JP2024050442A - R-t-b系焼結磁石の製造方法 - Google Patents

R-t-b系焼結磁石の製造方法 Download PDF

Info

Publication number
JP2024050442A
JP2024050442A JP2023143204A JP2023143204A JP2024050442A JP 2024050442 A JP2024050442 A JP 2024050442A JP 2023143204 A JP2023143204 A JP 2023143204A JP 2023143204 A JP2023143204 A JP 2023143204A JP 2024050442 A JP2024050442 A JP 2024050442A
Authority
JP
Japan
Prior art keywords
wire
compact
powder
cutting
powder compact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023143204A
Other languages
English (en)
Inventor
剛志 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Proterial Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Proterial Ltd filed Critical Proterial Ltd
Priority to CN202311252137.1A priority Critical patent/CN117790158A/zh
Publication of JP2024050442A publication Critical patent/JP2024050442A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Powder Metallurgy (AREA)

Abstract

【課題】様々な形状を有するR-T-B系焼結磁石の製造方法を提供する。【解決手段】R-T-B系焼結磁石用合金(の粉末から粉末成形体を作製する成形工程と、前記粉末成形体を切断し、複数の成形体片を作製する、切断工程と、複数の成形体片のそれぞれを焼結して複数の焼結体を作製する焼結工程と、を含む。切断工程は、液体中に沈めた前記粉末成形体に対して、水平方向に走行するワイヤを走行方向に垂直な任意の切込み方向に移動させることによって切断する工程を含み、ワイヤの切込み方向における移動経路は、粉末成形体を走行方向に平行な方向から見た平面視において、複数の成形体片に含まれる1個または複数個の成形体片の形状を規定する閉曲線を形成するように制御され、粉末成形体に対する移動経路の開始位置および終了位置は、粉末成形体の上面にある。【選択図】図14

Description

本願は、R-T-B系焼結磁石の製造方法に関する。
R-T-B系焼結磁石(Rは希土類元素であり、Nd、PrおよびCeからなる群から選択される少なくとも1つを必ず含み、Tは遷移金属の少なくとも1つでありFeを必ず含み、Bはホウ素である)は、RFe14B型結晶構造を有する化合物の主相と、この主相の粒界部分に位置する粒界相および微量添加元素や不純物の影響により生成する化合物相とから構成されている。R-T-B系焼結磁石は、高い残留磁束密度B(以下、単に「B」と記載する場合がある)と、高い保磁力HcJ(以下、単に「HcJ」と記載する場合がある)を示し、優れた磁気特性を有することから、永久磁石の中で最も高性能な磁石として知られている。このため、R-T-B系焼結磁石は、ハードディスクドライブのボイスコイルモータ(VCM)、電気自動車(EV、HV、PHV)用モータ、産業機器用モータなどの各種モータや家電製品など多種多様な用途に用いられている。
このようなR-T-B系焼結磁石は、例えば、合金粉末を準備する工程、合金粉末をプレス成形して粉末成形体を作製する工程、粉末成形体を焼結する工程を経て製造される。合金粉末は、例えば、以下の方法で作製される。
まず、インゴット法またはストリップキャスト法などの方法によって各種原料金属の溶湯から合金を製造する。得られた合金を粉砕工程に供し、所定の粒径分布を有する合金粉末を得る。この粉砕工程には、通常、粗粉砕工程と微粉砕工程とが含まれており、前者は、例えば水素脆化現象を利用して、後者は例えば気流式粉砕機(ジェットミル)を用いて行われる。
粉末成形体を焼結する工程によって得られた焼結体は、その後、研削、切断などの機械的な加工を施され、所望の形状およびサイズを持つように個片化される。より詳細には、まず、R-T-B系希土類磁石粉末をプレス装置で圧縮成形することにより、最終的な磁石製品よりも大きいサイズの成形体が作製される。そして、成形体を焼結工程によって焼結体にした後、例えば超硬合金製ブレードソー、または回転砥石などによって焼結体を研削加工し、所望の形状を付与することが行われている。例えば、まずブロック形状を有する焼結体を作製した後、その焼結体をブレードソーなどでスライスすることによって複数のプレート状焼結体部分を切り出すことが行われている。
しかしながら、R-Fe-B系焼結磁石などの希土類合金磁石の焼結体は極めて硬くて脆い上に、加工負荷が大きいため、高精度の研削加工は困難な作業であり、加工時間が長くかかる。また、加工によって滅失する材料部分が不可避的に発生する。このため、加工工程が製造コスト増加の大きな原因となっていた。
例えば前者の問題を解決するために、特許文献1は、磁石成形体を焼結前にワイヤソーを用いて加工する技術を記載している。ワイヤソーとは、一方向または双方向に走行するワイヤを、加工すべき成形体に押し付け、ワイヤと成形体との間にある砥粒によって成形体を研削または切断する加工技術である。この技術によれば、焼結体よりも格段に柔らかくて加工しやすい状態にある粉末成形体を切断するため、切断加工に要する時間が大幅に短縮される。
特開2003-303728号公報
特許文献1は、0.1mm以上1.0mm以下の外径を有するワイヤと、このワイヤに固定された砥粒とを有するワイヤソーを用いて、酸素濃度がモル比で全体の5%以上18%以下に調節された不活性ガス雰囲気中で粉末成形体を加工することを開示している。このように酸素濃度が制御された不活性雰囲気中でワイヤソー加工を行うことは、設備や管理が煩雑になり、量産性に劣る。
本開示の実施形態は、不活性雰囲気の準備が必要ないワイヤソー工程を可能にする新しいR-T-B系焼結磁石の製造方法を提供する。
本開示のR-T-B系焼結磁石の製造方法は、非限定的で例示的な実施形態において、R-T-B系焼結磁石用合金(Rは希土類元素であり、Nd、PrおよびCeからなる群から選択される少なくとも1つを必ず含み、Tは遷移金属の少なくとも1つでありFeを必ず含み、Bはホウ素である)の粉末から粉末成形体を作製する成形工程と、前記粉末成形体を切断し、複数の成形体片を作製する、切断工程と、前記複数の成形体片のそれぞれを焼結して複数の焼結体を作製する焼結工程と、
を含む。前記切断工程は、液体中に沈めた前記粉末成形体に対して、水平方向に走行するワイヤを走行方向に垂直な任意の切込み方向に移動させることによって切断する工程を含み、前記ワイヤの前記切込み方向における移動経路は、前記粉末成形体を前記走行方向に平行な方向から見た平面視において、前記複数の成形体片に含まれる1個または複数個の成形体片の形状を規定する閉曲線を形成するように制御され、前記粉末成形体に対する前記移動経路の開始位置および終了位置は、前記粉末成形体の上面にある。
本開示の実施形態によれば、不活性雰囲気を準備することなくワイヤソーによって様々な形状を有する成形体片を作製することが可能となり、量産性に優れる。本開示の実施形態によれば、粉末成形体の形状設計自由度が向上するため、高性能磁石の特性を維持しつつ、製造コストの低減を実現することが可能になる。
図1は、本開示の実施形態における製造方法の主な工程を示すフローチャートである。 図2は、本開示の実施形態で用いられるワイヤソー装置の構成を模式的に示す斜視図である。 図3Aは、液体中に沈めた粉末成形体をワイヤによって切断する工程を説明するための正面図である。 図3Bは、液体中に沈めた粉末成形体を金属素線のワイヤによって切断する工程を説明するための正面図である。 図4Aは、液体中に沈めた粉末成形体をワイヤによって切断する工程を説明するための側面図である。 図4Bは、液体中に沈めた粉末成形体をワイヤによって切断する工程を説明するための側面図である。 図5Aは、液体中に沈めた粉末成形体をワイヤによって切断する工程を説明するための側面図である。 図5Bは、液体中に沈めた粉末成形体をワイヤによって切断する工程を説明するための側面図である。 ワイヤソー装置によって作製され得る成形体片の例を示す斜視図である。 図7は、粉末成形体におけるワイヤの移動経路の例を模式的に示す側面図である。 図8は、粉末成形体におけるワイヤの移動経路の例を拡大して模式的に示す側面図である。 図9は、図8の一部を拡大して模式的に示す側面図である。 ワイヤの移動経路の閉曲線が複数の成形体片を含む例を示す側面図である。 切断工程時に成形体片が粉末成形体から飛び出すことを抑制する構成を備えたワイヤソー装置の例を示す斜視図である。 切断工程中に切断された成形体片の移動を規制する部材の例を示す斜視図である。 図12の部材を示す平面図である。 図14は、粉末成形体におけるワイヤの移動経路の更に他の例を模式的に示す側面図である。 図15は、粉末成形体におけるワイヤの移動経路の更に他の例を模式的に示す側面図である。 図16は、粉末成形体から切断後の成形体片を押し出す様子(成形体片取り出し工程)を模式的に示す斜視図である。 図17は、粉末成形体から切断後の成形体片を押し出す様子(成形体片取り出し工程)を模式的に示す断面図である。 図18は、粉末成形体の中から押し出された成形体片を液体中で受け取る支持部材の一例を模式的に示す斜視図である。 図19は、粉末成形体の中から押し出された成形体片を液体中で受け取る支持部材の一例を模式的に示す平面図である。 図20は、支持部材に向かって液体中で下降する成形体片を模式的に示す断面図である。 図21は、液体中で成形体片が支持部材に達した状態を模式的に示す断面図である。 図22は、孔の開いていない支持部材に向かって落下する成形体片を模式的に示す断面図である。 図23は、プレ切断工程によって分割された粉末成形体から複数の成形体片を作製した状態を模式的に示す斜視図である。 図24は、ワイヤソー装置100によって粉末成形体10を加工するときに粉末成形体10を保持するクランプ装置200の例を模式的に示す斜視図である。 図25は、クランプ装置200を用いて行う切断工程の例を説明する図である。 図26は、クランプ装置200を用いて行う切断工程の例を説明する他の図である。 図27は、クランプ装置200を用いて行う切断工程の例を説明する更に他の図である。 図28は、クランプ装置200を用いて行う切断工程の例を説明する更に他の図である。
以下、本開示によるR-T-B系焼結磁石の製造方法の実施形態を説明する。本実施形態におけるR-T-B系焼結磁石の製造方法は、図1のフローチャートに示すように、
・R-T-B系焼結磁石用合金(Rは希土類元素であり、Nd、PrおよびCeからなる群から選択される少なくとも1つを必ず含み、Tは遷移金属の少なくとも1つでありFeを必ず含み、Bはホウ素である)の粉末から粉末成形体を作製する成形工程(S10)と、
・成形工程(S10)で得られた粉末成形体を切断し、複数の成形体片を作製する、切断工程(S20)と、
・複数の成形体片のそれぞれを焼結して複数の焼結体を作製する焼結工程(S30)と、
を含む。
切断工程(S20)は、液体中に沈めた前記粉末成形体に対して、水平方向に走行するワイヤを走行方向に垂直な任意の切込み方向に移動させることによって切断する工程(S22)を含む。
また、切断工程(S20)において、ワイヤの切込み方向における移動経路は、粉末成形体を走行方向に平行な方向から見た(走行方向の延長線上から見た)平面視において、複数の成形体片に含まれる1個または複数個の成形体片の形状を規定する閉曲線を形成するように制御される。
本開示のR-T-B系焼結磁石の製造方法によれば、粉末成形体を液体中に沈めた状態でワイヤによる切断を行うため、不活性雰囲気を必ずしも準備する必要は無い。但し、本開示は不活性雰囲気を準備しない構成に限定されない。より成形体の酸化を抑制するために、不活性雰囲気を準備し、油中で切断してもよい。本開示の実施形態で利用可能な液体の例は、鉱物油または合成油などの油剤である。
従来、粉末成形体をワイヤソー技術によって切断するには、ワイヤを構成する金属素線の表面に固着した硬い砥粒が粉末成形体と接触し、摩擦により粉末成形体の一部を削り取ることが必要であると考えられてきた。しかし、本発明者による実験の結果、走行する金属素線が、液体中に沈められた粉末成形体と接すると、砥粒が固着していない金属素線だけでも粉末成形体を研削し、切断できることがわかった。発明者の検討の結果、所定範囲の速度で走行する金属素線と粉末成形体とが接触している領域およびその近傍では、高速の液体流(ジェット流)が発生し、それによって粉末成形体を構成している粉末粒子が削り取られることがわかった。粉末成形体から削り取られた粉末粒子の一部は、高速で流れる液体に乗って金属素線と粉末成形体との間に挟まれ、遊離砥粒と同様の研削機能を発揮して粉末成形体の切断を促進すると考えられる。液中でワイヤが粉末成形体を切断するメカニズムから、ワイヤの表面の形状および形態は特に限定されないと考えられる。言い換えると、ワイヤの表面は、通常のピアノ線のように平滑であってもよい。
切断工程において、ワイヤの走行速度は300m/分以上であることが好ましく、そのときのワイヤの張力は3kgf(29.4N)以上、例えば25kgf(245N)以下であることが好ましい。ワイヤの走行速度が300m/分未満であると、粉末成形体を切断するために必要な十分な流速が得られないし、ワイヤの張力が3kgf未満であると、ワイヤが撓み、切断面の平坦性が低下してしまう可能性がある。ワイヤの張力が25kgfを超えると、破断するという問題が生じる可能性がある。また、切断工程において、ワイヤの走行方向に対して直交する方向の切込み速度(ワーク送り速度)は、100mm/分以上であることが好ましい。切込み速度が100mm/分未満であると、切断工程に要する時間が長くなり、生産効率が低下するからである。
なお、ワイヤの直径が200μm以上のとき、ワイヤの走行速度を500m/分以上にすることができる。ワイヤの走行速度が高いほど、切込み速度を高めることができる。例えば、ワイヤの直径が250μmで、ワイヤの走行速度を500m/分以上の場合、切込み速度を150mm/分以上にすることができる。なお、後述するように、曲面を形成するときの切込み方向におけるワイヤの移動速度は、100mm/分以上600mm/分以下であることが好ましい。
液体中で粉末成形体を切断することの利点のひとつは、粉末成形体とワイヤとが接触する部分での摩擦熱による温度上昇が抑制され、発生した熱も液体中に散逸しやすいことにある。大気中であれば、発生した摩擦熱で高温になった粉末成形体が大気中の酸素または水蒸気と反応してしまい、最終的に得られる焼結磁石中の酸素濃度の上昇と磁石特性の劣化を招くところであるが、本実施形態では、そのような問題も回避できる。
液体中で粉末成形体を切断することの他の利点は、ワイヤによって粉末成形体から削り取られた粉末粒子が液体中に沈殿し、回収が容易になることである。好ましい実施形態において、粉末成形体を準備する工程は、湿式プレスによって粉末を成形する工程を含む。その場合、湿式プレスは、切断工程における液体と同一種類の液体を前記粉末に加えて行うことが望ましい。切断工程によって粉末成形体から削られた粉末の粒子を液体中から回収して、再利用することが容易になるからである。
図2を参照しながら、上記の製造方法に利用可能なワイヤソー装置の構成例を説明する。図2は、本開示の実施形態におけるワイヤソー装置100の構成例を模式的に示す斜視図である。図には、参考のため、互いに直交するX軸、Y軸、およびX軸が示されている。この例において、XY平面は水平であり、Z軸は鉛直方向を向いている。
図2のワイヤソー装置100は、回転の中心軸が互いに平行になるように配列されたローラ30a、30b、30cと、一本の連続したワイヤ40を有している。ローラ30a~30cのそれぞれは、支持装置50によって回転可能に支持されている。ローラ30a~30cの回転軸はY軸に平行である。ローラ30a~30cの回転により、ワイヤ40は張力を受けて走行する。ワイヤ40は、不図示のボビンなどに巻き取られる。なお、ワイヤソー装置100は、張力の調整などのために、更に他のローラを備えていてもよい。
図2の例において、ワイヤ40において、ローラ30aとローラ30bとの間に位置する部分が粉末成形体10に接触する。支持装置50は、ローラ30aとローラ30bとの間を走行するワイヤ40によって粉末成形体10を切断しているとき、粉末成形体10に干渉することなくY軸方向に移動できる形状を有している。図2の例において、支持装置50は、粉末成形体10のY軸方向の移動を可能にする開口部51を有している。具体的には、ローラ30aとローラ30bは、支持装置50の開口部51を挟んで開口部51の両側に位置している。図2の支持装置50は、開口部51を規定するように概略的に「コ」の字または「C」の字の形状を有している。開口部51のX軸方向におけるサイズ(幅)は、粉末成形体10のX軸方向におけるサイズ(幅)よりも大きい。
成形工程(S20)で作製された粉末成形体10は、図示されていないクランプ部によって固定用ベース20に固定され、液体60を蓄える槽62の内部に配置される。図2では、槽62が破線で示され、液体60の表面の高さが点線で示されている。図2の例において、粉末成形体10の全体が液体60に浸漬している。
ワイヤ40が粉末成形体10に接触するときのワイヤ40の走行方向(以下、単に「ワイヤ走行方向」と称する場合がある。)は、X軸に平行である。
本実施形態におけるワイヤソー装置100は、ワイヤ40に対する粉末成形体10の相対的な位置を、上下縦方向(Z軸方向)および水平横方向(Y軸方向)に移動させる駆動装置70を備えている。図2の例において、駆動装置70は、粉末成形体10を載せる支持ステージ72と、この支持ステージ72をZ軸方向に往復動させるように構成されたZ軸駆動部74と、支持ステージ72をY軸方向に往復動させるように構成されたY軸駆動部76とを有している。Z軸駆動部74およびY軸駆動部76は、それぞれ、モータなどのアクチュエータを有している。これらのアクチュエータは、制御装置からの駆動信号に応じて、支持ステージ72および支持ステージ72に固定された粉末成形体10を移動させることができる。粉末成形体10をワイヤ走行方向(X軸方向)に平行な方向から見た平面視において、粉末成形体10の位置は、YZ座標系上の座標によって規定され得る。
ワイヤ40を走行させながら、Z軸駆動部74およびY軸駆動部76によって粉末成形体10を移動させることにより、粉末成形体10に対して、ワイヤ40を走行方向に垂直な任意の切込み方向に移動させることができる。特に、Z軸駆動部74によるZ軸方向の移動速度とY軸駆動部76によるY軸方向による移動速度を調整することにより、ワイヤ40の切込み方向を自由に変化させることができる。
上記の例において、YZ座標系に対するワイヤ40の位置は、固定されており、粉末成形体10が可動状態にある。しかし、これとは異なり、粉末成形体10の位置が固定され、YZ座標系に対するワイヤ40の位置が可動状態にあってもよい。この場合、支持装置50がY軸方向およびZ軸方向に移動するように駆動される。また、例えば支持装置50はY軸方向に移動し、粉末成形体10がZ軸方向に移動するような形態を採用してもよい。重要な点は、粉末成形体10をワイヤ走行方向(X軸方向)に平行な方向から見た平面視において、粉末成形体10に対するワイヤ40の位置(YZ座標系上の座標)が任意の方向に移動することにある。
以下、わかりやすさを優先し、固定した粉末成形体10に対してワイヤ40の相対的な位置を変化させる例について切断工程の詳細を説明する。
まず、図3Aおよび図3Bを参照する。以下の説明において、粉末成形体10の切断は、例えば図3Aに示されるワイヤソー装置100によって行われる。図3Aおよび図3Bは、それぞれ、液体60中に沈めた粉末成形体10をワイヤ40によって切断する工程を説明するための正面図である。図3Aは、切断工程が開始する前の状態を示し、図3Bは切断工程の途中の状態を示している。図3Bに示される粉末成形体10内の破線は、粉末成形体10を切断中のワイヤ40の位置を模式的に示している。
図示される例において、ワイヤ40はX軸方向に所定の速度で走行ながら、ワイヤ40の走行方向に対して直交する方向(YZ平面内の任意の方向)に移動する。ワイヤ40の走行方向に対して直交する方向は、切込み方向であり、この方向の速度(切込み速度)は、例えば100mm/分以上に設定される。図3Bに示される例では、静止した状態の粉末成形体10に対して、走行するワイヤ40が例えばZ軸の負の方向に移動している状態を示しているが、前述したように、粉末成形体10が固定用ベース20とともにZ軸の正の方向に持ち上げられてもよい。
図4Aおよび図4Bは、それぞれ、液体60中に沈めた粉末成形体10をワイヤ40によって切断する工程を説明するための側面図である。図4Aは、切断工程が開始する前の状態を示し、図4Bは切断工程の途中の状態を示している。
図5Aおよび図5Bは、液体60中に沈めた粉末成形体10をワイヤ40によって水平方向に切断する工程を説明するための側面図である。図示される例において、切断工程中において、ローラ30a、30b、30cが粉末成形体10に対して相対的に水平方向(各ローラの回転軸方向)に移動している。図3Aから図4Bを参照しながら説明した工程を行う前に、ワイヤ40による水平方向の切込みを行うことにより、粉末成形体10の表面を平坦にすることが可能になる。粉末成形体10の表面の少なくとも一部(例えば上面)は、粉末プレス工程によっては凹凸を有する場合がある。例えば、粉末ブレス装置のダイの孔に粉末を充填した後、粉末をパンチで押圧する前、パンチと粉末との間に「ろ布」が配されて、ろ布を介して分散剤(油剤)を吐出させることが行われ得る。その場合、得られた粉末成形体の上面にろ布によって凹凸が形成され得る。このような凹凸面を焼結工程前にワイヤによって切除すると、焼結工程後に平坦化のための切削または研磨を行う工程を省略することができる。
前述したように、本開示の実施形態によれば、ワイヤ40の切込み方向における移動経路は、粉末成形体10をワイヤ走行方向(X軸方向)に平行な方向から見た平面視において、複数の成形体片に含まれる1個または複数個の成形体片の形状を規定する閉曲線を形成するように制御される。以下、この点を説明する。
図6は、本開示の実施形態において作製することが可能な成形体片10Pの例を示す斜視図である。図6に示される左の成形体片10P1は、「弓型」の形状を有しており、右側の成形体片10P2は、「蒲鉾型」の形状を有している。本開示の実施形態によれば、例えば直方体ブロックの形状を有する粉末成形体10から、図6に示されるような複数の成形体片10Pを作製することができる。
粉末成形体10を作製する工程の具体例は後述する。ここで留意する点は、粉末成形体10は焼結体ではなく、焼結される前の粉末の成形体(グリーンコンパクト)であることである。粉末成形体は、R-T-B系焼結磁石用合金(Rは希土類元素であり、Nd、PrおよびCeからなる群から選択される少なくとも1つを必ず含み、Tは遷移金属の少なくとも1つでありFeを必ず含み、Bはホウ素である)の粉末を配向磁場中において湿式プレスまたは乾式プレスで成形することによって得られる。
図3Aに模式的に示されるローラ30a、30b、30cは、Y軸に平行な方向からみたとき、回転中心の軸が三角形の頂点に位置するように、所定の間隔を隔てて配置される。ローラ30a、30b、30cのそれぞれの側面に溝が設けられている。ワイヤ40は、ローラ30a、30b、30cの溝に順番に巻き架けられている。ワイヤ40の両端は、例えば、不図示の回収ボビンに巻回されている。
本開示の好ましい実施形態におけるワイヤ40は、表面に砥粒が固着していない金属素線である。従来のワイヤソー技術では、ワイヤは素線(芯線)と、素線の外周面に位置する砥粒と備えている。砥粒の平均粒径は、例えば数μmから数十μmである。このような砥粒の典型例は、人工ダイヤモンドであり、希土類合金の硬度よりも高い硬度を有している。このような従来のワイヤソー技術で使用されるワイヤ部分とは異なり、ワイヤ40は、例えば炭素鋼などの金属材料から形成されており、切断工程中に例えば3.0kgf以上の張力が与えられても伸長することなく使用可能である。ワイヤ40に使用可能な金属素線の材料は、例えばピアノ線、高張力鋼線などであり得る。ワイヤ40の表面にメッキがなされていてもよい。ワイヤ40の直径は、例えば100μm以上350μmの範囲にあり、180μm以上300μm以下の範囲にあることが好ましい。ワイヤ40の直径が100μm未満になると、強度不足により、切断中にワイヤ40が延びてしまう問題がある。ワイヤ40の直径が大きいほど、切り粉の排出性が向上するが、切り粉の量が増加してしまうため、350μm以下であることが望ましい。なお、本開示の実施形態では、表面に砥粒が固着した金属組成のワイヤを用いてもよいが、砥粒が固着した金属素線を用いて切断すると、切断中に砥粒が欠落する場合があり、これにより切り粉に砥粒が混入する。そして、砥粒が混入した切り粉をR-T-B系焼結磁石に再利用した場合、切り粉に混入した砥粒の影響によりR-T-B系焼結磁石に巣が発生し、それにより磁気特性が低下する可能性がある。そのため、砥粒が表面に固着していない金属素線のワイヤを用いることが好ましい。
切断時には、ローラ30a、30b、30cおよび回収ボビンが回転する。ローラ30a、30b、30cの回転方向は、これらの配置やワイヤ40の掛け方に依存する。図3Aに示されるワイヤソー装置100では、ローラ30a、30b、30cは同一方向に回転する。所定長さのワイヤ40が、一方の回収ボビンに巻き取られたら、回収ボビンおよびローラ30a、30b、30cを逆方向に回転させる。これにより、ワイヤ40が逆方向に移動し、これを繰り返すことによって、ワイヤ40が往復運動(移動)させることができる。前述したように、ワイヤソー装置100は、ローラ30a、30b、30c以外にも複数のローラを備えていてよい。
本実施形態では、ワイヤ40によって粉末成形体10を切断する工程が、粉末成形体10を液体60中に沈めた状態で実行される。粉末成形体10が湿式プレスによって形成された粉末成形体である場合、液体60の好ましい例は、湿式プレスで使用した油剤(鉱物油または合成油)などの分散媒と同一種類の油剤である。
このようなワイヤソー装置100によって粉末成形体10を加工するとき、ワイヤ40によって切削された部分から粉末成形体10を構成している粉末粒子が切り粉となって落ちる。これらの切り粉は、粉末成形体10を構成する粉末粒子が粉末成形体10から脱落したものであり、個々の粒子が金属の切り粉(切削くず)のような荒れた破断面を有しているわけではない。焼結前の粉末成形体からワイヤによって削り落ちた切り粉を構成する粒子の形状およびサイズは、粉末成形体10の作製に用いられた粉末粒子の形状およびサイズと同様である。本願発明者は、この切り粉を再利用することを検討した。粉末成形体を焼結して得られる硬い焼結体を切削した場合、その切り粉は焼結によって粒成長したり、化学反応によって組成が変化したりした粒子、または粒子の結合物である。そのため、それらを希土類磁石の粉末に混ぜて再利用しても磁石特性が劣化する可能性が高い。これに対して、焼結前の粉末成形体から得られる切り粉であれば、粉末成形体に含まれている他の粒子に比べて組成およびサイズも同様であるため、再利用しやすい。
また、粉末成形体10が湿式プレスによって作製される場合、分散剤と同種の油剤中でワイヤソー加工を行えば、回収した粉末(切り粉)をそのまま湿式プレスに用いることが可能であり、生産効率が上昇する。
以下、本実施形態のR-T-B系焼結磁石の製造方法を詳細に説明する。
S10:成形工程
成形工程(S10)では、R-T-B系焼結磁石用合金の粉末を準備し、その粉末を成形することによって粉末成形体を作製する。まず、R-T-B系焼結磁石用合金の組成、合金の製造工程、および合金の粉末を準備する工程を順に説明する。
<R-T-B系焼結磁石用合金希の組成>
Rは希土類元素であり、Nd、PrおよびCeからなる群から選択される少なくとも1つを必ず含む。好ましくは、Nd-Dy、Nd-Tb、Nd-Dy-Tb、Nd-Pr-Dy、Nd-Pr-Tb、Nd-Pr-Dy-Tb、Nd-Ce-Dy、Nd-Ce-Tb、Nd-Ce-Dy-Tb、Nd-Pr-Ce-Dy、Nd-Pr-Ce-Tb、Nd-Pr-Ce-Dy-Tbで示される希土類元素の組合せを用いる。
Rのうち、DyおよびTbは、特にHcJの向上に効果を発揮する。上記元素以外にはLaなど他の希土類元素を含有してもよく、ミッシュメタルやジジムを用いることもできる。また、Rは純元素でなくてもよく、工業上入手可能な範囲で、製造上不可避な不純物を含有するものでもよい。R含有量は、例えば、27質量%以上35質量%以下である。好ましくは、R-T-B系焼結磁石のR含有量は31質量%以下(27質量%以上31質量%以下、好ましくは、29質量%以上31質量%以下)である。R-T-B系焼結磁石のR含有量を31質量%以下でかつ、酸素の含有量が500ppm以上8000ppm以下(好ましくは500ppm以上3200ppm以下、さらに好ましくは500ppm以上2500ppm以下)とすることにより、より高い磁気特性を得ることができる。
Tは遷移金属の少なくとも1つでありFeを必ず含む。Tは、質量比でその50%以下をコバルト(Co)で置換してもよい(Tが実質的に鉄とコバルトとから成る場合を含む)。Coは温度特性の向上、耐食性の向上に有効であり、合金粉末は10質量%以下のCoを含んでよい。Tの含有量は、RとBあるいはRとBと後述するMとの残部を占めてよい。
Bの含有量についても公知の含有量で差し支えなく、例えば、0.9質量%~1.2質量%が好ましい範囲である。0.9質量%未満では高いHcJが得られない場合があり、1.2質量%を超えるとBが低下する場合がある。なお、Bの一部はC(炭素)で置換することができる。
上記元素に加え、HcJ向上のためにM元素を添加することができる。M元素は、Al、Si、Ti、V、Cr、Mn、Ni、Cu、Zn、Ga、Zr、Nb、Mo、In、Sn、Hf、TaおよびWからなる群から選択される一種以上である。M元素の添加量は5.0質量%以下が好ましい。5.0質量%を超えるとBrが低下する場合があるためである。また、不可避的不純物も許容することができる。
R-T-B系焼結磁石におけるN(窒素)の含有量は、50ppm以上1000ppm以下が好ましい。また、R-T-B系焼結磁石におけるC(炭素)の含有量は、50ppm以上2000ppm以下が好ましい。
<R-T-B系焼結磁石用合金の製造工程>
R-T-B系焼結磁石用合金の製造工程を例示する。上述した組成となるように事前に調整した金属または合金を溶解し、鋳型に入れるインゴット鋳造法により合金インゴットを得ることができる。また、溶湯を単ロール、双ロール、回転ディスクまたは回転円筒鋳型等に接触させて急冷し、インゴット法で作られた合金よりも薄い凝固合金を作製するストリップキャスト法または遠心鋳造法に代表される急冷法により合金フレークを製造することができる。
本開示の実施形態においては、インゴット法と急冷法のどちらの方法により製造された材料も使用可能であるが、ストリップキャスト法などの急冷法により製造されることが好ましい。急冷法によって作製した急冷合金の厚さは、通常0.03mm~1mmの範囲にあり、フレーク形状である。合金溶湯は冷却ロールの接触した面(ロール接触面)から凝固し始め、ロール接触面から厚さ方向に結晶が柱状に成長してゆく。急冷合金は、従来のインゴット鋳造法(金型鋳造法)によって作製された合金(インゴット合金)と比較して、短時間で冷却されているため、組織が微細化され、結晶粒径が小さい。また粒界の面積が広い。Rリッチ相は粒界内に大きく広がるため、急冷法はRリッチ相の分散性に優れる。このため水素粉砕法により粒界で破断し易い。急冷合金を水素粉砕することで、水素粉砕粉(粗粉砕粉)のサイズを例えば1.0mm以下とすることができる。このようにして得た粗粉砕粉を例えばジェットミルで微粉砕する。
<R-T-B系焼結磁石用合金の粉末を準備する工程>
R-T-B系焼結磁石用の希土類合金の粉末は活性であり、酸化しやすい。このため、ジェットミルで使用される気体としては、発熱・発火の危険性の回避、不純物としての酸素含有量を低減させて磁石の高性能化を図るため、例えば、窒素、アルゴン、ヘリウムなどの不活性ガスが用いられる。
ジェットミルに投入された被粉砕物(粗粉砕粉)は、例えば、平均粒度(中位径:d50)が2.0μm以上7.0μm以下の粒度分布を持つ微粉末に粉砕されてからサイクロン捕集装置に移動することになる。サイクロン捕集装置は、粉末を運ぶ気流から粉末を分離するために使用される。具体的には、R-T-B系焼結磁石用合金の粗粉砕粉が前段のジェットミルで粉砕され、粉砕によって生成された微粉末が、粉砕に利用された気体とともにサイクロン捕集装置に供給される。不活性ガス(粉砕ガス)と粉砕された微粉末との混合物が高速な気流をなして、サイクロン捕集装置に送られてくる。サイクロン捕集装置は、これらの粉砕ガスと微粉末とを分離するために利用される。粉砕ガスから分離された微粉末は、粉末捕集器で回収される。
次に上記の工程によって準備された粉末から粉末成形体を作製する工程について説明する。
本実施形態では、磁場中プレスによって上記の粉末から粉末成形体を作製する。磁場中プレスでは、酸化抑制の観点から、不活性ガス雰囲気中によるプレスまたは湿式プレスによって粉末成形体を形成することが好ましい。特に湿式プレスは粉末成形体を構成する粒子の表面が油剤などの分散剤によって被覆され、大気中の酸素や水蒸気との接触が抑制される。このため、プレス工程の前後あるいはプレス工程中に粒子が大気によって酸化されることを防止または抑制することができる。
磁場中湿式プレスを行う場合、微粉末に分散媒を混ぜたスラリーを用意し、湿式プレス装置の金型におけるキャビティに供給して磁場中でプレス成形する。こうして形成される粉末成形体は、例えば、4g/cm以上5g/cm以下の密度を有している。
・分散媒
分散媒は、その内部に合金粉末を分散させることによりスラリーを得ることができる液体である。
本開示に用いる好ましい分散媒として鉱物油または合成油を挙げることができる。鉱物油または合成油はその種類が特定されるものではないが、常温での動粘度が10cStを超えると粘性の増大によって合金粉末相互の結合力が強まり磁場中湿式成形時の合金粉末の配向性に悪影響を与える場合がある。このため、鉱物油または合成油の常温での動粘度は10cSt以下が好ましい。また鉱物油または合成油の分留点が400℃を超えると成形体を得た後の脱油が困難となり、焼結体内の残留炭素量が多くなって磁気特性が低下する場合がある。したがって、鉱物油または合成油の分留点は400℃以下が好ましい。また、分散媒として植物油を用いてもよい。植物油は植物より抽出される油を指し、植物の種類も特定の植物に限定されるものではない。
・スラリーの作製
得られた合金粉末と分散媒とを混合することでスラリーを得ることができる。
合金粉末と分散媒との混合率は特に限定されないが、スラリー中の合金粉末の濃度は、質量比で、好ましくは70%以上(すなわち、70質量%以上)である。20~600cm/秒の流量において、キャビティ内部に効率的に合金粉末を供給できると共に、優れた磁気特性が得られるからである。スラリー中の合金粉末の濃度は、質量比で、好ましくは90%以下である。合金粉末と分散媒との混合方法は特に限定されない。合金粉末と分散媒とを別々に用意し、両者を所定量秤量して混ぜ合わせることによって製造してよい。また、粗粉砕粉をジェットミル等で乾式粉砕して合金粉末を得る際にジェットミル等の粉砕装置の合金粉末排出口に分散媒を入れた容器を配置し、粉砕して得られた合金粉末を容器内の分散媒中に直接回収しスラリーを得てもよい。この場合、容器内も窒素ガスおよび/またはアルゴンガスからなる雰囲気とし、得られた合金粉末を大気に触れさせることなく直接分散媒中に回収して、スラリーとすることが好ましい。さらには、粗粉砕粉を分散媒中に保持した状態で振動ミル、ボールミルまたはアトライター等を用いて湿式粉砕し、合金粉末と分散媒とから成るスラリーを得ることも可能である。
こうして得たスラリーを公知の湿式プレス装置で成形することにより、所定の大きさおよび形状を有する粉末成形体を得ることができる。従来、この粉末成形体を焼結して焼結体を得ることが通常であるが、本実施形態では、以下に説明するように、焼結前にワイヤソー装置によって粉末成形体を分割する。
S20:切断工程
切断工程(S20)では、例えば図2に示されるようなワイヤソー装置を用いて粉末成形体10を切断し、複数の成形体片10Pに分割する。
ワイヤ40の直径は、例えば100μm以上350μm以下ある。ワイヤ40の走行速度(ワイヤ線速)は、例えば、100m/分以上1200m/分以下の範囲に設定され得る。一方、切込み速度(ワイヤ走行方向に直交する方向において粉末成形体10に対するワイヤ40の相対的な移動速度または送り速度)は、例えば、100mm/分以上1000mm/分以下の範囲に設定され得る。ワイヤ40に印加される張力は、例えば3kgf以上15kgf以下である。張力は、図1のワイヤソー装置100を用いる場合、例えばローラ30cおよび30eのローラ30aおよびローラ30bに対する距離を調整することにより、調整され得る。
ワイヤソー加工を液体中で行うことにより、切り粉の排出が促進される利点もある。また、前述したように、粉末成形体10を湿式プレスで作製するときに使用した分散媒(鉱物油または合成油)中に粉末成形体10を浸漬させた状態で行う(油中切断)ことにより、ワイヤソー加工中に液体中に沈殿した粉末粒子を回収し、回収した粉末粒子をそのまま成形工程で再利用することができる。
以下、ワイヤ40の切込み方向を随時変化させることにより、粉末成形体10から複数の成形体片10Pを作製する種々の形態を説明する。
図7は、粉末成形体10におけるワイヤの移動経路の例を模式的に示す側面図である。図7は、粉末成形体10をワイヤ走行方向に平行な方向から見た平面視である。この「移動経路」とは、ワイヤの切込み方向における移動の経路である。
この例では、1個の粉末成形体10から8個の成形体片10Pが作製される。各成形体片10Pは、図6の左側に示される成形体片10Pのように弓型の形状を有している。粉末成形体10において、Y軸方向に沿って横に並んだ2個の成形体片10Pは、ワイヤが粉末成形体10の側面から一筆書きの経路を形成するように移動して作製されている。言い換えると、ワイヤの移動経路は、複数個の成形体片10Pの形状を規定する閉曲線を形成するように制御される。具体的には、図7に示す経路部分a、b、c、d、e、f、g、h、iの順でワイヤが移動している。経路部分a、b、c、d、e、f、g、h、iを示す破線矢印の向きは、ワイヤの移動方向(切込み方向)を示している。経路部分iは経路部分aと重複し、経路部分fは経路部分cと重複している。すなわち、経路部分iを移動するときのワイヤは、ワイヤが経路部分aを移動したときに形成された切断部を通過する。同様に、経路部分fを移動するときのワイヤは、ワイヤが経路部分cを移動したときに形成された切断部を通過する。このため、ワイヤが経路部分iおよび経路部分fを移動するとき、ワイヤに加わる負荷は非常に小さくなる。
図7の例では、一筆書きの移動経路によって2個の成形体片10Pが形成されている。しかし、一筆書きの移動経路によって1個の成形体片10Pが形成されてもよいし、3個以上に成形体片10Pが形成されてもよい。
上記の例において、切断工程中にワイヤの移動経路による閉曲線が閉じたとき、成形体片10Pは、その周りに位置する粉末成形体10の残りの部分から切断され、両者の間を固定する力は、わずかな摩擦力だけになる。このため、閉曲線が閉じるとき、成形体片10Pは、ワイヤ走行方向に移動するワイヤに起因する力を受け、粉末成形体10からワイヤ走行方向に飛び出す可能性がある。
以下、このような成形体片10Pの飛び出しを抑制することが可能になる実施形態を説明する。
本実施形態では、ワイヤの移動経路が個々の成形体片10Pの形状を規定する外形線から離れた位置で交わることによって閉曲線が構成される。以下、図8および図9を参照しながら、このことを説明する。図8は、粉末成形体におけるワイヤの移動経路の一例を模式的に示す側面図である。図9は、図8の一部を拡大して模式的に示す側面図である。
図8に示される例において、一筆書きの移動経路は、経路部分a、b、c、d、e、f、gを含み、移動は、経路部分a、b、c、d、e、f、gの順序で進む。図8において、破線の丸で示される領域内には、経路部分eから方向を変えて延びる経路部分fがあり、この経路部分fは、経路部分aに交わっている。図9は、この破線の丸で囲まれる領域において、経路部分fと経路部分aとが交差する位置40Xを示している。また、図9には、成形体片10Pの形状を規定する外形線が点線で示されている。ワイヤの移動経路は、成形体片10Pの形状を規定する外形線に沿うように形成される。
ここで、「成形体片の形状を規定する外形線」とは、成形体片10Pの本来の形状を規定する線であり、通常、その線に沿って切断が進められる。このため、成形体片10Pの外形線を示す点線と、ワイヤの移動経路とは、一般には、重なりあうことが好ましい。しかしながら、図8および図9に示される例では、成形体片10Pの形状を規定する外形線から離れた位置40Xでワイヤの移動経路(経路部分aと経路部分f)が交わっている。その結果、成形体片10Pの形状を規定する外形線(点線)からはみ出た部分(バリ)10X(すなわち、閉曲線が交わる前記位置まで突出する凸部)が成形体片10Pには形成されることになる。
このようなバリ10Xを形成するようにワイヤの移動経路を制御することにより、閉曲線が閉じたとき、成形体片10Pが粉末成形体10から飛び出すことを抑制することができる。前述したように、閉曲線が閉じたとき、粉末成形体10から分離される成形体片10Pには、ワイヤ走行に起因する力がワイヤ走行方向に及ぶと考えられるが、そのとき位置40Xは、成形体片10Pの本来の形状を規定する外形線から離れているため、ワイヤ走行に起因する力が成形体片10Pに及びにくくなると推察される。
バリ10Xは最終的に加工によって除去にされる。このため、バリは小さい方が好ましい。したがって、閉曲線が交わる位置(40X)から外形線(点線)までの距離は、例えば3mm以下、より好ましくは1.5mm以下に設定される。この距離が1mm以上であれば、成形体片10Pの飛び出しは抑制可能である。
図10は、バリ10Xが2個の成形体片10Pを連結するように形成される例を模式的に示す図である。図10の例において、ワイヤの移動経路は、経路部分a、b、c、d、e、f、g、h、i、j、k、l、mを含み、この順でワイヤが移動している。ワイヤの切込み方向における移動経路は、水平に並んだ2個の成形体片10Pを連結した状態で閉曲線を形成するように制御される。切断工程が終了したとき、これら2個の成形体片10Pは、例えば厚さ1mm下の連結部(バリ10X)によって連結されている。この連結部、すなわち、バリ10Xは、図10の破線の丸い領域内に含まれている。バリ10Xは、経路部分cと経路部分hによって挟まれた部分である。このようなバリ10Xによって複数の成形体片10Pが連結した状態になるようにワイヤの移動経路を制御することにより、左側の成形体片10Pも粉末成形体10から飛び出すことを抑制することができる。
次に、成形体片10Pの飛び出しを抑制することができる構成を説明する。
図11は、切断工程時に成形体片が粉末成形体から飛び出すことを抑制する構成を備えたワイヤソー装置100の例を示す斜視図である。簡単のため、図11では、説明に必要のない要素は記載されていない。このワイヤソー装置100は、切断工程時に成形体片の移動を規制する部材52を備えている。図12に示すように、部材52は、ワイヤ40を通過させるように構成された切り欠き52Cを有している(すなわち、部材52は、部材52をワイヤの走行方向に平行な方向から見た平面視において、切り欠き52Cを有している)。部材52は、例えばプレート形状を有しており、図11に示されるように、ワイヤ走行方向(X軸方向)における粉末成形体10の両側に配置され得る。図11の例では、支持装置50の開口部51内に部材52の少なくとも一部が位置している。好ましい実施形態において、部材52は支持装置50に取り付けられ得る。
図11のワイヤソー装置100では、図示されている状態から粉末成形体10が上昇し、更にZY面内における任意の方向に移動することにより、切断が進行する。ワイヤ40の切込み方向における移動経路による閉曲線を閉じることにより、切断が完了する。そのとき、切断された成形体片は、ワイヤ40の走行方向(X方向)に力を受けてX軸方向に移動しようとする場合があるが、一対の部材52の一方が、移動してきた成形体片に接触して成形体片の移動を規制する。このため、成形体片は、粉末成形体10から外に飛びだすことが防止される。
部材52の形状およびサイズは、図11および図12に示される例の形状およびサイズに限定されない。例えば、図13に示すように、部材52は、ワイヤを通過させる貫通孔52Hを有していてもよい。しかし、図12に示されるような切り欠き52Cを有する部材52の方が、図13の部材52に比べると、ワイヤソー装置100のワイヤ40を通過させやすいという利点を有している。部材52は、例えば金属材料から形成され得る。部材52の少なくとも一部は、切断工程中に粉末成形体10が沈められる液体中に漬かるため、部材52は、当該液体との接触によって劣化しない材料から形成されることが望ましい。図12および図13に例示される部材52の外形は直方体であるが、部材52の外形は、成形体片の移動を規制し、飛び出しを防止できるものであれば任意である。部材52は、棒状、グリッド状、網目状であってもよい。
以下、図14および図15を参照しながら、粉末成形体10におけるワイヤの移動経路の更に他の例を説明する。
図14は、それぞれが「かまぼこ型」(瓦型)の複数の成形体片10Pを作製する例を示す。図14の例において、粉末成形体10に対する移動経路の開始位置Stおよび終了位置Edは、粉末成形体10の上面10Tにある。また、ワイヤの切込み方向における移動経路は、開始位置Stから終了位置Edまでの間に、縦方向(鉛直方向)に並んだ複数個の成形体片10Pを形成するように制御される。
図14の右側の例において、ワイヤの移動経路は、経路部分a、b、c、d、e、f、g、h、i、jを含み、この順でワイヤが移動している。開始位置Stは経路部分aの上端であり、終了位置Edは経路部分jの上端である。この例において、開始位置Stと終了位置Edは一致しているが、開始位置Stと終了位置Edとの間に、3mm以下、例えば1mm以下のギャップがあってもよい。
図14の左側の例において、ワイヤの移動経路は、経路部分a、b、c、d、e、f、g、h、iを含み、この順でワイヤが移動している。開始位置Stは経路部分aの上端であり、終了位置Edは経路部分iの上端である。この例において、開始位置Stと終了位置Edは一致している。
図15は、それぞれが「弓型」の複数の成形体片10Pを作製する例を示す。図15の例においても、粉末成形体10に対する移動経路の開始位置Stおよび終了位置Edは、粉末成形体10の上面10Tにある。また、ワイヤの切込み方向における移動経路は、開始位置Stから終了位置Edまでの間に、縦方向に並んだ複数個の成形体片10Pを形成するように制御される。
図15の右側の例において、ワイヤの移動経路は、経路部分a、b、c、d、e、f、g、h、i、j、k、l、m、n、oを含み、この順でワイヤが移動している。開始位置Stは経路部分aの上端であり、終了位置Edは経路部分oの上端である。この例において、開始位置Stと終了位置Edは一致しているが、開始位置Stと終了位置Edとの間に、3mm以下、例えば1mm以下のギャップがあってもよい。そのようなギャップの存在は、経路部分aと経路部分oとの間に「バリ」を残す。同様に、移動経路は、経路部分cと経路部分m、経路部分eと経路部分k、経路部分gと経路部分iとの間に、それぞれ「バリ」を残すように制御されていてもよい。
図15の左側の例において、ワイヤの移動経路は、経路部分a、b、c、d、e、f、g、h、iを含み、この順でワイヤが移動している。開始位置Stは経路部分aの上端であり、終了位置Edは経路部分iの上端である。この例において、開始位置Stと終了位置Edは一致している。
図7のように開始位置St(図7のaの位置)が左右方向であると、開始位置付近が切断中に自重により崩れやすくなる場合がある。上記の移動経路を採用することにより、切断の開始位置Stが上下方向となるため、切断中に成形体が崩れにくくなる。という効果が得られる。また、図14および図15の左側の列に比べて、右側の列の方が、更により成形体が崩れにくい構造になっているという点で優れている。
次に、上記の方法で切断工程を実行した後、複数の成形体片10Pを粉末成形体10から取り出す方法の例を説明する。
図16は、粉末成形体10から切断後の成形体片10Pを押し出す様子(成形体片取り出し工程)を模式的に示す斜視図であり、図17は、成形体片取り出し工程を模式的に示す断面図である。
前述した切断工程によって切断された成形体片10Pは、切断工程終了時において、粉末成形体10の内部に位置している。ただし、成形体片10Pの一部が粉末成形体10から突出していてもよい。例えば、図11のワイヤソー装置100によって切断工程を行った場合、粉末成形体10からワイヤ走行方向に飛び出そうとして成形体片10Pの端部が部材32に接触した状態で粉末成形体10に留まる場合、成形体片10Pの一部は、部材52に接触する位置までワイヤ走行方向に沿って突出しえる。そのような突出の長さは、切断工程中における粉末成形体10と部材52との間隔に依存する。その間隔は、例えば、10mm以上50mm以下であり得る。
成形体片取り出し工程では、図17に示されるような押し出しロッド(押圧部材)80で成形体片10Pを側面から押圧する。押し出しロッド80は、複数の成形体片10Pのそれぞれを押すことができる複数のロード部分が平行に並んだ構造を有していてもよい。このような成形体片の押し出しは、液体中に沈めた粉末成形体10に対して行われることが好ましい。すなわち、液体中に置かれた粉末成形体10の中から、切断された1個または複数個の成形体片10Pが押し出されることが好ましい。液体中に沈めた成形体片10Pを押し出すことにより、成形体片10Pの酸化を防止しつつ、よりスムーズに成形体片10Pを取り出すことが出来る。
同様に、成形体片10Pの酸化を抑制するために、粉末成形体10から押し出された成形体片10Pを、液体中の支持部材82で受けとることが好ましい。支持部材82は、例えば、図18および図19に示されるように、前記成形体片に接する面に複数の貫通孔82Hを有していることが好ましい。
図20および図21は、複数の貫通孔82Hが設けられた支持部材82に向かって液体中で下降する成形体片10Pを模式的に示す断面図である。貫通孔82Hは、支持部材82の上面82Uから下面82Lに達している。これに対して、図22は、貫通孔82Hが設けられていない支持部材82に向かって落下する成形体片10Pを模式的に示す断面図である。これらの図からわかるように、貫通孔82Hは、成形体片10Pと支持部材82との間の液体の下方への流れを許容し、成形体片10Pが真っすぐに真下に降下することを可能にする。一方、貫通孔82Hが設けられていない支持部材82を用いると、成形体片10Pと支持部材82との間の液体の流れを制御できず、成形体片10Pは予期せぬ方向に移動することがある。なお、支持部材82が液体中にない場合においても、成形体片10Pは油中で切断されているため、成形体片10Pには液体が多く付着している。よって、支持部材82が液体中にない場合においても、同様に、貫通孔82Hが支持部材82に設けられていないと、成形体片10Pと支持部材82との間の液体の流れを制御できず、成形体片10Pは予期せぬ方向に移動することがある。
また、複数の成形体片10Pを支持部材82で同時に受け取る場合、成形体片10Pは磁場中プレスに起因する残磁があり、これにより、成形体片10Pどうしが反発または吸着して成形体片10Pが予期せぬ方向に移動することがある。このような現象についても、支持部材82に貫通孔82Hが設けられることで、成形体片10Pが真っすぐに真下に支持部材82へ降下することを可能とする。
支持部材82で受け取った成形体片10Pの位置が所定範囲内にあれば、その後、ロボットハンドなどによって支持部材82上の成形体片10Pを把持して他の場所に移動させることが容易になる。このため、支持部材82には、上面82Uおよび下面を有する板状部材であり、複数の貫通孔82Hが上面から前記下面に達していることが望ましい。貫通孔82Hはテーパが形成されていてもよい。
発明者の検討によると、複数の貫通孔82Hによって規定される開口率は、上面において5%以上50%以下であることが望ましい。開口率が50%を超えると、成形体片10Pと支持部材82との間の接触面積比率が小さくなるため、支持部材82上で成形体片10Pが滑りやすくなる。ある実施形態において、貫通孔82Hの直径は、1mm以上10mm以下であり、貫通孔82Hの中心間隔(ピッチ)は、例えば、Y軸方向に10mm、X軸方向に12mmであり得る。
また、支持部材82の上面82Uの粗さRaは、1.0μm以上であることが望ましい。支持部材82の上面82Uが平滑で滑りやすい場合、液体中の支持部材82に載っている成形体片10Pが、例えば液体に生じた流動や 支持部材82の傾斜によって、滑って位置を変化させる可能性がある。このような位置の変化を抑制するには、支持部材82の上面82Uに微細な凸部または凹凸が設けられていることが望ましい。微細な凹凸は、例えばサンドブラスト処理によって形成可能である。
次に、図23を参照しながら、上記のワイヤソー切断の工程の前にプレ切断工程を行う例を説明する。図23は、プレ切断工程によって分割された粉末成形体から複数の成形体片を作製した状態を模式的に示す斜視図である。
この例では、まずプレ切断工程により、図23の左側に示すように、粉末成形体10に複数の切断面12を形成して、粉末成形体10を小さな複数の部分に分割する。なお、粉末成形体10の小さな複数の部分への分割は、完全に分割せず、一部を残すようにして切断面12を形成してもよい。一部を残すように切断面12を形成することにより、切断面により粉末成形体10がばらばらになるのを確実に防止することができる。切断面12の個数は1個でもよい。この例において、切断面12は、YZ面に平行である。切断面12によって分割される複数の部分のそれぞれのX軸方向におけるサイズは等しくてもよいし、異なっていてもよい。
このように1または複数の切断面12が形成された粉末成形体10を、前述したワイヤソー装置の液体中に沈めて本来の切断工程を実行する。その結果、図23の右側に示すように、例えば蒲鉾型の複数の成形体片10Pが粉末成形体10内に形成される。蒲鉾型の例えば曲面を形成するようにワイヤソー装置のワイヤの切込み方向が制御されているとき、プレ切断工程で形成された切断面12は、ワイヤの走行方向に直交している。そして、ワイヤが切込み方向に移動するとき、ワイヤは切断面12と交差する。
このようなプレ切断工程を行うことにより、成形体片10PのX軸方向におけるサイズ(長さ)を任意に調整することができる。したがって、この方法は、それぞれのワイヤ走行方向(X軸方向)におけるサイズが小さな多数の成形体片10Pを作製する(ワイヤ走行方向においても、分割し、複数個片化する)場合に有利である。
S30:焼結工程
焼結工程(S30)では、複数の成形体片10Pのそれぞれを焼結して複数の焼結体を作製する。すなわち、上記のワイヤソー工程(切断工程)によって切断された個々の成形体片10Pを焼結してR-T-B系焼結磁石(焼結体)を得る。成形体片10Pの焼結工程は、例えば、0.13Pa(10-3Torr)以下、好ましくは0.07Pa(5.0×10-4Torr)以下の圧力下で、例えば温度1000℃~1150℃の範囲で行うことができる。焼結による酸化を防止するために、雰囲気の残留ガスは、ヘリウム、アルゴンなどの不活性ガスにより置換され得る。得られた焼結体に対しては時効処理などの付加的な熱処理を行うことが好ましい。このような熱処理により、磁気特性を向上させることができる。熱処理温度、熱処理時間などの熱処理条件は、公知の条件を採用することができる。こうして得たR-T-B系焼結磁石に対しては、必要に応じて、研削・研磨工程、表面処理工程、および着磁工程が施され、最終的なR-T-B系焼結磁石が完成する。
ある好ましい実施形態において、本開示のR-T-B系焼結磁石の製造方法は、重希土類元素RH(RHは、Tb、Dy、Hoの少なくとも1つ)を焼結体の表面から内部に拡散する拡散工程を更に含む。重希土類元素RHを焼結体の表面から内部に拡散すると、保磁力を効率的に高めることができる。拡散工程の方法は特に問わない。公知の方法を採用することができる。
次に、図24から図27を参照しながら、粉末成形体10におけるワイヤの移動経路の更に他の例を説明する。
図24は、ワイヤソー装置100によって粉末成形体10を加工するときに粉末成形体10を保持するクランプ装置200の例を模式的に示す斜視図である。クランプ装置200は、粉末成形体10を載せるベース20と、ベース20上の粉末成形体10を挟む第1保持部材21および第2保持部材22と、を備える。図示されている例において、ベース20と粉末成形体10との間には、切断中にローラ30がベース20への接触を防止するためにステージ部材23が設けられている。粉末成形体10の切断部位の高さによってはステージ部材23を設ける必要はない。
本開示のR-T-B系焼結磁石の製造方法は、実施形態において、このようなクランプ装置200を用いて粉末成形体10の位置決めを行う工程を含み得る。切断工程中の粉末成形体10は、ワイヤ走行方向(X軸方向)に平行な方向から見た平面視において、第1保持部材21と第2保持部材22との間に位置している。切断工程中、粉末成形体10は、第1保持部材21と第2保持部材22によって固定されるため、粉末成形体10がワイヤ40から外力を受けて加工されつつあるとき、粉末成形体10のベース20に対する位置ずれが防止される。このような位置ずれを防止することにより、機械的強度の低い粉末成形体10の変形を抑制して、切断の寸法精度を高めることが可能になる。
ベース20ならびに第1保持部材21および第2保持部材は、いずれも、金属またはセラミックスのような剛性の高い材料から好適に形成され得る。この例において、第1保持部材21はベース20に固定されている。すなわち、第1保持部材21はクランプ装置200に対してしっかりと固定されている。これに対して、第2保持部材22はクランプ装置200に対して脱着可能である。第2保持部材22は、少なくとも切断工程中において、例えばボルトなどの固定部材によってベース20に固定される。しかし、切断工程前に粉末成形体10をクランプ装置200にセットするとき、第2保持部材22をクランプ装置200から取り外すか、あるいは、第1保持部材21までの間隔を拡大するように第2保持部材の位置をずらすことができる。そのような状態で粉末成形体10をステージ部材23の上に搭載した後、第2保持部材22で粉末成形体10を第1保持部材21の方向に押圧するように第2保持部材22の位置を固定する。第2保持部材22と粉末成形体10との間にはスポンジまたはゴム板など弾性部材が配置されてもよい。この結果、切断工程中の粉末成形体10は、第1保持部材21に直接に接触する第1側面と、弾性部材を介して第2保持部材に接触する第2側面とを有することになる。これにより、切断工程中に第1保持部材21と第2保持部材22による粉末成形体10の固定がゆるむのを防止でき、安定して精度よく切断を行うことができる。
第2保持部材22をベース20に固定するとき、第2保持部材22が弾性部材を介して粉末成形体10を押圧し、その結果、粉末成形体10が第1保持部材21を押圧する。粉末成形体10の位置は、第1保持部材21の位置を基準として定まる。このため、第1保持部材21は外力によって撓むことがほとんど無いように剛性の高い部材から形成されることが好ましい。本実施形態における第1保持部材21および第2保持部材22は、それぞれ、プレート形状を有し、第1保持部材21の厚さは第2保持部材22の厚さよりも大きい。以上の説明からわかるように、第1保持部材21を位置決めプレートまたは位置基準プレートと呼び、第2保持部材22を可動プレートまたは押し当てプレートと呼ぶことができる。なお、「プレート」とは、少なくとも粉末成形体10に接触する側の面が平面状である部材を広く包含し、他の側の面に凹凸が設けられてもよい。また、「プレート」の一部にスリットが設けられいてもよい。例えば、図23に示すような切断面12を形成することができように、第1保持部材21および第2保持部材22のそれぞれに上端から複数のスリット(垂直に延びる開口部)が櫛の歯状に設けられていてもよい。
次に、上記の構成を有するクランプ装置200を用いて行う切断工程の例を説明する。
まず、図25を参照する。図25は、クランプ装置200を用いて行う切断工程の例を説明する図である。この例において、ワイヤの切込み方向における移動経路は、平面視において、2つの縦列の移動経路部分I、IIを含む。第1保持部材21に近い側にある縦列の移動経路部分を「第1移動経路部分I」と称し、第2保持部材22に近い側にある縦列の移動経路部分を「第2移動経路部分II」と称する。第1移動経路部分Iおよび第2移動経路部分IIのそれぞれの開始位置Stおよび終了位置Edは、いずれも、粉末成形体10の上面10Tにある。第1移動経路部分Iおよび第2移動経路部分IIのそれぞれは、前記平面視において、縦方向に延びる基準線Qよりも第1保持部材21の側に位置する第1部分(基準プレート側部分)と、第2保持部材22の側に位置する第2部分(可動プレート側部分)と、基準線Q上の第3部分(中央部分)とを含む。図25の例では、第1移動経路部分Iおよび第2移動経路部分IIのそれぞれにおいて、第1部分と第2部分とが線対称の関係にあり、対象軸は基準線Q上にある。
図25の例において、第1移動経路部分Iおよび第2移動経路部分IIのそれぞれが、縦方向に並んだ4個の成形体片10Pの形状を規定している。第1移動経路部分Iおよび第2移動経路部分IIのそれぞれが規定する縦方向に並んだ成形体片10Pの個数は任意であり、5個以上であってもよい。粉末成形体10には、第2移動経路部分IIと第2保持部材22との間に他の縦列の移動経路部分(第3移動経路部分など)が設けられてもよい。
ワイヤの切込み方向における移動経路は、第1移動経路部分Iおよび第2移動経路部分IIのうち、第2保持部材22に近い側から順番に縦方向に並んだ複数個の成形体片を形成するように制御される。上記の第3移動経路部分のような他の縦列の移動経路部分が設けられる場合は、第2保持部材22に近い他の縦列の移動経路部分によって規定される成形体片を先に形成するように切込みが実行される。このように切込みを第2保持部材22に近い側から行う理由は、以下の通りである。
ワイヤの切込みによって粉末成形体10に形成された切断溝(X軸方向に貫通する開口部)は、粉末成形体10の中に位置する空隙である。空隙の大きさ(幅)は、例えば0.3mm程度であり、ワイヤの直径に依存する。このような空隙が存在する部分にワイヤ切断によって外力が加わると、粉末成形体10の一部に変形が生じ得る。このような変形は、加工寸法精度を低下させる。したがって、切断工程において、切込み中のワイヤの位置から基準プレートである第1保持部材21まで水平(Y軸方向に平行)に延ばした直線上に存在する空隙は少ない方か望ましい。
上記の理由から、本実施形態では、第1移動経路部分Iおよび第2移動経路部分IIのそれぞれに沿って切断を行うときも、第2保持部材22に近い側の第2部分に沿ってワイヤを移動させた後、第1保持部材21に近い側の第1部分に沿ってワイヤを移動させることが好ましい。なお、第2部分に沿ってワイヤを移動させるとき、途中で第3部分に沿って上方から下方に移動させる工程が行われる。一方、なお、第3部分に沿ってワイヤを移動させるとき、途中で第3部分に沿って下方から上方に移動させる工程が行われる。
これら点をより具体的に説明する。まず、図26に示されるように、第2移動経路部分IIにおけるワイヤの移動経路として、基準線Qよりも第2保持部材22の近い側による第2部分に沿ってワイヤを移動させる。図26には、経路部分a2、b2、c2、d2に沿って移動した軌跡が示されている。次に図27を参照すると、経路部分e2、f2、g2、h2、i2、j2に沿ってワイヤを移動させる。開始位置Stは経路部分a1の上端であり、終了位置Edは経路部分j2の上端である。開始位置Stと終了位置Edは一致している。
次に図28を参照すると、第1移動経路部分Iにおけるワイヤの移動経路として、経路部分a1、b1、c1、d1、e1、f1に沿ってワイヤを移動させる。この後、図25に示される経路部分g1、h1、i1、j1に沿ってワイヤを移動させる。開始位置Stは経路部分a1の上端であり、終了位置Edは経路部分j2の上端である。第1移動経路部分Iでも開始位置Stと終了位置Edは一致している。
上記の例では、経路部分a1、j1、a2、j2は、粉末成形体10の上面10Tにおける開始位置Stまたは終了位置Edに繋がり、上下方向(Z軸に平行な方向)に延びている。このような経路部分a1、j1、a2、j2に沿ってワイヤの切込みを行うとき、ワイヤが粉末成形体10に及ぼし得る力は、主として上下方向に向いている。このため、粉末成形体10のうちの経路部分a1、j1、a2、j2が含まれる上端付近の領域は、第1保持部材21と第2保持部材22とによって挟まれている必要はない。言い換えると、第1保持部材21および第2保持部材22の高さは、粉末成形体10の側面の上端に達している必要はない。しかし、ワイヤの切込み方向における移動経路のうち、上下方向(Z軸に平行な方向)に対して傾斜または直交する方向に延びる部分は、前記平面視において、第1保持部材21と第2保持部材22との間に挟まれた領域内に含まれることが好ましい。そのような部分ではワイヤの切込みが行われるとき、Y軸方向に力が発生するため、第1保持部材21と第2保持部材22とによって粉末成形体10が挟まれ、しっかりと固定されていることが望ましい。
このように切断工程中におけるワイヤの移動経路上のいかなる地点でも、その地点から第1保持部材21の方をみたとき、切断済みの貫通孔が存在していないことが好ましい。ただし、形成すべき成形体片の形状によっては、どうしでも切断済みの貫通孔が存在し得る。そのような場合、ある成形体片を切断によって切り出しつつあるとき、その成形体片と第1保持部材21との間に位置する領域において成形体片の高さ方向サイズよりも小さな高さ範囲に貫通孔が収まっていれば加工寸法精度の低下を抑制することができる。
以上のように、本開示は、以下の項目に記載のR-T-B系焼結磁石の製造方法を含む。
[項目1]
R-T-B系焼結磁石用合金(Rは希土類元素であり、Nd、PrおよびCeからなる群から選択される少なくとも1つを必ず含み、Tは遷移金属の少なくとも1つでありFeを必ず含み、Bはホウ素である)の粉末から粉末成形体を作製する成形工程と、
前記粉末成形体を切断し、複数の成形体片を作製する、切断工程と、
前記複数の成形体片のそれぞれを焼結して複数の焼結体を作製する焼結工程と、
を含み、
前記切断工程は、
液体中に沈めた前記粉末成形体に対して、水平方向に走行するワイヤを走行方向に垂直な任意の切込み方向に移動させることによって切断する工程を含み、
前記ワイヤの前記切込み方向における移動経路は、前記粉末成形体を前記走行方向に平行な方向から見た平面視において、前記複数の成形体片に含まれる1個または複数個の成形体片の形状を規定する閉曲線を形成するように制御され、
前記粉末成形体に対する前記移動経路の開始位置および終了位置は、前記粉末成形体の上面にある、R-T-B系焼結磁石の製造方法。
[項目2]
前記ワイヤの前記切込み方向における移動経路は、前記開始位置から前記終了位置までの間に、縦方向に並んだ複数個の成形体片を形成するように制御される、項目1に記載のR-T-B系焼結磁石の製造方法。
[項目3]
前記複数の成形体片は、前記平面視において、曲線部を有している、項目1または2に記載のR-T-B系焼結磁石の製造方法。
[項目4]
前記複数の成形体片のそれぞれは、前記平面視において、かまぼこ型または弓型の形状を有する部分を含んでいる、項目3に記載のR-T-B系焼結磁石の製造方法。
[項目5]
前記粉末成形体を載せるベースと、前記ベース上の前記粉末成形体を挟む第1保持部材および第2保持部材と、を備えるクランプ装置を用いて前記粉末成形体の位置決めを行う工程を更に含み、
前記切断工程中の前記粉末成形体は、前記平面視において、前記第1保持部材と前記第2保持部材との間に位置している、項目1に記載のR-T-B系焼結磁石の製造方法。
[項目6]
前記第1保持部材は前記ベースに固定されており、前記第2保持部材は前記クランプ装置に対して脱着可能である、項目5に記載のR-T-B系焼結磁石の製造方法。
[項目7]
前記ワイヤの前記切込み方向における移動経路は、前記平面視において、複数の縦列の移動経路部分を含み、前記複数の縦列の移動経路部分のそれぞれが、縦方向に並んだ複数個の成形体片の形状を規定している、項目6に記載のR-T-B系焼結磁石の製造方法。
[項目8]
前記ワイヤの前記切込み方向における移動経路は、前記複数の縦列の移動経路部分のうち、前記第2保持部材に近い側から順番に前記縦方向に並んだ複数個の成形体片を形成するように制御される、項目7に記載のR-T-B系焼結磁石の製造方法。
[項目9]
前記複数の縦列の移動経路部分のそれぞれの開始位置および終了位置は、前記粉末成形体の上面にある、項目8に記載のR-T-B系焼結磁石の製造方法。
[項目10]
前記複数の縦列の移動経路部分のそれぞれは、前記平面視において、縦方向に延びる基準線よりも第1保持部材の側に位置する第1部分と、第2保持部材の側に位置する第2部分と、前記基準線上の第3部分とを含み、
前記第2部分に沿って前記ワイヤを移動させた後、前記第1部分に沿って前記ワイヤを移動させる、項目9に記載のR-T-B系焼結磁石の製造方法。
[項目11]
前記切断工程中の前記粉末成形体は、前記第1保持部材に直接に接触する第1側面と、弾性部材を介して前記第2保持部材に接触する第2側面とを有している、項目10に記載のR-T-B系焼結磁石の製造方法。
[項目12]
前記第1保持部材および前記第2保持部材は、それぞれ、プレート形状を有し、
前記第1保持部材の厚さは前記第2保持部材の厚さよりも大きい、項目11に記載のR-T-B系焼結磁石の製造方法。
[項目13]
前記ワイヤの前記切込み方向における移動経路のうち、上下方向に対して傾斜または直交する方向に延びる部分は、前記平面視において、前記第1保持部材と前記第2保持部材との間に挟まれた領域内に含まれる、項目5から12のいずれか1項に記載のR-T-B系焼結磁石の製造方法。
10・・・粉末成形体、20・・・固定用ベース、30a、30b、30c・・・ローラ、40・・・ワイヤ、50・・・支持装置、60・・・液体、62・・・槽、100・・・ワイヤソー装置

Claims (13)

  1. R-T-B系焼結磁石用合金(Rは希土類元素であり、Nd、PrおよびCeからなる群から選択される少なくとも1つを必ず含み、Tは遷移金属の少なくとも1つでありFeを必ず含み、Bはホウ素である)の粉末から粉末成形体を作製する成形工程と、
    前記粉末成形体を切断し、複数の成形体片を作製する、切断工程と、
    前記複数の成形体片のそれぞれを焼結して複数の焼結体を作製する焼結工程と、
    を含み、
    前記切断工程は、
    液体中に沈めた前記粉末成形体に対して、水平方向に走行するワイヤを走行方向に垂直な任意の切込み方向に移動させることによって切断する工程を含み、
    前記ワイヤの前記切込み方向における移動経路は、前記粉末成形体を前記走行方向に平行な方向から見た平面視において、前記複数の成形体片に含まれる1個または複数個の成形体片の形状を規定する閉曲線を形成するように制御され、
    前記粉末成形体に対する前記移動経路の開始位置および終了位置は、前記粉末成形体の上面にある、R-T-B系焼結磁石の製造方法。
  2. 前記ワイヤの前記切込み方向における移動経路は、前記開始位置から前記終了位置までの間に、縦方向に並んだ複数個の成形体片を形成するように制御される、請求項1に記載のR-T-B系焼結磁石の製造方法。
  3. 前記複数の成形体片は、前記平面視において、曲線部を有している、請求項1または2に記載のR-T-B系焼結磁石の製造方法。
  4. 前記複数の成形体片のそれぞれは、前記平面視において、かまぼこ型または弓型の形状を有する部分を含んでいる、請求項3に記載のR-T-B系焼結磁石の製造方法。
  5. 前記粉末成形体を載せるベースと、前記ベース上の前記粉末成形体を挟む第1保持部材および第2保持部材と、を備えるクランプ装置を用いて前記粉末成形体の位置決めを行う工程を更に含み、
    前記切断工程中の前記粉末成形体は、前記平面視において、前記第1保持部材と前記第2保持部材との間に位置している、請求項1に記載のR-T-B系焼結磁石の製造方法。
  6. 前記第1保持部材は前記ベースに固定されており、前記第2保持部材は前記クランプ装置に対して脱着可能である、請求項5に記載のR-T-B系焼結磁石の製造方法。
  7. 前記ワイヤの前記切込み方向における移動経路は、前記平面視において、複数の縦列の移動経路部分を含み、前記複数の縦列の移動経路部分のそれぞれが、縦方向に並んだ複数個の成形体片の形状を規定している、請求項6に記載のR-T-B系焼結磁石の製造方法。
  8. 前記ワイヤの前記切込み方向における移動経路は、前記複数の縦列の移動経路部分のうち、前記第2保持部材に近い側から順番に前記縦方向に並んだ複数個の成形体片を形成するように制御される、請求項7に記載のR-T-B系焼結磁石の製造方法。
  9. 前記複数の縦列の移動経路部分のそれぞれの開始位置および終了位置は、前記粉末成形体の上面にある、請求項8に記載のR-T-B系焼結磁石の製造方法。
  10. 前記複数の縦列の移動経路部分のそれぞれは、前記平面視において、縦方向に延びる基準線よりも第1保持部材の側に位置する第1部分と、第2保持部材の側に位置する第2部分と、前記基準線上の第3部分とを含み、
    前記第2部分に沿って前記ワイヤを移動させた後、前記第1部分に沿って前記ワイヤを移動させる、請求項9に記載のR-T-B系焼結磁石の製造方法。
  11. 前記切断工程中の前記粉末成形体は、前記第1保持部材に直接に接触する第1側面と、弾性部材を介して前記第2保持部材に接触する第2側面とを有している、請求項10に記載のR-T-B系焼結磁石の製造方法。
  12. 前記第1保持部材および前記第2保持部材は、それぞれ、プレート形状を有し、
    前記第1保持部材の厚さは前記第2保持部材の厚さよりも大きい、請求項11に記載のR-T-B系焼結磁石の製造方法。
  13. 前記ワイヤの前記切込み方向における移動経路のうち、上下方向に対して傾斜または直交する方向に延びる部分は、前記平面視において、前記第1保持部材と前記第2保持部材との間に挟まれた領域内に含まれる、請求項5から12のいずれか1項に記載のR-T-B系焼結磁石の製造方法。
JP2023143204A 2022-09-29 2023-09-04 R-t-b系焼結磁石の製造方法 Pending JP2024050442A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311252137.1A CN117790158A (zh) 2022-09-29 2023-09-26 R-t-b类烧结磁体的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022155896 2022-09-29
JP2022155896 2022-09-29

Publications (1)

Publication Number Publication Date
JP2024050442A true JP2024050442A (ja) 2024-04-10

Family

ID=90622119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023143204A Pending JP2024050442A (ja) 2022-09-29 2023-09-04 R-t-b系焼結磁石の製造方法

Country Status (1)

Country Link
JP (1) JP2024050442A (ja)

Similar Documents

Publication Publication Date Title
JP7243698B2 (ja) R-t-b系焼結磁石の製造方法
JP7232390B2 (ja) R-t-b系焼結磁石の製造方法
US7045093B2 (en) Method for manufacturing sintered magnet
JP2003303728A (ja) 焼結磁石の製造方法
KR20190091289A (ko) R-Fe-B계 소결 자석 및 그 제조 방법
JP7468058B2 (ja) R-t-b系焼結磁石の製造方法
JP2024050442A (ja) R-t-b系焼結磁石の製造方法
JP5967203B2 (ja) 希土類系焼結磁石の製造方法および成形装置
JP7243910B1 (ja) R-t-b系焼結磁石の製造方法
JP2024049587A (ja) R-t-b系焼結磁石の製造方法
JP2024049588A (ja) R-t-b系焼結磁石の製造方法
JP2024049589A (ja) R-t-b系焼結磁石の製造方法
WO2023181772A1 (ja) R-t-b系焼結磁石の製造方法
JP6060971B2 (ja) 希土類系焼結磁石の製造方法
CN117790158A (zh) R-t-b类烧结磁体的制造方法
JP7439614B2 (ja) R-t-b系焼結磁石の製造方法
JP7439613B2 (ja) R-t-b系焼結磁石の製造方法
JP2005268668A (ja) 希土類焼結磁石の製造方法及び製造装置
JP2007196307A (ja) 研削装置、研削方法及び希土類焼結磁石の製造方法
WO2021193115A1 (ja) 希土類系焼結磁石の製造方法および湿式成形装置
JP2023141524A (ja) R-t-b系焼結磁石の製造方法
JP4910457B2 (ja) ワイヤソー装置およびそれを用いた切断方法
JP2023003951A (ja) 希土類系焼結磁石の製造方法