bの種類及び膜エレメント41は、上述した態様に限定されるものではなく、任意の種類の分離膜及び任意の形態の膜エレメント(中空糸膜エレメント、管状膜エレメント、モノリス膜エレメント等)を用いることが可能である。 The type of separation membrane 41b and the membrane element 41 are not limited to the above-mentioned embodiments, and any type of separation membrane and any form of membrane element (hollow fiber membrane element, tubular membrane element, monolith membrane element, etc.) can be used.
膜分離装置4の下方には散気装置が配され、散気装置から供給され、槽内を上昇する気泡による上向流により分離膜41bの表面がクリーニングされる。また、好気槽3のうち膜分離装置4が浸漬配置された領域の上流側には、補助散気装置40が設けられている。 An aeration device is provided below the membrane separation device 4, and the surface of the separation membrane 41b is cleaned by the upward flow of air bubbles that are supplied from the aeration device and rise inside the tank. In addition, an auxiliary aeration device 40 is provided upstream of the area of the aerobic tank 3 where the membrane separation device 4 is immersed.
原水供給機構6から無酸素槽2に供給された原水は、連通部21を介して活性汚泥とともに好気槽に流下する。無酸素槽2と好気槽3とを仕切る仕切壁のうち、無酸素槽2の水面近傍に形成された開口が連通部21として機能する。 The raw water supplied from the raw water supply mechanism 6 to the anoxic tank 2 flows down to the aerobic tank together with the activated sludge through the communication part 21. An opening formed in the partition wall separating the anoxic tank 2 from the aerobic tank 3 near the water surface of the anoxic tank 2 functions as the communication part 21.
好気槽3では、補助散気装置40により調整された好気条件で原水に含まれるアンモニア性窒素が亜硝化菌及び硝化菌で硝化されて硝酸性窒素となり、汚泥返送路5を介して活性汚泥とともに硝酸性窒素が無酸素槽2に送られ、無酸素槽2で脱窒菌により脱窒される。本実施形態では、無酸素槽2へ流入する原水1Qに対して、膜分離装置4から処理水1Qが取り出され、汚泥返送路5を介して流量2Qが循環されるように返送量が設定され、無酸素槽2におけるMLSS濃度が6,670[mg/リットル]、好気槽3におけるMLSS濃度が10,000[mg/リットル]に設定されている。 In the aerobic tank 3, ammonia nitrogen contained in the raw water is nitrified by nitritizing bacteria and nitrifying bacteria under aerobic conditions adjusted by the auxiliary air diffuser 40 to become nitrate nitrogen, and the nitrate nitrogen is sent together with activated sludge to the anoxic tank 2 via the sludge return line 5, where it is denitrified by denitrifying bacteria. In this embodiment, for 1Q of raw water flowing into the anoxic tank 2, 1Q of treated water is taken out from the membrane separation device 4, and the return amount is set so that a flow rate of 2Q is circulated via the sludge return line 5, and the MLSS concentration in the anoxic tank 2 is set to 6,670 [mg/liter] and the MLSS concentration in the aerobic tank 3 is set to 10,000 [mg/liter].
制御部8は、図1(c),(d)に示すように、無酸素槽2に備えた攪拌機構20の作動状態を切替えて、無酸素槽2を一時的に嫌気槽として機能させる。その後、無酸素槽2に備えた酸化還元電位を測定する電位センサの出力、好気槽3に備えたMLSS濃度センサの出力、またはT-N濃度センサで検出される処理水のT-N濃度の何れかに基づいて、嫌気槽として機能させた状態から通常状態に復帰するように、攪拌機構20の作動状態を元に戻すように制御する。 As shown in Figures 1(c) and (d), the control unit 8 switches the operating state of the stirring mechanism 20 provided in the anoxic tank 2 to temporarily function as an anaerobic tank. Thereafter, based on either the output of a potential sensor that measures the redox potential provided in the anoxic tank 2, the output of the MLSS concentration sensor provided in the aerobic tank 3, or the T-N concentration of the treated water detected by the T-N concentration sensor, the control unit 8 controls the stirring mechanism 20 to return to its original operating state so as to return from the state where it functions as an anaerobic tank to its normal state.
無酸素槽2に備えた攪拌機構20が作動することにより、汚泥返送路5から返送された硝酸性窒素が活性汚泥中の脱窒菌と接触して脱窒処理される通常状態の処理過程で、原水に含まれる易分解有機物が脱窒菌により消費される。 When the agitation mechanism 20 installed in the anoxic tank 2 is activated, the nitrate nitrogen returned from the sludge return line 5 comes into contact with the denitrifying bacteria in the activated sludge and is denitrified. In the normal treatment process, the easily decomposable organic matter contained in the raw water is consumed by the denitrifying bacteria.
そして、攪拌機構20の作動状態を切り替え、例えば攪拌機構を停止させると、汚泥返送路5から返送された汚泥に含まれる硝酸性窒素が槽内に自然沈降する過程で脱窒菌と接触して脱窒処理され、やがて活性汚泥は硝酸性窒素が存在しない嫌気度の高い状態となる。嫌気度が高くなると、原水に含まれる酢酸や酪酸などの易分解性有機物がポリリン酸蓄積菌によって取り込まれてリンがポリリン酸として放出される。 Then, when the operating state of the agitation mechanism 20 is switched, for example by stopping the agitation mechanism, the nitrate nitrogen contained in the sludge returned from the sludge return line 5 naturally settles in the tank and comes into contact with the denitrifying bacteria, undergoing denitrification treatment, and the activated sludge eventually reaches a highly anaerobic state in which no nitrate nitrogen is present. When the degree of anaerobicity increases, easily decomposable organic matter such as acetic acid and butyric acid contained in the raw water is taken up by the polyphosphate accumulating bacteria, and phosphorus is released as polyphosphate.
このようにして原水に含まれる易分解有機物がポリリン酸蓄積菌によって消費された汚泥が好気槽に供給されるようになるので、DO濃度の値が高い好気槽3であっても放線菌の発生が抑制されるようになる。このとき、同時にポリリン酸蓄積菌によって過剰摂取によるリン除去効果も得られるようになる。 In this way, the sludge in which the easily decomposable organic matter contained in the raw water has been consumed by the polyphosphate accumulating bacteria is supplied to the aerobic tank, so that the occurrence of actinomycetes is suppressed even in the aerobic tank 3, which has a high DO concentration. At the same time, the polyphosphate accumulating bacteria also have the effect of removing phosphorus through excessive intake.
詳述すると、原水供給機構6が無酸素槽2の底部近傍に原水を供給するように構成されるとともに、汚泥返送路5が好気槽3から返送する汚泥を無酸素槽2の水面近傍に返送するように構成されているので、無酸素槽2を一時的に嫌気槽として機能させた状態、つまり攪拌機構20を停止した状態で、原水供給機構6により無酸素槽2の底部近傍に供給される原水が槽内を上昇し、汚泥返送路5から無酸素槽の2の水面近傍に返送される汚泥が槽内を沈降する過程で、時間を掛けて緩やかに混ざり合う。無酸素槽2の底部へと汚泥が沈降する過程において、汚泥の周辺部の被処理水には硝酸性窒素が存在しなくなるため、汚泥の嫌気度が上昇し、無酸素槽の下部から供給される原水中に含まれる有機酸をポリリン酸蓄積菌が取り込むことで、易分解性有機物が消費される。 In more detail, the raw water supply mechanism 6 is configured to supply raw water near the bottom of the anoxic tank 2, and the sludge return path 5 is configured to return the sludge returned from the aerobic tank 3 to near the water surface of the anoxic tank 2. Therefore, when the anoxic tank 2 is temporarily functioning as an anaerobic tank, that is, when the stirring mechanism 20 is stopped, the raw water supplied near the bottom of the anoxic tank 2 by the raw water supply mechanism 6 rises in the tank, and the sludge returned from the sludge return path 5 to near the water surface of the anoxic tank 2 settles in the tank, slowly mixing over time. In the process of the sludge settling to the bottom of the anoxic tank 2, nitrate nitrogen is no longer present in the treated water around the sludge, so the anaerobicity of the sludge increases, and the polyphosphate accumulating bacteria take up the organic acids contained in the raw water supplied from the bottom of the anoxic tank, consuming easily decomposable organic matter.
連通部21が無酸素槽2の水面近傍に設けられているので、無酸素槽2の底部近傍に供給される原水がショートパスして好気槽3に流入することが回避される。また、無酸素槽2に返送された汚泥が沈降して上澄みのみが連通部21を介して好気槽3に流入することにより、無酸素槽2のMLSS濃度の上昇、ひいては嫌気度の向上に寄与できるようになる。 Since the communication part 21 is provided near the water surface of the anoxic tank 2, the raw water supplied near the bottom of the anoxic tank 2 is prevented from short-passing and flowing into the aerobic tank 3. In addition, the sludge returned to the anoxic tank 2 settles and only the supernatant flows into the aerobic tank 3 through the communication part 21, which contributes to increasing the MLSS concentration in the anoxic tank 2 and thus improving the degree of anaerobicity.
無酸素槽2を一時的に嫌気槽として機能させた状態で、無酸素槽2に備えた酸化還元電位センサにより検出される電位が、脱窒反応が行なわれる範囲から逸脱するようになり、T-N濃度センサにより検出される処理水のT-N濃度の上昇を検知し、または、好気槽3に備えたMLSSセンサにより検出されるMLSSの値が上昇すると、一時的に嫌気槽として機能させた状態から攪拌機構20を作動させて脱窒処理を促進させるように切替えることで、処理水に含まれるT-N濃度の上昇を回避することができる。 When the anoxic tank 2 is temporarily functioning as an anaerobic tank, if the potential detected by the oxidation-reduction potential sensor in the anoxic tank 2 deviates from the range in which denitrification occurs, and an increase in the T-N concentration of the treated water detected by the T-N concentration sensor is detected, or the MLSS value detected by the MLSS sensor in the aerobic tank 3 increases, the agitation mechanism 20 is operated to switch from the state in which the tank temporarily functions as an anaerobic tank to one that promotes denitrification, thereby preventing an increase in the T-N concentration in the treated water.
酸化還元電位センサを用いる場合には、無酸素槽2を嫌気槽として機能させたときに、無酸素槽2に形成される無酸素領域と嫌気領域の境界深さに設置されていることが好ましい。例えば、無酸素槽2の水面が底部から5m程度に設定される場合には、底部から2~3m程度の位置に設置することが好ましい。 When using an oxidation-reduction potential sensor, it is preferable to install it at the boundary depth between the anaerobic and anaerobic regions formed in the anoxic tank 2 when the anoxic tank 2 is functioning as an anaerobic tank. For example, when the water surface of the anoxic tank 2 is set to about 5 m from the bottom, it is preferable to install it at a position about 2 to 3 m from the bottom.
無酸素領域と嫌気領域の境界における酸化還元電位を検出することにより、酸化還元電位が極端に上昇をし始めた場合は、汚水の供給による水塊の上昇速度が活性汚泥の沈降速度を完全に上回った状態になっていることが疑われる。そのような場合に、通常運転に戻して汚水と活性汚泥を混合させることにより、窒素除去性能を確保し、処理水のT-N濃度が悪化する前に対処することができるようになる。 By detecting the redox potential at the boundary between the anoxic and anaerobic regions, if the redox potential begins to rise extremely, it is suspected that the rate at which the water mass rises due to the supply of wastewater is completely exceeding the settling rate of the activated sludge. In such a case, by returning to normal operation and mixing the wastewater and activated sludge, nitrogen removal performance can be ensured and action can be taken before the T-N concentration of the treated water deteriorates.
無酸素槽2を一時的に嫌気槽として機能させた後に通常状態に復帰させる周期は、一定である必要はなく、上述したように、流入負荷条件や、処理水質の状況、放線菌の発生状況等を加味して設定すればよい。酸化還元電位、T-N濃度、MLSSの何れかを指標とすればよく、それらを組み合わせて指標としてもよい。 The period during which the anoxic tank 2 is temporarily made to function as an anaerobic tank and then returned to its normal state does not need to be constant, and as described above, may be set taking into consideration the inflow load conditions, the state of treated water quality, the occurrence of actinomycetes, etc. Any of the redox potential, T-N concentration, and MLSS may be used as an indicator, or a combination of these may be used as an indicator.
以下に、有機性排水処理装置100の別実施形態を説明する。
図3(a)から(d)に示すように、原水供給機構6を、無酸素槽2の底部に向けて均等に原水を供給する複数本の原水供給管で構成するとともに、汚泥返送路5からの返送汚泥が無酸素槽2の上流から下流の間に均等に返送されるように、汚泥返送間に分岐管を形成してもよい。原水供給機構6として、軸心方向に沿って管壁に複数の開口を形成した原水供給管を、無酸素槽2の底部に横設してもよい。
Another embodiment of the organic wastewater treatment apparatus 100 will be described below.
3(a) to 3(d), the raw water supply mechanism 6 is composed of a plurality of raw water supply pipes that supply raw water evenly toward the bottom of the anoxic tank 2, and a branch pipe may be formed between the sludge return paths so that the returned sludge from the sludge return path 5 is returned evenly between the upstream and downstream of the anoxic tank 2. As the raw water supply mechanism 6, a raw water supply pipe having a plurality of openings formed in the pipe wall along the axial direction may be installed horizontally at the bottom of the anoxic tank 2.
無酸素槽2を嫌気槽として機能させたときに、返送汚泥の沈降と原水の上昇による槽内の全域で緩やかに混ざり合うようになり、効率的に嫌気性状態を作り出すことができ、易分解性有機物が消費されるようになる。 When anoxic tank 2 is functioning as an anaerobic tank, the return sludge settles and the raw water rises, resulting in gentle mixing throughout the tank, efficiently creating an anaerobic state and consuming easily decomposable organic matter.
図4(a)から(d)に示すように、制御部8が、無酸素槽2に備えた攪拌機構20の作動状態を切替えて、一時的に嫌気槽として機能させる際に、モータMを正転時よりも低速で逆転させるように構成してもよい。通常、攪拌翼は正転駆動させるときに、大きな下降流を発生させるように翼形状が設定されている。そのような攪拌翼を逆転駆動する場合には、然程の大きな上昇流は生じることが無く、回転軸心の周りに緩やかな上向流が生じるに止まり、上層域で緩やかな循環流が生じる。その結果、槽内の上層域で均等に返送汚泥と原水が緩やかに混ざり合うようになり、効率的に嫌気性状態を作り出すことができ、易分解性有機物が消費されるようになる。 As shown in Figures 4(a) to (d), when the control unit 8 switches the operating state of the stirring mechanism 20 provided in the anoxic tank 2 to temporarily function as an anaerobic tank, the motor M may be configured to rotate in the reverse direction at a slower speed than when rotating forward. Normally, the shape of the stirring blade is set so that a large downward flow is generated when the stirring blade is driven in the forward direction. When such a stirring blade is driven in the reverse direction, no significant upward flow is generated, and only a gentle upward flow is generated around the rotation axis, and a gentle circulating flow is generated in the upper layer area. As a result, the returned sludge and raw water are gently mixed evenly in the upper layer area of the tank, an anaerobic state can be efficiently created, and easily decomposable organic matter is consumed.
上述した実施形態では、無酸素槽2と好気槽3とを仕切る仕切壁のうち、無酸素槽2の水面近傍に形成された開口を連通部21として機能させる例を示したが、無酸素槽2と好気槽3とを仕切る仕切壁に越流堰を設けてもよい。この場合、無酸素槽2に滞留する汚泥量は増加することになるが、汚泥循環のための動力も増加することになる。 In the above embodiment, an example was shown in which an opening formed near the water surface of the anoxic tank 2 in the partition wall separating the anoxic tank 2 and the aerobic tank 3 functions as the communication section 21, but an overflow weir may also be provided in the partition wall separating the anoxic tank 2 and the aerobic tank 3. In this case, the amount of sludge retained in the anoxic tank 2 will increase, but the power required for circulating the sludge will also increase.
図5(a),(b)に示すように、処理槽を上下に仕切る仕切板9を設けて下層を無酸素槽2とし、上層を好気槽3とすることにより、設置面積をさらに小さくすることができる。仕切板9の一端に開孔を形成して連通部21を構成し、仕切り板の他端に汚泥返送路5として機能するエアリフトポンプを備えればよい。攪拌機構20として、水中ミキサーを用いることで、脱窒反応を促進することができ、発生した窒素ガスは汚泥返送路5及び好気槽3を介して大気開放される。 As shown in Figures 5(a) and (b), the installation area can be further reduced by providing a partition plate 9 that separates the treatment tank into upper and lower layers, with the lower layer being the anoxic tank 2 and the upper layer being the aerobic tank 3. An opening is formed at one end of the partition plate 9 to form a communication section 21, and an air lift pump that functions as the sludge return path 5 is provided at the other end of the partition plate. By using a submersible mixer as the agitation mechanism 20, the denitrification reaction can be promoted, and the generated nitrogen gas is released to the atmosphere via the sludge return path 5 and the aerobic tank 3.
無酸素槽2に供給される原水として、一般的な水質の初沈越流水を原水とする施設で設計した循環式のMBRの場合、無酸素槽の水面積負荷は、日最大汚水量に対して50m/d程度である。このため、流入水量が少ない時間帯には汚泥の沈降速度と汚水の上昇速度が拮抗しあう状況が発生することは、十分に期待できる。このとき、無酸素槽2の容量はHRTで2~3hであればよい。 In the case of a circulating MBR designed for a facility that uses first settling overflow of normal quality as the raw water supplied to the anoxic tank 2, the surface area load of the anoxic tank is about 50 m/d for the maximum daily wastewater volume. For this reason, it is quite likely that a situation will arise in which the settling speed of the sludge and the rising speed of the wastewater compete with each other during times when the inflow volume is low. In this case, the capacity of the anoxic tank 2 should be 2 to 3 h at HRT.
上述した実施形態は、何れも本発明の一例であり、該記載により本発明が限定されるものではなく、各部の具体的構成は本発明の作用効果が奏される範囲で適宜変更設計可能であることは言うまでもない。また、上述した複数の実施形態の何れかまたは複数を適宜組み合わせてもよい。 The above-described embodiments are merely examples of the present invention, and the present invention is not limited to these descriptions. It goes without saying that the specific configuration of each part can be appropriately modified and designed within the scope of the effects of the present invention. In addition, any one or more of the above-described embodiments may be appropriately combined.
2:無酸素槽
3:好気槽
4:膜分離装置
5:汚泥返送路
6:原水供給機構
8:制御部
9:仕切板
20:攪拌機構
21:連通部
100:有機性排水処理装置
2: Anoxic tank 3: Aerobic tank 4: Membrane separation device 5: Sludge return line 6: Raw water supply mechanism 8: Control unit 9: Partition plate 20: Stirring mechanism 21: Communication unit 100: Organic wastewater treatment device
Claims (7)
供給された原水と活性汚泥を攪拌する攪拌機構が設置された無酸素槽と、膜分離装置が活性汚泥中に浸漬配置された好気槽と、前記好気槽から前記無酸素槽へ活性汚泥を返送する汚泥返送路と、を備えた有機性排水処理装置に対して、
前記攪拌機構の作動状態を切替えることにより、前記無酸素槽を一時的に嫌気槽として機能させる有機性排水処理方法。 A method for treating organic wastewater by biologically treating nitrogen-containing organic wastewater in activated sludge, comprising:
An organic wastewater treatment apparatus comprising an anoxic tank in which a stirring mechanism for stirring supplied raw water and activated sludge is installed, an aerobic tank in which a membrane separation device is immersed in the activated sludge, and a sludge return path for returning the activated sludge from the aerobic tank to the anoxic tank,
The organic wastewater treatment method includes switching an operating state of the stirring mechanism so that the anoxic tank temporarily functions as an anaerobic tank.
原水と活性汚泥を攪拌する攪拌機構が設置された無酸素槽と、
膜分離装置が活性汚泥中に浸漬配置された好気槽と、
前記好気槽から前記無酸素槽へ活性汚泥を返送する汚泥返送路と、
前記攪拌機構の作動状態を切替えることにより、前記無酸素槽を一時的に嫌気槽として機能させる制御部と、
を備えている有機性排水処理装置。 An organic wastewater treatment apparatus for biologically treating nitrogen-containing organic wastewater in activated sludge,
An anoxic tank equipped with a mixing mechanism for mixing raw water and activated sludge;
an aerobic tank in which a membrane separation device is immersed in activated sludge;
a sludge return line for returning activated sludge from the aerobic tank to the anoxic tank;
a control unit that switches an operating state of the stirring mechanism to temporarily cause the anoxic tank to function as an anaerobic tank;
An organic wastewater treatment device comprising:
前記汚泥返送路は、前記好気槽から返送する汚泥を前記無酸素槽の水面近傍に返送するように構成されている請求項3記載の有機性排水処理装置。 The raw water supply mechanism for supplying raw water to the anoxic tank is configured to supply raw water to the vicinity of the bottom of the anoxic tank,
4. The organic wastewater treatment apparatus according to claim 3, wherein the sludge return line is configured to return the sludge returned from the aerobic tank to the vicinity of the water surface of the anoxic tank.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022162943A JP2024056209A (en) | 2022-10-11 | 2022-10-11 | Organic wastewater treatment method and organic wastewater treatment device |
PCT/JP2023/033483 WO2024080068A1 (en) | 2022-10-11 | 2023-09-14 | Organic-wastewater treatment method and organic-wastewater treatment device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022162943A JP2024056209A (en) | 2022-10-11 | 2022-10-11 | Organic wastewater treatment method and organic wastewater treatment device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2024056209A true JP2024056209A (en) | 2024-04-23 |
Family
ID=90669070
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2022162943A Pending JP2024056209A (en) | 2022-10-11 | 2022-10-11 | Organic wastewater treatment method and organic wastewater treatment device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2024056209A (en) |
WO (1) | WO2024080068A1 (en) |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4557912B2 (en) * | 2006-03-17 | 2010-10-06 | 株式会社東芝 | Process control system |
JP2009297697A (en) * | 2008-06-13 | 2009-12-24 | Sanei:Kk | Water treatment apparatus |
JP4835877B2 (en) * | 2008-06-23 | 2011-12-14 | Jfeエンジニアリング株式会社 | Sludge accumulation prevention method |
JP2016036744A (en) * | 2014-08-05 | 2016-03-22 | 株式会社日水コン | N2o decomposition treatment system by n2o supersaturated water method |
FI126433B (en) * | 2014-09-30 | 2016-11-30 | Winflow Water Oy | Bioreactor for treatment of water fluid (s) with biomass |
JP2017013014A (en) * | 2015-07-02 | 2017-01-19 | 株式会社東芝 | Organic wastewater treatment system, organic wastewater treatment method, and control program of organic wastewater treatment system |
JP7105162B2 (en) * | 2018-10-04 | 2022-07-22 | 株式会社クボタ | Organic wastewater treatment equipment |
-
2022
- 2022-10-11 JP JP2022162943A patent/JP2024056209A/en active Pending
-
2023
- 2023-09-14 WO PCT/JP2023/033483 patent/WO2024080068A1/en unknown
Also Published As
Publication number | Publication date |
---|---|
WO2024080068A1 (en) | 2024-04-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101904985B1 (en) | A water-purifying treatment device with renewable energy generation plant and using waste glass and artificial filter medium Manufactured by Method | |
KR100441208B1 (en) | Batch style waste water treatment apparatus using biological filtering process and waste water treatment method using the same | |
US20100326906A1 (en) | infiltration/inflow control for membrane bioreactor | |
RU2181344C2 (en) | Plant for and method of biological purification of impurities and sewage water | |
KR100876323B1 (en) | Advanced treatment apparatus for treatment of sewage water or waste water using aerobic microorganism activation apparatus | |
KR100785044B1 (en) | Method for remodeling of the existing wastewater treatment facilities into advanced treatment facilities and operating method using the advanced treatment facilities | |
JP4059790B2 (en) | Membrane separation activated sludge treatment apparatus and membrane separation activated sludge treatment method | |
KR20130138048A (en) | Membrane wastewater treatment system and method for high energy efficiency, high flow capicity, low operating cost, automated scum and foam removal / destruction and conversion method thereof from a constant level sequencing batch reactor process | |
CN114269695B (en) | System and method for removing ammonium from a wastewater stream | |
KR101292736B1 (en) | Advanced wastewater treatment technology | |
JP2003053363A (en) | Treatment method and treatment equipment for organic matter-containing water | |
JP6181003B2 (en) | Membrane separation activated sludge treatment apparatus and operation method thereof | |
KR20150144682A (en) | Apparatus for wastewater treatment with submerged membrane | |
KR101044826B1 (en) | An operation method to increase advanced treatment efficiency in membrane bio reacter and an advanced treatment appartus there of | |
JP7015117B2 (en) | Organic wastewater treatment method and organic wastewater treatment system | |
JP4568528B2 (en) | Water treatment equipment | |
JP5743448B2 (en) | Sewage treatment equipment | |
WO2024080068A1 (en) | Organic-wastewater treatment method and organic-wastewater treatment device | |
JP4027217B2 (en) | Livestock wastewater treatment equipment | |
JP5822260B2 (en) | Method for starting up membrane separation activated sludge treatment device and sewage treatment device | |
JP4709792B2 (en) | Wastewater treatment system | |
JP4307275B2 (en) | Wastewater treatment method | |
JPH05154496A (en) | Controlling method for operation in anaerobic and aerobic activated sludge treating equipment | |
JP2013022548A (en) | Starting-up method of membrane separation activated sludge treatment device | |
JPH09253687A (en) | Anaerobic and aerobic treatment apparatus for waste water |