JP2024049766A - Liquid envelope type vibration isolation device - Google Patents

Liquid envelope type vibration isolation device Download PDF

Info

Publication number
JP2024049766A
JP2024049766A JP2022156202A JP2022156202A JP2024049766A JP 2024049766 A JP2024049766 A JP 2024049766A JP 2022156202 A JP2022156202 A JP 2022156202A JP 2022156202 A JP2022156202 A JP 2022156202A JP 2024049766 A JP2024049766 A JP 2024049766A
Authority
JP
Japan
Prior art keywords
liquid
rubber
circumferential
type vibration
shaft member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022156202A
Other languages
Japanese (ja)
Inventor
龍一 安藤
裕教 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Riko Co Ltd
Original Assignee
Sumitomo Riko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Riko Co Ltd filed Critical Sumitomo Riko Co Ltd
Priority to JP2022156202A priority Critical patent/JP2024049766A/en
Publication of JP2024049766A publication Critical patent/JP2024049766A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Combined Devices Of Dampers And Springs (AREA)

Abstract

【課題】オリフィス通路で相互に連通された2つの液室を備えた液封式の筒型防振装置において、振動入力時における液室の容積変化量を確保しつつ、液室の軸方向両側のゴム壁部における耐久性向上を図ること。【解決手段】液室34のゴム壁部40,40の断面形状を周方向の中央部分と両端部分とで互いに異ならせて、中央部分ではインナ軸部材12側から外周側に向かって立ち上がってから軸方向外方に向けて湾曲する内周側湾曲部分42とアウタ筒部材14側から内周側に向かって立ち上がってから軸方向内方に向けて湾曲する外周側湾曲部分44とをなめらかにつないだ複合湾曲形状とする一方、両端部分ではインナ軸部材12側から外周側に向かって立ち上がってから軸方向外方に向けて湾曲して更に軸方向外方に延びる単一湾曲形状とした。【選択図】図2[Problem] To improve durability of rubber walls on both axial sides of a liquid chamber in a liquid-sealed cylindrical vibration-proof device having two liquid chambers mutually connected by an orifice passage while ensuring the amount of change in volume of the liquid chamber when vibration is input. [Solution] The cross-sectional shapes of rubber walls 40, 40 of a liquid chamber 34 are made different between the circumferential center portion and both end portions, so that the center portion has a compound curved shape smoothly connecting an inner circumferential curved portion 42 that rises from the inner shaft member 12 side toward the outer periphery side and then curves axially outward, and an outer circumferential curved portion 44 that rises from the outer tubular member 14 side toward the inner periphery side and then curves axially inward, while the both end portions have a single curved shape that rises from the inner shaft member 12 side toward the outer periphery side, then curves axially outward and further extends axially outward. [Selected Figure] Figure 2

Description

本発明は、オリフィス通路で相互に連通された2つの液室を備えた液封式の筒型防振装置に関する。 The present invention relates to a liquid-sealed cylindrical vibration isolation device that has two liquid chambers that are interconnected by an orifice passage.

従来から、振動伝達系に用いられる防振装置の一種として、オリフィス通路で相互に連通された2つの液室を備え、振動入力時におけるオリフィス通路を通じての液体流動を利用して防振効果を得るようにした液封筒型防振装置が知られている。 A liquid envelope type vibration isolation device has been known as a type of vibration isolation device used in vibration transmission systems. It has two liquid chambers that are connected to each other through an orifice passage, and uses the liquid flow through the orifice passage when vibration is input to obtain a vibration isolation effect.

より具体的には、例えば特開2006-250340号公報に示されているように、インナ軸部材とアウタ筒部材とを連結する本体ゴム弾性体の内部において、インナ軸部材を挟んだ両側に2つの液室が形成されており、インナ軸部材とアウタ筒部材との間への軸直角方向の振動入力時に、本体ゴム弾性体の弾性変形に伴って2つの液室間に発生する相対的な液圧差に基づいてオリフィス通路を通じた液体流動が生ぜしめられるようになっている。 More specifically, as shown in, for example, JP 2006-250340 A, inside the main rubber elastic body that connects the inner shaft member and the outer cylindrical member, two liquid chambers are formed on either side of the inner shaft member, and when vibration is input between the inner shaft member and the outer cylindrical member in the direction perpendicular to the axis, the elastic deformation of the main rubber elastic body causes a relative liquid pressure difference to occur between the two liquid chambers, which causes liquid to flow through an orifice passage.

ところが、従来構造の液封筒型防振装置では、液室の軸方向両側の壁部を構成する各ゴム壁部の耐久性を充分に確保することが難しかった。特に防振装置の要求特性によっては、振動入力時における液室の容積変化を大きくするために、当該ゴム壁部の厚さ寸法を充分に設定し難い場合があり、ゴム壁部を薄くすると耐久性の確保がより難しくなって、亀裂などが発生しやすくなってしまうという問題があった。 However, with conventional liquid envelope type vibration isolation devices, it was difficult to ensure sufficient durability for the rubber walls that make up the walls on both sides of the liquid chamber in the axial direction. In particular, depending on the required characteristics of the vibration isolation device, it may be difficult to set the thickness dimension of the rubber walls sufficiently to increase the volume change of the liquid chamber when vibration is input. Making the rubber walls thinner makes it more difficult to ensure durability, and there is a problem that cracks are more likely to occur.

特開2006-250340号公報JP 2006-250340 A

本発明は、上述の事情を背景に為されたものであって、その解決課題は、オリフィス通路で相互に連通された2つの液室を備えた液封筒型防振装置であって、振動入力時における液室の容積変化量を確保しつつ、液室の軸方向両側のゴム壁部における耐久性向上を図ることのできる、新規な構造の液封筒型防振装置を提供することにある。 The present invention was made against the background of the above-mentioned circumstances, and the problem to be solved is to provide a liquid-envelope type vibration-damping device with a new structure that has two liquid chambers that are interconnected by an orifice passage, and that can improve the durability of the rubber wall portions on both axial sides of the liquid chamber while ensuring the amount of volume change in the liquid chamber when vibration is input.

本発明の第一の態様は、以下のとおりである。
インナ軸部材とアウタ筒部材とが本体ゴム弾性体で連結されていると共に、2つの液室が該インナ軸部材を軸直角方向に挟んだ両側に形成されてオリフィス通路で相互に連通されている液封型防振装置であって、
前記本体ゴム弾性体において前記液室の軸方向両側の壁部を構成する各ゴム壁部の軸方向断面形状が、該液室の周方向の中央部分と両端部分とで互いに異なっており、
該中央部分では該インナ軸部材側から外周側に向かって立ち上がってから軸方向外方に向けて湾曲する内周側湾曲部分と前記アウタ筒部材側から内周側に向かって立ち上がってから軸方向内方に向けて湾曲する外周側湾曲部分とをなめらかにつないだ複合湾曲形状とされている一方、
該両端部分では該インナ軸部材側から外周側に向かって立ち上がってから軸方向外方に向けて湾曲して更に軸方向外方に延びる単一湾曲形状とされている
ことを、特徴とする液封筒型防振装置。
A first aspect of the present invention is as follows.
A liquid-sealed vibration-proof device in which an inner shaft member and an outer cylindrical member are connected by a main rubber elastic body, and two liquid chambers are formed on both sides of the inner shaft member in a direction perpendicular to the axis thereof and are mutually communicated with each other through an orifice passage,
the axial cross-sectional shapes of the rubber wall portions constituting the wall portions on both axial sides of the liquid chamber in the main rubber elastic body are different between a central portion and both end portions in the circumferential direction of the liquid chamber,
The central portion has a compound curved shape in which an inner circumferential side curved portion that rises from the inner shaft member side toward the outer circumferential side and then curves axially outwardly and an outer circumferential side curved portion that rises from the outer tubular member side toward the inner circumferential side and then curves axially inwardly are smoothly connected,
A liquid envelope type vibration isolation device characterized in that both end portions rise from the inner shaft member side toward the outer periphery, then curve axially outward and further extend axially outward, forming a single curved shape.

先ず、前述の如き課題を解決すべく、本発明者は液室のゴム壁部の最適形状について種々検討を重ねたが、先行文献1にも記載された従来の液封筒型防振装置のように液室の周方向全体に亘ってゴム壁部を一定形状とする限り、液室の周方向両側の端部付近に亀裂等が発生しやすく耐久性の確保が難しかった。そこで、本発明者は、液室の周方向の中央部分と両端部分とにおいてゴム壁部の断面形状を互いに異ならせることによって、振動入力時における液室変化量を確保しつつ優れた耐久性を実現し得るゴム壁部を新たに考案したのであって、それによって本発明を実現し得た。 First, in order to solve the problems mentioned above, the inventors conducted extensive research into the optimal shape of the rubber wall of the liquid chamber, but as long as the rubber wall had a constant shape over the entire circumference of the liquid chamber, as in the conventional liquid envelope type vibration isolation device described in Prior Art Document 1, cracks and the like were likely to occur near both ends of the circumferential direction of the liquid chamber, making it difficult to ensure durability. Therefore, the inventors devised a new rubber wall that can achieve excellent durability while ensuring the amount of change in the liquid chamber when vibration is input by making the cross-sectional shapes of the rubber wall different between the central part and both end parts of the circumferential direction of the liquid chamber. This enabled the present invention to be realized.

すなわち、本態様の液封筒型防振装置では、液室の周方向中央部分では、後述の実施形態にも示されているように(図2等参照)、略S字状等に複合湾曲した断面形状をもって周方向に広がるゴム壁部とされている一方、液室の周方向両端部分では、後述の実施形態にも示されているように(図4等参照)、略L字状等に単一湾曲した断面形状をもって周方向に広がるゴム壁部とされている。これにより、ゴム壁部において周方向の広い領域を占める中央部分では、複合湾曲形状とされることで、振動入力時における液室容積の変化量の確保と共に、大きな自由長による耐久性の向上が図られ得る。また、ゴム壁部における周方向両端部分では、中央部分よりもシンプルな単一湾曲形状とされることで、例えば周方向に一定形状をもって端部まで延びるゴム壁部を有する後述の比較例との対比からも理解されるように(図25等参照)、実質的な径方向長さが制限される状況下でも自由長が確保されることとなり、局所的な応力集中による亀裂の発生が抑えられて耐久性の向上が図られ得る。 That is, in the liquid envelope type vibration isolator of this embodiment, the circumferential center part of the liquid chamber is a rubber wall part that spreads in the circumferential direction with a cross-sectional shape that is compound curved, such as an S-shape, as shown in the embodiment described later (see FIG. 2, etc.), while the circumferential both end parts of the liquid chamber are rubber wall parts that spread in the circumferential direction with a cross-sectional shape that is single curved, such as an L-shape, as shown in the embodiment described later (see FIG. 4, etc.). As a result, the central part, which occupies a wide circumferential area of the rubber wall part, is made into a compound curved shape, and the change in the liquid chamber volume when vibration is input is secured, and durability can be improved by the large free length. In addition, the circumferential both end parts of the rubber wall part are made into a simpler single curved shape than the central part, so that, as can be understood from the comparison with the comparative example described later, which has a rubber wall part that extends to the end with a constant shape in the circumferential direction (see FIG. 25, etc.), the free length is secured even under conditions where the effective radial length is limited, and the occurrence of cracks due to local stress concentration is suppressed, and durability can be improved.

その結果、本態様の液封筒型防振装置では、液室のゴム壁部について、従来のように周方向で一定の断面形状に代えて、周方向で異ならされた新規な特定の断面形状を採用したことにより、振動入力時における液室容積変化量を確保しつつ、良好な耐久性を得ることを可能と為し得たのである。 As a result, in this liquid envelope type vibration isolation device, instead of the conventional constant cross-sectional shape in the circumferential direction for the rubber wall of the liquid chamber, a new specific cross-sectional shape that varies in the circumferential direction is adopted, making it possible to obtain good durability while ensuring the amount of change in the liquid chamber volume when vibration is input.

本発明の第二の態様は、前記第一の態様に係る液封筒型防振装置であって、
前記本体ゴム弾性体は、前記2つの液室の周方向両側の端部間において前記インナ軸部材と前記アウタ筒部材との間を軸直角方向に延びる一対の連結腕部を有しており、該一対の連結ゴム腕部における周方向の両側間に前記2つの液室が形成されている一方、
該液室の前記各ゴム壁部には、前記インナ軸部材の外周面に沿った内周縁部から該一対の連結腕部の周方向端部を前記アウタ筒部材側に向かって延びるようにして、軸方向外方に向かって凹状とされた連続湾曲部が設けられているものである。
A second aspect of the present invention is a liquid envelope type vibration isolation device according to the first aspect,
The main rubber elastic body has a pair of connecting arms extending in an axially perpendicular direction between the inner shaft member and the outer cylindrical member between both circumferential ends of the two liquid chambers, and the two liquid chambers are formed between both circumferential ends of the pair of connecting rubber arms.
Each rubber wall portion of the liquid chamber has a continuous curved portion that is concave axially outward, extending from the inner peripheral edge portion along the outer peripheral surface of the inner shaft member to the circumferential ends of the pair of connecting arms toward the outer tubular member.

本態様の液封筒型防振装置では、軸方向外方に向かって凹状とされた連続湾曲部が、ゴム壁部の周方向中央部分の内周縁部から周方向両端部分に略沿うようにして連続して延びて設けられている。かかる連続湾曲部を有していることにより、後述の実施形態からも判るように(図1,2,3-6等参照)、液室のゴム壁部の略全体に亘って、大きな自由長で弾性変形が容易に許容される凹状断面の湾曲部分が効果的に与えられて、耐久性の向上に資することとなる。 In this embodiment of the liquid envelope type vibration isolation device, a continuous curved portion that is concave toward the axial outward direction is provided, and extends continuously from the inner peripheral edge of the circumferential center of the rubber wall portion to both circumferential ends. As will be understood from the embodiments described later (see Figures 1, 2, 3-6, etc.), the inclusion of such a continuous curved portion effectively provides a curved portion with a concave cross section that easily tolerates elastic deformation with a large free length over substantially the entire rubber wall portion of the liquid chamber, which contributes to improving durability.

本発明の第三の態様は、前記第一又は第二の態様に係る液封筒型防振装置であって、
前記2つの液室が、前記各ゴム壁部を含めて、前記インナ軸部材を挟んだ径方向で対称形状とされているものである。
A third aspect of the present invention is a liquid envelope type vibration isolating device according to the first or second aspect,
The two liquid chambers, including the rubber wall portions, are shaped symmetrically in the radial direction sandwiching the inner shaft member.

本態様の液封筒型防振装置では、例えば2つの液室が対向する径方向に主たる振動荷重が入力される場合であって、かかる径方向にプリロード(静的な荷重乃至はバイアス荷重)も殆ど及ぼされないような状況下などに好ましく適用され得、それによって、2つの液室の軸方向両側のゴム壁部における耐久性の確保がより効果的に安定して達成され得る。 The liquid envelope type vibration isolation device of this embodiment can be preferably used in situations where the main vibration load is input in the radial direction in which the two liquid chambers face each other, and where there is almost no preload (static load or bias load) in that radial direction, thereby more effectively and stably ensuring the durability of the rubber wall portions on both axial sides of the two liquid chambers.

本発明の第四の態様は、前記第二の態様に係る液封筒型防振装置であって、
前記一対の連結ゴム腕部が該インナ軸部材を挟んだ軸直角方向線上に設けられて、前記2つの液室の周方向のサイズが同じとされている一方、
該2つの液室間において前記ゴム壁部に設けられた前記連続湾曲部が、長さ方向の両側部分において前記インナ軸部材側から前記アウタ筒部材側に向かって延びる方向及び長さを互いに異ならされているものである。
A fourth aspect of the present invention is a liquid envelope type vibration isolator according to the second aspect,
The pair of connecting rubber arm portions are provided on a line perpendicular to the axis of the inner shaft member, and the circumferential sizes of the two liquid chambers are the same.
The continuous curved portion provided in the rubber wall portion between the two liquid chambers has a direction and length extending from the inner shaft member side toward the outer cylindrical member side that are different from each other at both longitudinal sides.

本態様の液封筒型防振装置では、例えば2つの液室が対向する径方向の両側において互いに異なる入力荷重や入力振動が及ぼされる場合又は互いに異なる防振特性やばね特性、荷重特性などが要求されるような場合などに適用され得て、2つの液室における連続湾曲部の形状や長さ等を互いに異ならせることで、2つの液室のゴム壁部のばね特性や耐久性等のチューニングを行うことも可能になる。 This type of liquid envelope vibration isolation device can be used, for example, in cases where different input loads or input vibrations are applied to both sides of the radial direction where the two liquid chambers face each other, or where different vibration isolation characteristics, spring characteristics, load characteristics, etc. are required. By making the shapes and lengths of the continuous curved parts in the two liquid chambers different from each other, it is also possible to tune the spring characteristics and durability of the rubber wall parts of the two liquid chambers.

本発明の第五の態様は、前記第一~四の何れかの態様に係る液封筒型防振装置であって、
前記本体ゴム弾性体の外周部分には中間スリーブが固着されていると共に、
該本体ゴム弾性体には2つのポケット部が設けられて、各該ポケット部が該中間スリーブに設けられた窓部を通じて外周面に開口しており、
前記ゴム壁部の外周端部が該中間スリーブにおける該窓部の軸方向端縁部に固着されて、該ゴム壁部が前記インナ軸部材と該中間スリーブとの間に跨がって設けられている一方、
該中間スリーブに前記アウタ筒部材が外挿固定されて、該中間スリーブの該窓部が該アウタ筒部材で覆蓋されることで前記2つの液室が形成されているものである。
A fifth aspect of the present invention is a liquid envelope type vibration isolator according to any one of the first to fourth aspects,
An intermediate sleeve is fixed to the outer periphery of the main rubber elastic body,
The main rubber elastic body is provided with two pockets, each of which opens to an outer circumferential surface through a window provided in the intermediate sleeve,
An outer peripheral end of the rubber wall portion is fixed to an axial end edge of the window portion of the intermediate sleeve, and the rubber wall portion is provided between the inner shaft member and the intermediate sleeve,
The outer tubular member is fitted onto and fixed to the intermediate sleeve, and the window portion of the intermediate sleeve is covered with the outer tubular member, thereby forming the two liquid chambers.

本態様の液封筒型防振装置では、例えば本体ゴム弾性体がインナ軸部材と中間スリーブとを含む一体加硫成形品として構成され得、本体ゴム弾性体の外周端部の形状安定性を中間スリーブによって実現しつつ、中間スリーブに外挿固定されるアウタ筒部材によって液室の流体密性が安定して実現可能となる。しかも、液室のゴム壁部における外周部分が、中間スリーブの窓部の周縁部から内周側や軸方向に向かって延び出すような形状とされることで、ゴム壁部の中間スリーブによる過度の拘束も回避されると共に、ゴム壁部の形状の設計自由度も有利に確保され得る。 In this embodiment of the liquid envelope type vibration isolation device, for example, the main rubber elastic body can be constructed as an integrally vulcanized molded product including an inner shaft member and an intermediate sleeve, and the shape stability of the outer peripheral end of the main rubber elastic body can be achieved by the intermediate sleeve, while the fluid tightness of the liquid chamber can be stably achieved by the outer cylindrical member that is fitted onto the intermediate sleeve. Moreover, by giving the outer peripheral portion of the rubber wall of the liquid chamber a shape that extends from the peripheral edge of the window portion of the intermediate sleeve toward the inner peripheral side and the axial direction, excessive constraint of the rubber wall by the intermediate sleeve can be avoided, and the design freedom of the shape of the rubber wall can be advantageously ensured.

本発明の第一実施形態である液封筒型防振装置を示す正面図。1 is a front view showing a liquid envelope type vibration isolation device according to a first embodiment of the present invention. FIG. 図1におけるII-II断面図。Cross-sectional view taken along line II-II in FIG. 図1におけるIII-III断面図。FIG. 3 is a cross-sectional view taken along line III-III in FIG. 図1におけるIV-IV断面図。IV-IV cross-sectional view in FIG. 図1におけるV-V断面図。2 is a cross-sectional view taken along the line VV in FIG. 1 . 図1におけるVI-VI断面図。VI-VI cross-sectional view in FIG. 図1における軸方向中央での横断面図。FIG. 2 is a cross-sectional view taken at the axial center in FIG. 1 . 本発明の第二実施形態である液封筒型防振装置を示す正面図。FIG. 4 is a front view showing a liquid envelope type vibration isolation device according to a second embodiment of the present invention. 図8におけるIX-IX断面図。IX-IX cross-sectional view in FIG. 8 . 図8におけるX-X断面図。XX cross-sectional view in FIG. 8 . 図8におけるXI-XI断面図。XI-XI cross-sectional view in FIG. 8 . 図8におけるXII-XII断面図。XII-XII cross-sectional view in Figure 8. 図8におけるXIII-XIII断面図。XIII-XIII cross-sectional view in FIG. 8 . 図8における軸方向中央での横断面図。FIG. 9 is a cross-sectional view taken at the axial center in FIG. 8 . 本発明の第三実施形態である液封筒型防振装置を示す正面図。FIG. 4 is a front view showing a liquid envelope type vibration isolation device according to a third embodiment of the present invention. 図15におけるXVI-XVI断面図。Cross-sectional view taken along the line XVI-XVI in FIG. 15 . 図15におけるXVII-XVII断面図。Cross-sectional view taken along the line XVII-XVII in FIG. 15 . 図15におけるXVIII-XVIII断面図。Cross-sectional view taken along line XVIII-XVIII in Figure 15. 図15におけるXIX-XIX断面図。Cross-sectional view taken along line XIX-XIX in Figure 15. 図15における軸方向中央での横断面図。FIG. 16 is a cross-sectional view taken at the axial center in FIG. 15 . 比較例である液封筒型防振装置を示す正面図。FIG. 4 is a front view showing a liquid envelope type vibration isolation device as a comparative example. 図21におけるXXII-XXII断面図。Cross-sectional view taken along the line XXII-XXII in Figure 21 . 図21におけるXXIII-XXIII断面図。Cross-sectional view taken along line XXIII-XXIII in Figure 21. 図21におけるXXIV-XXIV断面図。Cross-sectional view taken along line XXIV-XXIV in Figure 21. 図21におけるXXV-XXV断面図。Cross-sectional view of XXV-XXV in Figure 21. 図21におけるXXVI-XXVI断面図。Cross-sectional view taken along line XXVI-XXVI in Figure 21 . 図21における軸方向中央での横断面図。FIG. 22 is a cross-sectional view taken at the axial center in FIG. 21 .

以下、本発明の実施形態について、図面を参照しつつ説明する。なお、以下の図面では、発明の特徴を備えたゴム加硫成形品を示し、当該ゴム加硫成形品に組み付けられることによって液室を形成して液封筒型防振装置を構成するアウタ筒部材(外筒金具)については代表的な図中に仮想線で示しておく。 Embodiments of the present invention will be described below with reference to the drawings. In the following drawings, a rubber vulcanization molded product having the characteristics of the invention is shown, and the outer cylindrical member (outer cylindrical metal fitting) that is assembled to the rubber vulcanization molded product to form a liquid chamber and constitute a liquid-envelope type vibration-damping device is shown in phantom lines in the representative drawings.

図1~7には、本発明の一実施形態としての液封筒型防振装置10が示されている。かかる液封筒型防振装置10は、振動伝達系に装着されるものであって具体的に用途限定されるものでないが、例えば自動車等の車両用のメンバマウントやトルクロッドマウント、サスペンションブッシュ、エンジンマウント等として用いることができる。 Figures 1 to 7 show a liquid envelope type vibration isolation device 10 as one embodiment of the present invention. This liquid envelope type vibration isolation device 10 is attached to a vibration transmission system and is not limited to a specific application, but can be used, for example, as a member mount, torque rod mount, suspension bush, engine mount, etc. for vehicles such as automobiles.

本実施形態の液封筒型防振装置10は、互いに径方向に所定距離を隔てて配されたインナ軸部材としての内筒金具12とアウタ筒部材としての外筒金具14とを有しており、それら内筒金具12と外筒金具14とが、本体ゴム弾性体16によって弾性的に連結されている。かかる液封筒型防振装置10は、例えば、図1及び図2中の上下方向が車両の略上下方向となり、且つ図1中の左右方向が車両の略左右方向となる状態で、内筒金具12が車両のパワーユニット側に取り付けられる一方、外筒金具14が車両のボデー側に取り付けられることによって、パワーユニットと車両ボデーとの間に装着されるようになっている。そして、かかる装着状態下、図1中の上下方向に対して、内筒金具12と外筒金具14との間に防振すべき主たる振動が入力されることとなる。なお、以下の説明中、上下方向及び左右方向とは、原則として、図1中の上下方向及び左右方向をいう。 The liquid envelope type vibration isolator 10 of this embodiment has an inner tubular metal fitting 12 as an inner shaft member and an outer tubular metal fitting 14 as an outer tubular member arranged at a predetermined distance from each other in the radial direction, and the inner tubular metal fitting 12 and the outer tubular metal fitting 14 are elastically connected by a main rubber elastic body 16. This liquid envelope type vibration isolator 10 is mounted between the power unit and the vehicle body by, for example, attaching the inner tubular metal fitting 12 to the power unit side of the vehicle and attaching the outer tubular metal fitting 14 to the body side of the vehicle in a state where the vertical direction in Figures 1 and 2 is approximately the vertical direction of the vehicle and the left-right direction in Figure 1 is approximately the left-right direction of the vehicle. In this mounted state, the main vibration to be damped is input between the inner tubular metal fitting 12 and the outer tubular metal fitting 14 in the vertical direction in Figure 1. In the following description, the vertical direction and the left-right direction generally refer to the vertical direction and the left-right direction in Figure 1.

より詳細には、内筒金具12は、ストレートに延びるロッド形状とされている。なお、本実施形態では取付用の内孔を備えた円筒状の中空ロッド形状とされているが、内筒金具12は取り付けられる部材等に応じて形状を設定可能であって、例えば中実のロッド形状等であっても良い。また、内筒金具12は、要求される強度や剛性等を有すれば良く、鉄やステンレス等の金属の他、繊維補強樹脂なども採用可能であって材質を限定されるものでない。 More specifically, the inner tubular metal fitting 12 has a rod shape that extends straight. In this embodiment, the inner tubular metal fitting 12 has a cylindrical hollow rod shape with an inner hole for mounting, but the shape of the inner tubular metal fitting 12 can be set according to the member to which it is mounted, and it may be a solid rod shape, for example. Furthermore, the inner tubular metal fitting 12 only needs to have the required strength and rigidity, and can be made of metals such as iron and stainless steel, as well as fiber-reinforced resin, and there is no limit to the material.

内筒金具12の外周側には、径方向に離隔して中間スリーブ18が配されている。かかる中間スリーブ18は、内筒金具12に比して大径で且つ薄肉の円筒形状とされている。中間スリーブ18は金属製のものが好適に用いられるが、材質を限定されるものでなく、内筒金具と同様に合成樹脂なども採用可能である。また、本実施形態では、内筒金具12と中間スリーブ18とが、略同一中心軸上に配置されているが、要求される特定方向の防振性能や荷重支持特性、プリロード荷重などを考慮して、内筒金具12と中間スリーブ18とを径方向で偏心して配置するようにしても良い。 A middle sleeve 18 is disposed radially away from the outer periphery of the inner tubular metal fitting 12. The middle sleeve 18 is cylindrical and has a larger diameter and a thinner wall than the inner tubular metal fitting 12. The middle sleeve 18 is preferably made of metal, but the material is not limited, and synthetic resins, as with the inner tubular metal fitting, can also be used. In this embodiment, the inner tubular metal fitting 12 and the middle sleeve 18 are disposed on approximately the same central axis, but the inner tubular metal fitting 12 and the middle sleeve 18 may be disposed eccentrically in the radial direction, taking into account the required vibration-proofing performance in a specific direction, load support characteristics, preload load, etc.

中間スリーブ18には、上下方向で対向する両側部分に位置して一対の窓部20,20が形成されている。各窓部20は、軸方向中間部分に位置して周方向に半周に満たない長さで広がっており、本実施形態では略矩形の外周形状とされている。なお、かかる窓部20は、後述する本体ゴム弾性体16のポケット部と対応して要求特性等に応じて設定されるものであって具体的な形状や大きさを限定されるものでない。 A pair of windows 20, 20 are formed on the intermediate sleeve 18, located on both sides that face each other in the up-down direction. Each window 20 is located in the axial middle and extends in the circumferential direction by a length less than halfway around, and in this embodiment has a substantially rectangular outer peripheral shape. Note that the window 20 is set according to the required characteristics and the like in correspondence with the pocket portion of the main rubber elastic body 16 described below, and is not limited to a specific shape or size.

また、中間スリーブ18は、窓部20,20が形成されていない周方向の領域において、それぞれ軸方向中間部分が小径化されることで外周面に開口して周方向に延びる一対の凹状の周溝22,22が形成されている。これにより、一対の窓部20,20の周方向端縁部間に跨がって、一対の窓部20,20を周方向両側において相互に接続する一対の周溝22,22が設けられている。 In addition, in the circumferential region of the intermediate sleeve 18 where the window portions 20, 20 are not formed, the axial middle portion is reduced in diameter to form a pair of concave circumferential grooves 22, 22 that open to the outer circumferential surface and extend in the circumferential direction. As a result, a pair of circumferential grooves 22, 22 is provided that spans between the circumferential edge portions of the pair of window portions 20, 20 and connects the pair of window portions 20, 20 to each other on both circumferential sides.

そして、内筒金具12と中間スリーブ18との径方向対向面間には本体ゴム弾性体16が配されて、内筒金具12と中間スリーブ18とに固着されており、この本体ゴム弾性体16によって、内筒金具12と中間スリーブ18とが弾性的に連結されている。本体ゴム弾性体16は、全体として略厚肉の円筒形状とされており、本実施形態では、内周面に対して内筒金具12の外周面が加硫接着されると共に、外周面に対して中間スリーブ18の内周面が加硫接着された一体加硫成形品24として構成されている。なお、中間スリーブ18の外周面を覆うように薄肉のシールゴム層を、本体ゴム弾性体16と一体的に形成しても良い。 A main rubber elastic body 16 is disposed between the radially opposing surfaces of the inner tubular metal fitting 12 and the intermediate sleeve 18 and is fixed to the inner tubular metal fitting 12 and the intermediate sleeve 18, and the main rubber elastic body 16 elastically connects the inner tubular metal fitting 12 and the intermediate sleeve 18. The main rubber elastic body 16 has a generally thick cylindrical shape, and in this embodiment, is configured as an integrally vulcanized molded product 24 in which the outer circumferential surface of the inner tubular metal fitting 12 is vulcanized bonded to the inner circumferential surface, and the inner circumferential surface of the intermediate sleeve 18 is vulcanized bonded to the outer circumferential surface. A thin seal rubber layer may be formed integrally with the main rubber elastic body 16 to cover the outer circumferential surface of the intermediate sleeve 18.

かかる本体ゴム弾性体16には、内筒金具12を上下方向で挟んだ両側に位置して、それぞれ軸方向中間部分を半周に至らない周方向長さで広がる一対のポケット部26,26が、外周面に開口する凹陥形態をもって形成されている。これら一対のポケット部26,26は、中間スリーブ18における一対の窓部20,20を通じて、それぞれ、中間スリーブ18の外周面にまで開口している。 The main rubber elastic body 16 is formed with a pair of pockets 26, 26 located on both sides of the inner tubular metal fitting 12 in the vertical direction, each extending in the axial middle portion over a circumferential length less than half the circumference, and formed with a recessed shape that opens onto the outer circumferential surface. The pair of pockets 26, 26 each open onto the outer circumferential surface of the intermediate sleeve 18 through a pair of windows 20, 20 in the intermediate sleeve 18.

なお、本実施形態では一対のポケット部26,26及び一対の窓部20,20が、上下対向方向で対称となる同一の形状及び大きさとされているが、後述する第三実施形態からも判るように、要求特性等に応じて、一対のポケット部26,26及び窓部20,20には、対向する上下方向両側において相互に異なる形状や大きさを設定することも可能である。 In this embodiment, the pair of pockets 26, 26 and the pair of windows 20, 20 have the same shape and size that are symmetrical in the vertical opposing direction, but as can be seen from the third embodiment described below, it is also possible to set the pair of pockets 26, 26 and the window portions 20, 20 to different shapes and sizes on both opposing vertical sides depending on the required characteristics, etc.

そして、これら一対のポケット部26,26が形成されることによって、本体ゴム弾性体16には、一対のポケット部26,26の周方向両端部間に位置して、内筒金具12と外筒金具14とを軸直角方向に連結する一対の連結ゴム腕部28,28が形成されている。なお、本実施形態における一対の連結ゴム腕部28,28は、内筒金具12を挟んで左右方向に延びる径方向一方向の直線上に形成されているが、例えば一対のポケット部26,26の周方向長さが相互に異ならされることで、一対の連結ゴム腕部28,28を所定の交差角度(交角)をもってそれぞれの弾性中心軸が内筒金具12から径方向外方に延び出す形態として、一対のポケット部26,26の周方向サイズも相互に異ならせることも可能である。 Then, by forming the pair of pockets 26, 26, a pair of connecting rubber arms 28, 28 that are located between both circumferential ends of the pair of pockets 26, 26 and connect the inner tube fitting 12 and the outer tube fitting 14 in the axially perpendicular direction are formed in the main rubber elastic body 16. Note that the pair of connecting rubber arms 28, 28 in this embodiment are formed on a straight line in one radial direction extending in the left-right direction across the inner tube fitting 12, but it is also possible to make the circumferential sizes of the pair of pockets 26, 26 different from each other, for example, by making the circumferential lengths of the pair of pockets 26, 26 different from each other, so that the elastic central axes of the pair of connecting rubber arms 28, 28 extend radially outward from the inner tube fitting 12 at a predetermined intersection angle (intersection angle).

なお、本実施形態では、各ポケット部26を上方又は下方に向かって開口する凹所として捉えることも可能であり、このような捉え方をすると、ポケット部26の底壁部は、インナの外周面とそこから左右に延びる一対の連結ゴム腕部28,28の周方向端面とによって構成されていると解釈することもできる。かかるポケット部26の底面を構成する一対の連結ゴム腕部28,28の周方向両端面は、内筒金具12の中心軸から略径方向に延びる傾斜面とされている。これにより、ポケット部26は、内筒金具12の外周側において中心軸周りに所定角度で略扇形状に広がっている。なお、上下の各ポケット部26,26には、各底部中央に位置して内筒金具12の外周面上で上下方向に突出するストッパ用の緩衝ゴム突起29が、ポケット部26の深さ寸法よりも小さな突出高さで形成されている。 In this embodiment, each pocket 26 can be considered as a recess that opens upward or downward. If considered in this way, the bottom wall of the pocket 26 can be interpreted as being composed of the outer peripheral surface of the inner and the circumferential end faces of a pair of connecting rubber arms 28, 28 extending from the inner peripheral surface to the left and right. Both circumferential end faces of the pair of connecting rubber arms 28, 28 that constitute the bottom surface of the pocket 26 are inclined surfaces that extend approximately radially from the central axis of the inner tube fitting 12. As a result, the pocket 26 spreads out in an approximately fan shape at a predetermined angle around the central axis on the outer peripheral side of the inner tube fitting 12. In addition, each of the upper and lower pockets 26, 26 has a cushioning rubber protrusion 29 for a stopper that is located at the center of each bottom and protrudes in the vertical direction on the outer peripheral surface of the inner tube fitting 12, with a protruding height smaller than the depth dimension of the pocket 26.

また、中間スリーブ18には、周溝22,22の内部にオリフィス形成用ゴム30,30が形成されて、周溝22,22の内面に固着されている。各オリフィス形成用ゴム30には、周方向に延びるオリフィス用溝32が形成されており、かかるオリフィス用溝32の両端が各一方のポケット部26に接続されている。なお、オリフィス形成用ゴム30,30は、例えば本体ゴム弾性体16と一体形成され得る。 In addition, the intermediate sleeve 18 has orifice-forming rubbers 30, 30 formed inside the circumferential grooves 22, 22 and fixed to the inner surface of the circumferential grooves 22, 22. Each orifice-forming rubber 30 has an orifice groove 32 formed therein that extends in the circumferential direction, and both ends of the orifice groove 32 are connected to one of the pocket portions 26. The orifice-forming rubbers 30, 30 can be formed integrally with the main rubber elastic body 16, for example.

そして、上述の如き本体ゴム弾性体16の一体加硫成形品は、外筒金具14に対して圧入等されることで、外筒金具14が外挿固着された状態で組み付けられている。外筒金具14は、中間スリーブ18よりも一回り大きな円筒形状とされており、中間スリーブ18の外周面に嵌着固定されている(図1-3,8参照)。 The integrally vulcanized molded product of the main rubber elastic body 16 as described above is press-fitted into the outer tubular metal fitting 14, and assembled in a state in which the outer tubular metal fitting 14 is fixedly fitted on the outside. The outer tubular metal fitting 14 is cylindrical and slightly larger than the intermediate sleeve 18, and is fitted and fixed to the outer peripheral surface of the intermediate sleeve 18 (see Figs. 1-3 and 8).

なお、外筒金具14の具体的形状や構造は限定されるものでない。例えば、外筒金具14において中間スリーブ18に外嵌固定される円筒状部における軸方向の各一方の端部に内向きフランジ状部と外向きフランジ状部が一体形成されて、それら各フランジ状部の外側面において、軸方向外方に向かって突出するストッパ用緩衝ゴムが突出形成された構造とすることも可能である。また、外筒金具14には、内周面を略前面に亘って覆う薄肉のシールゴム層を一体加硫成形することも可能であり、かかるシールゴム層を中間スリーブ18との嵌着面で圧縮することでシール性の向上を図ることも可能である。 The specific shape and structure of the outer tube fitting 14 are not limited. For example, the outer tube fitting 14 may have an inward flange portion and an outward flange portion integrally formed at each axial end of the cylindrical portion that is fitted and fixed to the intermediate sleeve 18, and a stopper cushion rubber that protrudes axially outward may be formed on the outer surface of each flange portion. In addition, the outer tube fitting 14 may have a thin seal rubber layer that covers the entire inner circumferential surface, which may be integrally vulcanized and molded, and the seal may be improved by compressing the seal rubber layer at the fitting surface with the intermediate sleeve 18.

また、本体ゴム弾性体16の一体加硫成形品は、必要に応じて、外筒金具14の組み付け前に又は組み付けに際して、絞り加工で小径化されて、加硫成形時の残留応力軽減などが図られ得る。 In addition, the integrally vulcanized molded main rubber elastic body 16 can be reduced in diameter by drawing before or during the assembly of the outer metal tube 14, if necessary, to reduce residual stress during vulcanization molding.

このように、本体ゴム弾性体16の一体加硫成形品に外筒金具14が外嵌固定されることで、一対のポケット部26,26の外周側開口が覆蓋されていると共に、オリフィス用溝32,32の外周側開口も覆蓋されている。また、例えば中間スリーブ18への外筒金具14の外挿組み付けが液中で行われること等により、一対のポケット部26,26とオリフィス用溝32,32にはエチレングリコール等の所定の液体が封入されている。 In this way, the outer tubular metal fitting 14 is fixed to the integrally vulcanized molded product of the main rubber elastic body 16, thereby covering the outer peripheral openings of the pair of pockets 26, 26 and also covering the outer peripheral openings of the orifice grooves 32, 32. In addition, for example, the outer tubular metal fitting 14 is assembled to the intermediate sleeve 18 in a liquid, and thus a specified liquid such as ethylene glycol is sealed in the pair of pockets 26, 26 and the orifice grooves 32, 32.

これにより、一対のポケット部26,26によって一対の液室34,34が形成されていると共に、一対のオリフィス用溝32,32によって、かかる一対の液室34,34間を相互に接続して液室34,34間での液体の流動を許容するオリフィス通路36,36が形成されている。即ち、本実施形態の液封筒型防振装置における自動車等への装着状態下、内筒金具12と外筒金具14との間に上下方向の振動が入力されると、本体ゴム弾性体16の弾性変形に伴って上下一対の液室34,34間に相対的な液圧変動が発生し、かかる液圧変動に基づいてオリフィス通路36,36を通じての流体流動が生ぜしめられる。そして、かかる流体の共振作用等を利用して、入力振動に対する防振性能の向上が図られ得ることとなる。 As a result, a pair of liquid chambers 34, 34 are formed by the pair of pockets 26, 26, and an orifice passage 36, 36 is formed by the pair of orifice grooves 32, 32, which connects the pair of liquid chambers 34, 34 to each other and allows liquid to flow between the liquid chambers 34, 34. In other words, when the liquid envelope type vibration isolator of this embodiment is mounted on an automobile or the like, and vertical vibration is input between the inner tube metal fitting 12 and the outer tube metal fitting 14, relative fluid pressure fluctuations occur between the pair of upper and lower fluid chambers 34, 34 due to the elastic deformation of the main rubber elastic body 16, and fluid flow is generated through the orifice passages 36, 36 based on this fluid pressure fluctuation. Then, by utilizing the resonant action of this fluid, it is possible to improve the vibration isolation performance against input vibration.

なお、オリフィス通路36の溝長さや溝断面形状,溝の全長形態などは、要求される防振特性などに応じて設定可能であって、限定されるものでない。例えば、左右両側のオリフィス通路36,36を同一形状としても良いし、互いに異なる形状とすることも可能である。また、一方の周溝22の内部にだけオリフィス通路36を形成して、他方の周溝22はオリフィス形成用ゴム30で遮断状態としても良い。或いは、周溝22へ別体のオリフィス部材を組み付けて、当該オリフィス部材によってオリフィス通路を形成することも可能である。 The groove length, groove cross-sectional shape, and overall groove length of the orifice passage 36 can be set according to the required vibration-proofing characteristics, and are not limited to these. For example, the orifice passages 36 on both the left and right sides may be of the same shape, or may be of different shapes. Also, the orifice passage 36 may be formed only inside one of the circumferential grooves 22, and the other circumferential groove 22 may be blocked by the orifice-forming rubber 30. Alternatively, a separate orifice member may be attached to the circumferential groove 22, and the orifice passage may be formed by the orifice member.

ここにおいて、各液室34の軸方向両側の壁部は、本体ゴム弾性体16がポケット部26によって薄肉化された一対のゴム壁部40,40によって構成されている。本体ゴム弾性体16の軸方向両側端面は、軸方向内方に向かって凹状となる湾曲面とされて内筒金具12から外筒金具14との間で延びる径方向の表面自由長ひいては自由表面が大きくされることで耐久性の向上が図られている。特に、本体ゴム弾性体16の軸方向端面は、一対の連結ゴム腕部28,28と、一対のゴム壁部40,40とにおいて形状(軸方向の断面形状)が異ならされている。即ち、連結ゴム腕部28の軸方向端面は、図3に示されているように、比較的単純な湾曲凹形状とされている一方、ゴム壁部40の軸方向端面は、図2等に示されているように、比較的複雑な湾曲凹形状とされている。 Here, the wall portions on both axial sides of each liquid chamber 34 are composed of a pair of rubber wall portions 40, 40 in which the main rubber elastic body 16 is thinned by the pocket portion 26. The end faces on both axial sides of the main rubber elastic body 16 are curved surfaces that are concave toward the inside of the axial direction, and the free surface length in the radial direction extending between the inner tube metal fitting 12 and the outer tube metal fitting 14 is increased, thereby improving durability. In particular, the axial end faces of the main rubber elastic body 16 have different shapes (axial cross-sectional shapes) between the pair of connecting rubber arm portions 28, 28 and the pair of rubber wall portions 40, 40. That is, the axial end faces of the connecting rubber arm portions 28 have a relatively simple curved concave shape as shown in FIG. 3, while the axial end faces of the rubber wall portions 40 have a relatively complex curved concave shape as shown in FIG. 2, etc.

ところで、一対の連結ゴム腕部28は、軸方向の両端面間に亘って略一定の断面形状で軸方向に延びる中実構造とされている。一方、一対の連結ゴム腕部28,28の周方向間は、それぞれ、軸方向中間部分においてポケット部26,26によって中空構造とされている。そして、各ポケット部26の軸方向両側の壁部を構成するゴム壁部40は、ポケット部26の軸方向内面形状がゴム壁部40の軸方向両端面形状に対応していることで、全体に亘って略一定の厚さ寸法で広がっている。 The pair of connecting rubber arm portions 28 have a solid structure that extends in the axial direction with a substantially constant cross-sectional shape between both axial end faces. Meanwhile, the circumferential space between the pair of connecting rubber arm portions 28, 28 is hollowed out by the pocket portions 26, 26 in the axial middle portion. The rubber wall portions 40 that form the walls on both axial sides of each pocket portion 26 extend with a substantially constant thickness dimension throughout, because the axial inner surface shape of the pocket portion 26 corresponds to the axial end face shape of the rubber wall portion 40.

ここにおいて、ゴム壁部40は、軸方向の断面形状が周方向位置によって異ならされている。 Here, the cross-sectional shape of the rubber wall portion 40 in the axial direction varies depending on the circumferential position.

具体的には、ゴム壁部40において、液室34の周方向中央を含んで周方向両側にそれぞれ所定角度で広がる周方向中間部分では、図2や図5に示されているように、内筒金具12側から外周側に向かって立ち上がってから軸方向外方に向けて湾曲する内周側湾曲部分42と、前記アウタ筒部材側から内周側に向かって立ち上がってから軸方向内方に向けて湾曲する外周側湾曲部分44とをなめらかに変曲点をもってつないだ複合湾曲形状とされている。特に本実施形態における複合湾曲形状は、内周側湾曲部分42において内筒金具12側から略軸直角方向外方に立ち上がる内周側立上り部46と、外周側湾曲部分44において外筒金具14側(中間スリーブ18側)から略軸直角方向内方に立ち上がる外周側立上り部48との間に、略軸方向(軸方向外方に行くに従って外周側に向かって僅かに傾斜している)に延びて内外周湾曲部分42,44の接続部分を構成する中間段差状部50が設けられた形状とされている。 Specifically, in the rubber wall portion 40, the circumferential middle portion that includes the circumferential center of the liquid chamber 34 and spreads outward at a predetermined angle on both sides in the circumferential direction is formed into a compound curved shape that smoothly connects the inner curved portion 42 that rises from the inner tubular member 12 side toward the outer periphery and then curves axially outward, and the outer curved portion 44 that rises from the outer tubular member side toward the inner periphery and then curves axially inward, with an inflection point. In particular, the compound curved shape in this embodiment is formed in such a way that an intermediate stepped portion 50 that extends in the approximate axial direction (slightly inclined toward the outer periphery as it goes outward in the axial direction) and forms the connection portion of the inner and outer periphery curved portions 42, 44 is provided between the inner curved portion 46 that rises outward in the approximate axial direction from the inner tubular member 12 side in the inner curved portion 42, and the outer curved portion 48 that rises inward in the approximate axial direction from the outer tubular member 14 side (intermediate sleeve 18 side) in the outer curved portion 44.

一方、ゴム壁部40における周方向両端部分では、図4に示されているように、内筒金具12側から外周側に向かって立ち上がってから軸方向外方に向けて湾曲して更に軸方向外方に延びる単一湾曲形状とされている。特に本実施形態における単一湾曲形状は、内筒金具12側から略軸直角方向外方に立ち上がる内周側立上り部52と、外筒金具14側において中間スリーブ18の窓部20の内周縁部(軸方向の内方端縁部)から軸方向内方に向かって延びる外周側延出部54とが、略四半周の円弧状の湾曲連結部56によって連結された形状とされている。 On the other hand, as shown in Fig. 4, both circumferential end portions of the rubber wall portion 40 have a single curved shape that rises from the inner tube fitting 12 side toward the outer periphery, then curves toward the axially outward and further extends axially outward. In particular, in this embodiment, the single curved shape is a shape in which an inner periphery side rising portion 52 that rises outward in a direction substantially perpendicular to the axis from the inner tube fitting 12 side and an outer periphery side extending portion 54 that extends axially inward from the inner peripheral edge portion (axial inner end edge portion) of the window portion 20 of the intermediate sleeve 18 on the outer tube fitting 14 side are connected by a curved connecting portion 56 in the shape of a substantially quarter-circumference arc.

より詳細には、本実施形態におけるゴム壁部40の断面形状の変化は、例えば図1における中心軸周りで液室34の周方向中央(上下方向線)から周方向両側にそれぞれ角度を振っていった際のゴム壁部40の断面形状の変化として見ることもできる。 More specifically, the change in the cross-sectional shape of the rubber wall portion 40 in this embodiment can be seen as a change in the cross-sectional shape of the rubber wall portion 40 when the angle is changed to either side of the circumferential center (vertical line) of the liquid chamber 34 around the central axis in FIG. 1, for example.

すなわち、各ゴム壁部40の軸方向外側には、内筒金具12の外周面に加硫接着された軸方向外側ゴム58が、本体ゴム弾性体16によって形成されており、かかる軸方向外側ゴム58が、ゴム壁部40の内周側立上り部52の軸方向外面に一体的につながっている。そして、ゴム壁部40につながる当該軸方向外側ゴム58の径方向厚さ寸法が、内筒金具12の外周面に固着された被覆ゴム層の程度とされている角度範囲(上下方向線から周方向両側でそれぞれV-V断面線を少し越えるまでの角度範囲)において、ゴム壁部40の軸方向断面形状は、内周側立上り部46と中間段差状部50と外周側立上り部48とを有する複合湾曲形状とされた図2の断面形状から変化しない。その後も、ゴム壁部40の軸方向断面形状は、かかる複合湾曲形状から実質的に変化しないものの、周方向中央から周方向への振れ角度が大きくなるに従って、ゴム壁部40の内周側立上り部52の軸方向外面につながる軸方向外側ゴム58の径方向厚さ寸法が次第に外周側に大きくなってゆく。そして、周方向中央から周方向への振れ角度が一層大きくなって、ゴム壁部40の内周側立上り部52の軸方向外面につながる軸方向外側ゴム58の径方向厚さ寸法が更に大きくなると、かかる軸方向外側ゴム58によってゴム壁部40の内周側立上り部52に作用する変形拘束力が大きくなって、ゴム壁部40の有効自由長が実質的に短くなってしまうが、このような周方向の振れ角度の領域においてゴム壁部40の軸方向断面形状が変化することで、軸方向外側ゴム58による変形拘束を軽減乃至は回避してゴム壁部40の変形自由長が確保されるようになっている。 That is, on the axial outside of each rubber wall portion 40, an axially outer rubber 58 vulcanized and bonded to the outer peripheral surface of the inner tubular metal fitting 12 is formed by the main rubber elastic body 16, and the axially outer rubber 58 is integrally connected to the axially outer surface of the inner peripheral side rising portion 52 of the rubber wall portion 40. And, in the angle range in which the radial thickness dimension of the axially outer rubber 58 connected to the rubber wall portion 40 is the same as that of the coating rubber layer fixed to the outer peripheral surface of the inner tubular metal fitting 12 (the angle range from the up-down line to slightly exceeding the V-V cross-sectional line on both sides in the circumferential direction), the axial cross-sectional shape of the rubber wall portion 40 does not change from the cross-sectional shape of FIG. 2, which is a composite curved shape having the inner peripheral side rising portion 46, the intermediate step portion 50, and the outer peripheral side rising portion 48. Even after that, the axial cross-sectional shape of the rubber wall portion 40 does not substantially change from the compound curved shape, but as the deflection angle from the circumferential center to the circumferential direction increases, the radial thickness dimension of the axially outer rubber 58 connected to the axially outer surface of the inner circumferential side rising portion 52 of the rubber wall portion 40 gradually increases toward the outer periphery. Then, when the deflection angle from the circumferential center to the circumferential direction becomes even larger and the radial thickness dimension of the axially outer rubber 58 connected to the axially outer surface of the inner circumferential side rising portion 52 of the rubber wall portion 40 becomes even larger, the deformation restraint force acting on the inner circumferential side rising portion 52 of the rubber wall portion 40 by the axially outer rubber 58 becomes large, and the effective free length of the rubber wall portion 40 becomes substantially shorter. However, by changing the axial cross-sectional shape of the rubber wall portion 40 in the region of such a circumferential deflection angle, the deformation restraint by the axially outer rubber 58 is reduced or avoided, and the deformation free length of the rubber wall portion 40 is ensured.

具体的には、液室34の周方向中央から周方向への振れ角度が一層大きくなってくると、ゴム壁部40の軸方向断面形状は、軸直角方向内方に向かっていた外周側立上り部48が次第に軸方向内方に向かうように傾斜角度を変化し始めると共に、中間段差状部50の傾斜角度が次第に大きくなって、内周側立上り部46からそのまま径方向外方に向かって延びる方向に変化し始める。そして、最終的には、液室34の周方向中央から周方向への振れ角度が最大となるゴム壁部40の周方向両端部分では、図4に示されているように、ゴム壁部40の軸方向断面形状が、外周側延出部54と内周側立上り部52とが、湾曲連結部56によって接続された単一湾曲形状とされる。なお、このような中心軸周りの周方向におけるゴム壁部40の縦断面形状の変化は、明確な折れ線を有しないなめらかな変化とされることが望ましい。 Specifically, as the deflection angle from the circumferential center of the liquid chamber 34 in the circumferential direction becomes larger, the axial cross-sectional shape of the rubber wall portion 40 begins to change the inclination angle of the outer peripheral side rising portion 48, which was facing inward in the axial direction perpendicular to the axis, so that it gradually faces inward in the axial direction, and the inclination angle of the intermediate step-shaped portion 50 gradually increases, and it begins to change to a direction extending directly from the inner peripheral side rising portion 46 toward the radial outward direction. Finally, at both circumferential ends of the rubber wall portion 40 where the deflection angle from the circumferential center of the liquid chamber 34 in the circumferential direction becomes maximum, as shown in FIG. 4, the axial cross-sectional shape of the rubber wall portion 40 becomes a single curved shape in which the outer peripheral side extension portion 54 and the inner peripheral side rising portion 52 are connected by the curved connecting portion 56. It is preferable that such a change in the vertical cross-sectional shape of the rubber wall portion 40 in the circumferential direction around the central axis is a smooth change without a clear break line.

このように周方向に縦断面形状が変化するゴム壁部40では、周方向の中央部分において複合湾曲形状とされることで有効自由長が大きく確保されていることが明らかであり、それに加えて、中央部分で段差状に軸方向に延びる領域(中間段差状部50)をもっていることから、径方向振動入力時に内外筒金具12,14が軸直角方向で相対移動するのに伴って当該中間段差状部50がピストンのように作用することで、液室34に対して容積変化乃至は圧力変動が一層効率的に且つ積極的に生ぜしめられることとなる。 In this way, the rubber wall portion 40, whose cross-sectional shape changes in the circumferential direction, is clearly designed to have a large effective free length by forming a compound curved shape in the circumferential central portion. In addition, since the central portion has a stepped region (intermediate stepped portion 50) that extends in the axial direction, when radial vibration is input, the intermediate stepped portion 50 acts like a piston as the inner and outer tubular members 12, 14 move relative to each other in the direction perpendicular to the axis, and volumetric changes or pressure fluctuations are more efficiently and actively generated in the liquid chamber 34.

また、ゴム壁部40における周方向両側の端部付近では、外周側延出部54と内周側立上り部52からなる単一湾曲形状の縦断面形状とされることで、軸方向外側ゴム58による拘束作用を軽減乃至は回避して、有効自由長を確保することで、径方向振動入力に伴う弾性変形に際しての応力集中を軽減して耐久性の向上を図ることが可能になる。 In addition, near both circumferential ends of the rubber wall portion 40, the longitudinal section is formed into a single curved shape consisting of the outer peripheral extension portion 54 and the inner peripheral rising portion 52, which reduces or avoids the restraining effect of the axially outer rubber 58 and ensures an effective free length, thereby reducing stress concentration during elastic deformation due to radial vibration input and improving durability.

因みに、かくの如き作用効果は、従来構造の液封筒型防振装置と比較することで理解することもできる。比較例として、図21-27において、ゴム壁部40の縦断面形状を周方向全体に亘って略一定の複合湾曲形状(第一実施形態と基本的構成が同じである、内周側立上り部46と中間段差状部50と外周側立上り部48とを有する複合湾曲形状)をもって形成した従来構造の液封筒型防振装置60(一体加硫成形品62)を示す。なお、この比較例は、設定された各種特性が第一実施形態の液封筒型防振装置10と異なるために各部位の形状も液封筒型防振装置10と少し異なるものの、基本的な構造は同じであり、第一実施形態の液封筒型防振装置10との対比を判りやすくするために、比較例の各図中には、第一実施形態の液封筒型防振装置10と対応する各部位に対して第一実施形態の液封筒型防振装置10と同一の符号を付しておく。 Incidentally, such an action and effect can also be understood by comparing with a conventional liquid envelope type vibration isolator. As a comparative example, Fig. 21-27 shows a conventional liquid envelope type vibration isolator 60 (integrally vulcanized molded product 62) in which the longitudinal cross-sectional shape of the rubber wall portion 40 is formed with a substantially constant compound curved shape over the entire circumferential direction (a compound curved shape having an inner peripheral side rising portion 46, an intermediate step portion 50, and an outer peripheral side rising portion 48, which has the same basic configuration as the first embodiment). Note that, although the shapes of each part of this comparative example are slightly different from those of the liquid envelope type vibration isolator 10 of the first embodiment because the various characteristics set in this comparative example are different from those of the liquid envelope type vibration isolator 10 of the first embodiment, the basic structure is the same, and in order to make it easier to understand the comparison with the liquid envelope type vibration isolator 10 of the first embodiment, the same reference numerals as those of the liquid envelope type vibration isolator 10 of the first embodiment are used for the parts corresponding to those of the liquid envelope type vibration isolator 10 of the first embodiment in each figure of the comparative example.

かかる比較例では、ゴム壁部40の縦断面形状が周方向全体に亘って略一定の複合湾曲形状とされていることから、図24-25等からも判るように、ゴム壁部40の周方向両端部分では、軸方向外側ゴム58の立ち上がりによって、ゴム壁部40の内周側立上り部46と中間段差状部50までが拘束状態となっている。そして、軸方向外側ゴム58がゴム壁部40の内周部分につながる結果、ゴム壁部40において比較的容易に弾性変形が許容される部分は、ゴム壁部40において外周側に残されて軸直角方向に立ち上がる外周側立上り部48だけとなってしまっている。それ故、ゴム壁部40の周方向両端部分では、ゴム壁部40の有効自由長が大幅に小さくなってしまうことが避けられず、且つ、残された外周側立上り部48は軸直角方向の振動入力方向で略純圧縮/引張変形とされることから、振動入力時における応力の集中が発生しやすく、それが亀裂等の主たる発生原因となることを理解できる。 In this comparative example, the longitudinal section of the rubber wall portion 40 is a substantially constant compound curved shape over the entire circumferential direction, and as can be seen from Figs. 24-25 and the like, at both circumferential ends of the rubber wall portion 40, the inner circumferential side rising portion 46 and the intermediate step portion 50 of the rubber wall portion 40 are restrained by the rise of the axially outer rubber 58. As a result of the axially outer rubber 58 connecting to the inner circumferential portion of the rubber wall portion 40, the only portion of the rubber wall portion 40 that is relatively easily allowed to undergo elastic deformation is the outer circumferential side rising portion 48 that is left on the outer circumferential side of the rubber wall portion 40 and rises in the axis-perpendicular direction. Therefore, at both circumferential ends of the rubber wall portion 40, it is inevitable that the effective free length of the rubber wall portion 40 becomes significantly smaller, and since the remaining outer circumferential side rising portion 48 is substantially compressed/tensile deformed in the vibration input direction perpendicular to the axis, it can be understood that stress concentration is likely to occur during vibration input, which is the main cause of cracks and the like.

さらに、上述のようにゴム壁部40に対して周方向で異なる形状を設定した本実施形態の液封筒型防振装置10では、ゴム壁部40における軸方向外側ゴム58との略接続部分に位置して、内筒金具12の外周面と一対の連結ゴム腕部28,28の周方向両端部分とに略沿って延びるようにして、軸方向外方に向かって凹状とされた連続湾曲部66が形成されている。換言すれば、かかる連続湾曲部66は、ゴム壁部40において、内筒金具12の外周面に沿った内周縁部から一対の連結ゴム腕部28,28の周方向端部を外筒金具14側に向かって延びている。この連続湾曲部66が形成されていることにより、ゴム壁部40の変形自由度が大きくされて変形しやすくされており、軸方向外側ゴム58や連結ゴム腕部28による変形拘束力が軽減されている。その結果、ゴム壁部40における軸方向外側ゴム58や連結ゴム腕部28との境界部近くでの応力集中が軽減されて、亀裂の発生等による耐久性の低下がより一層効果的に防止されている。 Furthermore, in the liquid envelope type vibration isolator 10 of this embodiment in which the rubber wall portion 40 is set to have a different shape in the circumferential direction as described above, a continuous curved portion 66 is formed at the approximate connection portion of the rubber wall portion 40 with the axially outer rubber 58, and is concave toward the axially outward direction so as to extend approximately along the outer peripheral surface of the inner tube metal fitting 12 and the circumferential end portions of the pair of connecting rubber arm portions 28, 28. In other words, the continuous curved portion 66 extends from the inner peripheral edge portion along the outer peripheral surface of the inner tube metal fitting 12 to the circumferential end portions of the pair of connecting rubber arm portions 28, 28 toward the outer tube metal fitting 14 side in the rubber wall portion 40. By forming this continuous curved portion 66, the rubber wall portion 40 has a large degree of deformation freedom and is easily deformed, and the deformation restraining force by the axially outer rubber 58 and the connecting rubber arm portion 28 is reduced. As a result, stress concentration near the boundary portion of the rubber wall portion 40 with the axially outer rubber 58 and the connecting rubber arm portion 28 is reduced, and a decrease in durability due to the occurrence of cracks is more effectively prevented.

因みに、上述の如き特定構造のゴム壁部40による耐久性の向上作用は、本発明者によって、シミュレーションによる応力分布の解析結果からも確認されている。加えて、例えば振動入力方向となる上下方向におけるゴム壁部40の形状を確認することによっても、上述の如き特定構造のゴム壁部40による耐久性の向上作用を確認及び理解することができる。 Incidentally, the improvement in durability due to the rubber wall portion 40 having the above-mentioned specific structure has also been confirmed by the inventors from the results of stress distribution analysis by simulation. In addition, the improvement in durability due to the rubber wall portion 40 having the above-mentioned specific structure can be confirmed and understood by checking the shape of the rubber wall portion 40 in the up-down direction, which is the vibration input direction, for example.

すなわち、本実施形態の液封筒型防振装置10における主たる振動入力方向が上下方向であることから、振動入力に際しては内外筒金具12,14が上下方向に相対変位して本体ゴム弾性体16への振動荷重が上下方向に及ぼされることとなる。それ故、ゴム壁部40における有効自由長を図1中の上下方向で検討すると、左右方向の中央で最も有効自由長が長く且つ周方向両端付近が最も小さいことは、図1から明らかである。そこで、液室34の左右両端付近のゴム壁部40について、その縦断面形状を図1中のVI-VI断面として図6に示す。かかる図6から判るように、ゴム壁部40は、左右両端付近でも、主たる振動入力方向となる上下方向では、内周側立上り部46と中間段差状部50と外周側立上り部48とを有する複合湾曲形状をしっかりと保持している。これによって、ゴム壁部40は、主たる振動入力方向となる上下方向においては、ゴム壁部40の左右方向の全長にわたって、即ち液室34の全体にわたって、作用効果的に有利な複合湾曲形状を保持しており、優れた液室変化量と耐久性とが両立して有効に達成され得ることが判る。 That is, since the main vibration input direction in the liquid envelope type vibration isolator 10 of this embodiment is the vertical direction, when vibration is input, the inner and outer tubular metal fittings 12, 14 are displaced relative to each other in the vertical direction, and the vibration load on the main rubber elastic body 16 is applied in the vertical direction. Therefore, when considering the effective free length of the rubber wall portion 40 in the vertical direction in FIG. 1, it is clear from FIG. 1 that the effective free length is longest at the center in the horizontal direction and smallest near both ends in the circumferential direction. Therefore, the longitudinal cross-sectional shape of the rubber wall portion 40 near both left and right ends of the liquid chamber 34 is shown in FIG. 6 as the VI-VI cross-section in FIG. 1. As can be seen from FIG. 6, even near both left and right ends, the rubber wall portion 40 firmly maintains a composite curved shape having the inner peripheral side rising portion 46, the intermediate step portion 50, and the outer peripheral side rising portion 48 in the vertical direction, which is the main vibration input direction. As a result, the rubber wall portion 40 maintains an advantageous compound curved shape in the vertical direction, which is the main vibration input direction, over the entire length of the rubber wall portion 40 in the horizontal direction, i.e., over the entire liquid chamber 34, and it can be seen that excellent liquid chamber change amount and durability can be effectively achieved at the same time.

以上、本発明の第一実施形態について説明してきたが、本発明は係る第一実施形態における具体的な説明や構造によって限定的に解釈されるものでない。例えば、本体ゴム弾性体16の具体的形状ひいては2つの液室34,34や一対の連結ゴム腕部28,28や軸方向外側ゴム58,58等及びオリフィス通路36等の具体的形状は、液封筒型防振装置に要求される荷重特性や防振特性などに応じて適宜に設定されるものであって限定されない。 Although the first embodiment of the present invention has been described above, the present invention is not limited to the specific description or structure of the first embodiment. For example, the specific shape of the main rubber elastic body 16, and thus the specific shapes of the two liquid chambers 34, 34, the pair of connecting rubber arm portions 28, 28, the axially outer rubber 58, 58, etc., and the orifice passage 36, etc., are set appropriately according to the load characteristics and vibration isolation characteristics required of the liquid envelope type vibration isolation device, and are not limited thereto.

本体ゴム弾性体16の具体的形状を別態様とした液封筒型防振装置について、第二実施形態としての液封筒型防振装置10′を図8-14に示すと共に、第三実施形態としての液封筒型防振装置10″を図15-20に示す。なお、これら図8-14及び図15-20では、第一実施形態の液封筒型防振装置10と同様な構造とされた部材及び部位について、それぞれ第一実施形態と同一の符号を付することにより、詳細な説明を省略する。 As for a liquid envelope type vibration isolating device in which the specific shape of the main rubber elastic body 16 is different, a liquid envelope type vibration isolating device 10' as a second embodiment is shown in Figure 8-14, and a liquid envelope type vibration isolating device 10" as a third embodiment is shown in Figure 15-20. Note that in Figures 8-14 and 15-20, components and parts that have the same structure as the liquid envelope type vibration isolating device 10 of the first embodiment are given the same reference numerals as in the first embodiment, and detailed explanations are omitted.

すなわち、第二実施形態としての液封筒型防振装置10′及び第三実施形態としての液封筒型防振装置10″は、何れも、第一実施形態の液封筒型防振装置10に対して、各液室34のゴム壁部40における連続湾曲部66の形態を異ならせることで特性設定を異ならせたものの一例である。 In other words, the liquid envelope type vibration isolator 10' as the second embodiment and the liquid envelope type vibration isolator 10'' as the third embodiment are both examples of devices in which the characteristics are set differently by changing the shape of the continuous curved portion 66 in the rubber wall portion 40 of each liquid chamber 34 compared to the liquid envelope type vibration isolator 10 of the first embodiment.

具体的には、第二実施形態の液封筒型防振装置10′では、第一実施形態の液封筒型防振装置10の図1と第二実施形態の液封筒型防振装置10′の図8とを見比べると判るように、第一実施形態の液封筒型防振装置10では、ゴム壁部40の周方向両端部分において連続湾曲部66が連結ゴム腕部28の周方向端部を内筒金具12から中間スリーブ18に向かって図中の左右方向に直線的に延びている。 Specifically, in the second embodiment of the liquid envelope type vibration isolator 10', as can be seen by comparing FIG. 1 of the first embodiment of the liquid envelope type vibration isolator 10 with FIG. 8 of the second embodiment of the liquid envelope type vibration isolator 10', in the first embodiment of the liquid envelope type vibration isolator 10, the continuous curved portion 66 at both circumferential ends of the rubber wall portion 40 extends linearly from the inner tube metal fitting 12 to the intermediate sleeve 18 at the circumferential end of the connecting rubber arm portion 28 in the left-right direction in the figure.

一方、第二実施形態の液封筒型防振装置10′では、ゴム壁部40の周方向両端部分において、連続湾曲部66が、連結ゴム腕部28の周方向端面(図14参照)に沿うようにして、内筒金具12から中間スリーブ18に向かって円弧状に斜め上方(又は斜め下方)に立ち上がった湾曲形状で左右方向に延びている。なお、第一実施形態及び第二実施形態の液封筒型防振装置10,10′では、何れも、軸方向両側のゴム壁部40,40を含む液室34,34が、上下の軸直角方向で互いに対称構造とされており、液封筒型防振装置10,10′の全体としても上下の軸直角方向で互いに対称形状となる構造とされている。 On the other hand, in the second embodiment of the liquid envelope type vibration isolator 10', at both circumferential ends of the rubber wall portion 40, the continuous curved portion 66 extends in the left-right direction in a curved shape that rises obliquely upward (or downward) in an arc shape from the inner tube metal fitting 12 toward the intermediate sleeve 18, so as to follow the circumferential end face (see FIG. 14) of the connecting rubber arm portion 28. Note that in both the first and second embodiments of the liquid envelope type vibration isolator 10, 10', the liquid chambers 34, 34 including the rubber wall portions 40, 40 on both axial sides are symmetrical to each other in the vertical axis-perpendicular direction, and the liquid envelope type vibration isolator 10, 10' as a whole is also symmetrical to each other in the vertical axis-perpendicular direction.

また、第三実施形態の液封筒型防振装置10″では、第一実施形態の液封筒型防振装置10の図1と第三実施形態の液封筒型防振装置10″の図15とを見比べると判るように、第一実施形態の液封筒型防振装置10では、上下の液室34,34が各軸方向両側のゴム壁部40,40を含めて対称形状とされているのに対して、第三実施形態の液封筒型防振装置10″では、上側の液室34のゴム壁部40,40と下側の液室34のゴム壁部40,40とが、特に連続湾曲部66の形状に関して、互いに異ならされて非対称形状とされている。 In addition, in the third embodiment of the liquid envelope type vibration isolator 10'', as can be seen by comparing FIG. 1 of the first embodiment of the liquid envelope type vibration isolator 10 with FIG. 15 of the third embodiment of the liquid envelope type vibration isolator 10'', in the first embodiment of the liquid envelope type vibration isolator 10, the upper and lower liquid chambers 34, 34 are symmetrical in shape, including the rubber wall portions 40, 40 on both sides in the axial direction, whereas in the third embodiment of the liquid envelope type vibration isolator 10'', the rubber wall portions 40, 40 of the upper liquid chamber 34 and the rubber wall portions 40, 40 of the lower liquid chamber 34 are different from each other, particularly with respect to the shape of the continuous curved portion 66, and are therefore asymmetrical.

具体的には、下側のゴム壁部40の連続湾曲部66は、前記第二実施形態の液封筒型防振装置10′と略同じ連続湾曲部66の形状とされている一方、上側のゴム壁部40の連続湾曲部66は、ゴム壁部40の周方向両端部分において、連結ゴム腕部28の周方向端面(図14参照)から更に下方(連結ゴム腕部28の軸方向外面)に向かうようにして、内筒金具12から中間スリーブ18に向かって斜め下方に直線状に左右方向に延びている。なお、図15に示されているように、本実施形態の液封筒型防振装置10″における軸方向正面からの外観上では、上側のゴム壁部40の連続湾曲部66と下側のゴム壁部40の連続湾曲部66とが、ゴム壁部40の周方向両端部分において、上下方向で離隔して互いに略平行状態で内筒金具12から左右両側でそれぞれ斜め下方に向かって中間スリーブ18側へ延びる形態とされている。 Specifically, the continuous curved portion 66 of the lower rubber wall portion 40 has a shape of the continuous curved portion 66 that is substantially the same as that of the liquid-sealed type vibration-damping device 10' of the second embodiment, while the continuous curved portion 66 of the upper rubber wall portion 40 extends diagonally downward from the inner tube metal fitting 12 toward the intermediate sleeve 18 in a straight line in the left-right direction at both circumferential ends of the rubber wall portion 40, from the circumferential end face of the connecting rubber arm portion 28 (see FIG. 14) toward the further downward (the axial outer surface of the connecting rubber arm portion 28). Note that, as shown in FIG. 15, in the appearance of the liquid-sealed type vibration-damping device 10'' of this embodiment from the axial front, the continuous curved portion 66 of the upper rubber wall portion 40 and the continuous curved portion 66 of the lower rubber wall portion 40 are vertically spaced apart from each other at both circumferential ends of the rubber wall portion 40, and extend diagonally downward from the inner tube metal fitting 12 toward the intermediate sleeve 18 on both the left and right sides.

これら第二実施形態及び第三実施形態の液封筒型防振装置10′,10″においても、各ゴム壁部40の縦断面形状は、第一実施形態と同様に周方向に変化しており、周方向の中央部分において複合湾曲形状とされると共に、周方向両端部分で単一湾曲形状とされている。このように第一実施形態と同様なゴム壁部40を採用した各実施形態の液封筒型防振装置10′,10″にあっても、第一実施形態の液封筒型防振装置10と同様に、内外筒金具12,14間への軸直角方向の振動入力時において、液室34に対して圧力変動が効率的に生ぜしめられることでオリフィス通路36を通じての流体流動量が確保されて良好な防振性能が発揮されると共に、液室34の周方向両端部付近におけるゴム壁部40の有効自由長が確保されて良好な耐久性も実現可能になるといった、本発明の技術的効果が達成され得る。 In these second and third embodiments of the liquid envelope type vibration isolator 10', 10" as well, the vertical cross-sectional shape of each rubber wall portion 40 changes in the circumferential direction as in the first embodiment, with a compound curved shape in the circumferential central portion and a single curved shape at both circumferential ends. In this way, even in the liquid envelope type vibration isolator 10', 10" of each embodiment that employs the same rubber wall portion 40 as in the first embodiment, as in the liquid envelope type vibration isolator 10 of the first embodiment, when vibration is input in the axis-perpendicular direction between the inner and outer cylindrical fittings 12, 14, pressure fluctuations are efficiently generated in the liquid chamber 34, ensuring the amount of fluid flow through the orifice passage 36 and providing good vibration isolating performance, and the effective free length of the rubber wall portion 40 near both circumferential ends of the liquid chamber 34 is ensured, enabling good durability to be achieved, thus achieving the technical effects of the present invention.

以上、本発明の実施形態について詳述してきたが、本発明は上述の具体的な記載によって限定的に解釈されるものでない。例えば内筒金具12や外筒金具14,本体ゴム弾性体16,オリフィス通路36,連結ゴム腕部28等の具体的形状や大きさは、液封筒型防振装置が装着される対象や要求される荷重特性や防振特性などに応じて適宜に変更され得る。 Although the embodiments of the present invention have been described in detail above, the present invention is not to be interpreted in a limited manner based on the above specific description. For example, the specific shapes and sizes of the inner and outer tubular metal fittings 12, 14, main rubber elastic body 16, orifice passage 36, connecting rubber arm portion 28, etc. can be appropriately changed depending on the object to which the liquid envelope type vibration isolation device is attached and the required load characteristics and vibration isolation characteristics.

また、前記実施形態では内筒金具12と外筒金具14が略同一中心軸上に配されていたが、相互に偏心して配することも可能であり、更に、一対の連結ゴム腕部28,28の弾性主軸を、内筒金具12の中心軸周りの周方向で傾斜させて180度を外れた所定の交差角度をもって径方向に延びるようにしても良い。このような態様は、例えば本発明の液封筒型防振装置をエンジンマウントへ適用するに際してパワーユニット重量等のプリロードが軸直角方向一方向に及ぼされる場合等に好適に採用され得、連結ゴム腕部28,28やゴム壁部40における引張応力の発生を軽減乃至は回避することで更なる耐久性の向上を図ることが可能になる。 In addition, in the above embodiment, the inner tube metal fitting 12 and the outer tube metal fitting 14 are arranged on approximately the same central axis, but they can also be arranged eccentrically with respect to each other, and further, the elastic main axes of the pair of connecting rubber arm portions 28, 28 can be inclined in the circumferential direction around the central axis of the inner tube metal fitting 12 so as to extend radially at a predetermined crossing angle other than 180 degrees. Such an embodiment can be preferably adopted, for example, when the liquid-sealed type vibration-proof device of the present invention is applied to an engine mount, in which a preload such as the weight of a power unit is applied in one direction perpendicular to the axis, and it is possible to further improve durability by reducing or avoiding the generation of tensile stress in the connecting rubber arm portions 28, 28 and the rubber wall portion 40.

更にまた、一対の連結ゴム腕部28,28の具体的な寸法や形状は限定されるものでない。例えば前記実施形態では、一対の連結ゴム腕部28,28の周方向端面が何れも略径方向に延びることで、連結ゴム腕部28の周方向厚さ寸法が内周側から外周側に向かって次第に大きくされていた(図7等参照)が、比較例(図27参照)のように周方向両端面が略平行とされて略一定の厚さ寸法で内周側から外周側に向かって延びる連結ゴム腕部28を採用することも可能である。 Furthermore, the specific dimensions and shapes of the pair of connecting rubber arms 28, 28 are not limited. For example, in the above embodiment, the circumferential end faces of the pair of connecting rubber arms 28, 28 each extend in a substantially radial direction, so that the circumferential thickness dimension of the connecting rubber arm 28 gradually increases from the inner circumference side to the outer circumference side (see FIG. 7, etc.). However, it is also possible to adopt a connecting rubber arm 28 in which both circumferential end faces are substantially parallel and extend from the inner circumference side to the outer circumference side with a substantially constant thickness dimension, as in the comparative example (see FIG. 27).

さらに、前記実施形態では、2つの液室34,34の各ゴム壁部40,40の全てにおいて、本発明に従って周方向で異ならされた特定の断面形状を採用していたが、例えば入力される荷重や振動の大きさや方向及び要求される耐久性や防振性能等を考慮して、一方の液室34のゴム壁部40,40についてだけ、本発明に従う周方向で異ならされた特定の断面形状を採用しても良い。 In addition, in the above embodiment, a specific cross-sectional shape that differs in the circumferential direction according to the present invention is adopted for all of the rubber wall portions 40, 40 of the two liquid chambers 34, 34. However, taking into consideration, for example, the input load, the magnitude and direction of vibration, and the required durability and vibration-proofing performance, it is also possible to adopt a specific cross-sectional shape that differs in the circumferential direction according to the present invention for only the rubber wall portions 40, 40 of one of the liquid chambers 34.

また、ゴム壁部40における内周側立上り部46や外周側立上り部48は、内筒金具12に対して垂直に限定されず軸方向に僅かに傾斜していても良いし、中間段差状部50の傾斜角度も、内周側立上り部46及び外周側立上り部48よりは軸方向に大きく傾斜するものであるが、具体的に限定されるものでない。更に、これら内周側立上り部46や外周側立上り部48、中間段差状部50について、長さ等の具体的寸法は要求特性等に応じて適宜に設定可能であって限定されない。 The inner peripheral rising portion 46 and the outer peripheral rising portion 48 of the rubber wall portion 40 are not limited to being perpendicular to the inner tube metal fitting 12, and may be slightly inclined in the axial direction, and the inclination angle of the intermediate step portion 50 is also greater in the axial direction than the inner peripheral rising portion 46 and the outer peripheral rising portion 48, but is not specifically limited. Furthermore, the specific dimensions such as length of the inner peripheral rising portion 46, the outer peripheral rising portion 48, and the intermediate step portion 50 can be set appropriately according to the required characteristics, etc., and are not specifically limited.

その他、一々列挙はしないが、本発明は、当業者の知識に基づいて種々なる変更,修正,改良等を加えた態様において実施され得るものであり、また、そのような実施態様が、本発明の趣旨を逸脱しない限り、何れも、本発明の範囲内に含まれるものであることは、言うまでもない。 Although we will not list them all here, the present invention can be embodied in various forms that include changes, modifications, improvements, etc. based on the knowledge of those skilled in the art, and it goes without saying that all such embodiments are included within the scope of the present invention as long as they do not deviate from the spirit of the present invention.

10 液封筒型防振装置(第一実施形態)
10′ 液封筒型防振装置(第二実施形態)
10″ 液封筒型防振装置(第三実施形態)
12 内筒金具
14 外筒金具
16 本体ゴム弾性体
18 中間スリーブ
20 窓部
22 周溝
24 一体加硫成形品(第一実施形態)
24′ 一体加硫成形品(第二実施形態)
24″ 一体加硫成形品(第三実施形態)
26 ポケット部
28 連結ゴム腕部
29 緩衝ゴム突起
30 オリフィス形成用ゴム
32 オリフィス用溝
34 液室
36 オリフィス通路
40 ゴム壁部
42 内周側湾曲部分
44 外周側湾曲部分
46 内周側立上り部
48 外周側立上り部
50 中間段差状部
52 内周側立上り部
54 外周側延出部
56 湾曲連結部
58 軸方向外側ゴム
60 液封筒型防振装置(比較例)
62 一体加硫成形品(比較例)
66 連続湾曲部
10 Liquid envelope type vibration isolation device (first embodiment)
10' Liquid envelope type vibration isolator (second embodiment)
10" Liquid envelope type vibration isolation device (third embodiment)
12 Inner cylindrical metal member 14 Outer cylindrical metal member 16 Main rubber elastic body 18 Intermediate sleeve 20 Window portion 22 Circumferential groove 24 Integral vulcanization molded product (first embodiment)
24' Integral vulcanization molded product (second embodiment)
24" integral vulcanization molded product (third embodiment)
26 Pocket portion 28 Connecting rubber arm portion 29 Cushioning rubber protrusion 30 Orifice forming rubber 32 Orifice groove 34 Liquid chamber 36 Orifice passage 40 Rubber wall portion 42 Inner circumference curved portion 44 Outer circumference curved portion 46 Inner circumference rising portion 48 Outer circumference rising portion 50 Intermediate step portion 52 Inner circumference rising portion 54 Outer circumference extending portion 56 Curved connecting portion 58 Axial outer rubber 60 Liquid envelope type vibration isolator (Comparative example)
62 Integral vulcanization molding (Comparative example)
66 Continuous curved section

Claims (5)

インナ軸部材とアウタ筒部材とが本体ゴム弾性体で連結されていると共に、2つの液室が該インナ軸部材を軸直角方向に挟んだ両側に形成されてオリフィス通路で相互に連通されている液封型防振装置であって、
前記本体ゴム弾性体において前記液室の軸方向両側の壁部を構成する各ゴム壁部の軸方向断面形状が、該液室の周方向の中央部分と両端部分とで互いに異なっており、
該中央部分では該インナ軸部材側から外周側に向かって立ち上がってから軸方向外方に向けて湾曲する内周側湾曲部分と前記アウタ筒部材側から内周側に向かって立ち上がってから軸方向内方に向けて湾曲する外周側湾曲部分とをなめらかにつないだ複合湾曲形状とされている一方、
該両端部分では該インナ軸部材側から外周側に向かって立ち上がってから軸方向外方に向けて湾曲して更に軸方向外方に延びる単一湾曲形状とされている
ことを、特徴とする液封筒型防振装置。
A liquid-sealed vibration-proof device in which an inner shaft member and an outer cylindrical member are connected by a main rubber elastic body, and two liquid chambers are formed on both sides of the inner shaft member in a direction perpendicular to the axis thereof and are mutually communicated with each other through an orifice passage,
the axial cross-sectional shapes of the rubber wall portions constituting the wall portions on both axial sides of the liquid chamber in the main rubber elastic body are different between a central portion and both end portions in the circumferential direction of the liquid chamber,
The central portion has a compound curved shape in which an inner circumferential side curved portion that rises from the inner shaft member side toward the outer circumferential side and then curves axially outwardly and an outer circumferential side curved portion that rises from the outer tubular member side toward the inner circumferential side and then curves axially inwardly are smoothly connected,
A liquid envelope type vibration isolation device characterized in that both end portions rise from the inner shaft member side toward the outer periphery, then curve axially outward and further extend axially outward, forming a single curved shape.
前記本体ゴム弾性体は、前記2つの液室の周方向両側の端部間において前記インナ軸部材と前記アウタ筒部材との間を軸直角方向に延びる一対の連結腕部を有しており、該一対の連結ゴム腕部における周方向の両側間に前記2つの液室が形成されている一方、
該液室の前記各ゴム壁部には、前記インナ軸部材の外周面に沿った内周縁部から該一対の連結腕部の周方向端部を前記アウタ筒部材側に向かって延びるようにして、軸方向外方に向かって凹状とされた連続湾曲部が設けられている請求項1に記載の液封筒型防振装置。
The main rubber elastic body has a pair of connecting arms extending in an axially perpendicular direction between the inner shaft member and the outer cylindrical member between both circumferential ends of the two liquid chambers, and the two liquid chambers are formed between both circumferential ends of the pair of connecting rubber arms.
A liquid envelope type vibration isolation device as described in claim 1, wherein each rubber wall portion of the liquid chamber has a continuous curved portion that is concave axially outward, from the inner peripheral edge portion along the outer peripheral surface of the inner shaft member, and extends the circumferential ends of the pair of connecting arms toward the outer cylindrical member.
前記2つの液室が、前記各ゴム壁部を含めて、前記インナ軸部材を挟んだ径方向で対称形状とされている請求項1又は2に記載の液封筒型防振装置。 A liquid envelope type vibration isolation device according to claim 1 or 2, in which the two liquid chambers, including the rubber wall portions, are symmetrical in the radial direction sandwiching the inner shaft member. 前記一対の連結ゴム腕部が該インナ軸部材を挟んだ軸直角方向線上に設けられて、前記2つの液室の周方向のサイズが同じとされている一方、
該2つの液室間において前記ゴム壁部に設けられた前記連続湾曲部が、長さ方向の両側部分において前記インナ軸部材側から前記アウタ筒部材側に向かって延びる方向及び長さを互いに異ならされている請求項2に記載の液封筒型防振装置。
The pair of connecting rubber arm portions are provided on a line perpendicular to the axis of the inner shaft member, and the circumferential sizes of the two liquid chambers are the same.
A liquid envelope type vibration isolation device as described in claim 2, wherein the continuous curved portion provided in the rubber wall portion between the two liquid chambers has different directions and lengths extending from the inner shaft member side toward the outer cylindrical member side at both longitudinal sides.
前記本体ゴム弾性体の外周部分には中間スリーブが固着されていると共に、
該本体ゴム弾性体には2つのポケット部が設けられて、各該ポケット部が該中間スリーブに設けられた窓部を通じて外周面に開口しており、
前記ゴム壁部の外周端部が該中間スリーブにおける該窓部の軸方向端縁部に固着されて、該ゴム壁部が前記インナ軸部材と該中間スリーブとの間に跨がって設けられている一方、
該中間スリーブに前記アウタ筒部材が外挿固定されて、該中間スリーブの該窓部が該アウタ筒部材で覆蓋されることで前記2つの液室が形成されている請求項1又は2に記載の液封筒型防振装置。
An intermediate sleeve is fixed to the outer periphery of the main rubber elastic body,
The main rubber elastic body is provided with two pockets, each of which opens to an outer circumferential surface through a window provided in the intermediate sleeve,
An outer peripheral end of the rubber wall portion is fixed to an axial end edge of the window portion of the intermediate sleeve, and the rubber wall portion is provided between the inner shaft member and the intermediate sleeve,
A liquid envelope type vibration isolation device as described in claim 1 or 2, wherein the outer cylindrical member is inserted and fixed onto the intermediate sleeve, and the window portion of the intermediate sleeve is covered by the outer cylindrical member, thereby forming the two liquid chambers.
JP2022156202A 2022-09-29 2022-09-29 Liquid envelope type vibration isolation device Pending JP2024049766A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022156202A JP2024049766A (en) 2022-09-29 2022-09-29 Liquid envelope type vibration isolation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022156202A JP2024049766A (en) 2022-09-29 2022-09-29 Liquid envelope type vibration isolation device

Publications (1)

Publication Number Publication Date
JP2024049766A true JP2024049766A (en) 2024-04-10

Family

ID=90622063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022156202A Pending JP2024049766A (en) 2022-09-29 2022-09-29 Liquid envelope type vibration isolation device

Country Status (1)

Country Link
JP (1) JP2024049766A (en)

Similar Documents

Publication Publication Date Title
US7232118B2 (en) Fluid filled vibration damping device
JP2010159873A (en) Cylindrical vibration isolating device of fluid encapsulation type
JPH0724674Y2 (en) Upper support for suspension
JP2000186739A (en) Fluid seal type vibration control device
JPH08193639A (en) Fluid-filled vibration isolating bush
JP2001050333A (en) Vibration control device
JPH08177945A (en) Fluid sealing type cylindrical vibration proof device
CN108131390B (en) Hydro-elastic bearing
JP2013190037A (en) Vibration control device
JPH0320138A (en) Fluid sealed type cylindrical mount device
JP2012092875A (en) Fluid sealed type cylindrical vibration damping device
JP2024049766A (en) Liquid envelope type vibration isolation device
WO2001094809A1 (en) Liquid seal type vibration isolator
JP3427593B2 (en) Fluid-filled cylindrical mount
JP3705715B2 (en) Fluid filled cylindrical mount
JP4937222B2 (en) Fluid filled anti-vibration connecting rod
JP3533267B2 (en) Anti-vibration device
JP4124973B2 (en) Fluid filled toe collect bush and suspension mechanism using the same
CN110030323B (en) Vibration-proof device
JP2008111558A (en) Fluid filled system toe correct bush and suspension mechanism using it
JP7460501B2 (en) Anti-vibration device
JPH0729318Y2 (en) Fluid-filled cylinder mount device
JP2006266438A (en) Fluid sealed type cylindrical vibration control device
JP5118454B2 (en) Liquid-filled vibration isolator
JP3456286B2 (en) Cylindrical anti-vibration mount