JP2024055743A - Debris flow prevention structures - Google Patents

Debris flow prevention structures Download PDF

Info

Publication number
JP2024055743A
JP2024055743A JP2023067652A JP2023067652A JP2024055743A JP 2024055743 A JP2024055743 A JP 2024055743A JP 2023067652 A JP2023067652 A JP 2023067652A JP 2023067652 A JP2023067652 A JP 2023067652A JP 2024055743 A JP2024055743 A JP 2024055743A
Authority
JP
Japan
Prior art keywords
lower frame
members
stream
foundation
tension
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023067652A
Other languages
Japanese (ja)
Inventor
俊行 堀口
昌昭 萬▲徳▼
洋 木部
宏治 竹家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SE Corp
Original Assignee
SE Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SE Corp filed Critical SE Corp
Publication of JP2024055743A publication Critical patent/JP2024055743A/en
Pending legal-status Critical Current

Links

Images

Abstract

【課題】土石流の発生が想定される渓流に発生した場合の土石流を堰き止める上で、構造体が土石から受ける衝撃を緩和させ、本来の形態を維持可能な構造にする。【解決手段】渓床26上に構築される平板状の基礎11上に立体的に構築される構造体2と、少なくとも渓流の両岸の地盤と構造体2との間に架設されて両岸側の端部が地盤に定着され、土石流の発生時に土石からの衝撃力を構造体2と共に負担する引張材13から対土石流構造物1を構成し、基礎11上に渓流の幅方向に並列し、土石流方向に沿って配置される複数本の下部枠材3と、各下部枠材3の軸方向の上流側及び下流側に接合され、下部枠材3から起立する前方側縦枠材4及び後方側縦枠材5と、少なくとも渓流の幅方向に隣接する下部枠材3、3を互いに連結するつなぎ材6から構造体2を構成し、下部枠材3を基礎11に軸方向に相対移動自在に引張材13を構造体2に接触させるか、接続する。【選択図】図1[Problem] To provide a structure capable of mitigating impacts from debris on a structure and maintaining its original shape when a debris flow occurs in a mountain stream where debris flow is expected to occur. [Solution] A debris-flow prevention structure (1) is constructed from a structure (2) constructed three-dimensionally on a flat foundation (11) constructed on a mountain stream bed (26), and tension members (13) that are erected between at least the ground on both sides of the mountain stream and the structure (2) and have ends on both sides fixed to the ground, and that bear impact forces from debris together with the structure (2) when a debris flow occurs, the structure (2) is constructed from a plurality of lower frame members (3) arranged in parallel in the width direction of the mountain stream on the foundation (11) and along the direction of the debris flow, front side vertical frame members (4) and rear side vertical frame members (5) that are joined to the upstream and downstream sides of the axial direction of each lower frame member (3) and stand up from the lower frame members (3), and connecting members (6) that connect at least the lower frame members (3, 3) adjacent to each other in the width direction of the mountain stream, and the tension members (13) are brought into contact with or connected to the structure (2) so that the lower frame members (3) can be moved axially relative to the foundation (11). [Selected Figure] Figure 1

Description

本発明は土石流の発生が想定される渓流に、発生した場合の土石流を堰き止める目的で設置される対土石流構造物に関するものである。 This invention relates to a debris flow prevention structure that is installed in mountain streams where debris flows are expected to occur, in order to dam the debris flows that may occur.

渓流に土石流を堰き止める目的で設置(構築)される構造物は、両端部が渓岸に定着されたケーブル(引張材)とケーブルに接続された網(ネット)を基本構造にする形態(特許文献1~4参照)と、渓床上に両渓岸間に跨るように立体的に組み立てられる骨組材からなる構造体とその上流側か下流側に張られる網を基本構造にする形態(特許文献5~7参照)とに大別される。構造体にはケーブルが併用されることもある(特許文献5)。この他、ケーブルや網が併用されない構造体のみの構造物の例もある(特許文献8、9参照)。 Structures that are installed (constructed) in mountain streams to dam debris flows can be broadly divided into two types: those that have a basic structure of a cable (tensile material) with both ends fixed to the riverbanks and a net connected to the cable (see Patent Documents 1 to 4), and those that have a basic structure of a structure made of framework materials assembled three-dimensionally on the riverbed to span both riverbanks and a net stretched on either the upstream or downstream side (see Patent Documents 5 to 7). A cable may also be used in conjunction with the structure (Patent Document 5). There are also examples of structures that are just structures without cables or nets (see Patent Documents 8 and 9).

前者の構造では、網が土石を受け止めたときの衝撃(運動エネルギ)をケーブル本体とその端部の定着部が主に引張力として負担するため、土石を受け止める能力は構造体が併用される後者の構造より低く、能力を超える程の衝撃を与える土石を受け止めたときにケーブルと定着部のいずれかが破断する可能性がある。 In the former structure, the impact (kinetic energy) when the net catches soil or rocks is borne mainly as tensile force by the cable body and the anchoring parts at its ends, so its ability to catch soil or rocks is lower than that of the latter structure, which uses a structure in combination, and there is a possibility that either the cable or the anchoring parts will break when soil or rocks that cause an impact that exceeds the net's capacity are caught.

後者の構造体は基本的に土石流の流れの方向に並列する柱等の縦部材と、渓流の幅方向に隣接する縦部材をつなぐ横部材から組み立てられ、網は渓流の幅方向に張られるため、網が土石を受け止めたときの衝撃を構造体が負担することになる。 The latter structure is basically assembled from vertical members such as columns that are parallel to the direction of the debris flow, and horizontal members that connect adjacent vertical members across the width of the stream, and the net is stretched across the width of the stream, so the structure bears the impact when the net catches debris.

後者の構造の内、縦部材の脚部が渓床上等に単純に載置される場合(特許文献7)には、土石流の流れの方向に並列する縦部材間につなぎ材が架設されたとしても、渓流の幅方向に隣接する縦部材の下端部同士が連結されていなければ、渓流の幅方向に配列する各縦部材の下端部が衝撃時に独立して渓床上を滑動する可能性があり、構造体としての本来の形態を維持できなくなる可能性がある。構造体が形態を維持できなくなれば、形態の喪失箇所から崩壊が始まる可能性がある。 In the latter structure, when the legs of the vertical members are simply placed on the riverbed (Patent Document 7), even if connecting members are installed between the vertical members arranged in parallel in the direction of the debris flow, if the lower ends of adjacent vertical members in the width direction of the river are not connected, the lower ends of each vertical member arranged in the width direction of the river may slide independently on the riverbed in the event of an impact, and the structure may not be able to maintain its original shape. If the structure can no longer maintain its shape, collapse may begin from the point where it has lost its shape.

縦部材の脚部(下端部)がコンクリート等の基礎中に定着される場合(特許文献5、6、8、9)には、載置の場合より構造体全体では形態の安定性は高い。但し、各縦部材等が土石から直接、または網を通じて衝撃を受けるときに、各縦部材等は移動(滑動)を拘束されていることで、滑動可能な場合より衝撃を受け易く、衝撃による損傷が大きくなり易い。このため、縦部材等が損傷する可能性が高く、損傷に起因して構造体の形態が損なわれる可能性がある。 When the legs (lower ends) of the vertical members are fixed into a foundation such as concrete (Patent Documents 5, 6, 8, and 9), the overall stability of the structure is greater than when it is placed on a surface. However, when each vertical member receives an impact from soil or rocks directly or through a net, because each vertical member is restricted from moving (sliding), it is more susceptible to impact than if it were able to slide, and is more likely to sustain greater damage from the impact. For this reason, there is a high possibility that the vertical members will be damaged, and the shape of the structure may be compromised due to the damage.

土石流方向に並列する縦部材同士をその方向に架設される横部材で接続し、並列する縦部材を拘束した場合でも(特許文献6の図7、図8)、構造的には各縦部材を基礎に定着させることに変わりがないため、縦部材等が損傷する可能性が高い。 Even if the vertical members arranged in parallel in the direction of the debris flow are connected to each other by horizontal members erected in that direction and the parallel vertical members are restrained (Figs. 7 and 8 of Patent Document 6), the vertical members are still structurally fixed to the foundation, so there is a high possibility that the vertical members will be damaged.

構造体とケーブルが併用される形態の場合(特許文献5)には、理論上、衝撃を構造体とケーブルが分担することができることで、構造体かケーブルの単体の場合より衝撃時の損傷の可能性は低下し易いため、他の例より相対的に形態維持能力を高めることは可能であると考えられる。 In the case of a configuration in which a structure and a cable are used together (Patent Document 5), in theory, the impact can be shared between the structure and the cable, which reduces the possibility of damage during an impact compared to when the structure or cable is used alone, and it is therefore thought that it is possible to improve the shape retention ability relatively compared to other examples.

実開平3-36021号公報(請求項1、公報第6頁第20行~第13頁第10行、第1図~第13図)Japanese Utility Model Application Publication No. 3-36021 (Claim 1, page 6, line 20 to page 13, line 10, Figures 1 to 13) 特開平9-273137号公報(請求項1、段落0008~0032、図1~図5)JP-A-9-273137 (Claim 1, paragraphs 0008 to 0032, Figures 1 to 5) 特開平10-60866号公報(請求項1、段落0015~0032、図1~図4)JP-A-10-60866 (Claim 1, paragraphs 0015 to 0032, Figures 1 to 4) 特開2009-52215号公報(請求項1、段落0048~0073、図1~図10)JP 2009-52215 A (Claim 1, paragraphs 0048 to 0073, Figures 1 to 10) 特公昭58-51568号公報(公報第3欄第42行~第5欄第12行、第4図~第6図)JP-B-58-51568 (Column 3, line 42 to Column 5, line 12, Figures 4 to 6) 特開2017-141568号公報(段落0022~0030、図1~図8)JP 2017-141568 A (paragraphs 0022 to 0030, Figures 1 to 8) 特開2021-28445号公報(段落0013~0030、図1~図13)JP 2021-28445 A (paragraphs 0013 to 0030, Figures 1 to 13) 特開2007-177467号公報(段落0013~0039、図1~図8)JP 2007-177467 A (paragraphs 0013 to 0039, Figures 1 to 8) 特開2022-39651号公報(段落0022~0039、図2、図3、図7~図15)JP 2022-39651 A (paragraphs 0022 to 0039, Figures 2, 3, 7 to 15)

しかしながら、特許文献5では、縦部材が独立してコンクリート基礎に定着(拘束)されているため、拘束の状況下では上記のように各縦部材が土石を受け止めたときの衝撃が大きくなり易く、損傷を受ける可能性が高い。 However, in Patent Document 5, the vertical members are independently fixed (restrained) to the concrete foundation, and therefore, under restrained conditions, the impact when each vertical member receives soil or rocks is likely to be large, and there is a high possibility that it will be damaged.

本発明は上記背景より、構造体が土石から受ける衝撃を緩和させ、構造体の形態を維持可能な構造の対土石流構造物を提案するものである。 In light of the above background, the present invention proposes a debris flow prevention structure that can absorb the impact that the structure receives from debris and maintain the structure's shape.

請求項1に記載の発明の対土石流構造物は、土石流の発生が想定される渓流の渓床上に構築される平板状の基礎上に立体的に構築される構造体と、
少なくとも前記渓流の両岸の地盤と前記構造体との間に架設されて前記両岸側の端部が前記地盤に定着され、前記土石流の発生時に土石からの衝撃力を前記構造体と共に負担する引張材とを備え、
前記構造体は前記基礎上に、前記渓流の幅方向に並列し、前記土石流方向に沿って配置される複数本の下部枠材と、この各下部枠材の軸方向の上流側及び下流側に接合され、前記下部枠材から起立する前方側縦枠材及び後方側縦枠材と、少なくとも前記渓流の幅方向に隣接する前記下部枠材間に架設され、前記両下部枠材を互いに連結するつなぎ材とを備え、
前記下部枠材が前記基礎に軸方向に相対移動自在に直接、もしくは間接的に接触し、
前記引張材が前記下部枠材の前記基礎上での前記相対移動を許容しながら、前記構造体が前記土石から前記渓流の下流側に向かって受ける荷重を負担可能に、前記構造体のいずれかの部分の前記下流側に接触していることを構成要件とする。
The debris flow prevention structure of the present invention is a three-dimensional structure constructed on a flat foundation on the riverbed of a river where a debris flow is expected to occur,
and tension members that are installed between the structure and the ground on at least both sides of the stream, with ends on both sides fixed to the ground, and that bear impact forces from debris when the debris flow occurs together with the structure,
The structure is provided on the foundation with a plurality of lower frame members arranged in parallel in the width direction of the stream and along the direction of the debris flow, front vertical frame members and rear vertical frame members that are joined to the upstream and downstream sides of the axial direction of each lower frame member and stand up from the lower frame members, and connecting members that are installed at least between the lower frame members adjacent in the width direction of the stream and connect the two lower frame members to each other,
The lower frame member directly or indirectly contacts the foundation so as to be relatively movable in the axial direction;
A constituent requirement of the present invention is that the tension member is in contact with the downstream side of any part of the structure so as to be able to bear the load that the structure receives from the soil and rocks toward the downstream side of the stream, while allowing the relative movement of the lower frame member on the foundation.

「渓床上に構築される平板状の基礎」とは、渓床26の不陸を均すために渓床26上に、上面(天端面)が実質的に平坦で、全体的に平板状に構築される均しコンクリートや類似のコンクリート造の底版等の基礎11のことを言う。「実質的に」とは、必ずしも全面が一様に平坦である必要はない意味である。構造体2は基礎11上に構築される。「構築」は一部が予め組み立てられている場合を含む。 "Flat foundation constructed on the river bed" refers to a foundation 11 such as a concrete base or similar concrete slab that has a substantially flat upper surface (top surface) and is constructed generally in a flat shape on the river bed 26 in order to level the unevenness of the river bed 26. "Substantially" means that the entire surface does not necessarily have to be uniformly flat. The structure 2 is constructed on the foundation 11. "Construction" includes cases where some parts have been preassembled.

「立体的に構築される構造体」とは、構造体2全体が渓流の幅方向に長さを持つと同時に、想定される土石の規模に応じた高さを持ちながら、土石流方向に厚さ(奥行)を有するように構築されることを言う。構造体2は基本的に、渓流の幅方向には実質的に渓流の全幅に亘る長さを持ち、想定される最大の土石を受け止め可能な高さを持つ。詳しくは図1等に示すように構造体構成材である前方側縦枠材4と後方側縦枠材5の少なくともいずれか長い側の長さの鉛直距離が構造体2の高さになり、土石流方向を向いて配置される下部枠材3の長さが構造体2の厚さになる。「渓流の幅方向」は構造体2の軸方向(長さ方向)である。 "A three-dimensionally constructed structure" means that the entire structure 2 is constructed so that it has a length in the width direction of the stream, a height according to the expected size of the debris, and a thickness (depth) in the direction of the debris flow. The structure 2 basically has a length that essentially spans the entire width of the stream in the width direction, and a height that can receive the largest expected amount of debris. In more detail, as shown in Figure 1, the vertical distance of the length of at least the longer side of the front vertical frame member 4 and the rear vertical frame member 5, which are structural components, is the height of the structure 2, and the length of the lower frame member 3, which is placed facing the debris flow direction, is the thickness of the structure 2. "The width direction of the stream" is the axial direction (length direction) of the structure 2.

「少なくとも渓流の両岸の地盤と構造体2との間に架設される引張材」とは、引張材13が少なくとも渓流両岸の地盤と構造体2との間に架設されることを言い、引張材13が図3-(b)に示すように構造体2を経由して両岸の地盤間に架設されることと、図14に示すように構造体2の軸方向の両側とその側の渓岸の地盤との間に架設されることを含む。前者の場合、構造体2の区間に位置する引張材13は構造体2には主に接触し(請求項2)、後者の場合、引張材13は構造体2のいずれかの部分に接続される。 "Tension members installed at least between the ground on both banks of the stream and the structure 2" means that the tension members 13 are installed at least between the ground on both banks of the stream and the structure 2, including the tension members 13 installed between the ground on both banks via the structure 2 as shown in Figure 3-(b) and the tension members 13 installed between both sides of the structure 2 in the axial direction and the ground on the stream bank on that side as shown in Figure 14. In the former case, the tension members 13 located in the section of the structure 2 are mainly in contact with the structure 2 (claim 2), and in the latter case, the tension members 13 are connected to some part of the structure 2.

「両岸側の端部が地盤に定着される引張材」とは、図3に示すように引張材13の両岸側の端部が渓岸の地盤中に、引張材13が負担する引張力を地盤に伝達し得る程度に定着されることを言う。具体的には図12に示すように渓岸の地盤中に形成される削孔22中に引張材13の端部定着部であるアンカー体14が挿入され、削孔23中に充填されるグラウト材24中に埋設され、定着されることで、引張材15が地盤に固定された状態を永続的に維持することを言う。引張材13にはPC鋼材、繊維強化プラスチック等、引張力の導入が可能な材料が使用される。渓流の両岸は渓岸である。 "Tension members whose ends on both sides are fixed to the ground" refers to the ends of the tension members 13 on both sides being fixed to the ground of the riverbank to the extent that the tensile force borne by the tension members 13 can be transmitted to the ground, as shown in Figure 3. Specifically, as shown in Figure 12, the anchor bodies 14, which are the fixing parts of the ends of the tension members 13, are inserted into the drilled holes 22 formed in the ground of the riverbank, and are embedded and fixed in the grout material 24 filled in the drilled holes 23, so that the tension members 15 are permanently fixed to the ground. The tension members 13 are made of materials that can introduce tensile force, such as PC steel and fiber-reinforced plastics. Both sides of the river are riverbanks.

引張材13の構造体2側の部分は図14に示すように構造体2のいずれかの部分に接続(定着)される場合もあるが、図3-(b)、図5に示すように引張材13の長さ方向の両端部が渓流の両岸に定着されながら、上記のように中間部(中間区間)が構造体2のいずれかの部分の下流側に接触する場合もある(請求項1)。後者の場合、引張材13は構造体2に、渓流の下流側で接触しながら、渓流の幅方向に架設され、両端部において渓岸の地盤に定着されることで、構造体2が土石から受ける衝撃力を構造体2と共に分担し、渓岸の地盤に伝達する状態になる。引張材13の両端部は引張材13が負担する引張力に十分に抵抗し得る程度に定着される。 The part of the tension member 13 on the structure 2 side may be connected (anchored) to any part of the structure 2 as shown in Figure 14, but as shown in Figures 3-(b) and 5, both ends of the tension member 13 in the longitudinal direction may be anchored to both banks of the stream, while the middle part (middle section) may contact the downstream side of any part of the structure 2 as described above (Claim 1). In the latter case, the tension member 13 is erected in the width direction of the stream while contacting the structure 2 on the downstream side of the stream, and is anchored to the ground of the stream bank at both ends, so that the structure 2 shares the impact force received from the earth and rocks together with the structure 2 and transmits it to the ground of the stream bank. Both ends of the tension member 13 are anchored to a degree that allows them to sufficiently resist the tensile force borne by the tension member 13.

「土石流の発生時に土石からの衝撃力を構造体と共に負担する引張材」とは、引張材13が土石からの衝撃力を構造体2と共に分担することを言う。引張材13は両岸側の端部が地盤に定着される一方、構造体2側の端部が構造体2のいずれかの部分に接続されるか、接触することで、構造体2が土石から受ける衝撃力を構造体2と共に分担し、渓岸の地盤に伝達する状態になる。引張材13は構造体2から伝達される衝撃力を引張力として負担する。 "Tension member that bears the impact force from debris flow together with the structure" means that the tension member 13 shares the impact force from debris flow together with the structure 2. The ends of the tension member 13 on both sides of the bank are fixed to the ground, while the end on the structure 2 side is connected to or comes into contact with some part of the structure 2, so that the impact force that the structure 2 receives from debris flow together with the structure 2 is shared and transmitted to the ground of the riverbank. The tension member 13 bears the impact force transmitted from the structure 2 as a tensile force.

特に引張材13の中間部が構造体2に接触する場合に、構造体2が基礎11上に設置される場合には、引張材13は構造体2を構成する下部枠材3の、基礎11上での相対移動を許容しながら、構造体2に対して渓流の幅方向に相対移動自在に構造体2のいずれかの部分の下流側に接触することで、構造体2が負担する衝撃力の一部を負担する状態になる。引張材13は例えば後方側縦枠材5等に接触する。下部枠材3の相対移動は構造体2の基礎11に対する相対移動である。 In particular, when the middle part of the tension member 13 contacts the structure 2, when the structure 2 is installed on the foundation 11, the tension member 13 allows the lower frame member 3 constituting the structure 2 to move relatively on the foundation 11, while contacting the downstream side of any part of the structure 2 so as to be movable relative to the structure 2 in the width direction of the stream, thereby bearing part of the impact force borne by the structure 2. The tension member 13 contacts, for example, the rear vertical frame member 5, etc. The relative movement of the lower frame member 3 is the relative movement of the structure 2 with respect to the foundation 11.

引張材13が構造体2に接続される場合も、構造体2に接触する場合も、構造体2が基礎11に対して相対移動を生じようとするときから構造体2が負担した荷重の一部を分担する状態にある。引張材13が荷重を負担する分だけ、構造体2が負担すべき荷重(衝撃力)が軽減されるため、構造体2が土石から受ける損傷が緩和される。 When the tension member 13 is connected to the structure 2 or when it is in contact with the structure 2, it is in a state where it shares part of the load borne by the structure 2 from the moment the structure 2 begins to move relative to the foundation 11. The load (impact force) that the structure 2 should bear is reduced by the amount of load borne by the tension member 13, so the damage that the structure 2 receives from earth and rocks is mitigated.

引張材13が構造体2に接触する場合には、引張材13が構造体2の基礎11上での相対移動を許容することで、構造体2が基礎11上を土石流の下流側へ滑動(相対移動)しようとしたときに、引張材13は平常時より大きい引張力を負担する。この平常時の引張力を超える引張力が、構造体2が土石から受ける、静止状態を維持できなくなった分の荷重(衝撃力)に相当する。引張材15は平常時に引張力を負担していないこともある。 When the tensile member 13 comes into contact with the structure 2, the tensile member 13 allows the structure 2 to move relative to the foundation 11, so that when the structure 2 tries to slide (move relatively) on the foundation 11 toward the downstream side of the debris flow, the tensile member 13 bears a tensile force greater than normal. This tensile force that exceeds the normal tensile force corresponds to the load (impact force) that the structure 2 receives from the debris and is no longer able to maintain a stationary state. The tensile member 15 may not bear any tensile force under normal circumstances.

引張材13が構造体2に接続される場合も、構造体2に接触する場合も、構造体2が土石から衝撃力を受けたときに、衝撃力に応じた伸び変形をするため、引張材13の伸び変形量が構造体2の基礎11に対する滑動量になる。 When the structure 2 receives an impact force from soil or rocks, the tension member 13 undergoes an elongation deformation in response to the impact force, whether it is connected to the structure 2 or in contact with the structure 2, and the amount of elongation deformation of the tension member 13 becomes the amount of sliding of the structure 2 relative to the foundation 11.

構造体2が土石から衝撃力を受けたときに基礎11上を滑動できることは、構造体2が土石から一定の大きさを超える衝撃力を受け続けることなく、滑動する分の衝撃力を引張材15に流すことである。このことは、構造体2が破壊に至る程の衝撃力を受けずに、引張材15に負担させることでもある。 The fact that the structure 2 can slide on the foundation 11 when it receives an impact force from soil or rocks means that the impact force that occurs when the structure 2 slides is transferred to the tension member 15 without the structure 2 continuing to receive an impact force from soil or rocks that exceeds a certain magnitude. This also means that the structure 2 is not subjected to an impact force that would destroy it, and the load is transferred to the tension member 15.

また構造体2が基礎11上を滑動できることは、土石による衝撃時に土石が有していた運動エネルギを、構造体2の滑動時に基礎11との間に生じる摩擦による熱エネルギに変換できることである。従って構造体2は土石の有する運動エネルギを熱エネルギとして消費することができるため、基礎11上で拘束(固定)された状態にある場合との対比では、衝撃力による損傷が緩和されることになる。基礎11との間の摩擦は下部枠材3との間に生じる。 Furthermore, the fact that the structure 2 can slide on the foundation 11 means that the kinetic energy possessed by the soil and rocks when impacted by the soil and rocks can be converted into thermal energy due to friction generated between the structure 2 and the foundation 11 when the structure 2 slides. Therefore, the structure 2 can consume the kinetic energy possessed by the soil and rocks as thermal energy, and therefore damage caused by the impact force is mitigated compared to when the structure 2 is restrained (fixed) on the foundation 11. Friction between the structure 2 and the foundation 11 occurs with the lower frame material 3.

土石の有する運動エネルギを消費することは、図3-(b)に示すように引張材13の一部に、引張材13が土石による引張力を負担したときに減衰力を発生する減衰装置16を介在させることで(請求項4)、より効率的になり、構造体2の損傷緩和効果が向上する。減衰装置16は引張材13が平常時より大きい引張力を負担したときにその引張力を負担する状態に引張材13に接続される必要があるため、図3、図5、図13に示すように引張材13とアンカー体14との間に介在させられる。減衰装置16の形態は問われず、例えばオイルダンパ、摩擦ダンパその他のエネルギ吸収装置が使用される。 The kinetic energy of the soil and rocks can be consumed more efficiently by providing a damping device 16 (claim 4) that generates a damping force when the tensile member 13 bears a tensile force from the soil and rocks in part of the tensile member 13 as shown in Figure 3-(b), improving the damage mitigation effect of the structure 2. The damping device 16 needs to be connected to the tensile member 13 in a state in which it can bear a tensile force greater than normal when the tensile member 13 bears the tensile force, and is therefore provided between the tensile member 13 and the anchor body 14 as shown in Figures 3, 5, and 13. The form of the damping device 16 is not important, and for example, an oil damper, a friction damper, or other energy absorbing device can be used.

「基礎上に、渓流の幅方向に並列し、土石流方向に沿って配置される複数本の下部枠材」とは、渓流の幅方向に並列する複数本の下部枠材3が基礎11上に、軸方向を土石流方向に沿う方向に向けて配置されることを言う。「土石流方向に沿って」とは、基本的には「(下部枠材の)軸方向が土石流方向を向いて」の意味であるが、必ずしも軸方向が土石流方向に合致している必要はない。構造体2は基礎11上に直接、もしくは間接的に構築(設置)されるため、下部枠材3は基礎11上に直接、もしくは間接的に配置(載置)される。 "Multiple lower frame members arranged on the foundation in parallel with the width direction of the stream and along the debris flow direction" means that multiple lower frame members 3 arranged in parallel with the width direction of the stream are arranged on the foundation 11 with their axial direction facing the debris flow direction. "Along the debris flow direction" basically means "the axial direction (of the lower frame members) faces the debris flow direction," but the axial direction does not necessarily have to match the debris flow direction. The structure 2 is constructed (installed) directly or indirectly on the foundation 11, so the lower frame members 3 are arranged (placed) directly or indirectly on the foundation 11.

下部枠材3が基礎11上で軸方向を土石流方向に沿う方向に向けて配置されることで、構造体2は土石から衝撃力を受けたときに、土石流の方向である下部枠材3の軸方向に力(荷重)を受け、下部枠材3が基礎11に軸方向に相対移動自在に接触することと併せ、上記の通り、衝撃力の程度によっては引張材13が伸び変形し得る範囲で下部枠材3の軸方向に滑動し得ることになる。 By arranging the lower frame material 3 on the foundation 11 so that its axial direction is aligned with the direction of the debris flow, when the structure 2 receives an impact force from debris, it receives a force (load) in the axial direction of the lower frame material 3, which is the direction of the debris flow. In addition to the lower frame material 3 being in contact with the foundation 11 and being able to move freely relative to the axial direction, as described above, depending on the level of the impact force, the tensile material 13 can slide in the axial direction of the lower frame material 3 within the range in which it can stretch and deform.

「各下部枠材の軸方向の上流側及び下流側に接合され、下部枠材から起立する前方側縦枠材及び後方側縦枠材」とは、下部枠材3の上流側の端部、または端部寄りの位置に、上方へ向かって前方側縦部材4が接合され、下部枠材3の下流側の端部、または端部寄りの位置に上方側へ向かって後方側縦部材5が接合されることを言う。「上方側」は必ずしも鉛直方向とは限らない。前方側縦部材4と後方側縦部材5は互いに直接、接合されるか、両者間に後述の補助材10等の中間材が架設されることで間接的に接合される。 "The front vertical member and rear vertical member that are joined to the upstream and downstream sides of each lower frame member in the axial direction and stand up from the lower frame member" refers to the front vertical member 4 being joined upward to the upstream end or a position close to the end of the lower frame member 3, and the rear vertical member 5 being joined upward to the downstream end or a position close to the end of the lower frame member 3. "Upward" does not necessarily mean vertically. The front vertical member 4 and rear vertical member 5 are joined directly to each other, or indirectly joined by installing an intermediate member such as the auxiliary member 10 described below between them.

前方側縦部材4と後方側縦部材5は互いに直接、もしくは間接的に接合されることで、図1に示すように下部枠材3と共に、平面トラス、または平面トラスに近い構造の単位フレーム2Aを形成し、単位フレーム2A単位で土石流方向の外力(衝撃力)に対する一定の形態維持能力(剛性)を確保する。構造体2はこの下部枠材3単位で成立する単位フレーム2Aを渓流の幅方向に架設されるつなぎ材6で連結した構造になる。 The front vertical member 4 and the rear vertical member 5 are joined together directly or indirectly, as shown in Figure 1, and together with the lower frame member 3, form a unit frame 2A with a plane truss or a structure similar to a plane truss, and each unit frame 2A ensures a certain degree of shape retention (rigidity) against external forces (impact forces) in the direction of the debris flow. The structure 2 is made up of unit frames 2A made up of these lower frame members 3, connected by connecting members 6 installed in the width direction of the stream.

「少なくとも渓流の幅方向に隣接する下部枠材間に架設され、両下部枠材を互いに連結するつなぎ材」とは、少なくとも渓流の幅方向に隣接する下部枠材3、3間につなぎ材6が架設され、必要により渓流の幅方向に隣接する前方側縦枠材4、4間と後方側縦枠材5、5間の少なくともいずれか一方にもつなぎ材6が架設されることを言う。つなぎ材6は隣接する下部枠材3、3間単位で架設される場合と、全下部枠材3、3間に跨るように架設される場合がある。 "Tie members that are installed at least between the lower frame members adjacent in the width direction of the stream and connect both lower frame members to each other" means that tie members 6 are installed at least between the lower frame members 3, 3 adjacent in the width direction of the stream, and if necessary, tie members 6 are also installed between at least one of the front vertical frame members 4, 4 and the rear vertical frame members 5, 5 adjacent in the width direction of the stream. Tie members 6 may be installed in units of adjacent lower frame members 3, 3, or they may be installed to span all of the lower frame members 3, 3.

「下部枠材は基礎に軸方向に相対移動自在に直接、もしくは間接的に接触し」とは、基礎11上に配置された下部枠材3が基礎11に対し、下部枠材3の軸方向に相対移動自在に直接、接触するか、後述の調整材15等のような何らかの中間材を介して間接的に接触することを言う。下部枠材3が基礎11に対して下部枠材3の軸方向に相対移動自在に接触することで、上記のように構造体2は土石から衝撃力を受けたときに下部枠材3の軸方向に相対移動可能な状態にある。 "The lower frame member is in direct or indirect contact with the foundation so as to be freely movable relative to the axial direction" means that the lower frame member 3 placed on the foundation 11 is in direct contact with the foundation 11 so as to be freely movable relative to the axial direction of the lower frame member 3, or indirect contact via some intermediate material such as the adjustment material 15 described below. By the lower frame member 3 being in contact with the foundation 11 so as to be freely movable relative to the axial direction of the lower frame member 3, the structure 2 is in a state in which it can move relative to the axial direction of the lower frame member 3 when it receives an impact force from soil or rocks, as described above.

「引張材は下部枠材の基礎上での相対移動を許容しながら、構造体が土石から渓流の下流側に向かって受ける荷重を負担可能に、構造体に接触し、または接続され」とは、引張材13が構造体2に接触しながらも、または接続されながらも、構造体2の基礎11上での相対移動を拘束せず、構造体2が土石から受ける荷重を引張材13が分担することを言う。構造体2が基礎11上を相対移動(滑動)するとき、引張材13は平常時より伸長し、上記のように平常時より大きい引張力を負担する。 "The tension member is in contact with or connected to the structure so as to be able to bear the load that the structure receives from the soil and rocks toward the downstream side of the stream while allowing the lower frame member to move relatively on the foundation" means that while the tension member 13 is in contact with or connected to the structure 2, it does not restrict the relative movement of the structure 2 on the foundation 11, and the tension member 13 shares the load that the structure 2 receives from the soil and rocks. When the structure 2 moves (slides) relatively on the foundation 11, the tension member 13 stretches more than usual, and as described above, it bears a tensile force that is greater than usual.

引張材13が構造体2に接触する場合、構造体2が基礎11上を相対移動するとき、引張材13は伸長しながら、構造体2に対して相対移動する。引張材13が構造体2に接続される場合、上記のように引張材13は伸長(伸び変形)可能な範囲で、構造体2の基礎11に対する相対移動を許容する。 When the tensile member 13 comes into contact with the structure 2, the tensile member 13 moves relative to the structure 2 while stretching as the structure 2 moves relatively on the foundation 11. When the tensile member 13 is connected to the structure 2, the tensile member 13 allows the structure 2 to move relative to the foundation 11 within the range in which it can stretch (expand).

「構造体のいずれかの部分に接触し」とは、構造体2を構成する下部枠材3、前方側縦枠材4、後方側縦枠材5のいずれか、または後述の受け材8等の構造体構成材の内、構造体2が基礎11上で、土石からの衝撃力を受けて基礎11に対して相対移動する側にある部分の渓流の下流側等に接触することを言う。 "Contacting any part of the structure" means that the structure 2 comes into contact with the downstream side of the stream on the side of the structure 2 that receives impact force from soil and rocks and moves relative to the foundation 11, among the structural components such as the lower frame member 3, the front vertical frame member 4, or the rear vertical frame member 5 that make up the structure 2, or the receiving member 8 described below.

引張材13が構造体2に接触する場合、引張材13は構造体2の軸方向の全長に亘って架設(張架)されることが合理的であるため、構造体2を構成する全後方側縦枠材5か全前方側縦枠材4、またはつなぎ材6、あるいはこれら以外の上記受け材8等を経由するように架設される。但し、平面上、引張材13が部分的に極端に屈曲して架設されるとすれば、その屈曲部分の張力が過大になり、引張材13が破断し易くなる。 When the tension member 13 comes into contact with the structure 2, it is reasonable for the tension member 13 to be installed (stretched) over the entire axial length of the structure 2, so it is installed via all rear vertical frame members 5 or all front vertical frame members 4 that make up the structure 2, or the connecting members 6, or other support members 8 mentioned above. However, if the tension member 13 is installed with a partial extreme bend on a flat surface, the tension in the bent portion will be excessive, making the tension member 13 more likely to break.

そこで、引張材13を渓流の幅方向の中央部付近において構造体2の後方側(下流側)に接触させ、中央部付近から渓流の幅方向両側寄りにかけて渓流の上流側に向けて配置し、平面上、全体として曲線状に配置することで(請求項2)、引張材13が部分的に極端に屈曲する箇所をなくし、引張材13の部分的な破断を回避することが可能になる。「全体として」とは、両側の端部定着部(アンカー体14)を除き、引張材13を全体として見たときに、曲線を描くように配置されていることを言い、渓流の幅方向に隣接する構造体構成材間では引張材13が直線状に配置されることを含む。「平面上」は平面図として見たとき、の意味である。 Therefore, by placing the tensile member 13 in contact with the rear side (downstream side) of the structure 2 near the center of the width of the stream, and arranging it from near the center toward the upstream side of the stream toward both sides of the width of the stream, and arranging it in a curved shape on a plane as a whole (claim 2), it is possible to eliminate places where the tensile member 13 is extremely bent partially, and to avoid partial breakage of the tensile member 13. "On the whole" means that the tensile member 13 is arranged in a curved shape when viewed as a whole, excluding the end fixing parts (anchor bodies 14) on both sides, and includes arranging the tensile member 13 in a straight line between structural components adjacent in the width direction of the stream. "On a plane" means when viewed as a plan view.

接触の場合、引張材13は構造体構成材のいずれかの部分に接触するが、引張材13が構造体構成材との接触部分で構造体構成材に対して滑りを生じる状態に接触していれば、引張材13の構造体構成材との相対移動時に摺動による摩擦力が発生し、引張材13の引張力負担能力が低下する可能性がある。これに対しては、構造体構成材の引張材13との接触箇所にローラや滑車を接続する等により引張材13が構造体構成材に対して摺動しないように接触させることで、摩擦力の発生を抑制し、引張力負担能力の低下を抑制することが可能になる。 In the case of contact, the tensile member 13 comes into contact with some part of the structural component, but if the tensile member 13 comes into contact with the structural component in such a way that it slips against the structural component at the contact point, frictional force due to sliding will be generated when the tensile member 13 moves relative to the structural component, and the tensile force bearing capacity of the tensile member 13 may decrease. To address this, rollers or pulleys can be connected to the contact points of the structural component with the tensile member 13 to prevent the tensile member 13 from sliding against the structural component, thereby suppressing the generation of frictional force and suppressing the decrease in the tensile force bearing capacity.

下部枠材3が基礎11上を滑動するとき、あるいは滑動しようとするときには、土石からの衝撃力の程度、または土石の衝突箇所によっては、構造体2が下部枠材3の下流側の端部を支点として転倒しようとすることが想定される。このような事態に備え、基礎11に上記した調整材15等の案内部材(ガイドレール)を定着させ、案内部材に下部枠材3の浮き上がりを拘束させることで(請求項3)、下部枠材3(構造体2)の浮き上がりを防止することが可能になる。 When the lower frame member 3 slides or attempts to slide on the foundation 11, depending on the level of impact force from the soil or the location of impact of the soil, it is expected that the structure 2 will attempt to tip over with the downstream end of the lower frame member 3 as a fulcrum. To prepare for such an event, a guide member (guide rail) such as the above-mentioned adjustment member 15 is fixed to the foundation 11, and the guide member is used to restrain the lower frame member 3 from floating up (claim 3), making it possible to prevent the lower frame member 3 (structure 2) from floating up.

下部枠材3に図2に示すようにH型鋼を使用した場合のように、下部枠材3が基礎11上に載るフランジを有する場合、案内部材(調整材15)は図2-(c)に示すようにフランジの幅方向両側を基礎11と共に上下に挟み込む形状に形成される。案内部材は下部枠材3の軸方向に連続する必要はなく、図1に示すように軸方向に部分的に配置されればよい。 When the lower frame member 3 has a flange that rests on the foundation 11, such as when an H-shaped steel is used for the lower frame member 3 as shown in Figure 2, the guide member (adjustment member 15) is formed in a shape that sandwiches both sides of the width of the flange from above and below together with the foundation 11 as shown in Figure 2-(c). The guide member does not need to be continuous in the axial direction of the lower frame member 3, and may be arranged partially in the axial direction as shown in Figure 1.

渓床上の基礎上に構築され、土石流方向に沿って配置される複数本の下部枠材を有する構造体と、端部が渓流の両岸に定着される引張材とを有し、下部枠材を基礎に軸方向に相対移動自在に接触させ、引張材を、下部枠材の相対移動を許容しながら、構造体に接触させて、または接続しているため、構造体が相対移動を生じるときから構造体が負担した荷重の一部を引張材に分担させることができる。従って引張材が負担する分だけ、構造体が負担すべき荷重(衝撃力)を軽減することができるため、構造体が土石から受ける損傷を緩和することができる。 It is constructed on a foundation on the riverbed and has a structure with multiple lower frame members arranged along the direction of the debris flow, and tension members whose ends are fixed to both banks of the river. The lower frame members are in contact with the foundation so that they can move freely relative to the foundation in the axial direction, and the tension members are in contact with or connected to the structure while allowing the lower frame members to move relative to each other. This means that the tension members can share part of the load borne by the structure from the time the structure begins to move relative to the foundation. Therefore, the load (impact force) that the structure should bear can be reduced by the amount borne by the tension members, and damage to the structure from debris can be mitigated.

また構造体が基礎上を滑動できることで、土石による衝撃時の土石が有していた運動エネルギを、構造体の滑動時に基礎との間に生じる摩擦による熱エネルギに変換でき、土石の有する運動エネルギを熱エネルギとして消費することができるため、基礎上で拘束(固定)された状態にある場合との対比では、衝撃力による損傷を緩和することができる。 In addition, because the structure can slide on the foundation, the kinetic energy of the soil and rocks when they impact can be converted into thermal energy due to friction between the structure and the foundation as it slides, and the kinetic energy of the soil and rocks can be consumed as thermal energy, so damage caused by the impact force can be mitigated compared to when the structure is restrained (fixed) on the foundation.

基礎上に構築された構造体の構成例とその下流側に配置された引張材の関係を示した、構造体を渓流の幅方向に見た縦断面図である。This is a vertical cross-sectional view of the structure viewed in the width direction of the stream, showing an example of the configuration of a structure built on a foundation and the relationship between the tensile material placed downstream of the structure. (a)は図1のx-x線方向の立面図、(b)は図1のy-y線の断面図、(c)は(a)の破線円部分の拡大図である。1, (b) is a cross-sectional view taken along line yy in FIG. 1, and (c) is an enlarged view of the dashed circle portion in (a). (a)は図1に示す構造体と土石流の関係、及び端部定着部(アンカー体)が地盤に定着された引張材との関係を概略的に示した縦断面図、(b)は構造体と引張材との関係を概略的に示した平面図である。2A is a longitudinal cross-sectional view showing the relationship between the structure shown in FIG. 1 and the debris flow, and the relationship between the end fixing portion (anchor body) and the tension member fixed to the ground, and FIG. 2B is a plan view showing the relationship between the structure and the tension member. (a)は図1に示す構造体とは異なる構造をした構造体の構成例を示した縦断面図、(b)は(a)のx-x線の断面端面図である。2A is a longitudinal sectional view showing an example of the structure different from the structure shown in FIG. 1, and FIG. 2B is a sectional end view taken along line xx of FIG. (a)は図4に示す構造体の下流側に引張材を平面上、湾曲させながら接触させて配置した様子を示した平面図である。5A is a plan view showing a state in which a tensile member is arranged on a plane in a curved state in contact with the downstream side of the structure shown in FIG. 4 . FIG. 図4、図5に示す構造体の構造を、横架材を除いて示した平面図である。FIG. 6 is a plan view showing the structure of the structural body shown in FIGS. 4 and 5 excluding the cross members. (a)は図4~図6に示す構造体の横架材の配列状態を上流側から見た様子を示した立面図、(b)は(a)の平面図である。7A is an elevational view showing the arrangement of the cross members of the structure shown in FIGS. 4 to 6 as viewed from the upstream side, and FIG. 7B is a plan view of FIG. (a)は引張材本体の端部と、これに接続される端部定着部であるアンカー体との接続部の構成例を示した立面図、(b)は(a)の平面図である。1A is an elevational view showing an example of the configuration of the connection between the end of a tensile material body and an anchor body, which is an end fixing portion connected to it, and FIG. 1B is a plan view of FIG. (a)は図8に示す定着材を示した正面図、(b)は(a)のx-x線矢視図、(c)は(a)のy-y線矢視図である。9A is a front view showing the fixing material shown in FIG. 8, FIG. 9B is a view taken along line xx in FIG. 9A, and FIG. 9C is a view taken along line yy in FIG. (a)は図8に示す接続材を示した正面図、(b)は(a)のx-x線矢視図、(c)は(a)のy-y線矢視図である。9A is a front view showing the connecting material shown in FIG. 8, FIG. 9B is a view taken along line xx in FIG. 9A, and FIG. 9C is a view taken along line yy in FIG. (a)は図8に示すアンカー定着材を示した正面図、(b)は(a)のx-x線矢視図である。9A is a front view showing the anchor fixing material shown in FIG. 8, and FIG. 9B is a view taken along the line xx in FIG. アンカー体の本体全体の構成例を示した断面図である。FIG. 2 is a cross-sectional view showing an example of the overall configuration of a main body of an anchor body. 減衰装置の構成例を示した断面図である。FIG. 2 is a cross-sectional view showing a configuration example of a damping device. (a)は引張材が上下2段に配置された場合に、上段側の引張材の端部を構造体に接続した様子を示した平面図、(b)は下段側の引張材の端部を構造体に接続した様子を示した平面図である。(a) is a plan view showing the end of the upper tensile material connected to the structure when the tensile material is arranged in two tiers, upper and lower, and (b) is a plan view showing the end of the lower tensile material connected to the structure. (a)は図14-(a)の引張材と構造体との接続部分の具体例を示した平面図、(b)は(a)の立面図である。14-(a) is a plan view showing a specific example of a connection portion between the tensile member and the structure in FIG. 14-(a), and FIG. 14-(b) is an elevation view of (a). (a)は引張材が上下2段に配置された場合に、2本の引張材を立面上、平行に配置した場合の引張材の架設例の概要を示した立面図、(b)は2本の引張材を立面上、渓岸側で交差するように配置した場合の引張材の架設例の概要を示した立面図である。(a) is an elevational view showing an outline of an example of installation of tension members when two tension members are arranged in parallel on the vertical plane when the tension members are arranged in two tiers, one above the other, and (b) is an elevational view showing an outline of an example of installation of tension members when two tension members are arranged so as to cross on the riverbank side on the vertical plane.

図1、図2は土石流の発生が想定される渓流の渓床26上に構築される平板状の均しコンクリート等の、構造体2を渓床26上に実質的に水平に設置(構築)するための基礎11上に立体的に構築される構造体2と、渓流の両岸(渓岸)側の端部が渓流両岸の地盤に定着される引張材13とを備えた対土石流構造物1の構成例を示す。 Figures 1 and 2 show an example of the configuration of a debris flow prevention structure 1 that includes a structure 2 constructed three-dimensionally on a foundation 11, such as a flat concrete plate constructed on the bed 26 of a stream where a debris flow is expected to occur, for installing (constructing) the structure 2 substantially horizontally on the bed 26, and tensile members 13 whose ends on both sides of the stream (river banks) are fixed to the ground on both sides of the stream.

引張材13は渓流の幅方向に、構造体2を挟んで両岸間に架設される場合と、構造体2の軸方向(長さ方向)両側とそれぞれの側の渓岸との間に架設される場合がある。前者の場合、引張材13は構造体2の全体に接触し、後者の場合、引張材13は構造体2の軸方向の両側に接続される。いずれの場合も土石流の発生時に土石からの衝撃力を構造体2と共に負担する。基礎11の下の符号12は割栗石を示す。引張材13の両側の端部は定着部であるアンカー体14である。図1~図7は引張材13が構造体2に接触する場合の構造体2の構築例を、図14~図16は引張材13が構造体2の軸方向両側に接続される場合の構造体2の構築例を示す。 The tension members 13 may be installed across the width of the stream between both banks with the structure 2 in between, or may be installed between both sides of the structure 2 in the axial direction (length direction) and the riverbanks on each side. In the former case, the tension members 13 contact the entire structure 2, and in the latter case, the tension members 13 are connected to both sides of the structure 2 in the axial direction. In either case, the tension members 13 bear the impact force from debris when a debris flow occurs together with the structure 2. The reference number 12 below the foundation 11 indicates a broken granite stone. The ends on both sides of the tension members 13 are anchor bodies 14, which are the fixing parts. Figures 1 to 7 show an example of the construction of the structure 2 when the tension members 13 contact the structure 2, and Figures 14 to 16 show an example of the construction of the structure 2 when the tension members 13 are connected to both sides of the structure 2 in the axial direction.

構造体2は図1に示すように基礎11上に、渓流の幅方向に並列し、軸方向が土石流方向に沿って配置される複数本の下部枠材3と、各下部枠材3の軸方向両端部、または両端部寄りの位置に接合され、下部枠材4から起立する前方側縦枠材4及び後方側縦枠材5を基本の単位フレーム2Aとして備える。構造体2は渓流の幅方向に配列する複数の単位フレーム2A、2A間に下記のつなぎ材6が架設されることにより構成される。 As shown in Figure 1, the structure 2 is constructed on a foundation 11 with multiple lower frame members 3 arranged in parallel in the width direction of the stream with their axial direction aligned with the debris flow direction, and a front vertical frame member 4 and a rear vertical frame member 5 which are joined to both axial ends or positions close to both ends of each lower frame member 3 and stand up from the lower frame members 4 as basic unit frames 2A. The structure 2 is constructed by erecting the following connecting members 6 between multiple unit frames 2A, 2A arranged in the width direction of the stream.

少なくとも渓流の幅方向に隣接する下部枠材3、3間には、図4、図6に示すように両下部枠材3、3を渓流の幅方向に互いに連結するつなぎ材6が架設され、双方に接合される。つなぎ材6は渓流の幅方向に隣接する前方側縦枠材4、4間、または後方側縦枠材5、5間のいずれか、または双方にも架設されることがある。 At least between the lower frame members 3, 3 adjacent in the width direction of the stream, a tie member 6 is installed and joined to both of them, connecting the lower frame members 3, 3 to each other in the width direction of the stream, as shown in Figures 4 and 6. The tie member 6 may also be installed between either or both of the front vertical frame members 4, 4 or the rear vertical frame members 5, 5 adjacent in the width direction of the stream.

隣接する前方側縦枠材4、4間の上流側には図1~図3に示すように土石を直接、堰き止める横架材7が高さ方向に並列して架設され、両前方側縦枠材4、4に接合される。横架材7は一定規模より小さい礫を通過させ、一定規模以上の大きさの礫を堰き止めるために前方側縦枠材4の軸方向に適度な間隔を置いて配列する。横架材7は土石流と共に流下する流木を堰き止めることもある。 As shown in Figures 1 to 3, on the upstream side between the adjacent front vertical frame members 4, 4, horizontal members 7 that directly block the debris are installed in parallel in the height direction and joined to both front vertical frame members 4, 4. The horizontal members 7 are arranged at appropriate intervals in the axial direction of the front vertical frame members 4 to allow gravel smaller than a certain size to pass through and block gravel larger than a certain size. The horizontal members 7 may also block driftwood that flows downstream along with the debris flow.

図1、図2は隣接する前方側縦枠材4、4間単位で区画される区間毎に横架材7の基礎11からの架設高さを変え、構造体2が土石から受ける衝撃力を隣接する前方側縦枠材4、4に分散させ、前方側縦枠材4の軸方向にも分散させるようにした場合の例を示している。この場合、1本の前方側縦枠材4に接合され、渓流の幅方向に隣接する横架材7、7間に段差が付けられる。横架材7は渓流の幅方向に隣接する前方側縦枠材4、4間に架設され、双方に接合されるため、つなぎ材6を兼ねる。 Figures 1 and 2 show an example in which the installation height of the cross member 7 from the foundation 11 is changed for each section divided into adjacent front vertical frame members 4, 4, and the impact force that the structure 2 receives from earth and stones is distributed to the adjacent front vertical frame members 4, 4 and also in the axial direction of the front vertical frame members 4. In this case, a step is provided between the cross members 7, 7 that are joined to one front vertical frame member 4 and are adjacent in the width direction of the stream. The cross member 7 is installed between the front vertical frame members 4, 4 that are adjacent in the width direction of the stream and is joined to both, so it also serves as the connecting member 6.

下部枠材3等の構造体2の構成材には主に鋼材が使用されるが、プレキャストコンクリート部材が使用されることもある他、構造体2が鉄筋コンクリート造で、または鋼材との合成構造で構築されることもある。図面では横架材7を除き、構造体2の構成材がH形鋼等の鋼材である場合の例を示している。横架材7には、土石の衝突による衝撃力に対して変形しにくい鋼管を使用しているが、横架材7を含め、構成材の形状は問われない。構造体2の構成材が鋼材の場合、接合は主に図示するように溶接かボルト接合になる。 Steel is primarily used for the structural components 2, such as the lower frame 3, but precast concrete members may also be used, and the structural components 2 may be constructed of reinforced concrete or a composite structure with steel. The drawing shows an example in which the structural components 2, except for the cross members 7, are steel such as H-shaped steel. The cross members 7 are made of steel pipes that are resistant to deformation due to the impact force of earth and rock collisions, but the shape of the structural components, including the cross members 7, is not important. When the structural components 2 are made of steel, the connections are primarily welded or bolted, as shown in the figure.

前方側縦枠材4と後方側縦枠材5の上部は互いに直接、接合されることもあるが、土石からの衝撃力を受けたときの前方側縦枠材4の転倒を防止する機能を後方側縦枠材5に果たさせる上では、図1、図3-(a)に示すように後方側縦枠材5の上部は前方側縦枠材4の軸方向の中間部に接合されることが合理的である。この場合、前方側縦枠材4に生じる曲げモーメントを後方側縦枠材5が軸方向力として効率的に負担できる利点もある。「上流側」は渓流の上流側(前方側)を指す。同様に以下、「下流側」は渓流の下流側(後方側)を指す。 The upper parts of the front vertical member 4 and the rear vertical member 5 may be joined directly to each other, but in order for the rear vertical member 5 to fulfill the function of preventing the front vertical member 4 from tipping over when subjected to impact forces from soil and rocks, it is reasonable for the upper part of the rear vertical member 5 to be joined to the axial middle part of the front vertical member 4, as shown in Figures 1 and 3-(a). In this case, there is also the advantage that the bending moment generated in the front vertical member 4 can be efficiently borne by the rear vertical member 5 as an axial force. "Upstream side" refers to the upstream side (front side) of the stream. Similarly, hereinafter, "downstream side" refers to the downstream side (rear side) of the stream.

前方側縦枠材4の後方側(下流側)には図1、図4、図5に示すように構造体2に引張材13が接触しながら、渓流の幅方向に架設されるための受け材8が接合され、下部枠材3に直接、もしくは間接的に支持される。受け材8の下には図4に示すように受け材8を下部枠材3に直接、もしくは間接的に支持させるための支持材9が配置され、下部枠材3、または後方側縦枠材5に接合される。支持材9は構造体2の幅方向に前方側縦枠材4と対になる。 A support member 8 is joined to the rear (downstream) side of the front vertical frame member 4 so that it can be erected in the width direction of the stream, with tension members 13 in contact with the structure 2 as shown in Figures 1, 4, and 5, and is supported directly or indirectly by the lower frame member 3. A support member 9 is placed below the support member 8 as shown in Figure 4 to support the support member 8 directly or indirectly by the lower frame member 3, and is joined to the lower frame member 3 or the rear vertical frame member 5. The support member 9 pairs with the front vertical frame member 4 in the width direction of the structure 2.

図1に示す例では受け材8を安定的に構造体2に支持させ、構造体2全体としての剛性を確保するために、前方側縦枠材4の上端部と受け材8の中間部との間に、補助材10を架設し、その両端部を前方側縦枠材4と受け材8に接合している。図1ではまた、前方側縦枠材4の後方側縦枠材5との接合部の上の下流側に接合したつなぎ材6に受け材8を土石流方向に接合し、受け材8の中間部と後方側縦枠材5の下端部との間に支持材9を架設している。 In the example shown in Figure 1, in order to stably support the receiving material 8 on the structure 2 and ensure the rigidity of the structure 2 as a whole, a reinforcing member 10 is installed between the upper end of the front vertical frame member 4 and the middle part of the receiving material 8, and both ends of the reinforcing member 10 are joined to the front vertical frame member 4 and the receiving material 8. Also in Figure 1, the receiving material 8 is joined in the direction of the debris flow to a connecting member 6 joined downstream above the joint between the front vertical frame member 4 and the rear vertical frame member 5, and a support member 9 is installed between the middle part of the receiving material 8 and the lower end of the rear vertical frame member 5.

図4は支持材9の下端部を下部枠材3上の下流側に接合されたつなぎ材6に接合し、支持材9の上端部を受け材8下の下流側に接合されたつなぎ材6に接合した場合の例を示している。図4に示す例では前方側縦枠材4と後方側縦枠材5との接合部の下と下部枠材3の下流側寄りの位置との間に補助材10を架設している。 Figure 4 shows an example in which the lower end of the support material 9 is joined to a tie material 6 joined to the downstream side of the lower frame material 3, and the upper end of the support material 9 is joined to a tie material 6 joined to the downstream side below the receiving material 8. In the example shown in Figure 4, a reinforcing material 10 is installed between the bottom of the joint between the front vertical frame material 4 and the rear vertical frame material 5 and a position near the downstream side of the lower frame material 3.

下部枠材3は図1、図2-(c)に示すように基礎11に下部枠材3の軸方向に相対移動自在に直接、もしくは間接的に接触する。引張材13は下部枠材3の基礎11上での相対移動を許容しながら、構造体2が土石から渓流の下流側に向かって受ける荷重を負担可能に、構造体2のいずれかの部分の下流側に接触するか、接続される。接触の場合、引張材13は構造体2に対しては渓流の幅方向に相対移動自在に接触する。接続の場合、引張材13が土石からの衝撃力を受けて伸長する範囲で構造体2は基礎11上を滑動し得る。 As shown in Figures 1 and 2-(c), the lower frame member 3 is in direct or indirect contact with the foundation 11 so as to be freely movable relative to the foundation in the axial direction of the lower frame member 3. The tension member 13 contacts or is connected to the downstream side of any part of the structure 2 so as to be able to bear the load that the structure 2 receives from the soil and stones toward the downstream side of the stream, while allowing the lower frame member 3 to move relative to the foundation 11. In the case of contact, the tension member 13 contacts the structure 2 so as to be freely movable relative to the width direction of the stream. In the case of connection, the structure 2 can slide on the foundation 11 within the range in which the tension member 13 stretches when it receives an impact force from the soil and stones.

図2-(c)は基礎11上に、下部枠材3に滑動が生じるときの、構造体2が土石から受ける荷重の程度(摩擦力)を調整するための調整材15をアンカーボルト等により固定した場合の例を示す。基礎11上に調整材15が固定されることで、下部枠材3が基礎11上を滑動し始めるときの静止摩擦力を調整し、滑動し易くすることも、滑動しにくくすることも可能になる。 Figure 2-(c) shows an example in which an adjustment material 15 is fixed onto the foundation 11 with an anchor bolt or the like to adjust the degree of load (frictional force) that the structure 2 receives from soil and rocks when the lower frame material 3 starts to slide. By fixing the adjustment material 15 onto the foundation 11, it is possible to adjust the static frictional force when the lower frame material 3 starts to slide on the foundation 11, making it easier or harder to slide.

図2-(c)に示す例ではH型鋼を使用した下部枠材3の下部フランジの底面に、調整材15上に直接載り、下部枠材3の下部フランジの幅より大きい幅を有する滑り材31を一体化させている。同時に、調整材15の幅方向両側に、調整材15の本体部と共に滑り材31の幅方向両側部分を上下から挟み込む被係止部15aを一体化させ、滑り材31の調整材15上での滑動に伴う浮き上がりを防止している。この場合、上記の静止摩擦力は滑り材31と調整材15との間の摩擦係数で決まる。 In the example shown in Figure 2-(c), a sliding member 31, which rests directly on the adjustment member 15 and has a width greater than the width of the lower flange of the lower frame member 3, is integrated with the bottom surface of the lower flange of the lower frame member 3, which uses an H-shaped steel. At the same time, a retaining portion 15a is integrated with both sides of the width of the adjustment member 15, which, together with the main body of the adjustment member 15, sandwiches both sides of the width of the sliding member 31 from above and below, preventing the sliding member 31 from floating up as it slides on the adjustment member 15. In this case, the static friction force is determined by the coefficient of friction between the sliding member 31 and the adjustment member 15.

被係止部15aは図1に示すように調整材15の軸方向に間隔を置いて部分的に、分散して配置されればよいが、連続的に形成されることもある。調整材15の幅方向両側の被係止部15a、15a、あるいは被係止部15a、15aを有する調整材15は下部枠材3の基礎11からの浮き上がりを拘束しながら、調整材15上での滑動を案内する案内部材(ガイドレール)の役目を果たす。 The interlocking portions 15a may be partially and dispersedly arranged at intervals in the axial direction of the adjustment material 15 as shown in FIG. 1, but may also be formed continuously. The interlocking portions 15a, 15a on both sides of the width of the adjustment material 15, or the adjustment material 15 having interlocking portions 15a, 15a, act as a guide member (guide rail) that guides the sliding movement on the adjustment material 15 while preventing the lower frame material 3 from lifting up from the foundation 11.

図3-(a)は構造体2に引張材13、13を上下2段に配置し、両引張材13、13を構造体2に接触させ、引張材13の端部定着部であるアンカー体14を渓流の両岸(渓岸)の地盤に定着させた様子を示す。図3-(b)は(a)に示す上段側の引張材13の架設(配置)状況を示している。アンカー体14は図3-(b)、図5に示すように引張材13の長さ方向の両端部に接続される。アンカー体14と引張材13との接続の詳細例は後述する。図3-(a)は土石による衝撃力の程度に応じ、構造体2が基礎11上を自由に滑動できる状態に基礎11上に直接、もしくは中間材である上記の調整材15を介して間接的に載置されている様子も示している。 Figure 3-(a) shows how the tension members 13, 13 are arranged in two tiers, one above the other, on the structure 2, and how both tension members 13, 13 are in contact with the structure 2, and how the anchor bodies 14, which are the end fixing parts of the tension members 13, are fixed to the ground on both sides (river banks) of the stream. Figure 3-(b) shows how the tension members 13 on the upper tier shown in (a) are installed (placed). The anchor bodies 14 are connected to both ends of the tension members 13 in the longitudinal direction, as shown in Figures 3-(b) and 5. A detailed example of the connection between the anchor bodies 14 and the tension members 13 will be described later. Figure 3-(a) also shows how the structure 2 is placed directly on the foundation 11, or indirectly via the above-mentioned intermediate adjustment material 15, in a state in which it can slide freely on the foundation 11, depending on the level of impact force from soil and rocks.

基礎11上、もしくは調整材15上には構造体2の下部枠材3が直接、または上記した滑り材31が載置されるため、下部枠材3の底面と基礎11、または調整材15との間の静止摩擦力を超える水平力が図3の矢印の向きに構造体2に作用したときに、構造体2は基礎11上、もしくは調整材15上を滑動する。下部枠材3の底面は上記したH型鋼の下部フランジの底面である。 The lower frame member 3 of the structure 2 is placed directly on the foundation 11 or on the adjustment member 15, or the sliding member 31 described above is placed on the foundation 11 or on the adjustment member 15. Therefore, when a horizontal force that exceeds the static friction force between the bottom surface of the lower frame member 3 and the foundation 11 or adjustment member 15 acts on the structure 2 in the direction of the arrow in Figure 3, the structure 2 slides on the foundation 11 or on the adjustment member 15. The bottom surface of the lower frame member 3 is the bottom surface of the lower flange of the H-shaped steel described above.

図3-(b)は引張材13を構造体2の下流側に接触させながら、平面上、全体として曲線状に配置した様子を示す。引張材13は構造体2が土石から受ける衝撃力を構造体2と共に分担し、長さ方向にも分散して負担可能なように、平面上、極端な屈曲箇所が生じないように配置される。 Figure 3-(b) shows the tension member 13 placed in a curved shape on a plane while contacting the downstream side of the structure 2. The tension member 13 is placed in a plane so that it does not have any extreme bends, so that it can share the impact force that the structure 2 receives from the earth and rocks together with the structure 2 and distribute the force in the length direction.

具体的には引張材13は渓流の幅方向の中央部付近において構造体2の後方側(下流側)に配置され、中央部付近から渓流の幅方向両側寄りにかけ、渓流の上流側に向かう曲線を描くように架設される。引張材13は構造体2が土石からの衝撃力を受けて基礎11上を滑動したときに、平常時より伸長し、伸長分の引張力を負担し、アンカー体14を通じて地盤に伝達する。引張材13は構造体2の軸方向中間部で下流側に凸の曲線を描く。 Specifically, the tension member 13 is placed at the rear (downstream) side of the structure 2 near the center in the width direction of the stream, and is erected so as to draw a curve from near the center to both sides in the width direction of the stream toward the upstream side of the stream. When the structure 2 receives an impact force from earth and rocks and slides on the foundation 11, the tension member 13 stretches more than normal, bears the tensile force of the stretch, and transmits it to the ground through the anchor body 14. The tension member 13 draws a convex curve toward the downstream side at the axial middle of the structure 2.

図3-(a)、(b)は渓流の幅方向に見たとき、引張材13の、構造体2の両側に位置する部分と両岸の地盤に定着されたアンカー体14との間に、土石からの衝撃力を受けたときに、衝撃力(引張力)に応じた減衰力を発生する減衰装置16を接続した状況も併せて示している。減衰装置16とアンカー体14の詳細例は後述する。 When viewed in the width direction of the stream, Figures 3-(a) and (b) also show a situation in which a damping device 16 is connected between the parts of the tensile member 13 located on both sides of the structure 2 and the anchor bodies 14 fixed to the ground on both banks, which generates a damping force corresponding to the impact force (tensile force) when an impact force from soil or rocks is received. A detailed example of the damping device 16 and the anchor bodies 14 will be described later.

図4は構造体2の他の具体的な構成例を示す。この例でも下部枠材3の上流側の端部か端部寄りの位置に前方側縦枠材4の下端部を接合し、下流側の端部か端部寄りの位置に後方側縦枠材4の下端部を接合し、後方側縦枠材4の上端部を前方側縦枠材4の軸方向中間部に接合している。ここでは、受け材8を後方側縦枠材5の前方側縦枠材4との接合部より上の位置に接合し、下部枠材3と平行に水平に架設している。 Figure 4 shows another specific example of the structure 2. In this example, the lower end of the front vertical frame member 4 is joined to the upstream end or a position close to the end of the lower frame member 3, the lower end of the rear vertical frame member 4 is joined to the downstream end or a position close to the end, and the upper end of the rear vertical frame member 4 is joined to the axial middle part of the front vertical frame member 4. Here, the support member 8 is joined to a position above the joint between the rear vertical frame member 5 and the front vertical frame member 4, and is installed horizontally in parallel with the lower frame member 3.

受け材8の下流側の端部か端部寄りの位置に、受け材8を下部枠材3に支持させるための支持材9の上端部が接合される。この例では下部枠材3の下流側の上と受け材8の下流側の下につなぎ材6を架設している関係で、支持材9の上下はつなぎ材6、6に接合され、受け材8はつなぎ材6に接合されている。支持材9の下端部は後方側縦枠材5に接合されることもあり、支持材9の上端部は受け材8に接合されることもある。また前方側縦枠材4と後方側縦枠材5との接合部の下方と、下部枠材3と後方側縦枠材5との接合部の上流側との間に補助材10を架設し、両端部を双方に接合している。 The upper end of the support member 9 is joined to the downstream end or near the end of the receiving member 8 to support the receiving member 8 on the lower frame member 3. In this example, since a tie member 6 is installed above the downstream side of the lower frame member 3 and below the downstream side of the receiving member 8, the top and bottom of the support member 9 are joined to the tie members 6, 6, and the receiving member 8 is joined to the tie member 6. The lower end of the support member 9 may be joined to the rear vertical frame member 5, and the upper end of the support member 9 may be joined to the receiving member 8. In addition, an auxiliary member 10 is installed below the joint between the front vertical frame member 4 and the rear vertical frame member 5 and the upstream side of the joint between the lower frame member 3 and the rear vertical frame member 5, and both ends are joined to both.

図5は図3-(a)に示す構造体2と上段側の引張材13との関係の具体例を示す。図3-(a)に示す上段側の引張材13は渓流の幅方向の中央部付近では構造体2の下流側(後方側)に位置し、渓流の幅方向両側寄りでは渓流の上流側に位置し、平面上、湾曲するように配置される。 Figure 5 shows a specific example of the relationship between the structure 2 shown in Figure 3-(a) and the upper tensile member 13. The upper tensile member 13 shown in Figure 3-(a) is located on the downstream side (rear side) of the structure 2 near the center of the stream's width, and is located on the upstream side of the stream near both sides of the stream's width, and is arranged so that it is curved in a plane.

「湾曲する」とは、引張材13が渓流の幅方向に、構造体2の区間において全体として多角形状に配置されることも含む。図5には図3-(a)に示す下段側の引張材13を配置した様子も示している。下段側の引張材13は上段側の引張材13と同様に湾曲して配置される他、部分的に屈曲し、上段側より小さい多角形状等に配置される。 "Curved" also includes the case where the tension members 13 are arranged in a polygonal shape overall in the width direction of the stream within the section of the structure 2. Figure 5 also shows the arrangement of the tension members 13 on the lower level shown in Figure 3-(a). The tension members 13 on the lower level are arranged curved like the tension members 13 on the upper level, and are also partially bent and arranged in a polygonal shape that is smaller than the upper level.

図5に示すように引張材13が渓流の幅方向の中央部付近では構造体2の下流側に位置し、幅方向両側寄りになる程、構造体2の上流側に位置するように引張材13を配置することは、引張材13が直接、もしくは間接的に接触する受け材8の上流側の端部を前方側縦枠材4に揃えながら、受け材8の長さを相違させることによっても可能である。但し、その場合、各受け材8の長さを渓流の幅方向の位置毎に相違させることになり、受け材8を支持する支持材9の位置を変えることが必要になる。 As shown in Figure 5, the tension members 13 are positioned downstream of the structure 2 near the center of the stream's width, and as they move toward both sides of the width, they are positioned upstream of the structure 2. This can also be achieved by aligning the upstream end of the receiving member 8, with which the tension members 13 directly or indirectly come into contact, with the front vertical frame member 4, while varying the length of the receiving member 8. However, in this case, the length of each receiving member 8 will differ for each position in the stream's width, and it will be necessary to change the position of the support member 9 that supports the receiving member 8.

これに対し、渓流の幅方向の位置に拘わらず、全受け材8の長さを統一しながら、引張材13の接触位置を変えることは、図5に示すように引張材13が受け材8毎に異なる位置で接触する滑車(アイドラー)やローラ等の接触材17を受け材8に接続し、幅方向の位置に応じて受け材8への接続位置を変えることで、可能になる。接触材17の引張材13が接触する区間は主に曲線状に形成される。 In contrast, changing the contact position of the tension member 13 while standardizing the length of all receiving materials 8 regardless of the position in the width direction of the stream is possible by connecting contact members 17 such as pulleys (idlers) or rollers, which contact the tension members 13 at different positions for each receiving material 8, to the receiving materials 8 as shown in Figure 5, and changing the connection position to the receiving material 8 depending on the position in the width direction. The section of the contact member 17 where the tension member 13 comes into contact is mainly formed in a curved shape.

引張材13に予め引張力が付与される場合、渓流の幅方向に隣接する受け材8、8間では引張材13は直線状に配置されるが、構造体2全体では平面上、近似的に曲線状に配置される。接触材17が滑車等の場合、引張材13は接触材17に対して相対移動しようとするときに、引張材13が接触材17に摺動する場合との対比では接触材17との間に生じる摩擦力を抑制できる利点がある。構造体2が土石から衝撃力を受けた時点から引張材13に衝撃力の一部を分担させる上では、引張材13には予め引張力が付与されることが合理的であるが、必ずしもその必要はない。 When a tensile force is applied to the tension member 13 in advance, the tension member 13 is arranged in a straight line between the receiving members 8, 8 adjacent in the width direction of the stream, but is arranged in an approximately curved line on a plane for the entire structure 2. When the contact member 17 is a pulley or the like, there is an advantage that the frictional force generated between the tension member 13 and the contact member 17 can be suppressed when the tension member 13 tries to move relative to the contact member 17, as compared to when the tension member 13 slides against the contact member 17. In order to have the tension member 13 share part of the impact force from the moment the structure 2 receives the impact force from the soil and rocks, it is reasonable to apply a tensile force to the tension member 13 in advance, but this is not necessarily required.

図6は図5に示す構造体2の少なくとも渓流の幅方向に隣接する下部枠材3、3間に架設され、両下部枠材3、3を互いに連結するつなぎ材6と下部枠材3との関係を示す。つなぎ材6は図4-(a)に示すように下部枠材3上の上流側の位置と下流側の位置に配置され、下部枠材3に接合される。 Figure 6 shows the relationship between the lower frame members 3 and the connecting members 6 that are installed between the lower frame members 3 and 3 adjacent to each other in at least the width direction of the stream of the structure 2 shown in Figure 5 and connect the two lower frame members 3 and 3 to each other. The connecting members 6 are placed at upstream and downstream positions on the lower frame member 3 as shown in Figure 4-(a) and are joined to the lower frame member 3.

図4は受け材8の下流側の直下にもつなぎ材6を配置した場合の例を示している。つなぎ材6は具体的には図6に示すように各下部枠材3上等に予め接合される固定つなぎ材61と、隣接する下部枠材3、3等に固定されている固定つなぎ材61、61間に現場で架設され、固定つなぎ材61に接合される接続つなぎ材62からなる。「予め」とは、構造体2が現場で最終的に構築される以前の意味であり、主に工場での接合を言う。 Figure 4 shows an example in which a tie 6 is also placed directly below the downstream side of the support member 8. Specifically, as shown in Figure 6, the tie 6 consists of fixed tie 61 that is pre-joined onto each lower frame member 3, etc., and connecting tie 62 that is installed on-site between fixed tie 61, 61 fixed to adjacent lower frame members 3, 3, etc., and joined to the fixed tie 61. "Pre-joined" means before the structure 2 is finally constructed on-site, and mainly refers to joining at a factory.

固定つなぎ材61が一体化した下部枠材3は基礎11上には現場で渓流の幅方向に間隔を置いて配列させられ、幅方向に隣接する下部枠材3、3の固定つなぎ材61、61間に接続つなぎ材62が架設され、両固定つなぎ材61、61に接合される。 The lower frame members 3 with the fixed ties 61 integrated into them are arranged on-site on the foundation 11 at intervals in the width direction of the stream, and connecting ties 62 are erected between the fixed ties 61, 61 of the lower frame members 3, 3 adjacent in the width direction and joined to both fixed ties 61, 61.

下部枠材3と上流側の固定つなぎ材61との接合部と、その下部枠材3に隣接する下部枠材3と下流側の固定つなぎ材61との接合部との間に図6に示すように水平ブレース18、18が交差して架設される。水平ブレース18、18は隣接する単位フレーム2A、2A間の2方向の水平剛性を確保し、下部枠材3を含む、上記した隣接する単位フレーム2A、2Aの一体性が確保される。水平ブレース18は下部枠材3以外の隣接する構造体構成材間に架設されることもある。 Horizontal braces 18, 18 are installed crossing each other between the joint between the lower frame member 3 and the upstream fixed tie member 61 and the joint between the lower frame member 3 adjacent to that lower frame member 3 and the downstream fixed tie member 61, as shown in FIG. 6. The horizontal braces 18, 18 ensure horizontal rigidity in two directions between the adjacent unit frames 2A, 2A, and ensure the integrity of the adjacent unit frames 2A, 2A, including the lower frame member 3. The horizontal braces 18 may also be installed between adjacent structural components other than the lower frame member 3.

図7-(a)は図2とは異なる横架材7の架設例を示す。横架材7はつなぎ材6と同様、構造体2の基本となる下部枠材3(単位フレーム2A)単位で接合される前方側縦枠材4に予め接合される固定横架材71と、隣接する前方側縦枠材4、4に固定されている固定横架材71、71間に現場で架設され、両固定横架材71、71に接合される接続横架材72からなる。 Figure 7-(a) shows an example of the installation of a horizontal member 7 different from that shown in Figure 2. Like the connecting member 6, the horizontal member 7 is made up of a fixed horizontal member 71 that is joined in advance to the front vertical frame member 4 that is joined to the lower frame member 3 (unit frame 2A) that is the base of the structure 2, and a connecting horizontal member 72 that is erected on-site between fixed horizontal members 71, 71 that are fixed to adjacent front vertical frame members 4, 4 and joined to both fixed horizontal members 71, 71.

図7に示す例では接続横架材72を隣接する固定横架材71、71間に現場で架設し、両固定横架材71、71に接合する際の作業性を確保するために、固定横架材71の軸方向両端に端部プレート71aを、接続横架材72の軸方向両端に端部プレート72aをそれぞれ接合している。端部プレート71a、72aには補剛のためのスチフナ71b、72bが接合される。 In the example shown in Figure 7, a connecting cross member 72 is erected on-site between adjacent fixed cross members 71, 71, and to ensure workability when joining the two fixed cross members 71, 71, end plates 71a are joined to both axial ends of the fixed cross member 71, and end plates 72a are joined to both axial ends of the connecting cross member 72. Stiffeners 71b, 72b for stiffening are joined to the end plates 71a, 72a.

その上で、特に接合の作業性を向上させる目的で、図7-(b)に示すように固定横架材71の端部プレート71aの表面と接続横架材72の端部プレート72aの表面に、下流側から上流側にかけて前方側縦枠材4の幅方向両外側から中心側へ向かう傾斜を付けている。「前方側縦枠材4の幅方向両外側から中心側へ向かう傾斜」は固定横架材71の軸方向両端側から中心側へ向かう傾斜とも言える。 In addition, in order to improve workability in particular in the joining process, as shown in Figure 7-(b), the surface of the end plate 71a of the fixed cross member 71 and the surface of the end plate 72a of the connecting cross member 72 are inclined from both outer sides in the width direction of the front vertical frame member 4 toward the center from the downstream side to the upstream side. "Inclination from both outer sides in the width direction of the front vertical frame member 4 toward the center" can also be said to be an inclination from both axial ends of the fixed cross member 71 toward the center.

端部プレート71a、72aの表面にこの傾斜が付けられることで、両端に端部プレート72a、72aが接合された接続横架材72を隣接する固定横架材71、71間に上流側から下流側へ向けて差し込み、接続横架材72の端部プレート72aを固定横架材71の端部プレート71aに重ね、ボルト等による接合の作業がし易くなる。 By providing this inclination to the surfaces of the end plates 71a, 72a, the connecting cross member 72, which has end plates 72a, 72a joined to both ends, can be inserted between adjacent fixed cross members 71, 71 from the upstream side to the downstream side, and the end plate 72a of the connecting cross member 72 can be placed on the end plate 71a of the fixed cross member 71, making it easier to join them using bolts or the like.

この場合、端部プレート72aが端部プレート71aに重なるときに、予め隙間なく、丁度重なるような精度で固定横架材71と接続横架材72が製作されている場合でも、隣接する固定横架材71、71の両端部プレート71a、71a間の上流側の間隔が大きいため、間に差し込まれる接続横架材72の端部プレート72a、72aを端部プレート71a、71aに接触(摺動)させずに端部プレート71a、71a間に差し込むことができる。端部プレート72a、72aは端部プレート71a、71aに重なった状態で双方を貫通するボルト等により接合される。 In this case, even if the fixed beam 71 and the connecting beam 72 are manufactured with a precision that allows the end plate 72a to overlap the end plate 71a without any gaps, the upstream gap between the end plates 71a, 71a of the adjacent fixed beams 71, 71 is large, so the end plates 72a, 72a of the connecting beam 72 can be inserted between the end plates 71a, 71a without contacting (sliding) with the end plates 71a, 71a. The end plates 72a, 72a are joined by bolts or the like that pass through both the end plates 71a, 71a while overlapping them.

また端部プレート71a、72aの表面が傾斜することで、接続横架材72が土石からの衝撃力を受けたときに、端部プレート72aが重なる固定横架材71の端部プレート71aから、端部プレート71aの面に垂直な方向の反力を期待することができる。従って接続横架材72が土石から受けた衝撃力(荷重)をボルトのせん断力に依らずに、固定横架材71に端部プレート72a、71aを通じて伝達することができるため、ボルトの損傷を招くことなく、固定横架材71と接続横架材72が受けた衝撃力を、前方側縦枠材4を通じて構造体2全体に負担させることができる。 In addition, because the surfaces of the end plates 71a and 72a are inclined, when the connecting cross member 72 receives an impact force from soil or rocks, a reaction force can be expected in a direction perpendicular to the surface of the end plate 71a from the end plate 71a of the fixed cross member 71 on which the end plate 72a overlaps. Therefore, the impact force (load) received by the connecting cross member 72 from soil or rocks can be transmitted to the fixed cross member 71 through the end plates 72a and 71a without relying on the shear force of the bolts, so the impact force received by the fixed cross member 71 and the connecting cross member 72 can be borne by the entire structure 2 through the front vertical frame member 4 without causing damage to the bolts.

図8は引張材13の本体部分の端部と、これに接続され、渓流両岸の地盤に定着される端部定着部のアンカー体14との接続例を示す。アンカー体14は地盤に定着(固定)されるため、引張材13の端部はアンカー体14の地上に露出する頭部141に接続されることで、地盤に間接的に固定された状態になる。図8は図12に示すアンカー体14の頭部141が後述のアンカー定着材20に定着されている様子を示している。 Figure 8 shows an example of a connection between the end of the main body of the tensile member 13 and the anchor body 14 of the end fixing part which is connected to it and fixed to the ground on both sides of the stream. Since the anchor body 14 is fixed (anchored) to the ground, the end of the tensile member 13 is indirectly fixed to the ground by being connected to the head 141 of the anchor body 14 exposed above ground. Figure 8 shows how the head 141 of the anchor body 14 shown in Figure 12 is fixed to the anchor fixing material 20 described below.

図8に示す例では引張材13の端部を図9に示す定着材19に接続する一方、アンカー体14の頭部141に接続された図11に示すアンカー定着材20に図10に示す接続材21を接続し、この接続材21に定着材19を接続している。引張材13の端部は定着材19にはナット等の定着具131により定着される。 In the example shown in Figure 8, the end of the tensile member 13 is connected to the fixing member 19 shown in Figure 9, while the connecting member 21 shown in Figure 10 is connected to the anchor fixing member 20 shown in Figure 11, which is connected to the head 141 of the anchor body 14, and the fixing member 19 is connected to this connecting member 21. The end of the tensile member 13 is fixed to the fixing member 19 by a fixing device 131 such as a nut.

接続材21はアンカー定着材20に接続される接続板21aと、これに一体化し、引張材13が接続された定着材19が間接的に接続される定着板21bを有し、定着板21bに、定着材19が接続されるロッド22、22が引張材13側へ突出した状態で接続される。ここでは引張材13からの引張力を安定的に接続材21に伝達するために、ロッド22、22と定着板21b、21bを引張材13の幅方向(厚さ方向)に並列させている。ロッド22は定着板21bにはナット等の定着具221により接続される。 The connecting material 21 has a connecting plate 21a connected to the anchor fixing material 20, and a fixing plate 21b which is integral with the connecting plate 21a and to which the fixing material 19 connected to the tensile material 13 is indirectly connected, and the rods 22, 22 to which the fixing material 19 is connected are connected to the fixing plate 21b in a state where they protrude toward the tensile material 13. Here, in order to stably transmit the tensile force from the tensile material 13 to the connecting material 21, the rods 22, 22 and the fixing plates 21b, 21b are arranged in parallel in the width direction (thickness direction) of the tensile material 13. The rod 22 is connected to the fixing plate 21b by a fixing device 221 such as a nut.

アンカー定着材20はアンカー体14の頭部141がナット等の定着具142等により定着される定着板20aと、定着板20aから接続材21側へ張り出して定着板20aに一体化する接続板20bを有し、接続板20bに接続材21の接続板21bがいずれかの軸回りに、または任意の軸回りに回転自在に接続される。 The anchor fixing material 20 has a fixing plate 20a to which the head 141 of the anchor body 14 is fixed by a fixing device 142 such as a nut, and a connecting plate 20b that protrudes from the fixing plate 20a toward the connecting material 21 and is integrated with the fixing plate 20a, and the connecting plate 21b of the connecting material 21 is connected to the connecting plate 20b so as to be rotatable around either axis or any axis.

定着材19は図9に示すように接続材21の並列するロッド22、22が挿通するロッド挿通部19a、19aと、引張材13が挿通する引張材挿通部19bと、これらの双方に一体化する反力材19cから組み立てられる。定着材19はロッド22、22には図8に示すようにロッド22の軸方向の位置の調整が自在に接続され、接続位置の調整により引張材13への初期の張力の付与と張力の調整が可能になっている。ロッド22はロッド挿通部19aに形成された孔を挿通し、引張材13は引張材挿通部19bに形成された孔を挿通する。 As shown in FIG. 9, the fixing material 19 is assembled from rod insertion portions 19a, 19a through which the parallel rods 22, 22 of the connecting material 21 are inserted, a tension material insertion portion 19b through which the tension material 13 is inserted, and a reaction material 19c integrated with both of these. As shown in FIG. 8, the fixing material 19 is connected to the rods 22, 22 so that the axial position of the rod 22 can be freely adjusted, and by adjusting the connection position, it is possible to apply initial tension to the tension material 13 and adjust the tension. The rod 22 is inserted through a hole formed in the rod insertion portion 19a, and the tension material 13 is inserted through a hole formed in the tension material insertion portion 19b.

図12はアンカー体14の全体を示す。アンカー体14の頭部141以下の区間は地盤中に形成された削孔23内に挿入され、削孔23内にグラウト材24が充填され、アンカー体14の先端定着部143がグラウト材24中に定着された状態で、頭部141側から軸方向に引張力が付与される。その状態で図8に示すように頭部141が地上のアンカー定着材20に定着されることで、アンカー体14は地盤に圧縮力を加え、地盤に定着された状態を維持する。図12中のアンカー体14の頭部141が定着されているプレートは図8におけるアンカー定着材20の定着板20aに置き換わる。 Figure 12 shows the entire anchor body 14. The section below the head 141 of the anchor body 14 is inserted into a drilled hole 23 formed in the ground, the drilled hole 23 is filled with grout material 24, and a tensile force is applied in the axial direction from the head 141 side with the tip fixing part 143 of the anchor body 14 fixed in the grout material 24. In this state, as shown in Figure 8, the head 141 is fixed to the anchor fixing material 20 on the ground, so that the anchor body 14 applies a compressive force to the ground and maintains its fixed state. The plate to which the head 141 of the anchor body 14 in Figure 12 is fixed is replaced with the fixing plate 20a of the anchor fixing material 20 in Figure 8.

アンカー定着材20は地盤の表面に設置、または構築された鉄筋コンクリート造等の被定着体25に支持され、アンカー定着材20が負担するアンカー体14の引張力の反力は被定着体25で負担される。 The anchor fixing material 20 is installed on the ground surface or supported by a fixed body 25 such as a constructed reinforced concrete structure, and the reaction force of the tensile force of the anchor body 14 borne by the anchor fixing material 20 is borne by the fixed body 25.

図13は図3に示す減衰装置16の具体例を示す。ここに示す減衰装置16は、引張材13が引張力を受けて伸長し、地盤に定着されているアンカー体14に対して移動しようとする引張材13のいずれかの部分に、断面積が軸方向に変化する形状の、厚肉のプレート161を接続する一方、引張材13の外周にプレート161が内接する筒状材162を配置した構造をしている。 Figure 13 shows a specific example of the damping device 16 shown in Figure 3. The damping device 16 shown here has a structure in which a thick plate 161, the cross-sectional area of which changes in the axial direction, is connected to any part of the tensile member 13 that is stretched by a tensile force and moves relative to the anchor body 14 fixed to the ground, while a tubular member 162 in which the plate 161 is inscribed is disposed on the outer periphery of the tensile member 13.

プレート161は、引張材13の軸方向に直交する方向の断面積が引張力の作用側から反対側へかけて次第に拡大するテーパの付いた形状をしている。図13では引張力の作用側が引張材13側を示している。筒状材162はプレート161の断面積の小さい側の小径区間162aと大きい側の大径区間162bと、平常時にプレート161が内接する中間区間162cとに区分される。プレート161は引張材13の伸長に応じて引張材13の軸方向に移動するが、筒状材162は引張材13に追従しないよう、引張材13から絶縁され、絶対的に固定されており、プレート161のみが筒状材162に対して相対移動する。 The plate 161 has a tapered shape in which the cross-sectional area in the direction perpendicular to the axial direction of the tensile member 13 gradually expands from the side where the tensile force is applied to the opposite side. In FIG. 13, the side where the tensile force is applied is the tensile member 13 side. The tubular member 162 is divided into a small diameter section 162a on the side where the cross-sectional area of the plate 161 is smaller, a large diameter section 162b on the side where the cross-sectional area is larger, and an intermediate section 162c in which the plate 161 is inscribed under normal conditions. The plate 161 moves in the axial direction of the tensile member 13 in response to the elongation of the tensile member 13, but the tubular member 162 is insulated from the tensile member 13 and absolutely fixed so as not to follow the tensile member 13, and only the plate 161 moves relative to the tubular member 162.

引張材13に作用する引張力を受け、プレート161が筒状材162内を中間区間162cから小径区間162aに移動するときに、プレート161が筒状材162の中間区間162cと小径区間162aを力嵌め式に押し広げようとすることで、摩擦力と筒状材162の塑性変形時の履歴吸収エネルギに応じた減衰力を発生する機構になっている。但し、図13に示す減衰装置16は例示に過ぎないため、減衰装置16の形態は問われない。 When the plate 161 receives a tensile force acting on the tensile member 13 and moves from the intermediate section 162c to the small diameter section 162a inside the tubular member 162, the plate 161 tries to forcefully spread the intermediate section 162c and the small diameter section 162a of the tubular member 162, creating a mechanism that generates a damping force according to the frictional force and the hysteretic absorption energy during the plastic deformation of the tubular member 162. However, since the damping device 16 shown in FIG. 13 is merely an example, the form of the damping device 16 is not important.

図14-(a)、(b)は図3に示すように引張材13、13が上下2段に配置された場合に、構造体2の軸方向両側寄りの上部側と下部側に引張材13の構造体2側の端部が接続(定着)された場合の、引張材13の構造体2との接続例を示す。(a)は上段側の引張材13の構造体2との接続例を、(b)は下段側の引張材13の構造体2との接続例を示している。図14の例では引張材13の端部を構造体2の支持材9に接続しているが、引張材13の接続位置は問われない。引張材13は構造体2の高さ方向に3段以上、配置されることもある。 Figures 14-(a) and (b) show an example of the connection of the tensile member 13 to the structure 2 when the tensile members 13, 13 are arranged in two tiers, upper and lower, as shown in Figure 3, and the ends of the tensile members 13 on the structure 2 side are connected (fixed) to the upper and lower sides near both axial sides of the structure 2. (a) shows an example of the connection of the tensile member 13 on the upper tier to the structure 2, and (b) shows an example of the connection of the tensile member 13 on the lower tier to the structure 2. In the example of Figure 14, the ends of the tensile members 13 are connected to the support members 9 of the structure 2, but the connection position of the tensile members 13 is not important. The tensile members 13 may be arranged in three or more tiers in the height direction of the structure 2.

引張材13の構造体2側の端部は、これに構造体2との相対変位時に曲げモーメントが作用しないよう、図15に示すように構造体2のいずれかの部分に支持された水平軸2aと鉛直軸2bの回りに回転自在に接続(連結)される。図14の引張材13の構造体2側端部の詳細例を図15-(a)に、その立面を(b)に示す。 The end of the tension member 13 on the side of the structure 2 is connected (coupled) so as to be rotatable around a horizontal axis 2a and a vertical axis 2b supported on any part of the structure 2 as shown in Figure 15, so that no bending moment acts on it when it is displaced relative to the structure 2. A detailed example of the end of the tension member 13 on the side of the structure 2 in Figure 14 is shown in Figure 15-(a), and its elevation is shown in (b).

図15では引張材13のアンカー体14側の端部を、定着材19を介在させずに接続材21に直接、ナット等の定着具131で接続するために、その端部に一体的に接続したスリーブ13aと同様に、引張材13の構造体2側の端部に雄ねじが形成されたスリーブ13aを一体的に接続している。このスリーブ13aを、構造体2のいずれかの部分に支持された水平軸2aに軸支される上流側連結材13bに、引張材13からの引張力が伝達可能に接続している。 In FIG. 15, the end of the tension member 13 on the anchor body 14 side is connected directly to the connecting member 21 with a fixing device 131 such as a nut without the need for a fixing member 19, so a sleeve 13a with a male thread is connected integrally to the end of the tension member 13 on the structure 2 side, just like the sleeve 13a connected integrally to the end. This sleeve 13a is connected to an upstream connecting member 13b supported by a horizontal shaft 2a supported on any part of the structure 2 so that the tensile force from the tension member 13 can be transmitted.

上流側連結材13bは構造体2の他の部分に支持された鉛直軸2bに軸支された下流側連結材13cに水平軸2a回りに回転自在に連結される。引張材13は水平軸2a回りと鉛直軸2b回りに回転自在に連結されることで、構造体2に任意の方向の軸回りに回転自在な状態にある。 The upstream connecting member 13b is connected to the downstream connecting member 13c, which is supported on a vertical axis 2b supported on another part of the structure 2, so that it can rotate freely around the horizontal axis 2a. The tension member 13 is connected to the structure 2 so that it can rotate freely around the horizontal axis 2a and the vertical axis 2b, so that it can rotate freely around an axis in any direction.

図15に示す例では(a)、(b)に示すように構造体2の下流側に位置する例えば支持材9の上流側に鉛直方向に並列して突設されたブラケット9a、9a間に鉛直軸2bとしてのピンを支持させ、この鉛直軸2bに下流側連結材13cを軸支させている。 In the example shown in Figure 15 (a) and (b), a pin is supported as a vertical shaft 2b between brackets 9a, 9a that are arranged in parallel in the vertical direction and protrude from, for example, the upstream side of a support material 9 located downstream of the structure 2, and a downstream connecting material 13c is supported on this vertical shaft 2b.

引張材13、13は2段に配置されるため、図14に示すように上段側の引張材13は支持材9等の上部に突設されたブラケット9a、9aに接続され、下段側の引張材13は支持材9等の下部に突設されたブラケット9a、9aに接続される。 The tension members 13, 13 are arranged in two tiers, so that the upper tier tension members 13 are connected to brackets 9a, 9a protruding from the top of the support member 9, etc., as shown in FIG. 14, and the lower tier tension members 13 are connected to brackets 9a, 9a protruding from the bottom of the support member 9, etc.

図16-(a)は構造体2に上下2段に引張材13、13を配置した場合に、2本の引張材13、13を互いに平行に配置した場合の引張材13、13の架設例を、(b)は2本の引張材13、13を渓岸側で交差させて配置した場合の引張材13、13の架設例を示す。 Figure 16-(a) shows an example of the installation of tension members 13, 13 when two tension members 13, 13 are arranged parallel to each other when two tension members 13, 13 are arranged in two tiers, one above the other, on the structure 2, and (b) shows an example of the installation of tension members 13, 13 when two tension members 13, 13 are arranged crossing each other on the riverbank side.

1……対土石流構造物、
2……構造体、2A……単位フレーム、2a……水平軸、2b……鉛直軸、
3……下部枠材、31……滑り材、
4……前方側縦枠材、5……後方側縦枠材、
6……つなぎ材、61……固定つなぎ材、62……接続つなぎ材、
7……横架材、71……固定横架材、71a……端部プレート、71b……スチフナ、72……接続横架材、72a……端部プレート、72b……スチフナ、
8……受け材、9……支持材、9a……ブラケット、10……補助材、
11……基礎、12……割栗石、
13……引張材、131……定着具、13a……スリーブ、13b……上流側連結材、13c……下流側連結材、
14……アンカー体、141……頭部、142……定着具、143……先端定着部、
15……調整材、15a……被係止部、
16……減衰装置、161……プレート、162……筒状材、162a……小径区間、162b……大径区間、162c……中間区間、
17……接触材、
18……水平ブレース、
19……定着材、19a……ロッド挿通部、19b……引張材挿通部、19c……反力材、
20……アンカー定着材、20a……定着板、20b……接続板、
21……接続材、21a……接続板、21b……定着板、22……ロッド、221……定着具、
23……削孔、24……グラウト材、
25……被定着体、
26……渓床。
1... Debris flow prevention structures,
2: Structure, 2A: Unit frame, 2a: Horizontal axis, 2b: Vertical axis,
3: Lower frame material, 31: Sliding material,
4: Front vertical frame member, 5: Rear vertical frame member,
6: Tie material, 61: Fixed tie material, 62: Connection tie material,
7: horizontal member, 71: fixed horizontal member, 71a: end plate, 71b: stiffener, 72: connecting horizontal member, 72a: end plate, 72b: stiffener,
8: receiving material, 9: supporting material, 9a: bracket, 10: auxiliary material,
11... Foundation, 12... Broken granite,
13: tension member, 131: fastener, 13a: sleeve, 13b: upstream connecting member, 13c: downstream connecting member,
14: anchor body, 141: head, 142: fixing device, 143: tip fixing portion,
15: Adjustment material; 15a: Locking portion;
16: Damping device, 161: Plate, 162: Cylindrical member, 162a: Small diameter section, 162b: Large diameter section, 162c: Intermediate section,
17...contact material,
18...Horizontal brace,
19: fixing member, 19a: rod insertion portion, 19b: tension member insertion portion, 19c: reaction member,
20: anchor fixing material; 20a: fixing plate; 20b: connecting plate;
21: connecting material, 21a: connecting plate, 21b: fixing plate, 22: rod, 221: fixing tool,
23 ... drilling, 24 ... grout material,
25... object to be fixed,
26...River bed.

Claims (4)

土石流の発生が想定される渓流の渓床上に構築される平板状の基礎上に立体的に構築される構造体と、
少なくとも前記渓流の両岸の地盤と前記構造体との間に架設されて前記両岸側の端部が前記地盤に定着され、前記土石流の発生時に土石からの衝撃力を前記構造体と共に負担する引張材とを備え、
前記構造体は前記基礎上に、前記渓流の幅方向に並列し、前記土石流方向に沿って配置される複数本の下部枠材と、この各下部枠材の軸方向の上流側及び下流側に接合され、前記下部枠材から起立する前方側縦枠材及び後方側縦枠材と、少なくとも前記渓流の幅方向に隣接する前記下部枠材間に架設され、前記両下部枠材を互いに連結するつなぎ材とを備え、
前記下部枠材は前記基礎に軸方向に相対移動自在に直接、もしくは間接的に接触し、
前記引張材は前記下部枠材の前記基礎上での前記相対移動を許容しながら、前記構造体が前記土石から前記渓流の下流側に向かって受ける荷重を負担可能に、前記構造体のいずれかの部分に接触している、または接続されていることを特徴とする対土石流構造物。
A three-dimensional structure is constructed on a flat foundation built on the riverbed of a stream where debris flow is expected to occur.
and tension members that are installed between the structure and the ground on at least both sides of the stream, with ends on both sides fixed to the ground, and that bear impact forces from debris when the debris flow occurs together with the structure,
The structure is provided on the foundation with a plurality of lower frame members arranged in parallel in the width direction of the stream and along the direction of the debris flow, front vertical frame members and rear vertical frame members that are joined to the upstream and downstream sides of the axial direction of each lower frame member and stand up from the lower frame members, and connecting members that are installed at least between the lower frame members adjacent in the width direction of the stream and connect the two lower frame members to each other,
The lower frame member is in direct or indirect contact with the foundation so as to be relatively movable in the axial direction,
A debris-flow prevention structure characterized in that the tension member is in contact with or connected to any part of the structure so as to be able to bear the load that the structure receives from the debris toward the downstream side of the stream while allowing the relative movement of the lower frame member on the foundation.
前記引張材は前記渓流の幅方向の中央部付近において前記構造体の下流側に接触し、前記中央部付近から前記渓流の幅方向両側寄りにかけて前記渓流の上流側に向けて配置され、平面上、全体として曲線状に配置されていることを特徴とする請求項1に記載の対土石流構造物。 The debris flow prevention structure described in claim 1, characterized in that the tension members contact the downstream side of the structure near the center of the width of the stream, are arranged from near the center toward both sides of the width of the stream toward the upstream side of the stream, and are arranged in a curved shape overall in a plane. 前記下部枠材は前記基礎に定着された調整材に浮き上がりを拘束されていることを特徴とする請求項1に記載の対土石流構造物。 The debris flow prevention structure described in claim 1, characterized in that the lower frame material is restrained from rising by an adjustment material fixed to the foundation. 前記引張材の一部に、前記引張材が前記土石による引張力を負担したときに減衰力を発生する減衰装置が介在していることを特徴とする請求項1乃至請求項3のいずれかに記載の対土石流構造物。 The debris flow prevention structure according to any one of claims 1 to 3, characterized in that a damping device is interposed in a part of the tension member, which generates a damping force when the tension member bears the tensile force caused by the debris.
JP2023067652A 2022-10-06 2023-04-18 Debris flow prevention structures Pending JP2024055743A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022161704 2022-10-06
JP2022161704 2022-10-06

Publications (1)

Publication Number Publication Date
JP2024055743A true JP2024055743A (en) 2024-04-18

Family

ID=90716298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023067652A Pending JP2024055743A (en) 2022-10-06 2023-04-18 Debris flow prevention structures

Country Status (1)

Country Link
JP (1) JP2024055743A (en)

Similar Documents

Publication Publication Date Title
WO2011059072A1 (en) Construction method for improving earthquake resistance of existing sluice gate pillars provided to dam, and earthquake-proof bridge for dam
JP6243366B2 (en) Pier structure
CN109469203B (en) High intensity area frame construction post beam node overall structure
JP2012031587A (en) Device for restraining support post in earthquake control and reinforcement frame structure
JP4957295B2 (en) Seismic control pier structure
JP6099882B2 (en) Seismic improvement method for sluice pillar of dam
JP5798359B2 (en) Seismic device with built-in damper with deformation limiting function
JP2015031046A (en) Function separation type vibration control structure of bridge
JP2005330675A (en) Tower-like structure
JP2024055743A (en) Debris flow prevention structures
Ingham et al. Seismic retrofit of the golden gate bridge
JP3549183B2 (en) Underpass structure of viaduct
JP6706071B2 (en) Function-separated damping structure for bridges
JP6275314B1 (en) Seismic reinforcement structure for bridges
KR101847104B1 (en) Masonry arch structure with ductile behavior and construction method thereof
JP5868603B2 (en) Seismic reinforcement method for existing buildings
JP2004270168A (en) Earthquake-proof reinforcement structure and method
JP6833292B2 (en) Roof seismic structure
KR102174713B1 (en) Seismic reinforcement device for underground structure
JP2012117364A (en) Vibration control bridge pier structure
JP4722560B2 (en) Building materials that effectively use the strength of reinforced steel
KR20210041813A (en) Girder Joint
CN111810238B (en) Annular supporting device for mounting oil and gas pipeline in shield tunnel
JP2019094630A (en) Column capital displacement restraining structure of building
CN214656476U (en) Bridge structure arranged on river channel