JP2024051268A - Surveying system and laser receiver - Google Patents

Surveying system and laser receiver Download PDF

Info

Publication number
JP2024051268A
JP2024051268A JP2022157331A JP2022157331A JP2024051268A JP 2024051268 A JP2024051268 A JP 2024051268A JP 2022157331 A JP2022157331 A JP 2022157331A JP 2022157331 A JP2022157331 A JP 2022157331A JP 2024051268 A JP2024051268 A JP 2024051268A
Authority
JP
Japan
Prior art keywords
light receiving
receiver
distance
vertical
receiving tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022157331A
Other languages
Japanese (ja)
Inventor
武志 菊池
祐次 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topcon Corp
Original Assignee
Topcon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topcon Corp filed Critical Topcon Corp
Priority to JP2022157331A priority Critical patent/JP2024051268A/en
Priority to PCT/JP2023/035366 priority patent/WO2024071290A1/en
Publication of JP2024051268A publication Critical patent/JP2024051268A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C15/00Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

【課題】レーザ受光器で測量機の機械高を測定する。【解決手段】測量システム(1)は、測定基準点(RP2)から高さ(H)で水平にレーザ光(LB)を出す回転レーザ装置(10)と、別の測定基準点(RP1)に設置された測量機(30)と、前記測量機の前面に固定されたレーザ受光器(20)を備え、前記レーザ受光器は、導光体の両端部に受光部を備え、H型に、第1の鉛直受光管(23)、第2の鉛直受光管(25)、水平受光管(24)を備え、前記受光部の各受光信号から前記レーザ光の衝突位置(235)を特定し、中央位置からの差分距離と、前記差分距離が前記中央位置を境にプラス側かマイナス側かを検出し、前記差分距離のプラス/マイナスの組み合わせに応じて、前記レーザ光の高さ(H)と、前記受光器の受光器中心(RC)と前記測量機の機械中心(MC)の中心離距離(d1)と、前記差分距離と、から前記測量機の機械高(h)を測定する。【選択図】図2The mechanical height of a surveying instrument is measured using a laser receiver. [Solution] A surveying system (1) comprises a rotary laser device (10) that emits a laser beam (LB) horizontally at a height (H) from a measurement reference point (RP2), a surveying instrument (30) installed at another measurement reference point (RP1), and a laser receiver (20) fixed to the front of the surveying instrument. The laser receiver has receiving sections at both ends of a light guide, and is equipped with a first vertical light receiving tube (23), a second vertical light receiving tube (25), and a horizontal light receiving tube (24) in an H-shape. The system identifies the collision position (235) of the laser beam from each receiving signal of the receiving section, detects the differential distance from the central position and whether the differential distance is on the positive or negative side of the central position, and measures the mechanical height (h) of the surveying instrument from the height (H) of the laser beam, the center distance (d1) between the receiver center (RC) of the receiver and the mechanical center (MC) of the surveying instrument, and the differential distance, depending on the positive/negative combination of the differential distance. [Selected figure] Figure 2

Description

本発明は、回転レーザ装置からの水平なレーザ光を受光するレーザ受光器に関する。 The present invention relates to a laser receiver that receives horizontal laser light from a rotary laser device.

建築・土木・内装工事などの測量作業では、水平出し(レベリング)のために、回転レーザ装置とレーザ受光器が利用されている。回転レーザ装置は、測定基準点に据え付けられ、レーザ光源を備えた回転ヘッドを備え、基準とする高さで水平にレーザ光を旋回させる。レーザ受光器は、受光センサを備えた検出体内でレーザ光の衝突位置を検出して、レーザ光に対するレーザ受光器の高さ方向(鉛直方向)の位置を検出する。例えば特許文献1では、受光センサとして複数のフォトダイオートを鉛直な軸線周りに設け、かつ受光センサを鉛直方向に移動可能に構成することで、測定基準点からの測定点の高低差を算出するレーザ受光器が開示されている。 In surveying work such as architectural, civil engineering, and interior construction, a rotary laser device and a laser receiver are used for leveling. The rotary laser device is installed at a measurement reference point, has a rotating head equipped with a laser light source, and rotates a laser beam horizontally at a reference height. The laser receiver detects the collision position of the laser beam within a detection body equipped with a light receiving sensor, and detects the height (vertical) position of the laser receiver relative to the laser beam. For example, Patent Document 1 discloses a laser receiver that calculates the elevation difference of a measurement point from a measurement reference point by providing multiple photodiodes as light receiving sensors around a vertical axis and configuring the light receiving sensor to be movable in the vertical direction.

また一方で、測量作業では、トータルステーションや三次元スキャナなどの測量機による測量が行われる。測量機により測定対象物を測定する際には、測量機の設置面から機械中心までの機械高の測定を必要とする場合がある。測量機の機械高は、作業者がメジャー等により手作業で測定することが多いが、測定誤差が生じやすい。これに対し、例えば特許文献2では、測量機の望遠鏡を斜め下方向に向けて、測量機の設置面を測距光でノンプリズム測定することで、測量機の機械高を測定する測量機が開示されている。 On the other hand, surveying work involves the use of surveying instruments such as total stations and three-dimensional scanners. When measuring an object using a surveying instrument, it may be necessary to measure the instrument height from the surface on which the instrument is installed to the center of the instrument. The instrument height is often measured manually by an operator using a tape measure or the like, but measurement errors are likely to occur. In response to this, for example, Patent Document 2 discloses a surveying instrument that measures the instrument height by pointing the telescope of the instrument diagonally downward and using distance measuring light to measure the instrument's installation surface without using a prism.

特開2020-169921号公報JP 2020-169921 A 特開2017-181427号公報JP 2017-181427 A

回転レーザ装置とレーザ受光器はレベリングの用途で測量現場でよく用いられているものであり,測量機は測定点の座標測定の用途で測量現場でよく用いられるものである。発明者らは、これらの測量現場でよく用いられている機械を利用して、測量機の機械高を測定することは出来ないかと考えた。 Rotary laser devices and laser receivers are often used at surveying sites for leveling purposes, and surveying instruments are often used at surveying sites for measuring the coordinates of measurement points. The inventors wondered whether it would be possible to measure the mechanical height of a surveying instrument using these machines that are often used at surveying sites.

本発明は、係る課題を解決するためになされたものであり、回転レーザ装置からの水平なレーザ光を受光してレベリングを行うレーザ受光器を利用して、測量機の機械高を測定することを目的とする。 The present invention was made to solve such problems, and aims to measure the mechanical height of a surveying instrument by using a laser receiver that receives horizontal laser light from a rotary laser device and performs leveling.

上記課題を解決するために、本発明の第1の態様の測量システムは、ある測定基準点からある高さで水平にレーザ光を出射する回転レーザ装置と、別の測定基準点に設置され機械中心までの機械高を有する測量機と、前記測量機の前面に固定され、前記レーザ光を受光するレーザ受光器と、を備え、前記レーザ受光器は、受光センサとして,柱状の導光体,前記導光体の両端部に配置された受光部,前記レーザ光を前記導光体の前記両端部に向かって分割する光結合層,を備え、H型に配置された、第1の鉛直受光管、第2の鉛直受光管、および水平受光管と、前記受光部に接続された演算処理部を備え、前記演算処理部は、前記受光部の各受光信号から前記レーザ光の衝突位置を特定し、前記衝突位置の前記中央位置からの差分距離と、前記差分距離が前記導光体の長さの中央位置を境にプラス側とマイナス側のどちらにあるかを検出し、前記第1の鉛直受光管、前記第2の鉛直受光管、および前記水平受光管の前記差分距離のプラス/マイナスの組み合わせに応じて、前記レーザ光の高さと、前記受光器の受光器中心と前記測量機の機械中心の鉛直方向の中心離距離と、前記差分距離と、から前記測量機の前記機械高を測定する。 In order to solve the above problem, the surveying system of the first aspect of the present invention comprises a rotary laser device that emits laser light horizontally at a certain height from a certain measurement reference point, a surveying instrument that is installed at another measurement reference point and has a machine height up to the machine center, and a laser receiver that is fixed to the front of the surveying instrument and receives the laser light, and the laser receiver comprises, as a light receiving sensor, a columnar light guide, light receiving sections arranged at both ends of the light guide, and an optical coupling layer that splits the laser light toward both ends of the light guide, and is arranged in an H-shape, a first vertical light receiving tube, a second vertical light receiving tube, and a horizontal light receiving tube, and the receiving It has a calculation processing unit connected to the light unit, and the calculation processing unit identifies the collision position of the laser light from each light receiving signal of the light receiving unit, detects the difference distance from the center position of the collision position and whether the difference distance is on the positive or negative side of the center position of the length of the light guide, and measures the mechanical height of the surveying instrument from the height of the laser light, the vertical center distance between the light receiver center of the receiver and the mechanical center of the surveying instrument, and the difference distance according to the positive/negative combination of the difference distances of the first vertical light receiving tube, the second vertical light receiving tube, and the horizontal light receiving tube.

第2の態様の測量システムでは、第1の態様において、前記演算処理部は、前記第1の鉛直受光管と前記第2の鉛直受光管の前記差分距離が同じ値でともにマイナス値の場合は、該差分距離と前記レーザ光の高さと前記中心離距離の和から、前記機械高を算出し(数式1)、前記第1の鉛直受光管と前記第2の鉛直受光管の前記差分距離が同じ値でともにプラス値の場合は、該差分距離の絶対値を前記レーザ光の高さと前記中心離距離の和から差し引いて、前記機械高を算出する(数式2)のも好ましい。 In the surveying system of the second aspect, in the first aspect, when the differential distance between the first vertical light receiving tube and the second vertical light receiving tube is the same and both are negative values, the arithmetic processing unit calculates the machine height from the sum of the differential distance, the height of the laser light, and the center distance (Formula 1), and when the differential distance between the first vertical light receiving tube and the second vertical light receiving tube is the same and both are positive values, it is also preferable to calculate the machine height by subtracting the absolute value of the differential distance from the sum of the height of the laser light and the center distance (Formula 2).

第3の態様の測量システムでは、第1の態様において、前記演算処理部は、前記第1の鉛直受光管の前記差分距離がプラス値、前記第2の鉛直受光管の前記差分距離がマイナス値、前記水平受光管の前記差分距離がプラスの値の場合と、前記第1の鉛直受光管の前記差分距離がマイナス値、前記第2の鉛直受光管の前記差分距離がプラス値、前記水平受光管の前記差分距離がマイナスの値の場合は、前記水平受光管の差分距離の絶対値の三角関数から求まる前記受光器中心の高さ変化量を前記レーザ光の高さと前記中心離距離の和から差し引いて、前記機械高を算出し(数式4)、前記第1の鉛直受光管の前記差分距離がプラス値、前記第2の鉛直受光管の前記差分距離がマイナス値、前記水平受光管の前記差分距離がマイナス値の場合と、前記第1の鉛直受光管の前記差分距離がマイナス値、前記第2の鉛直受光管の前記差分距離がプラス値、前記水平受光管の前記差分距離がプラス値の場合は、前記水平受光管の差分距離の絶対値の三角関数から求まる前記受光器中心の高さ変化量と前記レーザ光の高さと前記中心離距離の和から、前記機械高を算出する(数式5)のも好ましい。 In the surveying system of the third aspect, in the first aspect, the arithmetic processing unit subtracts the height change amount of the receiver center calculated from the trigonometric function of the absolute value of the difference distance of the horizontal light receiving tube from the sum of the height of the laser light and the center distance when the difference distance of the first vertical light receiving tube is a positive value, the difference distance of the second vertical light receiving tube is a negative value, and the difference distance of the horizontal light receiving tube is a positive value, and when the difference distance of the first vertical light receiving tube is a negative value, the difference distance of the second vertical light receiving tube is a positive value, and the difference distance of the horizontal light receiving tube is a negative value. The machine height is calculated (Formula 4), and when the difference distance of the first vertical light receiving tube is a positive value, the difference distance of the second vertical light receiving tube is a negative value, and the difference distance of the horizontal light receiving tube is a negative value, or when the difference distance of the first vertical light receiving tube is a negative value, the difference distance of the second vertical light receiving tube is a positive value, and the difference distance of the horizontal light receiving tube is a positive value, it is also preferable to calculate the machine height (Formula 5) from the sum of the height change of the receiver center, the height of the laser light, and the center distance, which is calculated from the trigonometric function of the absolute value of the difference distance of the horizontal light receiving tube.

第4の態様の測量システムでは、第1~3のいずれかの態様において、前記レーザ受光器の後面には、後方に延出する左右一対のハンドルが上下方向にスライドロック可能に 設けられており、該ハンドルを前記測量機に設けられたフックに固定することで、前記中心離距離が固定となるのも好ましい。 In the surveying system of the fourth aspect, in any of the first to third aspects, a pair of left and right handles extending rearward are provided on the rear surface of the laser receiver so as to be slidably locked in the vertical direction, and it is also preferable that the center distance is fixed by fixing the handles to hooks provided on the surveying instrument.

第5の態様の測量システムでは、第1~4のいずれかの態様において、前記レーザ受光器の後面には、前記測量機に設けられた表示操作部および望遠鏡との干渉を避けるための収容凹部が形成されているのも好ましい。 In the surveying system of the fifth aspect, in any of the first to fourth aspects, it is also preferable that a storage recess is formed on the rear surface of the laser receiver to avoid interference with the display operation unit and telescope provided on the surveying instrument.

また、第6の態様のレーザ受光器は、ある測定基準点からある高さで水平に出射されるレーザ光を受光し、別の測定基準点に設置された測量機の前面に固定されたレーザ受光器であって、前記レーザ受光器は、受光センサとして,柱状の導光体,前記導光体の両端部に配置された受光部,前記レーザ光を前記導光体の前記両端部に向かって分割する光結合層,を備え、H型に配置された、第1の鉛直受光管、第2の鉛直受光管、および水平受光管と、前記受光部に接続された演算処理部を備え、前記演算処理部は、前記受光部の各受光信号から前記レーザ光の衝突位置を特定し、前記衝突位置の前記中央位置からの差分距離と、前記差分距離が前記導光体の長さの中央位置を境にプラス側とマイナス側のどちらにあるかを検出し、前記第1の鉛直受光管、前記第2の鉛直受光管、および前記水平受光管の前記差分距離のプラス/マイナスの組み合わせに応じて、前記レーザ光の高さと、前記受光器の受光器中心と前記測量機の機械中心の鉛直方向の中心離距離と、前記差分距離と、から前記測量機の機械高を測定するのも好ましい。 In addition, the laser receiver of the sixth aspect is a laser receiver that receives laser light emitted horizontally at a certain height from a certain measurement reference point and is fixed to the front of a surveying instrument installed at another measurement reference point, and the laser receiver is provided with a columnar light guide as a light receiving sensor, light receiving units arranged at both ends of the light guide, and an optical coupling layer that splits the laser light toward both ends of the light guide, and is provided with a first vertical light receiving tube, a second vertical light receiving tube, and a horizontal light receiving tube arranged in an H shape, and a calculation processing unit connected to the light receiving units, and the calculation processing unit is provided with a front It is also preferable to identify the collision position of the laser light from each light receiving signal of the light receiving unit, detect the difference distance from the center position of the collision position and whether the difference distance is on the positive or negative side of the center position of the length of the light guide, and measure the mechanical height of the surveying instrument from the height of the laser light, the vertical center distance between the center of the receiver of the receiver and the mechanical center of the surveying instrument, and the difference distance depending on the positive/negative combination of the difference distances of the first vertical light receiving tube, the second vertical light receiving tube, and the horizontal light receiving tube.

本発明によれば、回転レーザ装置からの水平なレーザ光を受光してレベリングを行うレーザ受光器を利用して、測量機の機械高を測定することができる。 According to the present invention, the height of a surveying instrument can be measured using a laser receiver that receives horizontal laser light from a rotary laser device and performs leveling.

本発明の実施の形態に係る測量システムの外観斜視図である。1 is an external perspective view of a surveying system according to an embodiment of the present invention. 同測量システムの測量機の正面図である。FIG. 同測量システムの測量機の側面図である。FIG. 同測量システムのレーザ受光器の背面図である。FIG. 4 is a rear view of the laser receiver of the surveying system. 同測量システムのレーザ受光器の側面図である。FIG. 2 is a side view of a laser receiver of the surveying system. 同測量システムのレーザ受光器の平面図である。FIG. 2 is a plan view of a laser receiver of the surveying system. 同測量システムの受光器の受光センサを説明する図である。FIG. 2 is a diagram illustrating a light receiving sensor of a receiver of the surveying system. 同測量システムの構成ブロック図である。FIG. 2 is a configuration block diagram of the surveying system. 同測量システムの受光器に傾きが無い場合の、機械高の計算を説明する図である。13 is a diagram for explaining the calculation of the instrument height when the receiver of the surveying system is not tilted. FIG. 同測量システムの受光器による左右への傾きの変化の検出を説明する図である。13A and 13B are diagrams illustrating detection of changes in left and right tilt by the photoreceiver of the surveying system. 同測量システムの受光器に傾きが有る場合の、機械高の計算を説明する図である。13 is a diagram for explaining the calculation of the instrument height when the receiver of the surveying system is tilted. FIG.

次に、本発明の好適な実施の形態について、図面を参照して説明する。以下の実施の形態の説明において、同種の構成には同一の名称を付して、重複する説明は適宜省略する。 Next, preferred embodiments of the present invention will be described with reference to the drawings. In the following description of the embodiments, the same names will be used for similar configurations, and duplicate descriptions will be omitted as appropriate.

図1は本発明の実施の形態に係る測量システム1の外観斜視図、図2は同測量システム1の測量機の正面図、図3は同測量システム1の測量機の側面図である。測量システム1は、回転レーザ装置10と、レーザ受光器(以下、単に受光器と言う。)20と、測量機30を備える。 Figure 1 is an external perspective view of a surveying system 1 according to an embodiment of the present invention, Figure 2 is a front view of a surveying instrument of the surveying system 1, and Figure 3 is a side view of the surveying instrument of the surveying system 1. The surveying system 1 comprises a rotary laser device 10, a laser receiver (hereinafter simply referred to as the receiver) 20, and a surveying instrument 30.

回転レーザ装置10は、発光ダイオード(LED)、半導体レーザ(LD)、またはSLED(Super Luminescent Diode)などのレーザ光源を備えた回転ヘッド11を備えている。図1に示すように、回転レーザ装置10は、測量現場の地面(平面)上の一測定基準点RP2に三脚および整準台を介して立設され、回転ヘッド11を回転させて、測定基準点RP2から、ある高さHとなる水平基準面12を旋回するように、レベリングのレーザ光LBを回転させる。回転ヘッド11は、レーザ光LBとして、所定周波数に強度変調されたパルス光を出射する。 The rotary laser device 10 is equipped with a rotary head 11 equipped with a laser light source such as a light emitting diode (LED), a semiconductor laser (LD), or an SLED (Super Luminescent Diode). As shown in FIG. 1, the rotary laser device 10 is erected via a tripod and a leveling stand at a measurement reference point RP2 on the ground (plane) at the surveying site, and the rotary head 11 is rotated to rotate the leveling laser light LB so as to revolve around a horizontal reference plane 12 at a certain height H from the measurement reference point RP2. The rotary head 11 emits pulsed light that has been intensity modulated to a predetermined frequency as the laser light LB.

測量機30は、モータドライブトータルステーションまたは三次元レーザスキャナ等である。図1に示すように、測量機30は、測量現場の地面(平面)上の別の測定基準点RP1に、三脚を介して据え付けられ、図2および図3に示すように、測量機30は、三脚の上の整準台31、整準台31に着脱可能に取り付けられる基盤部32と、基盤部32に軸H-H回りに360°水平回転可能に設けられた托架部33と、托架部33の中央凹部に、軸V-V回りに鉛直回転可能に設けられた望遠鏡34とを備える。測量機30は、托架部33の後面に主表示操作部35と、托架部33の後面に副表示操作部36を備える。主表示操作部35と副表示操作部36はいずれもタッチパネル式の液晶ディスプレイであり、いずれからでも測量機30の操作、測定結果の表示が行える。測量機30は、望遠鏡34から測距光MB(図3参照)を出射して測定対象物からの反射光を受光し、受光信号の位相差または飛行時間差に応じて、測定対象物までの距離と角度を測定する。測量機30の機械中心MCは、望遠鏡34内に設定されており、測距光MBの測定起点であり、軸H-Hおよび軸V-V上に設定されている。 The surveying instrument 30 is a motor-driven total station or a three-dimensional laser scanner. As shown in FIG. 1, the surveying instrument 30 is installed via a tripod at another measurement reference point RP1 on the ground (plane) at the surveying site. As shown in FIG. 2 and FIG. 3, the surveying instrument 30 includes a leveling stand 31 on the tripod, a base unit 32 detachably attached to the leveling stand 31, a base unit 33 mounted on the base unit 32 so as to be horizontally rotatable 360° around the axis H-H, and a telescope 34 mounted in the central recess of the base unit 33 so as to be vertically rotatable around the axis V-V. The surveying instrument 30 includes a main display/operation unit 35 on the rear surface of the base unit 33 and a sub-display/operation unit 36 on the rear surface of the base unit 33. Both the main display/operation unit 35 and the sub-display/operation unit 36 are touch-panel type liquid crystal displays, and the surveying instrument 30 can be operated and the measurement results can be displayed from either unit. The surveying instrument 30 emits distance measuring light MB (see FIG. 3) from the telescope 34, receives the reflected light from the object to be measured, and measures the distance and angle to the object to be measured according to the phase difference or time-of-flight difference of the received light signals. The mechanical center MC of the surveying instrument 30 is set within the telescope 34, is the measurement starting point of the distance measuring light MB, and is set on the axis H-H and the axis V-V.

受光器20は、測量機30の前面に固定されている。図2に示すように、受光器20は、ケース21と、第1の鉛直受光管23と、水平受光管24と、第2の鉛直受光管25と、表示操作部22を備える。第1の鉛直受光管23,水平受光管24,第2の鉛直受光管25,表示操作部22はケース21の前面に配置されている。表示操作部22はタッチパネル式の液晶ディスプレイであり、受光管23,24,25の余白に配置され、受光器20の操作、測定結果の表示が行える。 The receiver 20 is fixed to the front of the surveying instrument 30. As shown in FIG. 2, the receiver 20 comprises a case 21, a first vertical receiver tube 23, a horizontal receiver tube 24, a second vertical receiver tube 25, and a display operation unit 22. The first vertical receiver tube 23, the horizontal receiver tube 24, the second vertical receiver tube 25, and the display operation unit 22 are arranged on the front of the case 21. The display operation unit 22 is a touch panel type liquid crystal display, which is arranged in the margins of the receiver tubes 23, 24, and 25, and allows the receiver 20 to be operated and the measurement results to be displayed.

図4Aは受光器20の背面図、図4Bは受光器20の右側面図、図4Cは受光器20の上面図である。受光器20は、ケース21の後面に、後方に延出する左右一対のハンドル27を備えている。ハンドル27の内側面には、角または半円状に切り欠かれた係合部271(図4B参照)が形成されている。ハンドル27は、図3に示すように、測量機30の托架部33の左右側面に設けられたフック37に、係合部271の切り欠きで求心された状態で固定される。また、ハンドル27は、図4Aに示すように、ケース21の後面に上下方向に形成された公知のスライドロック機構29により、図4Bに示す第1ポジションP1、第2ポジションP2、第3ポジションP3に移動・固定が可能である。第1ポジションP1は、ハンドル27の係合部271が第2ポジションP2よりも水平受光管24の直径ℓ分上に配置される位置であり、第3ポジションP3は、ハンドル27の係合部271が第2ポジションP2よりも水平受光管24の直径ℓ分下に配置される位置である。ハンドル27を移動することにより、測量機30に対する受光器20の上下方向の位置を調節可能であり、すなわち、水平受光管24の上下方向の位置を調節可能であるから、レーザ光LBの高さに合わせて受光器20の測定可能範囲MA(図4B参照)を広げることができる。なお、ハンドル27をフック37から外せば、受光器20は測量機30から取り外し可能であり、受光器20と測量機30はそれぞれ独立の機器として測量現場で使用することができる。 Figure 4A is a rear view of the receiver 20, Figure 4B is a right side view of the receiver 20, and Figure 4C is a top view of the receiver 20. The receiver 20 is provided with a pair of left and right handles 27 extending rearward from the rear surface of the case 21. The handles 27 have engagement parts 271 (see Figure 4B) cut into an angular or semicircular shape on the inner surface. As shown in Figure 3, the handles 27 are fixed to hooks 37 provided on the left and right sides of the base part 33 of the surveying instrument 30 in a state where the engagement parts 271 are centered by the notches. In addition, the handles 27 can be moved and fixed to the first position P1, second position P2, and third position P3 shown in Figure 4B by a known slide lock mechanism 29 formed in the vertical direction on the rear surface of the case 21 as shown in Figure 4A. The first position P1 is a position where the engaging portion 271 of the handle 27 is located above the second position P2 by one diameter of the horizontal light receiving tube 24, and the third position P3 is a position where the engaging portion 271 of the handle 27 is located below the second position P2 by one diameter of the horizontal light receiving tube 24. By moving the handle 27, the vertical position of the receiver 20 relative to the surveying instrument 30 can be adjusted, that is, the vertical position of the horizontal light receiving tube 24 can be adjusted, so that the measurable range MA (see FIG. 4B) of the receiver 20 can be expanded according to the height of the laser light LB. If the handle 27 is removed from the hook 37, the receiver 20 can be removed from the surveying instrument 30, and the receiver 20 and the surveying instrument 30 can be used as independent devices at the surveying site.

受光器20のケース21の後面中央部は、図4Aおよび図4Cに示すように、測量機30の副表示操作部36と受光器20、および測量機30の望遠鏡34と受光器20の干渉を避けるため、上下方向に通る収容凹部28が形成されている。 As shown in Figures 4A and 4C, the rear center of the case 21 of the receiver 20 has a storage recess 28 that runs vertically to avoid interference between the secondary display operation unit 36 of the surveying instrument 30 and the receiver 20, and between the telescope 34 of the surveying instrument 30 and the receiver 20.

図2に示すように、受光器20は、受光センサである第1の鉛直受光管23、水平受光管24、および第2の鉛直受光管25を、ケース21の前面に形成されたH型の溝(図示略)に収容し、「H」型に備える。詳細には、第1の鉛直受光管23および第2の鉛直受光管25のそれぞれの長さLの中央位置Mに水平受光管24の中心軸が合わされ、受光器中心RCが水平受光管24の長さLの中央位置Mになるように、「H」型に配置されている。第1の鉛直受光管23および第2の鉛直受光管25の中央位置M、水平受光管24の中央位置M、および水平受光管24にある受光器中心RCの位置は、予め計測し既知の数値として、後述する記憶部203に記憶されている。また、受光器20を測量機30に固定(ハンドル27をフック37に固定)することで、受光器20の受光器中心RCと測量機30の機械中心MCの鉛直方向の位置関係が固定となる。受光器20を測量機30に固定すると、受光器中心RCと機械中心MCは鉛直方向にd1だけ乖離する。この中心離距離d1は、予め計測し既知の数値として、後述する記憶部203に記憶する。なお、中心離距離d1は、図4Bに示す第1ポジションP1、第2ポジションP2、第3ポジションP3の三段階で計測しそれぞれを記憶部20に記憶するものとする。 2, the receiver 20 has the first vertical receiver tube 23, the horizontal receiver tube 24, and the second vertical receiver tube 25, which are light receiving sensors, housed in an H-shaped groove (not shown) formed on the front surface of the case 21, and arranged in an "H" shape. In detail, the central axis of the horizontal receiver tube 24 is aligned with the central position M of the length L of each of the first vertical receiver tube 23 and the second vertical receiver tube 25, and the receiver center RC is arranged in an "H" shape so that it is at the central position M of the length L of the horizontal receiver tube 24. The central position M of the first vertical receiver tube 23 and the second vertical receiver tube 25, the central position M of the horizontal receiver tube 24, and the position of the receiver center RC in the horizontal receiver tube 24 are measured in advance and stored as known values in the memory unit 203 described later. Furthermore, by fixing the receiver 20 to the surveying instrument 30 (fixing the handle 27 to the hook 37), the vertical positional relationship between the receiver center RC of the receiver 20 and the mechanical center MC of the surveying instrument 30 is fixed. When the receiver 20 is fixed to the surveying instrument 30, the receiver center RC and the mechanical center MC are separated from each other by d1 in the vertical direction. This center separation distance d1 is measured in advance and stored in the memory unit 203, which will be described later, as a known value. Note that the center separation distance d1 is measured at three stages, the first position P1, the second position P2, and the third position P3 shown in FIG. 4B, and each of these is stored in the memory unit 20.

ここで、受光器20の受光センサである、第1の鉛直受光管23と、水平受光管24と、第2の鉛直受光管25について説明する。第1の鉛直受光管23および第2の鉛直受光管25は軸方向を鉛直方向に配置したもので、水平受光管24は軸方向を水平方向に配置したものであって、全て同一の構成であるため、第1の鉛直受光管23を用いて受光センサの構成を説明する。図5は受光器20の受光センサ(第1の鉛直受光管23)を説明する図であり、第1の鉛直受光管23の側面を表した図である。図5において、左がケース21の前面であり、レーザ光LBを受光する側である。 Here, the first vertical light receiving tube 23, the horizontal light receiving tube 24, and the second vertical light receiving tube 25, which are the light receiving sensors of the receiver 20, will be described. The first vertical light receiving tube 23 and the second vertical light receiving tube 25 are arranged with their axial direction vertically, while the horizontal light receiving tube 24 is arranged with its axial direction horizontally, and all have the same configuration, so the configuration of the light receiving sensor will be described using the first vertical light receiving tube 23. Figure 5 is a diagram explaining the light receiving sensor (first vertical light receiving tube 23) of the receiver 20, and shows the side of the first vertical light receiving tube 23. In Figure 5, the left is the front of the case 21, which receives the laser light LB.

第1の鉛直受光管23は、柱状の導光体231と、導光体231の一方の端部に配置された受光部232と、他方の端部に配置された受光部233を備える。受光部232,233は、フォトダイオード、アバランシェフォトダイオード(APD)、または同等の光電変換素子である。受光部232,233が検出した各受光信号は、後述する演算処理部201にて処理される。導光体231は、レーザ光LBを体内で導光すれば材料は限定されないが、例えば透明なガラスや石英、またはアクリルやポリカーボネイトなどの樹脂である。導光体231は、軸方向に規定の長さLを備える、円柱、楕円柱、または全反射による導光が可能な柱状に形成される。導光体231には、光結合層234が形成される(横断面図を参照)。光結合層234は、光の回折、屈折、散乱、反射、分散、および/または蛍光の原理を使用して、レーザ光LBを導光体231に結合する(導光体外にレーザ光を反射せず、導光体内にレーザ光を入射させる)。光結合層234は、例えば蛍光粒子を溶液に分散させた塗料を導光体231の表面に塗布するか、または、蛍光粒子を含有する樹脂層を導光体231の表面に設けることで、形成される。 The first vertical light receiving tube 23 includes a columnar light guide 231, a light receiving unit 232 arranged at one end of the light guide 231, and a light receiving unit 233 arranged at the other end. The light receiving units 232 and 233 are photodiodes, avalanche photodiodes (APDs), or equivalent photoelectric conversion elements. The light receiving signals detected by the light receiving units 232 and 233 are processed by the calculation processing unit 201 described later. The material of the light guide 231 is not limited as long as it guides the laser light LB inside the body, but it is, for example, transparent glass or quartz, or a resin such as acrylic or polycarbonate. The light guide 231 is formed in a cylindrical, elliptical, or columnar shape that has a specified length L in the axial direction and can guide light by total reflection. An optical coupling layer 234 is formed on the light guide 231 (see cross-sectional view). The optical coupling layer 234 couples the laser light LB to the light guide 231 using the principles of light diffraction, refraction, scattering, reflection, dispersion, and/or fluorescence (the laser light is not reflected outside the light guide, but is incident on the light guide). The optical coupling layer 234 is formed, for example, by applying a paint having fluorescent particles dispersed in a solution to the surface of the light guide 231, or by providing a resin layer containing fluorescent particles on the surface of the light guide 231.

図5に示すように、レーザ光LBが導光体231に衝突すると、衝突位置235において、レーザ光LBは、光結合層234によって導光体231内に結合されるとともに、一方の受光部232へ向かうレーザ光B1と、反対方向にある他方の受光部233へ向かうレーザ光B2に分割される。衝突位置235が導光体231の軸方向の中央位置Mであれば、レーザ光B1が導光した距離L1とレーザ光B2が導光した距離L2は同じであるため、受光部232、233の受光信号の波形は一致する。しかしながら、衝突位置235が導光体231の中央位置Mからずれると、レーザ光B1,B2が導光した距離L1,L2は異なるため、受光部232、233の受光信号の波形にズレが生じる。例えば図5では、衝突位置235は導光体231の中央位置Mより上で、距離L1が距離L2より短いため、受光部232の受光信号に対して受光部233の受光信号に遅れが生じる。演算処理部201では、これらの受光信号の時間差または位相差と、規定の長さLと、導光体231の光伝番速度から、距離L1およびL2を算出して、衝突位置235を特定する。また、衝突位置235は中央位置Mを境にしたどちら側にあるかと、衝突位置235の中央位置Mからの差分距離Dを、規定の長さLと、距離L1またはL2から算出する。例えば図5であれば、L/2-L1またはL2-L/2からDを求める。 5, when the laser light LB collides with the light guide 231, at the collision position 235, the laser light LB is coupled into the light guide 231 by the optical coupling layer 234 and split into laser light B1 traveling toward one light receiving unit 232 and laser light B2 traveling toward the other light receiving unit 233 in the opposite direction. If the collision position 235 is the center position M of the light guide 231 in the axial direction, the distance L1 guided by the laser light B1 and the distance L2 guided by the laser light B2 are the same, so the waveforms of the light receiving signals of the light receiving units 232 and 233 match. However, if the collision position 235 is shifted from the center position M of the light guide 231, the distances L1 and L2 guided by the laser light B1 and B2 are different, so that a shift occurs in the waveforms of the light receiving signals of the light receiving units 232 and 233. For example, in FIG. 5, collision position 235 is above center position M of light guide 231, and distance L1 is shorter than distance L2, so a delay occurs in the light receiving signal of light receiving unit 233 relative to the light receiving signal of light receiving unit 232. Calculation processing unit 201 calculates distances L1 and L2 from the time difference or phase difference of these light receiving signals, specified length L, and the light transmission speed of light guide 231 to identify collision position 235. In addition, it calculates which side of center position M collision position 235 is on and the differential distance D from center position M of collision position 235 from specified length L and distance L1 or L2. For example, in FIG. 5, D is calculated from L/2-L1 or L2-L/2.

図6は測量システム1の構成ブロック図である。回転レーザ装置10は、前述の通り、レーザ光LBを出射する回転ヘッド11を備える。受光器20は、演算処理部201と、通信部202と、記憶部203と、上述の受光部(第1の鉛直受光管23のもの)232,233と、受光部(第2の鉛直受光管25のもの)252,253と、受光部(水平受光管24のもの)242,243と、表示操作部22を備える。測量機30は、托架部33の水平回転および望遠鏡34の鉛直回転を行うモータである回転駆動部303と、測距光MBを出射・受光して測定対象物までの距離を測定する測距部301と、測距時の托架部33と望遠鏡34のそれぞれの回転角を測定するロータリエンコーダである測角部302と、制御部304と、通信部305と、記憶部306と、上述の主表示操作部35および副表示操作部36を備える。通信部305は受光器20の通信部202との間で無線通信が可能であり、ブルートゥース(登録商標)、各種の無線LAN規格、赤外線通信、携帯電話回線、その他無線回線等を用いることができる。 Figure 6 is a block diagram of the surveying system 1. As described above, the rotary laser device 10 has a rotary head 11 that emits laser light LB. The receiver 20 has an arithmetic processing unit 201, a communication unit 202, a memory unit 203, the above-mentioned light receiving units (of the first vertical light receiving tube 23) 232, 233, light receiving units (of the second vertical light receiving tube 25) 252, 253, light receiving units (of the horizontal light receiving tube 24) 242, 243, and a display operation unit 22. The surveying instrument 30 includes a rotation drive unit 303, which is a motor that rotates the base unit 33 horizontally and the telescope 34 vertically, a distance measurement unit 301 that emits and receives distance measurement light MB to measure the distance to the measurement object, an angle measurement unit 302 that is a rotary encoder that measures the rotation angles of the base unit 33 and the telescope 34 during distance measurement, a control unit 304, a communication unit 305, a storage unit 306, and the above-mentioned main display operation unit 35 and sub-display operation unit 36. The communication unit 305 is capable of wireless communication with the communication unit 202 of the receiver 20, and can use Bluetooth (registered trademark), various wireless LAN standards, infrared communication, mobile phone lines, and other wireless lines.

回転レーザ装置10および測量機30は公知の構成で良いため、本形態で特徴的である受光器20の構成について詳細を説明する。 The rotary laser device 10 and surveying instrument 30 may be of known configuration, so we will explain in detail the configuration of the receiver 20, which is characteristic of this embodiment.

記憶部203は、主記憶装置としてのRAM、ROM、補助記憶装置としてのHDD(Hard・Disc・Drive)等を含むものである。記憶部203は、演算処理部201の行う各処理プログラムを格納している。 The storage unit 203 includes a RAM and a ROM as main storage devices, and a HDD (Hard Disc Drive) as an auxiliary storage device. The storage unit 203 stores each processing program executed by the arithmetic processing unit 201.

演算処理部201は、少なくともCPU(Central Processing Unit)およびメモリ(RAM(Random・Access・Memory),ROM(Read・Only・Memory)等)を集積回路に実装した集積回路、集積回路の集合、マイクロコントローラ、マイクロプロセッサを含むものである。 The arithmetic processing unit 201 includes an integrated circuit in which at least a CPU (Central Processing Unit) and memory (RAM (Random Access Memory), ROM (Read Only Memory), etc.) are implemented in an integrated circuit, a collection of integrated circuits, a microcontroller, or a microprocessor.

演算処理部201は、傾斜・高さ変化検出部211と機械高算出部212の機能部を備える。各機能部は、CPU、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)などのPLD(Programmable Logic Device)などの電子回路により構成される。 The calculation processing unit 201 has the functional units of an inclination/height change detection unit 211 and a machine height calculation unit 212. Each functional unit is composed of electronic circuits such as a CPU, an ASIC (Application Specific Integrated Circuit), and a PLD (Programmable Logic Device) such as an FPGA (Field Programmable Gate Array).

傾斜・高さ変化検出部211は、第1の鉛直受光管23、水平受光管24、第2の鉛直受光管25のそれぞれの受光部232.233,242,243,252,253(図2参照)から受光信号を受け取り、それぞれの差分距離D23,D24,D25を、プラス値かマイナス値かも含めて検出する。機械高算出部212は、傾斜・高さ変化検出部211が検出した状態に応じて、測量機30の機械高hを計算する。以下、その詳細を述べる。 The inclination/height change detection unit 211 receives light receiving signals from the light receiving sections 232, 233, 242, 243, 252, 253 (see Figure 2) of the first vertical light receiving tube 23, the horizontal light receiving tube 24, and the second vertical light receiving tube 25, respectively, and detects the respective difference distances D23, D24, D25, including whether they are positive or negative values. The machine height calculation unit 212 calculates the machine height h of the surveying instrument 30 according to the state detected by the inclination/height change detection unit 211. The details are described below.

図7は受光器20に傾きが無い場合の、機械高hの計算を説明する図である。受光器20に傾きが無い場合、傾斜・高さ変化検出部211は、図7の(1)に示すように、受光器中心RCの高さがレーザ光LBより上になった場合、第1の鉛直受光管23、第2の鉛直受光管25ともに、衝突位置235が中央位置Mより下にずれ、それぞれの受光部232,233、受光部252,253での受光信号にズレが生じ、中央位置Mに対して下の受光部233(253)側にマイナスの差分距離D23,D25を検出する。傾斜・高さ変化検出部211は、図7の(2)に示すように、受光器中心RCの高さがレーザ光LBより下になった場合、第1の鉛直受光管23、第2の鉛直受光管25ともに、衝突位置235が中央位置Mより上にずれ、中央位置Mに対して上の受光部232(252)側にプラスの差分距離D23,D25を検出する。 Figure 7 is a diagram explaining the calculation of the machine height h when the receiver 20 is not tilted. When the receiver 20 is not tilted, as shown in (1) of Figure 7, when the height of the receiver center RC is higher than the laser light LB, the tilt/height change detection unit 211 detects that the collision position 235 of both the first vertical receiver tube 23 and the second vertical receiver tube 25 shifts below the center position M, causing a shift in the light receiving signals at the respective receivers 232, 233 and receivers 252, 253, and detects negative differential distances D23, D25 on the lower receiver 233 (253) side relative to the center position M. As shown in FIG. 7 (2), when the height of the receiver center RC becomes lower than the laser light LB, the tilt/height change detection unit 211 detects that the collision position 235 of both the first vertical receiver tube 23 and the second vertical receiver tube 25 shifts above the center position M, and detects positive differential distances D23 and D25 on the upper receiver unit 232 (252) side relative to the center position M.

この検出を受けて、機械高算出部212は、傾斜・高さ変化検出部211が、第1の鉛直受光管23と第2の鉛直受光管25からマイナスの差分距離D23,D25を検出した時は、図7の(1)に示すように、機械高hは、レーザ光LBの高さHと、鉛直受光管23,25の検出した差分距離D23(またはD25)と、受光器中心RCと機械中心MCの中心離距離d1を用いて、数式1から算出する。但し、D23(D25)は絶対値を用いる。
または
In response to this detection, when the inclination/height change detection unit 211 detects negative differential distances D23, D25 from the first vertical light receiving tube 23 and the second vertical light receiving tube 25, the machine height calculation unit 212 calculates the machine height h from Equation 1 using the height H of the laser light LB, the differential distance D23 (or D25) detected by the vertical light receiving tubes 23, 25, and the central separation distance d1 between the light receiving device center RC and the machine center MC, as shown in Fig. 7 (1). However, an absolute value is used for D23 (D25).
or

一方、機械高算出部212は、傾斜・高さ変化検出部211が、第1の鉛直受光管23と第2の鉛直受光管25からプラスの差分距離D23,D25を検出した時は、図7の(2)に示すように、機械高hは、レーザ光LBの高さHと、鉛直受光管23,25の検出した差分距離D23(またはD25)と、受光器中心RCと機械中心MCの中心離距離d1を用いて、数式2から算出する。
または
On the other hand, when the inclination/height change detection unit 211 detects positive differential distances D23, D25 from the first vertical light receiving tube 23 and the second vertical light receiving tube 25, the machine height calculation unit 212 calculates the machine height h from equation 2 using the height H of the laser light LB, the differential distance D23 (or D25) detected by the vertical light receiving tubes 23, 25, and the central distance d1 between the light receiving center RC and the machine center MC, as shown in (2) of Figure 7.
or

なお、数式1および数式2において、ハンドル27をスライドさせた場合は、ハンドル27のポジションに応じて表示操作部22から中心離距離d1の値の更新を行うものとする。 In addition, in formulas 1 and 2, when the handle 27 is slid, the value of the center distance d1 is updated from the display operation unit 22 according to the position of the handle 27.

図8~図9は受光器20に傾きが有る場合の、機械高hの計算を説明する図である。傾斜・高さ変化検出部211は、図8の(1)に示すように受光器20が左へ傾いた場合、第1の鉛直受光管23では衝突位置235が中央位置Mより上にずれ、中央位置Mに対して上の受光部232側にプラスの差分距離D23を検出し、第2の鉛直受光管25では衝突位置235が中央位置Mより下にずれ、中央位置Mに対して下の受光部253側にマイナスの差分距離D25を検出する。傾斜・高さ変化検出部211は、図8の(2)に示すように受光器20が右へ傾いた場合、第1の鉛直受光管23では衝突位置235が中央位置Mより下にずれ、中央位置Mに対して下の受光部233側にマイナスの差分距離D23を検出し、第2の鉛直受光管25では衝突位置235が中央位置Mより上にずれ、中央位置Mに対して上の受光部252側にプラスの差分距離D25を検出する。このとき、差分距離D23(D25)は、左右傾斜が大きくなるほど長くなり、差分距離D23(D25)と傾斜角δの値は一対一対応することが分かる。このため、差分距離D23(D25)と左右の傾斜角δの対応関係を記憶した左右傾斜検出テーブル342(図8参照)を記憶部203に記憶しておくことで、左右の傾斜角δは、差分距離の値に応じて算出することができる。図8は分解能0.5mm単位とした場合の左右傾斜検出テーブル342を例示している。左右傾斜検出テーブル342では、鉛直受光管23(25)の中央位置Mを0[mm]とし、中央位置Mを境に上の受光部232(252)側で検出された差分距離D23(D25)をプラス、中央位置Mを境に下の受光部233(253)側で検出された差分距離D23(D25)をマイナスとし、各差分距離D23(D25)に対応する傾斜角δが記憶されている。 8 and 9 are diagrams explaining the calculation of the machine height h when the receiver 20 is tilted. When the receiver 20 is tilted to the left as shown in (1) of Fig. 8, the tilt/height change detection unit 211 detects that the collision position 235 in the first vertical receiver tube 23 has shifted above the center position M, and detects a positive difference distance D23 on the side of the receiver 232 above the center position M, while the collision position 235 in the second vertical receiver tube 25 has shifted below the center position M, and detects a negative difference distance D25 on the side of the receiver 253 below the center position M. When the light receiver 20 is tilted to the right as shown in FIG. 8 (2), the first vertical light receiving tube 23 detects a negative difference distance D23 toward the lower light receiving unit 233 side relative to the center position M, and the second vertical light receiving tube 25 detects a positive difference distance D25 toward the upper light receiving unit 252 side relative to the center position M, as the collision position 235 shifts below the center position M. At this time, it is understood that the difference distance D23 (D25) becomes longer as the left-right tilt increases, and the difference distance D23 (D25) and the value of the tilt angle δ correspond one-to-one. Therefore, by storing a left-right tilt detection table 342 (see FIG. 8) that stores the correspondence between the difference distance D23 (D25) and the left-right tilt angle δ in the storage unit 203, the left-right tilt angle δ can be calculated according to the value of the difference distance. FIG. 8 illustrates the left-right tilt detection table 342 when the resolution is set to 0.5 mm units. In the left-right tilt detection table 342, the center position M of the vertical light receiving tube 23 (25) is set to 0 [mm], the difference distance D23 (D25) detected on the upper light receiving unit 232 (252) side across the center position M is set as a positive value, and the difference distance D23 (D25) detected on the lower light receiving unit 233 (253) side across the center position M is set as a negative value, and the tilt angle δ corresponding to each difference distance D23 (D25) is stored.

傾斜・高さ変化検出部211は、水平受光管24の中央位置Mを境に左の受光部242側をマイナス、右の受光部243側をプラスとすると、図9の(1)に示すように、受光器20が左に傾き、衝突位置235が受光器中心RCより上にずれた場合、受光部243側にプラスの差分距離D24を検出する。図9の(2)に示すように、受光器20が左に傾き、衝突位置235が受光器中心RCより下にずれた場合、受光部242側にマイナスの差分距離D24を検出する。図9の(3)に示すように、受光器20が、右に傾き、衝突位置235が受光器中心RCより上にずれた場合、受光部242側にマイナスの差分距離D24を検出する。図9の(4)に示すように、受光器20が、右に傾き、衝突位置235が受光器中心RCより下にずれた場合、受光部243側にプラスの差分距離D24を検出する。受光器中心RCの高さ変化量Δdは、三角関数を用いて数式3から求められる。但し、数式3でD24は絶対値を用いる。

但し、 Δd:高さ変化
D24:水平受光管が検出した差分距離
δ:レーザ受光器の左右方向の傾斜角
With the left light receiving unit 242 side and the right light receiving unit 243 side being negative and positive, respectively, with respect to the center position M of the horizontal light receiving tube 24, the tilt/height change detection unit 211 detects a positive difference distance D24 on the light receiving unit 243 side when the light receiver 20 is tilted to the left and the collision position 235 is shifted above the light receiver center RC as shown in Fig. 9(1). When the light receiver 20 is tilted to the left and the collision position 235 is shifted below the light receiver center RC as shown in Fig. 9(2), the tilt/height change detection unit 211 detects a negative difference distance D24 on the light receiving unit 242 side. When the light receiver 20 is tilted to the right and the collision position 235 is shifted above the light receiver center RC as shown in Fig. 9(3), the tilt/height change detection unit 211 detects a negative difference distance D24 on the light receiving unit 242 side. 9(4), when the receiver 20 is tilted to the right and the collision position 235 is shifted below the receiver center RC, a positive differential distance D24 is detected on the receiver 243 side. The height change amount Δd of the receiver center RC is calculated from Equation 3 using trigonometric functions. However, in Equation 3, D24 uses an absolute value.

where Δd is the change in height, D24 is the difference in distance detected by the horizontal receiver tube, and δ is the inclination angle of the laser receiver in the left-right direction.

この検出を受けて、機械高算出部212は、傾斜・高さ変化検出部211が、図9の(1)で説明した通り、第1の鉛直受光管23の差分距離D23がプラス値、第2の鉛直受光管25の差分距離D25がマイナス値、水平受光管24の差分距離D24がプラスの値を検出した時と、図9の(3)で説明した通り、第1の鉛直受光管23の差分距離D23がマイナス値、第2の鉛直受光管25の差分距離D25がプラス値、水平受光管24の差分距離D24がマイナスの値を検出した時は、受光器中心RCはレーザ光LBより下にあり、測量機30の機械高hは、レーザ光LBの高さHと、受光器中心RCと機械中心MCの中心離距離d1と、水平受光管24の差分距離D24から数式3で出せる受光器中心RCの高さ変化量Δdを用いて、数式4から算出できる。
In response to this detection, the machine height calculation unit 212 determines whether the inclination/height change detection unit 211 detects that the difference distance D23 of the first vertical light receiving tube 23 is a positive value, the difference distance D25 of the second vertical light receiving tube 25 is a negative value, and the difference distance D24 of the horizontal light receiving tube 24 is a positive value, as described in FIG. 9 (1), or that the difference distance D23 of the first vertical light receiving tube 23 is a negative value and the difference distance D25 of the second vertical light receiving tube 25 is a negative value, as described in FIG. 9 (3). When the differential distance D25 of the light tube 25 is detected as a positive value and the differential distance D24 of the horizontal light receiving tube 24 is detected as a negative value, the light receiving center RC is below the laser light LB, and the mechanical height h of the surveying instrument 30 can be calculated from Equation 4 using the height H of the laser light LB, the center distance d1 between the light receiving center RC and the mechanical center MC, and the height change amount Δd of the light receiving center RC, which can be obtained from Equation 3 using the differential distance D24 of the horizontal light receiving tube 24.

一方、機械高算出部212は、傾斜・高さ変化検出部211が、図9の(2)で説明した通り、第1の鉛直受光管23の差分距離D23がプラス値、第2の鉛直受光管25の差分距離D25がマイナス値、水平受光管24の差分距離D24がマイナス値を検出した時と、図9の(4)で説明した通り、第1の鉛直受光管23の差分距離D23がマイナス値、第2の鉛直受光管25の差分距離D25がプラス値、水平受光管24の差分距離D24がプラス値を検出した時は、受光器中心RCはレーザ光LBより上にあり、測量機30の機械高hは、レーザ光LBの高さHと、受光器中心RCと機械中心MCの中心離距離d1と、水平受光管24の差分距離D24から数式3で出せる受光器中心RCの高さ変化量Δdと、を用いて、数式5から算出できる。
On the other hand, when the inclination/height change detection unit 211 detects that the difference distance D23 of the first vertical light receiving tube 23 is a positive value, the difference distance D25 of the second vertical light receiving tube 25 is a negative value, and the difference distance D24 of the horizontal light receiving tube 24 is a negative value, as described in (2) of FIG. 9, or when the difference distance D23 of the first vertical light receiving tube 23 is a negative value, the difference distance D25 of the second vertical light receiving tube 25 is a negative value, and the difference distance D24 of the horizontal light receiving tube 24 is a negative value, as described in (4) of FIG. When the differential distance D25 of the horizontal receiver tube 24 is detected as a positive value and the differential distance D24 of the horizontal receiver tube 24 is detected as a positive value, the receiver center RC is above the laser light LB, and the mechanical height h of the surveying instrument 30 can be calculated from equation 5 using the height H of the laser light LB, the center-to-center distance d1 between the receiver center RC and the mechanical center MC, and the height change Δd of the receiver center RC, which can be obtained from equation 3 using the differential distance D24 of the horizontal receiver tube 24.

なお、数式4および数式5において、ハンドル27をスライドさせた場合は、ハンドル27のポジションに応じて表示操作部22から中心離距離d1の値の更新を行うものとする。 In addition, in formulas 4 and 5, when the handle 27 is slid, the value of the center distance d1 is updated from the display operation unit 22 according to the position of the handle 27.

機械高算出部212は、数式1、数式2、数式4、または数式5から機械高hを測定すると、通信部202を介して測量機30に送信する。測量機30は通信部305でこれを受信して、記憶部306に記憶する。 When the machine height calculation unit 212 measures the machine height h from formula 1, formula 2, formula 4, or formula 5, it transmits it to the surveying instrument 30 via the communication unit 202. The surveying instrument 30 receives it via the communication unit 305 and stores it in the memory unit 306.

以上、本形態の測量システム1によれば、受光センサとして第1の鉛直受光管23、第2の鉛直受光管25、および水平受光管24をH型に備えたレーザ受光器20を、位置合わせした状態で測量機30と一体にすることで、受光器20の各受光信号のプラス/マイナスの検出パターンを見て、それぞれの検出パターンに応じて、測量機30の機械高を正確に測定することができる。 As described above, according to the surveying system 1 of this embodiment, the laser receiver 20, which has a first vertical light receiving tube 23, a second vertical light receiving tube 25, and a horizontal light receiving tube 24 arranged in an H-shape as light receiving sensors, is integrated with the surveying instrument 30 in an aligned state, and the positive/negative detection patterns of each light receiving signal of the receiver 20 are observed, and the mechanical height of the surveying instrument 30 can be accurately measured according to each detection pattern.

この測量システム1に用いられる回転レーザ装置10と受光器20はレベリングの用途で測量現場でよく用いられるものであり,測量機30は測定点の座標測定の用途で測量現場でよく用いられるものである。本形態の測量システム1では、レベリングの用途で測量現場に用意されている受光器20を測量機30に取り付けることによって、簡単に、測量機30の機械高を測定できる。 The rotary laser device 10 and the receiver 20 used in this surveying system 1 are commonly used at surveying sites for leveling purposes, and the surveying instrument 30 is commonly used at surveying sites for measuring the coordinates of measurement points. In this embodiment of the surveying system 1, the mechanical height of the surveying instrument 30 can be easily measured by attaching the receiver 20, which is prepared at the surveying site for leveling purposes, to the surveying instrument 30.

また、受光器20と測量機30は、受光器20のハンドル27と測量機30のフック37で着脱可能であるため、機械高の測定時だけ受光器20を測量機30に取り付けて、機械高の測定が終了すれば取り外すことができる。そして、取り外した状態では、受光器20と測量機30は、それぞれ正規の用途の使用に戻すことができるので、便利である。 In addition, the receiver 20 and the surveying instrument 30 can be attached and detached using the handle 27 of the receiver 20 and the hook 37 of the surveying instrument 30, so the receiver 20 can be attached to the surveying instrument 30 only when measuring the machine height, and can be removed once the measurement of the machine height is completed. When removed, the receiver 20 and the surveying instrument 30 can be conveniently returned to their normal use.

以上、本発明の好ましい実施の形態および変形例を述べたが、上記は本発明の一例であり、これらを当業者の知識に基づいて組み合わせることが可能であり、そのような形態も本発明の範囲に含まれる。 The above describes preferred embodiments and modifications of the present invention, but the above is merely an example of the present invention, and these can be combined based on the knowledge of those skilled in the art, and such combinations are also included in the scope of the present invention.

1 測量システム
10 回転レーザ装置
11 回転ヘッド
12 水平基準面
20 レーザ受光器
21 ケース
22 表示操作部
23 第1の鉛直受光管
231 導光体
232 受光部
233 受光部
234 光結合層
235 衝突位置
24 水平受光管
242 受光部
243 受光部
25 第2の鉛直受光管
252 受光部
253 受光部
27 ハンドル
28 収容凹部
29 スライドロック機構
201 演算処理部
202 通信部
203 記憶部
211 傾斜・高さ検出部
212 機械高算出部
30 測量機
31 整準台
32 基盤部
33 托架部
34 望遠鏡
35 主表示操作部
36 副表示操作部
37 フック
301 測距部
302 測角部
303 回転駆動部
304 演算制御部
305 通信部
306 記憶部
MC 機械中心
d1 中心離距離
LB レーザ光
RC 受光器中心
REFERENCE SIGNS LIST 1 Survey system 10 Rotary laser device 11 Rotating head 12 Horizontal reference surface 20 Laser receiver 21 Case 22 Display/operation unit 23 First vertical light receiving tube 231 Light guide 232 Light receiving unit 233 Light receiving unit
234 Optical coupling layer 235 Collision position 24 Horizontal light receiving tube 242 Light receiving section 243 Light receiving section 25 Second vertical light receiving tube 252 Light receiving section 253 Light receiving section 27 Handle 28 Storage recess 29 Slide lock mechanism 201 Processing section 202 Communication section 203 Storage section
211 Tilt/height detection unit 212 Machine height calculation unit 30 Surveying instrument 31 Leveling platform 32 Base unit 33 Support unit 34 Telescope 35 Main display operation unit 36 Sub-display operation unit 37 Hook 301 Distance measurement unit 302 Angle measurement unit 303 Rotation drive unit 304 Arithmetic and control unit 305 Communication unit 306 Memory unit MC Machine center d1 Center distance LB Laser light RC Light receiver center

Claims (6)

ある測定基準点からある高さで水平にレーザ光を出射する回転レーザ装置と、
別の測定基準点に設置され機械中心までの機械高を有する測量機と、
前記測量機の前面に固定され、前記レーザ光を受光するレーザ受光器と、を備え、
前記レーザ受光器は、受光センサとして,柱状の導光体,前記導光体の両端部に配置された受光部,前記レーザ光を前記導光体の前記両端部に向かって分割する光結合層,を備え、H型に配置された、第1の鉛直受光管、第2の鉛直受光管、および水平受光管と、前記受光部に接続された演算処理部を備え、
前記演算処理部は、
前記受光部の各受光信号から前記レーザ光の衝突位置を特定し、前記衝突位置の前記中央位置からの差分距離と、前記差分距離が前記導光体の長さの中央位置を境にプラス側とマイナス側のどちらにあるかを検出し、
前記第1の鉛直受光管、前記第2の鉛直受光管、および前記水平受光管の前記差分距離のプラス/マイナスの組み合わせに応じて、前記レーザ光の高さと、前記受光器の受光器中心と前記測量機の機械中心の鉛直方向の中心離距離と、前記差分距離と、から前記測量機の前記機械高を測定する
ことを特徴とする測量システム。
A rotary laser device that emits a laser beam horizontally at a certain height from a certain measurement reference point;
A surveying instrument installed at another measurement reference point and having a machine height to a machine center;
a laser receiver fixed to a front surface of the surveying instrument and configured to receive the laser light;
The laser receiver includes a columnar light guide as a light receiving sensor, light receiving units arranged at both ends of the light guide, and an optical coupling layer that divides the laser light toward both ends of the light guide, and includes a first vertical light receiving tube, a second vertical light receiving tube, and a horizontal light receiving tube arranged in an H shape, and a calculation processing unit connected to the light receiving units.
The arithmetic processing unit is
identifying a collision position of the laser light from each light receiving signal of the light receiving unit, and detecting a difference distance from the center position of the collision position and whether the difference distance is on the positive side or the negative side of the center position of the length of the light guide;
A surveying system characterized by measuring the mechanical height of the surveying instrument from the height of the laser light, the vertical center distance between the receiver center of the receiver and the mechanical center of the surveying instrument, and the differential distance according to the plus/minus combination of the differential distance of the first vertical receiver tube, the second vertical receiver tube, and the horizontal receiver tube.
前記演算処理部は、
前記第1の鉛直受光管と前記第2の鉛直受光管の前記差分距離が同じ値でともにマイナス値の場合は、該差分距離と前記レーザ光の高さと前記中心離距離の和から、前記機械高を算出し、
前記第1の鉛直受光管と前記第2の鉛直受光管の前記差分距離が同じ値でともにプラス値の場合は、該差分距離の絶対値を前記レーザ光の高さと前記中心離距離の和から差し引いて、前記機械高を算出する
ことを特徴とする請求項1に記載の測量システム。
The arithmetic processing unit is
When the difference distance between the first vertical light receiving tube and the second vertical light receiving tube is the same and both are negative values, the machine height is calculated from the sum of the difference distance, the height of the laser light, and the center distance;
The surveying system according to claim 1, characterized in that when the differential distance between the first vertical light receiving tube and the second vertical light receiving tube is the same and both are positive values, the absolute value of the differential distance is subtracted from the sum of the height of the laser light and the center distance to calculate the machine height.
前記演算処理部は、
前記第1の鉛直受光管の前記差分距離がプラス値、前記第2の鉛直受光管の前記差分距離がマイナス値、前記水平受光管の前記差分距離がプラスの値の場合と、前記第1の鉛直受光管の前記差分距離がマイナス値、前記第2の鉛直受光管の前記差分距離がプラス値、前記水平受光管の前記差分距離がマイナスの値の場合は、前記水平受光管の差分距離の絶対値の三角関数から求まる前記受光器中心の高さ変化量を前記レーザ光の高さと前記中心離距離の和から差し引いて、前記機械高を算出し、
前記第1の鉛直受光管の前記差分距離がプラス値、前記第2の鉛直受光管の前記差分距離がマイナス値、前記水平受光管の前記差分距離がマイナス値の場合と、前記第1の鉛直受光管の前記差分距離がマイナス値、前記第2の鉛直受光管の前記差分距離がプラス値、前記水平受光管の前記差分距離がプラス値の場合は、前記水平受光管の差分距離の絶対値の三角関数から求まる前記受光器中心の高さ変化量と前記レーザ光の高さと前記中心離距離の和から、前記機械高を算出する
ことを特徴とする請求項1に記載の測量システム。
The arithmetic processing unit is
When the difference distance of the first vertical light receiving tube is a positive value, the difference distance of the second vertical light receiving tube is a negative value, and the difference distance of the horizontal light receiving tube is a positive value, or when the difference distance of the first vertical light receiving tube is a negative value, the difference distance of the second vertical light receiving tube is a positive value, and the difference distance of the horizontal light receiving tube is a negative value, the change in height of the light receiving device center calculated from a trigonometric function of the absolute value of the difference distance of the horizontal light receiving tube is subtracted from the sum of the height of the laser light and the center distance to calculate the machine height;
The surveying system according to claim 1, characterized in that when the differential distance of the first vertical light receiving tube is a positive value, the differential distance of the second vertical light receiving tube is a negative value, and the differential distance of the horizontal light receiving tube is a negative value, or when the differential distance of the first vertical light receiving tube is a negative value, the differential distance of the second vertical light receiving tube is a positive value, and the differential distance of the horizontal light receiving tube is a positive value, the machine height is calculated from the sum of the height change of the center of the light receiver obtained from the trigonometric function of the absolute value of the differential distance of the horizontal light receiving tube, the height of the laser light, and the center distance.
前記レーザ受光器の後面には、後方に延出する左右一対のハンドルが上下方向にスライドロック可能に設けられており、該ハンドルを前記測量機に設けられたフックに固定することで、前記中心離距離が固定となることを特徴とする請求項1に記載の測量システム。
The surveying system described in claim 1, characterized in that a pair of left and right handles extending rearward are provided on the rear surface of the laser receiver so as to be slidably locked in the vertical direction, and the center distance is fixed by fixing the handles to hooks provided on the surveying instrument.
前記レーザ受光器の後面には、前記測量機に設けられた表示操作部および望遠鏡との干渉を避けるための収容凹部が形成されていることを特徴とする請求項2に記載の測量システム。
3. The surveying system according to claim 2, wherein a housing recess is formed on a rear surface of said laser receiver to avoid interference with a display operation unit and a telescope provided on said surveying instrument.
ある測定基準点からある高さで水平に出射されるレーザ光を受光し、別の測定基準点に設置された測量機の前面に固定されたレーザ受光器であって、
前記レーザ受光器は、受光センサとして,柱状の導光体,前記導光体の両端部に配置された受光部,前記レーザ光を前記導光体の前記両端部に向かって分割する光結合層,を備え、H型に配置された、第1の鉛直受光管、第2の鉛直受光管、および水平受光管と、前記受光部に接続された演算処理部を備え、
前記演算処理部は、
前記受光部の各受光信号から前記レーザ光の衝突位置を特定し、前記衝突位置の前記中央位置からの差分距離と、前記差分距離が前記導光体の長さの中央位置を境にプラス側とマイナス側のどちらにあるかを検出し、
前記第1の鉛直受光管、前記第2の鉛直受光管、および前記水平受光管の前記差分距離のプラス/マイナスの組み合わせに応じて、前記レーザ光の高さと、前記受光器の受光器中心と前記測量機の機械中心の鉛直方向の中心離距離と、前記差分距離と、から前記測量機の機械高を測定することを特徴とするレーザ受光器。
A laser receiver that receives a laser beam emitted horizontally at a certain height from a certain measurement reference point and is fixed to the front of a surveying instrument installed at another measurement reference point,
The laser receiver includes a columnar light guide as a light receiving sensor, light receiving units arranged at both ends of the light guide, and an optical coupling layer that divides the laser light toward both ends of the light guide, and includes a first vertical light receiving tube, a second vertical light receiving tube, and a horizontal light receiving tube arranged in an H shape, and a calculation processing unit connected to the light receiving units.
The arithmetic processing unit is
identifying a collision position of the laser light from each light receiving signal of the light receiving unit, and detecting a difference distance from the center position of the collision position and whether the difference distance is on the positive side or the negative side of the center position of the length of the light guide;
A laser receiver characterized by measuring the mechanical height of the surveying instrument from the height of the laser light, the vertical center distance between the receiver center of the receiver and the mechanical center of the surveying instrument, and the differential distance, depending on the plus/minus combination of the differential distance of the first vertical receiver tube, the second vertical receiver tube, and the horizontal receiver tube.
JP2022157331A 2022-09-30 2022-09-30 Surveying system and laser receiver Pending JP2024051268A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022157331A JP2024051268A (en) 2022-09-30 2022-09-30 Surveying system and laser receiver
PCT/JP2023/035366 WO2024071290A1 (en) 2022-09-30 2023-09-28 Surveying system and laser receiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022157331A JP2024051268A (en) 2022-09-30 2022-09-30 Surveying system and laser receiver

Publications (1)

Publication Number Publication Date
JP2024051268A true JP2024051268A (en) 2024-04-11

Family

ID=90478067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022157331A Pending JP2024051268A (en) 2022-09-30 2022-09-30 Surveying system and laser receiver

Country Status (2)

Country Link
JP (1) JP2024051268A (en)
WO (1) WO2024071290A1 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11337308A (en) * 1998-05-25 1999-12-10 Nikon Corp Light receiving position detecting device
JP6734685B2 (en) * 2016-03-31 2020-08-05 株式会社トプコン Position acquisition method of surveying instrument and surveying instrument
EP3264040A1 (en) * 2016-06-30 2018-01-03 HILTI Aktiengesellschaft Method for comparing a laser beam hitting a laser recipient with a rotating laser beam
US11982746B2 (en) * 2019-02-08 2024-05-14 Topcon Positioning Systems, Inc. System and method for tracking a reference laser
JP7390982B2 (en) * 2020-05-29 2023-12-04 清水建設株式会社 Photodetector and rotating laser photodetector

Also Published As

Publication number Publication date
WO2024071290A1 (en) 2024-04-04

Similar Documents

Publication Publication Date Title
US10302413B2 (en) Six degree-of-freedom laser tracker that cooperates with a remote sensor
US9476695B2 (en) Laser tracker that cooperates with a remote camera bar and coordinate measurement device
US7679727B2 (en) Method and system for determining the position of a receiver unit
US9441963B2 (en) Multifunction laser leveling tool
EP2885602B1 (en) Method and system for determining spatial coordinates with a mobile coordinate measuring machine
US8595946B2 (en) Two dimension layout and point transfer system
US7148958B2 (en) Method and system for measuring height or relatively axial position
JP2013539531A (en) Laser scanning device and method of use
JP2019519789A (en) Method for comparing a received beam incident on a laser receiver with a rotating laser beam
CN109416252B (en) Method for comparing a received radiation incident on a laser receiver with a rotating received radiation
EP3087344A1 (en) Multifunction laser leveling tool
WO2024071290A1 (en) Surveying system and laser receiver
US20080137102A1 (en) Device For Positioning Markings
WO2024071289A1 (en) Leveling system, and laser receiver
WO2024071291A1 (en) Leveling system and laser optical receiver
JP2003294445A (en) Marking unit containing rangefinder
EP3696499A1 (en) Surveying system having a rotating mirror
JP4794288B2 (en) Surveying instrument
TW201403019A (en) Laser aspect measuring instrument
JPH08278124A (en) Surveying equipment
US20230349695A1 (en) Surveying instrument
WO1989006783A1 (en) Position measurement system
CN115494474A (en) Measuring device, optical axis conversion unit, measuring method, and storage medium
JPH08327357A (en) Surveying apparatus
CN113048917A (en) Semiconductor laser instrument based on geometric optics

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20231120